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Abstract
The evolution of the surface topography of a calcite crystal subject to dissolution is docu-
mented through in situ real-time imaging obtained via atomic force microscopy (AFM). The 
dissolution process takes place by exposing the crystal surface to deionized water. AFM data 
allow detection of nucleation and expansion of mono- and multilayer rhombic etch pits and are 
employed to estimate the spreading rate of these structures. Spatially heterogeneous distribu-
tions of local dissolution rate are evaluated from the difference between topographic meas-
urements taken at prescribed time intervals. We rest on a stochastic framework of analysis 
viewing the dissolution rate as a generalized sub-Gaussian (GSG) spatially correlated random 
process. Our analysis yields: (i) a quantitative assessment of the temporal evolution of the sta-
tistics of the dissolution rates as well as their spatial increments; (ii) a characterization of the 
degree of spatial correlation of dissolution rates and of the way this is linked to the various 
mechanisms involved in the dissolution process and highlighted through the experimental evi-
dences. Our results indicate that the parameters driving the statistics of the GSG distribution 
and the spreading rate of the multilayer pits display a similar trend in time, thus suggesting that 
the evolution of these structures imprints the statistical features of local dissolution rates.

Article Highlights

•	 We investigate dynamics of dissolution patterns on a calcite crystal in contact with 
deionized water via AFM imaging

•	 Temporal behavior of parameters of our statistical model is consistent with surface pat-
tern evolution

•	 A nested model for the spatial correlation of rates embeds multiple mechanisms driving 
dissolution rate.
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1  Introduction

Proper assessment of reactive processes at solid–liquid interfaces is of critical importance 
for the characterization of flow and transport in porous media, as these drive possible alter-
ations of key physical attributes of the hosting formation, such as porosity, permeability, 
or storage (Hommel et al. 2018). As such, detailed knowledge of dissolution/precipitation 
reaction kinetics has relevant implications in several industrial and environmental contexts 
including, e.g., aquifer contamination (Bianchi Janetti et  al. 2013), geothermal energy 
exploitation (Erol et al. 2019), enhanced (conventional and unconventional) management 
of subsurface energy resources (Khather et al. 2020), or geological storage of CO2 (Daval 
2018). Calcite has been a major target of kinetic characterization studies, due to its wide-
spread presence in geological environments and its affinity to incorporate trace elements 
in the solution, acting as a potential sink for heavy metals and pollutants (Heberling et al. 
2014; Renard et al. 2019).

A bulk powder experiment is typically considered a pillar for the estimation of dissolu-
tion rates (Luttge et al. 2013), which are inferred by monitoring changes in dissolved sol-
ute concentrations. While these experiments are simple and characterized by a remarkable 
level of reproducibility, an intrinsic difficulty is related to the observation that measured 
changes in mass must be normalized by the powder surface area to obtain proper units of 
rate, i.e., mass per unit area per unit time. Large discrepancies between dissolution rates 
evaluated under identical laboratory conditions are documented (Arvidson et al. 2003) and 
are attributed to the way the powder surface area is computed and to the actual portion of 
the mineral surface that is available for the reaction (Luttge et al. 2013; Luttge 2005).

The use of high-resolution imaging techniques such as vertical scanning interferometry 
(VSI) and atomic force microscopy (AFM) enables the observation of the surface topog-
raphy of dissolving minerals at the molecular level. These techniques are contributing to 
enhance our knowledge of the main mechanisms driving reactions at fluid–solid interfaces 
and have been extensively employed for the investigation of calcite dissolution in aqueous 
solution (see, e.g., Anabaraonye et al. 2019; Bibi et al. 2018; Bouissonnié et al. 2018; Fis-
cher et al. 2012; Smith et al. 2013 for VSI; Dong et al. 2020; Offeddu et al. 2014; Renard 
et al. 2019; Renard et al. 2015; Teng 2004; Xu et al. 2010 for AFM). While AFM is more 
limited in terms of observation window as compared to VSI (maximum size being in the 
order of 10 and 100 µm, respectively), it is characterized by an enhanced level of lateral 
resolution (minimum pixel size being in the order of 10 and 100 nm, for AFM and VSI, 
respectively) and is more suited for in situ and real-time detection of surface topography 
and atomic-resolution forces.

Measurements of average surface retreat with respect to a local reference (i.e., a region 
covered by a non-reactive mask embedded on the sample) can be employed to estimate a 
mean dissolution rate, 〈R〉 [molm−2 s−1] , as

where Δh [m] is the surface retreat evaluated with respect to the reference and 〈 〉 denotes 
spatial averaging; Δt [s] is the duration of the experiment; and Vm[m

3 mol−1] is calcite 
molar volume. This approach enables one to overcome difficulties/uncertainties typical 
of the bulk powder approach and associated with the need to estimating the surface area. 
However, relying on average quantities of the kind associated with Eq. 1 leads to a com-
plete loss of information about the often marked degree of heterogeneity of local surface 

(1)⟨R⟩ = 1

Vm

⟨Δh⟩
Δt

.
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topography (and hence rate) values that is revealed by high-resolution imaging techniques. 
Heterogeneities at the microscopic level result from local inhomogeneities and defects on 
the crystal structure. These are usually regarded as sources of intrinsic variability and lead 
to uneven distributions of surface free energy (i.e., cohesive energy at the calcite surface). 
Their impact on the dissolution process has been identified as the ultimate cause of the 
wide range of average rate estimates under given experimental conditions (Luttge et  al. 
2013).

Since the density and the distribution of defects on the mineral surface displays traits 
which are typical of random processes, there is a growing need for a change in perspective 
when developing experimentally driven interpretive models of such processes. A shift of 
paradigm towards the reliance on a stochastic approach has been encouraged by several 
authors (Fischer et al. 2014, 2012; Luttge et al. 2019, 2013) to capture the spatial variabil-
ity of dissolution rates. Fischer et al. (2012) introduced the concept of rate spectra (i.e., the 
frequency distribution of local rate values in the domain) as a tool to preserve the variety of 
surface features contributing to the overall dissolution process. In this sense, these authors 
interpret the ensuing frequency distribution of rates as a convolution of modes, each repre-
senting a basic kinetic component. This aspect has been further investigated by other stud-
ies where rate spectra are extrapolated from (i) AFM in situ imaging of surface topography 
on dissolving calcite in limestone pores (Levenson and Emmanuel 2013) and dolostone 
(Emmanuel 2014); (ii) VSI topography data under far-from-equilibrium conditions taken 
in situ and in real time on the surface of a calcite crystal (Bibi et al. 2018) or ex situ on 
a calcite-cemented sandstone (Trindade Pedrosa et al. 2019); and (iii) digital holographic 
microscopy (DHM) for in situ topography acquisitions on a calcite crystal in contact with 
deionized water (Brand et al. 2017).

