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Abstract
The onset of thermal convection in an anisotropic horizontal porous layer heated from 
below and rotating about vertical axis, under local thermal non-equilibrium hypothesis is 
studied. Linear and nonlinear stability analysis of the conduction solution is performed. 
Coincidence between the linear instability and the global nonlinear stability thresholds 
with respect to the  L2—norm is proved.

Article Highlights 

• A necessary and sufficient condition for the onset of convection in a rotatinganiso-
tropic porous layer has been obtained.

•  It has been proved that convection can occur only through a steady motion.A 
detailed proof is reported thoroughly.

• Numerical analysis shows that permeability promotes convection, whilethermal 
conductivities and rotation stabilize conduction.

Keywords Mechanical anisotropy · Thermal anisotropy · Thermal non-equilibrium · 
Rotating layer · Linear instability · Global nonlinear stability

1 Introduction

Over the years, thermal convection in porous media has attracted the interest of many 
researchers because numerous applications in geological context and in many engineering 
fields such as geothermal energy utilization, thermal insulation technology, tube refrigera-
tors, heat exchangers, oil reservoir modelling and many others (see, for instance, Capone 
et al. 2020a; Gentile and Straughan 2013, 2017; Tyvand and Noland 2020; Barletta 2019; 
Straughan 2008; Nield and Bejan 2017; Capone and De Luca 2017; Capone and Rionero 
2016b; Capone and De Luca 2014a, 2012 and references therein)
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In nature, many porous media, like for example sedimentary and metamorphic rocks, 
exhibit a strong anisotropic behaviour in both thermal and mechanical features. Moreover, 
anisotropy is a property of artificial porous materials, as well, for example materials used 
in chemical engineering. Because of the emerging utilization of fully anisotropic porous 
materials in many applications to real life, the majority of investigations on thermal con-
vection in porous media dealt with anisotropic porous materials (Malashetty et al. 2005; 
Tyvand and Storesletten 2015; Storesletten 2004; Capone et  al. 2010, 2012; Nield and 
Kuznetsov 2019; Kuznetsov et al. 2015; Capone and De Luca 2020; Capone and Rionero 
2016a; Storesletten and Rees 1997; Govender and Vadasz 2007).

Furthermore, as far as thermal convection in porous media is concerned, there are many 
situations in which local thermal equilibrium assumption is not realistic and therefore the 
fluid temperature, Tf  , is supposed to be different from the solid skeleton temperature, Ts . 
When the two temperatures are different the scheme is usually referred to as local ther-
mal non-equilibrium scheme, namely LTNE. In LTNE scheme, it is assumed that fluid and 
solid phases communicate in such a way that heat exchanges better describe the physics of 
the problem. In the past as nowadays, a great attention to LTNE flows in porous media is 
given by many researchers, as shown in Capone and Gentile (2018), Capone et al. (2020a, 
b), Govender and Vadasz (2007), Straughan (2013), Barletta and Rees (2015), Kuznetsov 
et al. (2015), Celli et al. (2017), Franchi et al. (2018), Hema et al. (2020). This is due to 
the numerous applications to real-life situations, such as preserving food, cooling computer 
chips, nanofluids flows, biological tissues analysis and convection in stellar atmospheres.

In the present paper, we analyse the onset of convection in a fully anisotropic porous 
medium in LTNE scheme, allowing for the Corolis force. The study of flow in rotating 
porous medium is motivated by its numerous applications in real processes, like, for exam-
ple, in physiological processes in human body subject to rotating trajectories; in engineer-
ing processes with rotating electronic devices, in magma flow in the Earth mantle close to 
the Earth crust and in chemical process industry (Vadasz 1998, 2002, 2016, 2019; Goven-
der 2007; Capone et al. 2020a, b; Capone and De Luca 2014b).

The plan of the paper is the following. In Sect. 2, we introduce the mathematical model 
and the dimensionless evolution equations for perturbation fields to conduction solution in 
order to study the stability of the motionless state (conduction solution). Then, in Sect. 3, 
a detailed proof of principle of exchange of stabilities is performed and the critical Ray-
leigh number for the onset of (stationary) convection is determined, in a closed algebraic 
form. Section 4 deals with the nonlinear stability analysis of the conduction solution and 
we prove the coincidence between the linear instability threshold and the (global) nonlin-
ear stability threshold of the conduction solution, with respect to the L2−norm. Finally, in 
Sect. 5, numerical simulations concerning the influence of rotation and anisotropy on the 
stability/instability thresholds is analysed.

2  Mathematical Model

Let us consider a horizontal porous layer of depth d, filled by an incompressible, homo-
geneous fluid at rest. We assume that the medium is uniformly heated from below and 
uniformly rotating about the vertical axis z (upward vertical) with constant angular velocity 
� . Let TL be the temperature of the lower plane z = 0 and let TU be the temperature of the 
upper plane z = d . In the local thermal non-equilibrium scheme (LTNE), denoting by Tf  
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and Ts the fluid temperature and the solid skeleton temperature, respectively, it turns out 
that

Moreover, we assume that the layer is anisotropic and we denote by K the permeability 
tensor, and let Ds , Df  be the thermal conductivity tensors of solid phase and fluid phase, 
respectively. Assume that the principal axis (x, y, z) of the permeability tensor are the same 
as the ones of conductivity tensor, one obtains

where, in particular, � is the thermal anisotropy parameter for the fluid phase.
The mathematical model, in the Oberbeck–Boussinesq approximation and account-

ing for the Coriolis force due to the uniform rotation of the layer about the vertical axis 
z is (Straughan 2015; Govender and Vadasz 2007; Capone and Gentile 2018; Capone 
et al. 2020a)

where � , p, Ts and Tf  are (seepage) velocity, reduced pressure, solid phase temperature and 
fluid phase temperature, respectively; � , �f  , �s , g, � , � , � , c, h are dynamic viscosity, fluid 
density, solid density, gravity acceleration, thermal expansion coefficient, angular velocity, 
porosity, specific heat and interaction coefficient, respectively.

To system (3), we append the following boundary conditions

being � the unit outward normal to planes z = 0, d.
The system (3) admits the conduction solution m0:

where 𝛽 =
TL − TU

d
(> 0) is the adverse temperature gradient.

(1)Ts = Tf = TL on z = 0, Ts = Tf = TU on z = d (TL > TU) .

(2)

K = KzK
∗

K
∗ =

⎛
⎜⎜⎝

�1 0 0

0 �2 0

0 0 1

⎞
⎟⎟⎠

�1 =
Kx

Kz

�2 =
Ky

Kz

Ds = �s
z
D

∗

s
D

∗

s
=

⎛⎜⎜⎝

�1 0 0

0 �2 0

0 0 1

⎞⎟⎟⎠
�1 =

�s
x

�s
z

�2 =
�s
y

�s
z

Df = � f
z
D

∗

f
D

∗

f
=

⎛⎜⎜⎝

� 0 0

0 � 0

0 0 1

⎞⎟⎟⎠
� =

�
f

h

�
f
z

(3)

⎧⎪⎪⎨⎪⎪⎩
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(4)
Ts = Tf = TL on z = 0, Ts = Tf = TU on z = d,

� ⋅ � = 0 on z = 0, d

(5)m0 =
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2
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}



188 F. Capone et al.

1 3

In order to study the stability of the steady solution (5), let us introduce the following 
perturbation fields

and the dimensionless quantities

where

The dimensionless equations for the perturbation fields, omitting all the tilde, are

where �1 = �,xx + �,yy and

To system (9), we append the following initial conditions

where ∇ ⋅ �0 = 0 , and the following boundary conditions

We assume that perturbation fields are periodic in x and y directions of periods 2�
ax

 and 2�
ay

 , 

respectively, and they belong to W2,2(V), ∀t ∈ ℝ
+where V =

[
0,

2�

ax

]
×

[
0,

2�

ay

]
× [0, 1] is 

the periodicity cell. Then we denote by (⋅, ⋅) and ‖ ⋅ ‖ the scalar product on the Hilbert space 
L2(V) , and the related norm, respectively.