First attempts at identifying a suitable model for the interpretation of rate spectra rely 
on the generalized extreme value (GEV) distribution (Brand et al. 2017; Emmanuel 2014). 
Brand et  al. (2017) highlight a dependency between the distribution parameters and the 
temporal window across which dissolution rates are evaluated. Pollet-Villard et al. (2016) 
and Siena et al. (2020) show examples of the application of geostatistics for the study of 
the spatial heterogeneity of reactive processes data at the microscopic level. Pollet-Villard 
et  al. (2016) rely on common variogram analyses of topography data measured experi-
mentally through AFM imaging of a dissolving orthoclase surface in far-from-equilibrium 
conditions. Siena et al. (2020) interpret the statistics of VSI-based measurements of cal-
cite surface topography subject to dissolution in close-to-equilibrium conditions within the 
recently developed statistical framework of analysis relying on a generalized sub-Gaussian 
(GSG) formulation (Riva et  al. 2015). The latter constitutes a modeling approach which 
enables one to characterize jointly the statistical behavior of a given (spatially heterogene-
ous) quantity, Y(�) (x denoting a vector of spatial coordinates), and its spatial (or temporal) 
increments, ΔY(�) = Y(� + �) − Y(�) evaluated at multiple separation distances (or lags), 
s. This approach has been shown to fully embed statistical features which have been docu-
mented by observations of a broad spectrum of hydrogeological variables [e.g., porosity 
(Guadagnini et al. 2014; Painter 1996; Riva et al. 2015), permeability (Painter 1996; Riva 
et  al. 2013b, a) or hydraulic conductivity (Guadagnini et  al. 2013; Liu and Molz 1997; 
Meerschaert 2004)] and resulting in a clear scale-dependent behavior of the sample dis-
tributions (and associated statistical moments) of spatial increments (see also Sect. 2.4 for 
additional details).

Here, we aim at characterizing the spatial variability of the dissolution rate inferred 
from in  situ and real-time AFM imaging of a calcite sample, cleaved along the {104} 
surface plane (where indices 104 characterize the plane orientation, curly brackets 
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denoting inclusion of all planar surfaces that, due to the symmetry of the crystal lattice, 
are equivalent to plane (104)), in contact with deionized water. The reaction is initially 
in far-from-equilibrium conditions. As the fluid in contact with the sample is static, the 
degree of saturation of the solution with respect to the dissolved phase progressively 
increases within a boundary layer at the fluid/solid interface. Thus, a transition from a 
surface-dominated to a diffusion-dominated reaction takes place (see also, e.g., Renard 
et  al. 2019). Our main goal is to investigate the effects of this transition on surface 
topography patterns driven by dissolution and on the degree of spatial heterogeneity of 
the associated rate within a temporal interval immediately after the renewal of the solu-
tion in contact with the sample in the AFM cell. The analysis rests on (i) the evaluation 
of the statistical behavior of the observed local rate values and of the associated spatial 
increments and (ii) the identification of quantitative metrics to assess the temporal evo-
lution of rate heterogeneity.

2 � Materials and Methods

2.1 � Calcite Dissolution Mechanisms

Reactivity of calcite {104} surface is of primary interest in natural settings. On this plane, 
calcite exhibits steps oriented along [441] and [481] crystallographic directions (where the 
overbar represents a negative crystallographic index) and is characterized by a rhombohe-
dral symmetry. Two parallel edges of an etch pit form differing angles with the terrace sur-
face, indicated as acute ( [441]− and [481]− ) and obtuse ( [441]+ and [481]+ ) steps, respec-
tively. The difference in atomic configurations of these steps leads to a distinct material 
removal rate, dissolution of acute steps being slower than the one associated with obtuse 
steps (Harstad and Stipp 2007). Calcite dissolution can take place by progressive retreat 
of preexisting steps or etch pit nucleation. The latter can be originated from either sur-
face defects or can occur randomly on a flat terrace. Spontaneous pit nucleation requires a 
higher amount of energy with respect to the defect-assisted process, which, in turn, requires 
a higher energy than step retreat. As a consequence, the prevailing dissolution mode is 
directly related to the distance of the reaction from equilibrium, as quantified through the 
saturation state, Ω = IAP

/
Ksp , where IAP = aCa2+aCO2−

3
 is the ion activity product for cal-

cite and Ksp = aCa2+,eqaCO2−
3
,eq is the solubility product constant, obtained as the product of 

the species activities at equilibrium. By definition, Ω approaches unity as the system tends 
to thermodynamic equilibrium. As suggested by several authors (Bouissonnié et al. 2018; 
Kristensen et  al. 2004; Teng 2004), at extreme undersaturation conditions ( Ω < 0.007 ) 
the chemical potential is such that the energy barrier associated with spontaneous pits 
nucleation can be overcome and shallow pits (having depths of a single layer) are allowed 
to form at random locations on the terraces. For a lower degree of undersaturation, i.e., 
0.007 < Ω < 0.41 − 0.54 , the nucleation of etch pits can be originated only at locations 
corresponding to linear defects in the crystal lattice, and dissolution takes place both by 
nucleation at these locations and by step retreat. Within this saturation range, a transition 
from rhombic to triangular pit shape is documented at Ω ≈ 0.1 − 0.2 , as a consequence 
of progressive roundings of the obtuse-obtuse corners (Harstad and Stipp 2007). Dissolu-
tion takes place by means of step retreat under close-to-equilibrium conditions (i.e., for 
Ω > 0.41 − 0.54 ), the terraces not being involved in the reaction.
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2.2 � Experimental Settings

A calcite sample has been prepared immediately before the experiment session by 
cleaving a crystal of Iceland spar (Mexico), pressing along the {104} plane with a razor 
blade. The sample (having size ∼ 5 × 3 × 1 mm3 ) is secured on a slide and fluxed with 
nitrogen, to remove possible residues resulting from the cleavage operation. A Viton 
O-ring is mounted on the AFM support to seal the volume of the fluid cell, the lat-
ter being open to air and centered about the sample. Topography measurements are 
acquired with an AFM (Keysight 5500 apparatus) in contact mode. The tips (Bruker; 
model: RESPA-40) used in the study are made of Si and are specifically designed for 
contact mode acquisition. The cantilever (k = 5 N/m) has an Al coating to enhance the 
laser back reflection. A constant scan frequency (at 2.2 Hz) is employed to cover an area 
of 6 × 6 µm2 discretized according to a 512 × 512 grid (pixel size, dl = 11.7 nm). Only 
top-down scans are considered for our analyses. The dissolution process is started by 
exposing the crystal surface to deionized MilliQ water (18.2 MΩ ⋅ cm ) for a preliminary 
period of 1 h and 30 min. The volume of fluid enclosed in the cell (~2 ml) is connected 
to a system of syringes allowing replacement of the solution in contact with the sample. 
The sequence of measurements analyzed starts after the renewal of the fluid volume in 
the cell and spans a temporal window of width T = 30 min, the acquired images being 
spaced by a uniform time step Δt = 5min.

Real-time AFM imaging during calcite dissolution is demanding and requires per-
forming several experiments for the identification of the ideal setup. A proper calibra-
tion of the AFM scanning rate has to be performed upon considering a tradeoff between 
the quality of the acquisition and the dissolution time scale. We performed 10 experi-
ments on diverse samples, all cleaved from the same block of Iceland spar. We observed 
a consistent evolution of the surface patterns in all of these experiments (not shown). 
The collection of topography data included in this study enables us to (i) capture the 
evolution of multiple surface features observed in all of the experiments and (ii) obtain 
an excellent microscope stability across the whole temporal window investigated.