3  Instability Analysis of m
0

In order to study the linear stability of m0 , let us consider the linear version of (9), i.e.

(6)vi = ui + v̄i Ts = 𝜙 + T̄s Tf = 𝜃 + T̄f p = 𝜋 + p̄

(7)xi = x̃id, t = t̃
𝜀d

U
, 𝜋 = �̃�P, ui = ũiU, 𝜃 = 𝜃T �, 𝜙 = �̃�T �

(8)U =
��

f
z

(�c)f d
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U�d

Kz
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√√√√ �
f
z��

�g�Kz�
2
f
cf d

2
.

(9)

⎧⎪⎨⎪⎩
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Rayleigh number , T =
2��f Kz

��
Taylor number .

(10)�(�, 0) = �0(�) , �(�, 0) = �0(�) , �(�, 0) = �0(�) , �(�, 0) = �0(�)

(11)w = � = � = 0 on z = 0, 1.
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under the boundary conditions (11). Applying the curl to (12)1 , one obtains

and deriving (13)1 by y, (13)2 by x and (13)3 by z, one gets

Subtracting (14)2 from (14)1 and then substituting the result in (14)3 , it follows that

Let us consider now the autonomous system

and seek for solutions having the following time-dependence (Chandrasekhar 2013) 
�̂�(t, �) = 𝜑(�) e𝜎t, ∀�̂� ∈ (w, 𝜃,𝜙) , 𝜎 ∈ ℂ , (16) becomes

Let us multiply (17)1 by w∗ , (17)2 once by �1�∗,xx and once by �2�∗,yy , (17)3 once by �1�∗
,xx

 and 
once by �2�∗

,yy
where the asterisks denote the complex conjugate, accounting for the bound-

ary conditions one obtains:

(12)

⎧⎪⎨⎪⎩

K
−1
� = −∇� + R�� − T� × �

∇ ⋅ � = 0

�,t = Rw + ��1� + �,zz + H(� − �)

A�,t − �1�,xx − �2�,yy − �,zz + H�(� − �) = 0

(13)

⎧
⎪⎨⎪⎩

w,y�2 − v,z = R�,y�2 + Tu,z�2
u,z − w,x�1 = −R�,x�1 + Tv,z�1
v,x�1 − u,y�2 = T�1�2w,z

(14)

⎧⎪⎨⎪⎩

w,yy�2 − v,zy = R�,yy�2 + Tu,zy�2
u,zx − w,xx�1 = −R�,xx�1 + Tv,zx�1
v,xz�1 − u,yz�2 = T�1�2w,zz.

(15)�1w,xx + �2w,yy + w,zz = �1R�,xx + �2R�,yy − T
2�1�2w,zz.

(16)

⎧⎪⎨⎪⎩

�1w,xx + �2w,yy + w,zz + T
2�1�2w,zz − �1R�,xx − �2R�,yy = 0

�,t − Rw − ��1� − �,zz − H(� − �) = 0

A�,t − �1�,xx − �2�,yy − �,zz + H�(� − �) = 0

(17)

⎧⎪⎨⎪⎩

�1w,xx + �2w,yy + w,zz + T
2�1�2w,zz − �1R�,xx − �2R�,yy = 0

�� − Rw − ��1� − �,zz − H(� − �) = 0

A�� − �1�,xx − �2�,yy − �,zz + H�(� − �) = 0.
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and hence, since terms in (18) are real, then necessarily � ∈ ℝ . Therefore, the strong form 
of the principle of exchange of stabilities holds, i.e. convection can occur only through a 
steady motion.

In order to determine the critical Rayleigh number for the onset of convection, by virtue of 
the principle of exchange of stabilities, setting � = 0 in (17), one obtains

Denoting

(19) becomes

Now, applying the operators L and L2 to (21)2 and substituting (21)1 and (21)3 in the result-
ing equation, one leads

Splitting the operators L1 and L2 , from (22) it follows that

(18)

�
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�
(�,xx,w

∗) + (w, �∗
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⎧⎪⎨⎪⎩
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L2 ≡ �1�,xx + �2�,yy + �,zz − H�
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By virtue of the periodicity and of the boundary conditions (11)2 , since the sequence 
{sin(n�z)}n∈ℕ is a complete orthogonal system for L2([0, 1]) , accounting for solutions of 
the form � = �0 sin(n�z)e

i(axx+ayy) , (23) becomes

Setting A∗ = 1 + T
2�1�2 and

from (24) it follows that the critical Rayleigh number RL for the onset of convection is 
given by

and since f (a2
x
, a2

y
, n2) is strictly increasing with n2 , this implies that the minimum is 

attained at n2 = 1 . Hence,

Remark 1 Define

 where

Let us observe that: 

(23)

(�1�,xx + �2�,yy + �,zz − H�)(��1 + �,zz)L�

= (�1�,xx + �2�,yy + �,zz)HL�

− R2(�1�,xx + �2�,yy)(�1�,xx + �2�,yy + �,zz)�

+ R2(�1�,xx + �2�,yy)H��.

(24)

(−�1a
2
x
− �2a

2
y
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x
− �a2

y
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2
x
− �2a

2
y
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2�1�2n
2�2)

= (−�1a
2
x
− �2a

2
y
− n2�2)H(−�1a

2
x
− �2a

2
y
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2�1�2n
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− R2(−�1a
2
x
− �2a

2
y
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2
x
− �2a

2
y
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x
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y
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�1a
2
x
+ �2a

2
y
+ n2�2A∗

�1a
2
x
+ �2a

2
y

⋅

[
�a2

x
+ �a2

y
+ n2�2 +

H(�1a
2
x
+ �2a

2
y
+ n2�2)

�1a
2
x
+ �2a

2
y
+ n2�2 + H�

]
,

(26)RL = min
(n2,a2

x
,a2

y
)∈ℕ×ℝ+×ℝ+

f (a2
x
, a2

y
, n2)

(27)RL = min
(a2

x
,a2

y
)∈ℝ+×ℝ+

f (a2
x
, a2

y
, 1).

(28)R0 =
RL

𝜋2
= min

(x̄,ȳ)∈ℝ+×ℝ+
f1(x̄, ȳ),

(29)
f1(x̄, ȳ) =

𝜉1x̄ + 𝜉2ȳ + A∗

𝜉1x̄ + 𝜉2ȳ

[
𝜂x̄ + 𝜂ȳ + 1 +

H0(𝜁1x̄ + 𝜁2ȳ + 1)

𝜁1x̄ + 𝜁2ȳ + 1 + H0𝛾

]

x̄ =
a2
x

𝜋2
, ȳ =

a2
y

𝜋2
, H0 =

H

𝜋2
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 (i) In the case of horizontal isotropy, i.e. �1 = �2 and �1 = �2 , the critical Rayleigh num-
ber R0 given by (28) coincides with that one obtained in Capone and Gentile (2018);

 (ii) In the absence of rotation (T2 = 0) and if the porous medium is isotropic 
(�1 = �2 = �1 = �2 = � = 1) , then the critical Rayleigh number R0 coincides with 
that one obtained in Banu and Rees (2002). Moreover, in the hypothesis of local 
thermal equilibrium (H0 → ∞) , by simple calculations, the critical Rayleigh reverts 
to the classical Rayleigh number for the isotropic porous medium in the local thermal 
equilibrium (Govender and Vadasz 2007);

 (iii) The stabilizing effect of fluid thermal conductivity on the onset of convection is 
evident since the partial derivative of (29) with respect to � is strictly positive.

4  Nonlinear Stability

In order to study the nonlinear stability of the conduction solution m0 , let us introduce the 
following Lyapunov functional

and define

Multiplying (9)3 by � , (16)3 by � , integrating over V and then adding the resulting equa-
tions, we find out

In order to capture the influence of rotation on the nonlinear stability analysis of the con-
duction solution m0 , we shall apply the differential constraint approach (Straughan 2006; 
Ouarzazi et al. 2017; Capone and Gentile 2018]. To this end, let us consider the following 
variational problem

with

the space of the kinematically admissible perturbations.
The variational problem (33) is equivalent to

(30)E(t) =
‖�‖2
2

+
A‖�‖2
2�

(31)

D(t) = �‖∇1�‖2 + ‖�,z‖2 +
�1

�
‖�,x‖2

+
�2

�
‖�,y‖2 + 1

�
‖�,z‖2 + H‖� − �‖2

I(t) = (�,w) .