In the AFM system adopted, the piezo-scan in the x–y plane is associated with the 
displacement of the tip and not of the sample. This element, together with the small 
size of the scanned area and a preliminary warm-up phase of about 1 h prior to starting 
image acquisition, contributed to reduce horizontal drifts to negligible values.

2.3 � Surface Topography Data and Spatial Distributions of Rate

The spatial distribution of surface elevations at a given time t, z(x, y, t) , is expressed as 
the sum of an average value, ⟨z(t)⟩ , independent of location (x, y) , and a local zero-mean 
fluctuation, z� (x, y, t) . Recalling Eq. 1, the spatial distribution of dissolution rates can be 
obtained as:

(2)

R(x, y, t) =
1

Vm

z(x, y, t) − z(x, y, t − Δt)

Δt

=
1

VmΔt

��⟨z(t)⟩ − ⟨z(t − Δt)⟩� + �
z
�

(x, y, t) − z
�

(x, y, t − Δt)
��

= ⟨R(t)⟩ + R
�

(x, y, t).
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The term ⟨R(t)⟩ represents a uniform (average, global) dissolution rate on the whole 
surface and can be evaluated only through knowledge of ⟨z(t)⟩ and ⟨z(t − Δt)⟩ or having 
at our disposal an inert (i.e., non-reactive) region on the surface, whose elevation can 
be used as a common reference for all times; the second term, R�

(x, y, t) , is informative 
about the spatial variability of the rates.

AFM yields topography data with high vertical resolution (in the order of 0.1  nm). 
As reported by Marinello et  al. (2010), a preliminary detrend on data is often required, 
to remove spurious contributions, such as the slope of the sample support, which may be 
non-negligible at the considered level of resolution, or bow distortion due to the bend-
ing of the piezo-tube of the AFM scanner, which might result in an artificial curvature 
of the surface. The actual surface elevation, z, can be derived from data, according to 
z(x, y, t) = zmeas(x, y, t) − S(x, y, t) , zmeas and S being the measured value and the overall dis-
tortion, respectively.

In our experiments, the entire surface of the crystal is in contact with the liquid in the 
cell and is therefore prone to reaction. The overall distortion can be inferred only by fitting 
the measured data with a given polynomial function. Hence, the ensuing trend, T(x, y, t), 
necessarily includes also the average elevation, i.e., T(x, y, t) = S(x, y, t) + ⟨z(t)⟩ . This, in 
turn, implies that the detrended data:

correspond to z� (x, y, t) . Since we lose all information about ⟨z(t)⟩ , the spatial map of rates 
obtained from the difference of the topography measurements at two diverse observation 
times corresponds to the dissolution rate fluctuations:

which is then subject to our statistical analyses. Even as this does not enable us to obtain 
absolute rate estimates, it provides insights on their characteristic spatial variability.

2.4 � Statistical Modeling Framework

We consider a given quantity of interest, Y(�) , to be expressed as the sum of an ensem-
ble mean, ⟨Y⟩ , and a local zero-mean fluctuation, Y �

(�) . Here, we rest on the generalized 
sub-Gaussian (GSG) model proposed by (Riva et al. 2015) to capture the scaling features 
exhibited by the probability distributions of incremental data, ΔY(�) = Y(� + �) − Y(�) . 
The latter have been shown to be characterized by sample distributions whose tails and 
peak tend to become, respectively, heavier and sharper as the lag, s, decreases (see, e.g., 
Guadagnini et al. 2018 and references therein). We recall that the concepts of peakedness 
and tailedness are both typically related to the heaviness of the distribution tails, a heavy-
tailed pdf being a distribution whose tails are not bounded by the exponential pdf (the 
opposite holds for fat-tailed pdfs). Here, we illustrate the key analytical expressions of the 
GSG theoretical framework, the complete set of details about their derivation being avail-
able in Riva et al. (2015).

The GSG model considers:

(3)zmeas(x, y, t) − T(x, y, t) = zmeas(x, y, t) − S(x, y, t) − ⟨z(t)⟩ = z(x, y, t) − ⟨z(t)⟩.

(4)R
�

(x, y, t) =
1

Vm

z
�

(x, y, t) − z
�

(x, y, t − Δt)

Δt

(5)Y
�

(�) = U(�)G(�)
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G(�) and U(�) being a zero-mean (typically correlated) Gaussian random field and a 
nonnegative subordinator independent of G. The Gaussian field is characterized by a scale 
parameter, �G , i.e., the standard deviation of G, and a correlation function, �G , that typically 
decreases as the separation distance between two points increases. Consistent with Riva 
et al. (2015) and Siena et al. (2019), we consider U(�) to be characterized by a log-normal 
distribution:

𝛼 < 2 being the shape parameter. The resulting distributional form for Y �

(�) corresponds to 
a normal-log-normal (NLN) model:

with second and fourth statistical moments expressed as:

The standardized kurtosis, which provides a measure of the degree of sharpness of the dis-
tribution peak, can be expressed as:

Hence, the probability density function (pdf) of Y ′ is leptokurtic for 𝛼 < 2 and tends to a 
Gaussian pdf (with �Y � = 3 ) for � → 2.

The pdf of spatial increments, ΔY(�) , at lag s is:

with r =
√

u2
1
+ u2

2
− 2�

G
u1u2.

Second- and fourth-order moments and standardized kurtosis are defined for each lag as:

(6)fUi

�
ui
�
=

e
−
(ln ui)

2

2(2−�)2√
2�ui(2 − �)

.

(7)fY � (y) =
1

2�(2 − �)

∞

∫
0

e
−

1

2

[(
ln (u∕�G)

2−�

)2

+
(

y

u

)2
]
du

u2
.

(8)
⟨
Y

�2
⟩
= �

2
G
e2(2−�)

2

.

(9)
⟨
Y

�4
⟩
= 3�4

G
e8(2−�)

2

.

(10)�Y � =

�
Y

�4
�

⟨Y �2⟩2 = 3e4(2−�)
2

.

(11)fΔY (Δy) =

√
�∕2

2�2(2 − �)2

∞

∫
0

∞

∫
0

e
−

1

2

�
1

(2−�)2

�
ln2

u1

�G
+ln2

u2

�G

�
+

Δy2

r2

�
du2du1

u2u1r
.

(12)
⟨
ΔY2

⟩
= 2�2

G
e(2−�)

2
[
e(2−�)

2

− �G

]

(13)
⟨
ΔY4

⟩
= 6�4

G
e4(2−�)

2
[
1 + e4(2−�)

2

− 4e(2−�)
2

�G + 2�2
G

]



298	 M. Siena et al.

1 3

It can be noted that �ΔY depends on the lag through the correlation function of G, i.e., 
�G , yielding pdfs of incremental data that scale with lag. In summary, the GSG model 
is fully characterized by (i) a shape parameter � , controlling the peakedness (and tailed-
ness) of the distribution, (ii) a scale parameter �G , related to the width of the distribu-
tion, and (iii) a correlation parameter, �G , which is responsible of the scaling nature of 
increment pdfs.

Here, we set Y �

= R
�

(x, y, t) and provide estimates of the parameters of the GSG 
model to interpret the dissolution rate datasets at each given time t. We follow Riva 
et al. (2015) and perform model parameter estimation through the method of moments 
upon relying jointly on sample statistics of both R′ and ΔR(s) data. Replacing 

⟨
Y

′2
⟩
, ⟨

ΔY2
⟩
 , and 

⟨
ΔY4

⟩
 in Eqs.  8, 12, and 13 with their counterparts, MR

′

2
 , MΔR

2
 , and MΔR

4
 

inferred from the available data yields:

Note that values of the scale and shape parameters are expected to be (approximately) 
constant with s, the Gaussian field correlation decreasing as s increases. We assess the 
temporal evolution of the strength of the spatial correlation of reaction rates upon rely-
ing on the estimates of �G as a function of the lag and evaluating the key parameters of 
suitable theoretical models employed to interpret these.

3 � Results

3.1 � Evolution of Calcite Dissolution Patterns

Figure 1 depicts the AFM (friction) image acquired after a preliminary exposure of the 
calcite surface to MilliQ water for 1 h and 30 min. The observation time associated with 
Fig. 1 is hereafter denoted as t = t0 and corresponds to the time immediately before the 
renewal of the solution in contact with the mineral surface. The most evident feature is 
the presence of precipitates superimposed to the crystallographic steps that can be seen 
in the background. The formation of precipitates is compatible with the development of 
a supersaturated zone within a boundary layer at the solid/fluid interface (Renard et al. 
2019).

Figure 2 collects the images acquired at a uniform time step, Δt = 5 min. Each plot is 
associated with the time ti (i = 1, …, 6) elapsed between the fluid replacement operation 
and the end of the acquisition of the i-th image. The key features associated with these 
results are illustrated in the following:

(14)�ΔY =

�
ΔY4

�

⟨ΔY2⟩2 = 3e2(2−�)
2

⎧⎪⎨⎪⎩
1 +

1

2

�
e2(2−�)

2

− 1

e(2−�)
2

− �G

�2⎫⎪⎬⎪⎭
.

(15)

⎧⎪⎪⎨⎪⎪⎩

MR
�

2
= �

2
G
e2(2−�)

2

MΔR
2

= 2�2
G
e(2−�)

2
�
e(2−�)

2

− �G

�

MΔR
4

= 6�4
G
e4(2−�)

2
�
1 + e4(2−�)

2

− 4e(2−�)
2

�G + 2�2
G

� .
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Fig. 1   In situ AFM friction image acquired on a 6 µm × 6 µm portion of the calcite sample surface at t = t0, 
after 1 h and 30 min of contact with stagnant deionized (MilliQ) water

Fig. 2   In situ AFM friction images acquired on a 6 µm × 6 µm area on the calcite sample surface at regular 
time intervals of 5 min after t = t0. The edges of the multilayer etch pits (MP1, MP2, and MP3) are high-
lighted, green and yellow lines representing the obtuse and acute steps, respectively
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•	 At time t1 = 5 min (Fig. 2a), the precipitates observed at time t0 have been dissolved and 
the underlying steps of the crystal become clearly visible. Several rhombic monolayer 
pits (mPs), whose appearance is typically associated with high undersaturation, begin 
to develop (with particular reference to the wider terraces). The edges of a large multi-
layer pit (denoted as MP1) are visible on the lower-right corner of the image.

•	 Time t2 = 10 min (Fig. 2b) is characterized by an increased density of mPs that have 
also widened with respect to t1, new mPs nucleating at seemingly random locations 
and in the center of the existing ones. A new multilayer pit (denoted as MP2) starts to 
develop at the top left corner. Terrace steps on the surface appear to be stable.

•	 No newly formed mPs are detectable at time t3 = 15 min (Fig. 2c). The existing ones 
widen and coalesce, their shape mutating from rhombic to triangular. The [441]− acute 
step of MP1 is expanding slowly, whereas MP2 has spread considerably along the 
[481]+ obtuse step direction and the margin of a third MP (MP3) is seen to invade the 
domain of investigation right below MP2. The step profiles close to these two pits begin 
to evolve.

•	 Most of the mPs are no longer visible at time t4 = 20 min (Fig. 2d), as they are essen-
tially merged with other pits or with the edges of retreating steps. Compared to the pre-
vious image, the shape of the step profiles has changed significantly and in an irregular 
fashion, due to the progressive inclusion of mPs of differing sizes. The margin of a high 
step (visible along the top of the investigated region) seems to prevent further spread-
ing of the obtuse step [481]+ of MP2. The expansion of the [481]+ edge of MP3 results 
in the merging of this MP with MP2.

•	 No isolated mPs can be seen at time t5 = 25 min (Fig. 2e). The spreading of MPs slows 
down considerably. Dissolution is basically occurring solely by step retreat.

•	 At time t6 = 30 min (Fig. 2f), no relevant differences with respect to the pattern observed 
at t5 can be seen, with the only exception of the evolution of the steps, the distance 
between neighboring ones being generally reduced.

The dissolution pattern on the crystal surface is strongly related to the driving disso-
lution mechanisms detailed in Sect.  2.1, these being in turn affected by the calcite con-
centration at the fluid/solid interface. The evolution described above is consistent with the 
expected temporal increase of concentration within the boundary layer. As opposed to what 
can be observed at t = t0 (Fig. 1), no precipitates are detected at t = t6. This could suggest 
that local supersaturation of the boundary layer has not been attained yet. Otherwise, this 
could also be ascribed to the effect of the scanning probe on the investigated area, as the 
AFM tip may displace precipitates that are weakly connected to the surface (see also Guren 
et al. 2020, and Renard et al. 2019). Spreading of MP1 takes place only along the acute step 
and is characterized by a lower extent than what can be noted for MP2 and MP3. Based on 
the behavior observed for MP2 at t3 and t4, we can assume that its growth is limited by the 
presence of larger steps or pits, even as the overall width of our observation window does 
not enable us to completely verify this hypothesis.

3.2 � Evaluation of the Pit Spreading Rate

A measure of surface reactivity is given by the spreading rate ( v [nm/s]) of the etch pits. 
The latter can be estimated through the variation of the separation distance between 
opposite sides of the pit within a given time interval (Ruiz-Agudo and Putnis 2012). 
We rely on pairs of consecutive images and consider all isolated (i.e., not aggregated) 
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monolayer pits to obtain an average value, v , and the associated standard deviation. 
Table 1 lists the results of the evaluation of the spreading rate. As highlighted in Fig. 2, 
most of the mPs are short-lived. As such, the number of elements upon which v can 
be evaluated decreases sharply over time, none of these structures being detected for 
t > 20 min. The results listed in Table 1 show that the mean and standard deviation of 
v monotonically decrease in time, the observed values being consistent with those doc-
umented in previous experiments concerning calcite {104} and MilliQ water (Guren 
et al. 2020; Harstad and Stipp 2007).