(32)
dE

dt
= −D

(
1 − R

I

D

)
.

(33)
1

RE

= max
H

∗

I

D

(34)
H

∗ = {(w, 𝜃,𝜙) ∶ w = 𝜃 = 𝜙 = 0 on z = 0, 1; periodic in x and y

directions, with period
2𝜋

ax
,
2𝜋

ay
respectively; D < ∞; verifying (16)1}
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where �(�) is a Lagrange multiplier and

By applying the Poincaré inequality in (31)1 , it turns out that

where

Then, from (32) by virtue of (37) , if R < RE one obtains:

where c ≤ min

{
2a,

2b

A

}
 . Hence, the condition R < RE implies the nonlinear, global and 

exponential stability of m0 , according to the following inequality

Remark 2 Multiplying (9)1 by � , integrating over V and applying the Cauchy–Schwarz ine-
quality, it turns out that

where � =
R2

2
max{�1, �2, 2} . Therefore, the condition R < RE implies the decay of ‖�‖ , as 

well.

In order to determine the critical Rayleigh number RE , we solve the variational prob-
lem (35). The Euler Lagrange equations are

By virtue of (20), (41) becomes

(35)1

RE

= max
H

I + ∫
V
� g dV

D

(36)

g(�) = 𝜉1w,xx + 𝜉2w,yy + w,zz + T2𝜉1𝜉2w,zz − 𝜉1R𝜃,xx − 𝜉2R𝜃,yy

H = {(w, 𝜃,𝜙) ∶ w = 𝜃 = 𝜙 = 0 on z = 0, 1; periodic in x and y

directions, with period
2𝜋

ax
,
2𝜋

ay
respectively; D < ∞

}
.

(37)D(t) ≥ �2a‖�‖2 + b
�2

�
‖�‖2

(38)a = min{�, 1} b = min{�1, �2, 1}.

dE

dt
≤

�2(R − RE)c

RE

E

(39)E(t) ≤ E(0) exp

[
�2(R − RE)c

RE

t

]
.

(40)�−1‖�‖2 ≤ ‖�‖2

(41)

⎧⎪⎨⎪⎩

� + �1�,xx + �2�,yy + �,zz + T
2�1�2�,zz = 0

2[��1� + �,zz − H(� − �)] = �1R
2�,xx + �2R

2�,yy − Rw

�1�,xx + �2�,yy + �,zz + H�(� − �) = 0

�1w,xx + �2w,yy + w,zz + T
2�1�2w,zz = �1R�,xx + �2R�,yy.
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Applying L2 to (42)1 and substituting (42)2 and (42)3 in the resulting equation, one obtains 
(22) and therefore RL = RE , i.e. the coincidence between the global nonlinear stability 
threshold and the linear instability threshold, implying the absence of subcritical instabili-
ties. This is an optimal result since the condition R < RE = RL is a necessary and sufficient 
condition to guarantee the stability of m0.

5  Numerical Simulations

This section will deal with the solution of equation (28). It will be analysed the influence 
of parameters on the critical Rayleigh number. First of all, we would like to point out the 
behaviour of function f1(x̄, ȳ) in (29). Fixed five parameters (�1, �2, �1, �2, �) in f1(x̄, ȳ) , once 
the following transformation is adopted

values initially assumed by x̄ are taken by ȳ and vice versa. Moreover, function f1(x̄, 0) will 
have the same graph as f1(0, ȳ) . This behaviour is important because by applying the previ-
ous transformation, the same results obtained for x̄ hold for ȳ and vice versa.

Figure 1 shows the stabilizing effect of rotation on the onset of convection, which is 
an expected physical behaviour. Moreover, taking into account (29), one immediately 
proves that f1(x̄, ȳ) is an increasing function of T2 . In numerical analysis, for the sake of 
simplicity, we confine ourselves in considering the case of isotropic porous medium, i.e. 
�1 = �2 = �1 = �2 = � = 1 . However, analogous results are obtained when another set of 
these parameters is fixed.