The rate of expansion of multilayer pits can be used as an additional element accord-
ing to which one can estimate the spreading rate, v , on the investigated surface. Even 
as they do not fall entirely within our observation domain (Fig. 2), these structures are 
more persistent than their mPs counterparts, thus enabling one to obtain at least a rough 
estimate of step retreat velocity throughout the whole temporal window of the experi-
ments. The retreat velocity evaluated by considering the spreading rates of acute and 
obtuse edges (denoted with yellow and green lines in Fig. 2, respectively) and then aver-
aging these over the three MPs is depicted as a function of time in Fig. 3a. Figure 3b 
depicts the location of the MP margins at various observation times. As opposed to what 
observed for the shallow pits, the trend observed for these rates is not monotonically 
decreasing. It increases sharply between t = 10 and 20 min, while decreasing abruptly 
for longer times. Consistent with the findings of Harstad and Stipp (2007), MP spread-
ing rates are considerably larger than those listed in Table 1 for mP spreading rates.

Table 1   Mean and standard 
deviation of the spreading rate 
v evaluated over all isolated 
monolayer pits (mPs) at various 
times

No isolated mPs can be found in our experiments for t > 20 min

Time (min) 10 15 20

Number of mPs 17 15 4
v (mean) [nm/s] 0.44 0.41 0.27
v (std dev) [nm/s] 0.11 0.08 0.05

Fig. 3   a Spreading rate evaluated on the basis of the displacements (inferred from the locations of the MP 
margins in b) of acute and obtuse steps of multilayer pits (MPs) at all times
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3.3 � Analysis and Statistical Modeling of Dissolution Rates

Figure 4 depicts spatial maps of rates R�

(tj) =
1

Vm

z
�
(x,y,tj)−z

�
(x,y,tj−Δt)

Δt
 (see Eq. 4) for all con-

secutive pairs of topography images. Analysis of these results clearly highlights that (i) 
values of R′ associated with the MP spreading are much larger than their counterparts 
related to mPs expansion and step retreat across the (overall) flat terrace in between the 
MPs (see in particular Fig. 4c); and (ii) the largest support spanned by sample pdfs of 
rates is observed at an intermediate time, i.e., for R�

(t4) . Sample probability density 
functions (pdfs) of R′ for each of the sub-plots of Fig. 4 are depicted in Fig. 5. These 
pdfs exhibit common features, which have been detected also in previous studies (Bibi 
et al. 2018; Trindade Pedrosa et al. 2019). These include (i) the presence of a dominant 
peak, eventually accompanied by multiple local peaks and (ii) a positive skewness. Con-
sistent with our discussion about Fig. 4, values of standard deviation tend to increase 
from t2 to t4 and then decrease for longer times.

As detailed in Sect. 2.4, we also consider the statistical characterization of the spa-
tial increments, ΔR , which we evaluate at various separation distances between pairs of 
locations. For the purpose of our analysis, we consider omnidirectional increments, i.e., 
we set s = |�| , deferring the analysis of possible anisotropic behaviors to future stud-
ies. Figure 6 depicts sample pdfs of incremental data for three selected lags (s = 1, 10, 
and 100 dl). These distributions are generally more symmetric than their counterparts 
associated with R′ (Fig. 5). It is clear that the shape of these pdfs varies with separation 
distance, their peak becoming sharper with decreasing lag, a feature which is common 

Fig. 4   Color maps of dissolution rates, R�

(tj) , evaluated for each consecutive pair of topography images 
(taken at uniform temporal intervals Δt = 5min)
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Fig. 5   Sample pdfs (symbols) associated with the five reaction rate datasets depicted in Fig. 4. Interpretive 
models based on GSG (Eq. 7) and GEV (Eq. 16) distributions are also depicted

Fig. 6   Sample pdfs (symbols) of rate increments, ΔR(s, tj) (j = 2, …6) evaluated at three selected lags, s. 
Interpretive models based on GSG distributions for incremental data (Eq. 11) are also depicted
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to corresponding results associated with a variety of other Earth science variables (see, 
e.g., Guadagnini et al. 2018; Siena et al. 2020 and references therein).

All distributions are persistently leptokurtic, with �ΔY >> 3 even at large lags 
(s = 100 dl). The application of the method of moments (Eq. 15) yields estimates of the 
GSG model parameters that best represent the statistics associated with the distributions 
of the rates jointly with those of their increments. As expected, the estimated shape and 
scale parameters do not change significantly with the lag (not shown). The results related 
to the theoretical formulations of the GSG pdfs of R′ and ΔR(s) with parameters estimated 
through the method of moments show a remarkable agreement with their sample counter-
parts (see Figs. 5 and 6, respectively). As an additional element to support the analysis, we 
note that, while the method of moments is simple and straightforward in its application, 
parameter estimates obtained through maximum likelihood (ML) applied on R′ and ΔR(s) 
data provide results of similar quality (not shown).

Results obtained upon relying on a GEV model:

that has been adopted in previous works for the interpretation of rate spectra (Brand et al. 
2017; Emmanuel 2014) are also depicted in Fig. 5 as a further term of comparison. Here, 
k, � , and � correspond to the shape, scale, and location parameter, respectively, and are 
estimated through a classical ML procedure. Visual inspection of Fig. 5 suggests that rely-
ing on a GEV model can provide results of similar quality to those that can be obtained 
through the GSG model with reference to sample pdfs of R′ . Otherwise, we note that the 
GEV model does not include information about the statistical behavior of incremental val-
ues, a feature which is naturally embedded in the GSG framework. The Kullback–Leibler 
divergence (Kullback and Leibler 1951), DKL , is then employed to compare quantitatively 
the performances of the two interpretive models. This metric can be used to measure the 
amount of information lost by representing the empirical distribution associated with the 
available data with a given theoretical model. Hence, low values of DKL correspond to high 
degrees of similarity between sample and modeled distributions. Table 2 lists the results of 
this analysis, suggesting that the GSG model outperforms the GEV model for all observa-
tion times, with the exception of t4 = 20 min, where one can see that both analytical models 
provide a good representation of the upper tail while the GEV captures the peak of the 
sample pdf more closely that its GSG-based counterpart.

Figure 7 depicts the temporal behavior of estimated shape (Fig.  7a) and scale (Fig.  7b) 
parameters obtained for the GSG and GEV models. Shape parameters, � and k, linked to 
the tailedness of the distributions, respectively, display a minimum and a maximum for t ≈ 
15–20 min. This pattern is consistent (for k) with the one exhibited by the spreading rate of the 
MPs (Fig. 3a), the corresponding results documented for � being characterized by a trough, 

(16)fGEV
Y
� (y) =

1

�
exp

(
−
[
1 + k

(y − �

�

)]− 1

k

)[
1 + k

(y − �

�

)]−1− 1

k

.

Table 2   Kullback–Leibler divergence ( D
KL

 ) evaluated from the comparison of sample pdfs of R′ and GSG 
(Eq. 7) or GEV (Eq. 16) analytical models

Time t2 t3 t4 t5 t6

D
KL

 sample pdf and GSG 0.048 0.049 0.331 0.033 0.051
D

KL
 sample pdf and GEV 0.373 0.145 0.133 0.173 0.070
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mirroring the temporal behavior of k. Therefore, these results suggest that the time evolution 
of these structures has a major effect on the statistical distribution of R′ . The temporal trend 
exhibited by �G indicates an increased spreading of the distribution of rates at t4, whereas the 
peak of the GEV scale parameter, � , is attained at a later time (i.e., t5).