Note that in Fig. 1 the critical Rayleigh number is taken as a function of the scaled inter-
phase heat transfer coefficient H0 . As Govender and Vadasz (2007) pointed out, since this 
quantity is not easily measured, we need to determine a range in which this parameter can 
vary. Starting from its definition H0 =

h2d

��
f
z�

2
 , for reasonable combinations of these param-

(42)

⎧
⎪⎨⎪⎩

LL1� = −HL� − RLw

Lw = �1R�,xx + �2R�,yy
L2� = −H��.

(43)(�1, �2, �1, �2, �) → (�2, �1, �2, �1, �),

Fig. 1  Critical Rayleigh 
number as function of the 
scaled inter-phase heat transfer 
coefficient H0 for different 
values of Taylor number T  with 
�1 = �2 = �1 = �2 = � = 1 and 
� = 0.4
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eters, H0 is assumed to vary between 0.01 and 106 . It is well known that rotation has a sta-
bilizing effect on conduction. In particular, Fig. 1 shows that this effect of Taylor number is 
very pronounced for large values of H0 , while it is less remarkable for H0 ∼ 10−1 . We 
would like to remark that for large values of H0 , each curve tends to become parallel to x 
axis. As shown in Govender and Vadasz (2007), this behaviour represents the region of 
local thermodynamic equilibrium and it will characterize the following images, as well.

In Fig. 2, the destabilizing effect of the parameter � on the onset of convection is clear. 
For large values of H0 , R0 is inversely proportional to � , while for small values of H0 , the 
presence of � is negligible. This kind of behaviour is evident in equation (28), and it is 
reported in Govender and Vadasz (2007), as well. Physically, if h is large, i.e. the heat 
exchange between the phases is high, increasing the fluid conductivity � f

z  fosters the onset 
of convection.

Figure 3 shows the behaviour of the critical Rayleigh number as a function of H0 for dif-
ferent values of �1 . The behaviour for low values of H0 is similar to the one for large values. 
In particular, R0 increases up to a certain value either for H0 = 0.01 and H0 = 106 . After 
this point, it starts decreasing toward a limit value. The asymptotic trend is highlighted in 
Figs 4a, b, where H0 = 100 and H0 = 0.01 , respectively.

Furthermore, in Tables  1–2, some significant values of R0 are reported in order to 
show which is the critical anisotropy parameter beyond which R0 inverts its trend, both for 
H0 = 100 and H0 = 0.01 . In addition, note that the moment in which R0 starts decreasing 

Fig. 2  Critical Rayleigh number 
as function of the scaled inter-
phase heat transfer coefficient 
H0 for different values of � with 
�1 = �1 = 0.1, �2 = �2 = � = 1 
and T2 = 20

Fig. 3  Critical Rayleigh number 
as function of the scaled inter-
phase heat transfer coefficient 
H0 for different values of �1 with 
�2 = �2 = � = 1, �1 = 0.1, � = 0.4 
and T2 = 20
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coincides with the one in which the periodicity cells change their nature. Firstly, when �2 
is fixed and �1 is increasing, they are rolls aligned along x axis. Then they turn into rolls 
aligned along y axis. The opposite transition occurs when transformation (43) is adopted, as 
shown in Table 2. This phenomenon is physically admissible, as pointed out by Straughan 
(2019). Small values of �1 imply that the fluid struggles to move in the x direction therefore 

(a) (b)

Fig. 4  Critical Rayleigh number as function of �1 with �1 = 0.1, �2 = �2 = � = 1, T
2
= 20, � = 0.4 , a 

H0 = 100 , b H0 = 0.01

Table 1  Significant values of R0 , 
x̄ and ȳ depending on �1 , with 
�2 = � = �2 = 1, �1 = 0.1

(a) H0 = 100 (b) H0 = 0.01

�1 R0 x̄ ȳ �1 R0 x̄ ȳ

0.20 34.6354 0 2.4519 0.80 26.2973 0 4.1436
0.30 43.6359 0 2.9776 0.98 30.7327 0 4.5613
0.39 51.3471 0 3.4167 0.99 30.9769 0 4.5834
0.40 50.7299 7.9758 0 1 31.2207 4.6010 0.0043
0.41 50.6284 7.9648 0 1.01 31.2086 4.6043 0
0.45 50.2671 7.9257 0 1.05 31.1626 4.6001 0
0.50 49.8963 7.8854 0 1.10 31.1098 4.5954 0

Table 2  Significant values of R0 , 
x̄ and ȳ depending on �2 , with 
�1 = � = �1 = 1, �2 = 0.1

(a) H0 = 100 (b) H0 = 0.01

�2 R0 x̄ ȳ �2 R0 x̄ ȳ

0.20 34.6354 2.4519 0 0.80 26.2973 4.1436 0
0.30 43.6359 2.9776 0 0.98 30.7327 4.5613 0
0.39 51.3471 3.4167 0 0.99 30.9769 4.5834 0
0.40 50.7299 0 7.9758 1 31.2207 0.0043 4.6010
0.41 50.6284 0 7.9648 1.01 31.2086 0 4.6043
0.45 50.2671 0 7.9257 1.05 31.1626 0 4.6001
0.50 49.8963 0 7.8854 1.10 31.1098 0 4.5954
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the motion has components along y and z axis. Whereas, greater values of �1 allow the fluid 
to move easier in x direction, favouring the creation of rolls along y axis.

Kvernvold and Tyvand (1979) found that the presence of anisotropic porous media 
yields a two-dimensional fluid motion. Convective cells are rolls aligned in x or y direction, 
depending on the ratios between anisotropy parameters. This fluid behaviour is preserved 
under the hypothesis of local thermal non-equilibrium.

The behaviour of critical Rayleigh number for different values of �1 changes once the 
ratio 

�1

�2
 is inverted. However, Fig. 5 is similar to Fig. 3.

Increasing �1 makes R0 grow up to a certain value, beyond which it starts decreasing. 
Moreover, for small values of H0 , inverting �1 and �2 affects neither the shape of periodicity 
cells, which are firstly still rolls aligned along x axis, nor the influence of �1 on R0 . Table 3 
shows what has been just pointed out.

Now, we decided to fix a direction in which the fluid fails to move easily. So we 
assumed �2 = 0.1 and looked at the critical Rayleigh number as a function of �1 . In Fig. 6a, 
b, the destabilizing effect of permeability is evident, for all H0 , both for 𝜁1 < 𝜁2 and 𝜁1 > 𝜁2 . 
Recalling the definition of Rayleigh number, this kind of behaviour is expected. Fixed the 
horizontal permeability parameters Kx and Ky , decreasing values of vertical permeabil-
ity Kz yield a decrease of Rayleigh number, in agreement with findings of Govender and 
Vadasz (2007) in the case of horizontal isotropy. Furthermore, increasing Kx will promote 
the horizontal motion, which increases the preferred cells width and reduces the critical 
Rayleigh number, as also proposed by Tyvand and Storesletten (1991).

Table 3  Significant values of R0 , 
x̄ and ȳ depending on �1 , with 
�2 = � = �1 = 1, �2 = 0.1

(a) H0 = 100 (b) H0 = 0.01

�1 R0 x̄ ȳ �1 R0 x̄ ȳ

2.20 86.4714 0 11.3535 0.80 26.2972 0 4.1436
2.30 89.5334 0 11.6095 0.98 30.7327 0 4.5613
2.40 92.5822 0 11.8606 0.99 30.9767 0 4.5834
2.41 92.8864 0 11.8854 1 31.2207 0.0043 4.6010
2.42 96.3788 6.0680 0 1.01 31.2088 4.6043 0
2.43 96.3726 6.0676 0 1.05 31.1628 4.6002 0
2.50 96.3307 6.0649 0 1.10 31.1100 4.5954 0

Fig. 5  Critical Rayleigh number 
as function of the scaled inter-
phase heat transfer coefficient 
H0 for different values of �1 with 
�2 = � = �1 = 1, �2 = 0.1, � = 0.4 
and T2 = 20
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Now, let us analyse how R0 varies with respect to the thermal anisotropy. Figure 7 
shows clearly that �1 has a stabilizing effect on conduction if H0 is large. A similar result 
is found by Govender and Vadasz (2007) in a simpler situation. Physically, increasing 
solid conductivity implies that the solid matrix absorbs heat from the fluid more easily. 
On the other hand, when H0 ∼ 10−1 , the effect of �1 is negligible.