The evolution of the spatial correlation of rates can be inferred from the analysis of �G vs 
lag at various observation times (Fig. 8). The skill of a single-parameter exponential model:

to represent the observed correlation is compared against the results obtained through two 
selected formulations of nested structures, whose components are associated with standard 
stationary variograms:

(17)�G = exp (−s∕a)

Fig. 7   GSG and GEV model parameter estimates (a shape and b scale parameters) versus time

Fig. 8   Estimated values of �G vs lag (symbol) obtained from method of moments at all observation times. 
Results from calibration of exponential (Eq.  17) and nested (Eqs.  18 and 19) analytical models are also 
depicted



306	 M. Siena et al.

1 3

Each of these models, respectively, composed by a spherical and a Gaussian model 
(Eq.  18) and a spherical and a hole-effect model (Eq.  19), is defined in terms of three 
parameters: (i) the range of each component, a1 and a2, and (ii) the coefficient c, which 
determines the relative contribution (or weight) of each component. We note that these for-
mulations appear to be more complex than the exponential model (Eq. 17). Nevertheless, 
we consider these due to the usefulness of nested variogram structures to interpret spatially 
settings where multiple processes, each characterized by their own degree of spatial persis-
tence, can jointly contribute to the resulting heterogeneous pattern of the overall system.

The effectiveness of the models corresponding to Eqs. 17–19 is evaluated within a ML 
framework. While estimates of model parameters are obtained through minimization of the 
negative log-likelihood (NLL; see e.g., Carrera and Neuman 1986) criterion, the perfor-
mance of a given model is ranked according to the well-established Kashyap (KIC) model 
discrimination criterion (Kashyap 1982):

Here, NP is the number of parameters associated with a given model and |�| is the deter-
minant of the covariance matrix of the ML parameter estimation errors. Relying on KIC 
enables one to consider the quality of model fit to observations (via NLL) while jointly 
penalizing models with large NP and fully considering the quality of parameter estimates. 
The latter aspect is embedded in |�| , which acts as a term penalizing models with small 
variance (i.e., large expected information content per observation) of parameter estimates 
(Ye et al. 2008). In this context, model ranking is performed according to increasing values 
of KIC, lower values of the latter corresponding to more skillful models.

Figure 8a–e depicts the values of �G estimated at various times along the experiment 
together with the results obtained through the calibrated theoretical models. A qualita-
tive inspection of these plots suggests that the nested formulations outperform the simple 
exponential model. This is quantitatively supported by the ML results collected in Table 3, 
where one can note that a nested structure composed by a spherical and a hole effect model 
(Eq. 19) is always ranked as best among the three models assessed. This result imbues us 
with confidence about the possibility to include in our interpretive model the richness of 
mechanisms underlying the system evolution through the superimposition of diverse corre-
lation structures. We note that the contribution of a given component of a nested structure 
to acting processes can be assessed in simple large scale sedimentary settings, where these 
can be related to temporal sequences of depositional processes (e.g., Salamon et al. 2007 
and references therein). As this is the first time, to the best of our knowledge, that these 
types of analyses are performed for scenarios of the kind we focus upon, disentangling 
the way components of nested structures can be associated with the action of mechanisms 
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described in Sect. 2.1 and 3.1 poses significant challenges. We present preliminary inter-
pretations in the following, noting that future works will be keyed to further support these 
results with additional data.

Following the results illustrated above, we focus on the parameters of the most highly 
ranked model (Eq. 19) and analyze their evolution in time. Figure 9a, b depict the behavior 
of 
(
c1 =

c

�
2
G

, a1

)
 and 

(
c2 = 1 −

c

�
2
G

, a2

)
 , i.e., relative contribution and range of component 

1 and 2 in Eq. (19), respectively. It can be noted that a2 >> a1 at all times, components 1 
and 2 being, respectively, related to short- and long-range correlation. These results show 
that a1 tends to increase with time, ranging from 60 to 160 dl, indicating that short-range 
correlations increase as the dissolution pattern on the terraces evolves from being mon-
olayer-pit to step retreat dominated. Otherwise, the long-range correlation parameter, a2, 
displays an oscillatory behavior within the range 640–800 dl, showing a steep increase only 
at t = t6. Length scales in this range are comparable with the distance between the multi-
layer pits developing on the opposite corners of the observation window. Additional evi-
dence about a possible relationship between the dynamics of multilayer pits and the long-
range component of �G can be inferred from the analysis of parameters c1 and c2. Our 
results document that: (i) both components have similar weight ( c1 ≈ c2 ≈ 0.5 ) at t = t1; 
and (ii) the long-range component becomes dominant at t4 = 20 min, its relevance decreas-
ing for t > t4 (attaining the value c2 = 0.22 at t6 = 30 min). Comparison of these results with 
those depicted in Fig. 3a evidences that the relative importance of the long-range compo-
nent follows the same trend displayed by the MPs spreading rate.

Figure 9 provides a clear indication supporting a conceptual picture according to which 
the dynamics of multilayer pits markedly and quantifiably affect the frequency distribution 
as well as the spatial correlation of rates. Our findings further support the benefit of relying 
on a modeling framework capable of jointly embedding the statistical behavior of rates and 
of the associated increments.

4 � Conclusions

We monitor the evolution of the surface topography of a calcite crystal subjected to disso-
lution through in situ real-time AFM measurements. Differences between topography maps 
at given time intervals yields quantitative spatial distributions of dissolution rates, R’, at 

Fig. 9   Time evolution of the parameters of the most highly ranked model interpreting �G (Table 3): relative 
contribution and range of a component 1 and b component 2 of the nested structure (Eq. 19)
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various observation times elapsed from the renewal of the fluid (deionized water) in con-
tact with the mineral surface. The established experimental protocol enabled us to achieve 
the main objective of the study, corresponding to the characterization of the spatially heter-
ogeneous distribution of rates. The latter is assessed with a stochastic context which relies 
on a generalized sub-Gaussian interpretive model (Riva et al. 2015), providing a unified 
framework of analysis for the probability distributions of the rate (R′) and its spatial incre-
ments ( ΔR ) evaluated at various separation distances (or lags).

The evolution of surface patterns evidenced by AFM images is consistent with the tem-
poral increase of the solution saturation in a boundary layer at the fluid/solid interface. The 
spreading rate evaluated on monolayer pits is monotonically decreasing in time. Otherwise, 
the multilayer pit expansion rate is highest at an intermediate time (t = 20 min) during the 
experiment and then displays a steep decrease. A similar trend is also documented by (i) 
the shape parameter and (ii) the scale parameter of the GSG model employed for the joint 
characterization of the statistical behavior of R’ and ΔR.

We provide qualitative and quantitative results about the relationship between the 
parameters of the GSG stochastic model and the dynamics of multilayer pits, documenting 
that the evolution of these structures significantly affects the statistical features of dissolu-
tion rates.

Relying on the Kullback–Leibler divergence metric, we find that our GSG model gener-
ally shows a higher affinity to the sample probability distribution of R′ than the generalized 
extreme values (GEV) model which has been previously used (e.g., Brand et al. 2017). We 
emphasize that the GSG formulation offers the additional advantage of fully embedding 
the features of the probability distributions of both R’ and ΔR in a unified and consistent 
manner, an element which is not included in the above mentioned interpretations based 
on the GEV model. The adopted GSG model relies on a log-normal subordinator, which 
has been already tested for the interpretation of the spatial statistics of a wide range of 
data (e.g., Riva et  al, 2015; Siena et  al. 2019). We note that our theoretical framework 
includes the possibility of selecting a general form of the subordinator (Siena et al. 2020). 
The application of alternative formulations of the GSG model on dissolution rates will be 
the subject of future investigations.

One should also consider that the nature of the dissolution process at the microscopic 
level leads to the development of characteristic patterns (i.e., mono/multilayer pits or steps) 
whose main traits can be somehow categorized deterministically to some extent. Therefore, 
a synthetic generation of rate random fields purely on the basis of parameter values identi-
fied from the interpretation of sample statistics would necessarily be incomplete in some 
cases. In this context, Pollet-Villard et al. (2016) highlighted the importance of character-
izing the spatial correlation of key variables driving mineral dissolution processes. These 
authors develop a numerical model to describe dissolution and ground model calibration 
on the comparison between sample variograms evaluated on experimental data of surface 
topography and its numerically based counterpart. In our work, the stochastic characteri-
zation of ΔR data yields critical information about the spatial correlation of the rate field 
through the correlation function ( �G ) associated with the GSG model. Among the various 
theoretical models analyzed for the interpretation of �G , we find that a nested structure 
with a short-range and a long-range correlation component (see Eq.  19) is consistently 
ranked as best according to rigorous model identification criteria. The temporal behavior 
of these characteristic length scales appears to be linked to the evolutionary dynamics of 
step retreat/monolayer pits and multilayer pit structures documented in the experiments. 
Our results reveal the impact that the diverse dissolution patterns can have on the correla-
tion structure of reaction rates. This information can potentially lead to the development 
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of future flexible numerical models, which can have the capability of taking into account 
multiple length scales resulting from the occurrence of diverse reaction mechanisms.

Funding  Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement. 
Information that explains whether and by whom the research was supported: No funds, grants, or other sup-
port was received.

Availability of Data and Material  The data are available online: https://​data.​mende​ley.​com/​datas​ets/​jkthh​
kg9k2/​draft?a=​10eb0​ad6-​2b3f-​42ad-​83b2-​0252a​3f8c6​94.

Code availability  Not applicable.

Declaration 

Conflicts of interest  The authors have no conflict of interest to declare.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Anabaraonye, B.U., Crawshaw, J.P., Trusler, J.P.M.: Brine chemistry effects in calcite dissolution kinetics at 
reservoir conditions. Chem. Geol. 509, 92–102 (2019). https://​doi.​org/​10.​1016/j.​chemg​eo.​2019.​01.​014

Arvidson, R.S., Ertan, I.E., Amonette, J.E., Luttge, A.: Variation in calcite dissolution rates: geochim. Cos-
mochim. Acta. 67, 1623–1634 (2003). https://​doi.​org/​10.​1016/​S0016-​7037(02)​01177-8

Bianchi Janetti, E., Dror, I., Riva, M., Guadagnini, A., Sanchez-Vila, X., Berkowitz, B.: Mobility and inter-
action of heavy metals in a natural soil. Transp. Porous Media. 97, 295–315 (2013). https://​doi.​org/​10.​
1007/​s11242-​013-​0125-2

Bibi, I., Arvidson, R., Fischer, C., Lüttge, A.: Temporal evolution of calcite surface dissolution kinetics. 
Minerals. 8, 256 (2018). https://​doi.​org/​10.​3390/​min80​60256

Bouissonnié, A., Daval, D., Marinoni, M., Ackerer, P.: From mixed flow reactor to column experiments 
and modeling: upscaling of calcite dissolution rate. Chem. Geol. 487, 63–75 (2018). https://​doi.​org/​10.​
1016/j.​chemg​eo.​2018.​04.​017

Brand, A.S., Feng, P., Bullard, J.W.: Calcite dissolution rate spectra measured by in situ digital holographic 
microscopy. Geochim. Cosmochim. Acta. 213, 317–329 (2017). https://​doi.​org/​10.​1016/j.​gca.​2017.​07.​
001

Carrera, J., Neuman, S.P.: Estimation of aquifer parameters under transient and steady state conditions: 1. 
Maximum likelihood method incorporating prior information. Water Resour. Res. 22, 199–210 (1986). 
https://​doi.​org/​10.​1029/​WR022​i002p​00199

Daval, D.: Carbon dioxide sequestration through silicate degradation and carbon mineralisation: promises 
and uncertainties. NPJ Mater. Degrad. 2, 11 (2018). https://​doi.​org/​10.​1038/​s41529-​018-​0035-4

Dong, S., Berelson, W.M., Adkins, J.F., Rollins, N.E., Naviaux, J.D., Pirbadian, S., El-Naggar, M.Y., Teng, 
H.H.: An atomic force microscopy study of calcite dissolution in seawater. Geochim. Cosmochim. 
Acta. 283, 40–53 (2020). https://​doi.​org/​10.​1016/j.​gca.​2020.​05.​031

Emmanuel, S.: Mechanisms influencing micron and nanometer-scale reaction rate patterns during dolostone 
dissolution. Chem. Geol. 363, 262–269 (2014). https://​doi.​org/​10.​1016/j.​chemg​eo.​2013.​11.​002

Erol, S., Fowler, S.J., Nehler, M., De Boever, E., Harcouët-Menou, V., Laenen, B.: An analytical algorithm 
of porosity–permeability for porous and fractured media: extension to reactive transport conditions 

https://data.mendeley.com/datasets/jkthhkg9k2/draft?a=10eb0ad6-2b3f-42ad-83b2-0252a3f8c694
https://data.mendeley.com/datasets/jkthhkg9k2/draft?a=10eb0ad6-2b3f-42ad-83b2-0252a3f8c694
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.chemgeo.2019.01.014
https://doi.org/10.1016/S0016-7037(02)01177-8
https://doi.org/10.1007/s11242-013-0125-2
https://doi.org/10.1007/s11242-013-0125-2
https://doi.org/10.3390/min8060256
https://doi.org/10.1016/j.chemgeo.2018.04.017
https://doi.org/10.1016/j.chemgeo.2018.04.017
https://doi.org/10.1016/j.gca.2017.07.001
https://doi.org/10.1016/j.gca.2017.07.001
https://doi.org/10.1029/WR022i002p00199
https://doi.org/10.1038/s41529-018-0035-4
https://doi.org/10.1016/j.gca.2020.05.031
https://doi.org/10.1016/j.chemgeo.2013.11.002


311Statistical Characterization of Heterogeneous Dissolution…

1 3

and fitting via flow-through experiments within limestone and dolomite. Transp. Porous Media. 129, 
343–383 (2019). https://​doi.​org/​10.​1007/​s11242-​019-​01293-z

Fischer, C., Arvidson, R.S., Lüttge, A.: How predictable are dissolution rates of crystalline material? Geo-
chim. Cosmochim. Acta. 98, 177–185 (2012). https://​doi.​org/​10.​1016/j.​gca.​2012.​09.​011

Fischer, C., Kurganskaya, I., Schäfer, T., Lüttge, A.: Variability of crystal surface reactivity: What do we 
know? Appl. Geochem. 43, 132–157 (2014). https://​doi.​org/​10.​1016/j.​apgeo​chem.​2014.​02.​002