Tables 4a–b represent a focus on the influence of solid thermal conductivity on the 
onset of convection. They are obtained when H0 = 100 , but however analogous results 
are valid for all large H0.

Note that the stabilizing effect of �1 is evident up to a certain value, beyond which R0 
is constant. This behaviour is direct consequence of the change of rolls direction. Once 
the fluid motion occurs on the plane yz, i.e. rolls are aligned along x axis, modifying �1 
does not produce any effect on the motion. Furthermore, inverting the ratio 

�1

�2
 does not 

modify the way �1 affects R0 , as shown in Table 4b.
In Fig. 8, the stabilizing effect of fluid thermal conductivity � is highlighted for any 

H0 . This behaviour is expected since we have shown previously that increasing � f
z  fosters 

(a) (b)

Fig. 6  Critical Rayleigh number as function of H0 for different values of �1 with � = 1, T
2
= 20, � = 0.4 a 

�2 = �1 = 0.1, �2 = 1 , b �2 = �2 = 0.1, �1 = 1

Fig. 7  Critical Rayleigh number 
as function of the scaled inter-
phase heat transfer coefficient 
H0 for different values of �1 with 
�1 = � = �2 = 1, �2 = 0.8, � = 0.4 
and T2 = 20
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the onset of convection. Moreover, looking at the definition of R0 in (28), it is evident 
that the critical Rayleigh number is directly proportional to �.

6  Conclusions

A linear and nonlinear stability analysis of the conduction solution in a fluid saturating 
an anisotropic porous layer under the effect of rotation, in local thermal non-equilib-
rium, has been performed. In particular, the coincidence between the global nonlinear 
stability threshold and the linear instability threshold has been proved. This means that 
a necessary and sufficient condition for global nonlinear stability of conduction solution 
has been obtained. Moreover, we have shown that convection can occur only through a 
steady motion.

Given that the critical Rayleigh number is obtained in a closed form, we have per-
formed a numerical analysis. We have shown that the increasing conductivity ratio � has 
a destabilizing effect on conduction. Mechanical anisotropy �i ( i = 1, 2 ) has the same 
effect, for �j small ( j ≠ i ), while a slightly different behaviour is obtained when �j is 
high. Then we have proved that increasing fluid and solid thermal conductivities delay 
the onset of convection, as well as rotation.

Table 4  (a) Significant values 
of R0 as function of �1 with 
�1 = � = �2 = 1, �2 = 0.8, H0 = 100 . 
(b) Significant values of 
R0 as function of �1 with 
�2 = � = �2 = 1, �1 = 0.8, H0 = 100

(a) (b)

�1 R0 x̄ ȳ �1 R0 x̄ ȳ

1.30 95.8271 5.3503 0 0.60 78.6021 6.3297 0
1.31 96.2154 5.3556 0 0.68 82.9496 6.2686 0
1.39 99.2900 5.4055 0 0.69 83.4862 6.2628 0
1.40 99.4132 0 6.2639 0.70 83.7592 0 5.2852
1.41 99.4132 0 6.2639 0.71 83.7592 0 5.2852
1.50 99.4132 0 6.2639 0.80 83.7592 0 5.2852
1.60 99.4132 0 6.2639 0.90 83.7592 0 5.2852

Fig. 8  Critical Rayleigh number 
as function of the scaled inter-
phase heat transfer coefficient 
H0 for different values of � with 
�1 = 1.6, �2 = �1 = �2 = 1, � = 0.4 
and T2 = 20
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Moreover, the presence of anisotropy forces the fluid in a two-dimensional motion. Con-
vective cells are rolls aligned in x or y direction, depending on the ratios between anisot-
ropy parameters.
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