Guadagnini, A., Neuman, S.P., Schaap, M.G., Riva, M.: Anisotropic statistical scaling of vadose zone 
hydraulic property estimates near Maricopa. Arizona. Water Resour. Res. 49, 8463–8479 (2013). 
https://​doi.​org/​10.​1002/​2013W​R0142​86

Guadagnini, A., Neuman, S.P., Schaap, M.G., Riva, M.: Anisotropic statistical scaling of soil and sediment 
texture in a stratified deep vadose zone near Maricopa. Arizona. Geoderma. 214–215, 217–227 (2014). 
https://​doi.​org/​10.​1016/j.​geode​rma.​2013.​09.​008

Guadagnini, A., Riva, M., Neuman, S.P.: Recent advances in scalable non-gaussian geostatistics: the 
generalized sub-gaussian model. J. Hydrol. 562, 685–691 (2018). https://​doi.​org/​10.​1016/j.​jhydr​ol.​
2018.​05.​001

Guren, M.G., Putnis, C.V., Montes-Hernandez, G., King, H.E., Renard, F.: Direct imaging of coupled 
dissolution-precipitation and growth processes on calcite exposed to chromium-rich fluids. Chem. 
Geol. 552, 119770 (2020). https://​doi.​org/​10.​1016/j.​chemg​eo.​2020.​119770

Harstad, A.O., Stipp, S.L.S.: Calcite dissolution: effects of trace cations naturally present in Iceland spar 
calcites. Geochim. Cosmochim. Acta. 71, 56–70 (2007). https://​doi.​org/​10.​1016/j.​gca.​2006.​07.​037

Heberling, F., Bosbach, D., Eckhardt, J.-D., Fischer, U., Glowacky, J., Haist, M., Kramar, U., Loos, S., 
Müller, H.S., Neumann, T., Pust, C., Schäfer, T., Stelling, J., Ukrainczyk, M., Vinograd, V., Vučak, 
M., Winkler, B.: Reactivity of the calcite–water-interface, from molecular scale processes to geo-
chemical engineering. Appl. Geochem. 45, 158–190 (2014). https://​doi.​org/​10.​1016/j.​apgeo​chem.​
2014.​03.​006

Hommel, J., Coltman, E., Class, H.: Porosity–permeability relations for evolving pore space: a review 
with a focus on (bio-)geochemically altered porous media. Transp. Porous Media. 124, 589–629 
(2018). https://​doi.​org/​10.​1007/​s11242-​018-​1086-2

Kashyap, R.L.: Optimal choice of AR and MA parts in autoregressive moving average models. IEEE 
Trans. Pattern Anal. Mach. Intell. (1982). https://​doi.​org/​10.​1109/​TPAMI.​1982.​47672​13

Khather, M., Saeedi, A., Myers, M.B., Giwelli, A.: Effects of CO2-saturated brine on the injectivity and 
integrity of chalk reservoirs. Transp. Porous Media. 135, 735–751 (2020). https://​doi.​org/​10.​1007/​
s11242-​020-​01498-7

Kristensen, R., Stipp, S.L.S., Refson, K.: Modeling steps and kinks on the surface of calcite. J. Chem. 
Phys. 121, 8511 (2004). https://​doi.​org/​10.​1063/1.​17757​71

Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951). https://​
doi.​org/​10.​1214/​aoms/​11777​29694

Levenson, Y., Emmanuel, S.: Pore-scale heterogeneous reaction rates on a dissolving limestone surface. 
Geochim. Cosmochim. Acta. 119, 188–197 (2013). https://​doi.​org/​10.​1016/j.​gca.​2013.​05.​024

Liu, H.H., Molz, F.J.: Comment on “Evidence for non-Gaussian scaling behavior in heterogeneous sedi-
mentary formations” by Scott Painter. Water Resour. Res. 33, 907–908 (1997). https://​doi.​org/​10.​
1029/​96WR0​3788

Luttge, A.: Etch pit coalescence, surface area, and overall mineral dissolution rates. Am. Mineral. 90, 
1776–1783 (2005). https://​doi.​org/​10.​2138/​am.​2005.​1734

Luttge, A., Arvidson, R.S., Fischer, C.: A stochastic treatment of crystal dissolution kinetics. Elements 
9, 183–188 (2013). https://​doi.​org/​10.​2113/​gsele​ments.9.​3.​183

Luttge, A., Arvidson, R.S., Fischer, C., Kurganskaya, I.: Kinetic concepts for quantitative prediction of fluid-
solid interactions. Chem. Geol. 504, 216–235 (2019). https://​doi.​org/​10.​1016/j.​chemg​eo.​2018.​11.​016

Marinello, F., Carmignato, S., Voltan, A., Savio, E., De Chiffre, L.: Error sources in atomic force 
microscopy for dimensional measurements: taxonomy and modeling. J. Manuf. Sci. Eng. (2010). 
https://​doi.​org/​10.​1115/1.​40012​42

Meerschaert, M.M.: Fractional laplace model for hydraulic conductivity. Geophys. Res. Lett. 31, L08501 
(2004). https://​doi.​org/​10.​1029/​2003G​L0193​20

Offeddu, F.G., Cama, J., Soler, J.M., Putnis, C.: V: Direct nanoscale observations of the coupled dissolu-
tion of calcite and dolomite and the precipitation of gypsum. Beilstein J. Nanotechnol. 5, 1245–
1253 (2014). https://​doi.​org/​10.​3762/​bjnano.​5.​138

Painter, S.: Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations, (1996)
Pollet-Villard, M., Daval, D., Fritz, B., Knauss, K.G., Schäfer, G., Ackerer, P.: Influence of etch pit 

development on the surface area and dissolution kinetics of the orthoclase (001) surface. Chem. 
Geol. 447, 79–92 (2016). https://​doi.​org/​10.​1016/j.​chemg​eo.​2016.​09.​038

https://doi.org/10.1007/s11242-019-01293-z
https://doi.org/10.1016/j.gca.2012.09.011
https://doi.org/10.1016/j.apgeochem.2014.02.002
https://doi.org/10.1002/2013WR014286
https://doi.org/10.1016/j.geoderma.2013.09.008
https://doi.org/10.1016/j.jhydrol.2018.05.001
https://doi.org/10.1016/j.jhydrol.2018.05.001
https://doi.org/10.1016/j.chemgeo.2020.119770
https://doi.org/10.1016/j.gca.2006.07.037
https://doi.org/10.1016/j.apgeochem.2014.03.006
https://doi.org/10.1016/j.apgeochem.2014.03.006
https://doi.org/10.1007/s11242-018-1086-2
https://doi.org/10.1109/TPAMI.1982.4767213
https://doi.org/10.1007/s11242-020-01498-7
https://doi.org/10.1007/s11242-020-01498-7
https://doi.org/10.1063/1.1775771
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1016/j.gca.2013.05.024
https://doi.org/10.1029/96WR03788
https://doi.org/10.1029/96WR03788
https://doi.org/10.2138/am.2005.1734
https://doi.org/10.2113/gselements.9.3.183
https://doi.org/10.1016/j.chemgeo.2018.11.016
https://doi.org/10.1115/1.4001242
https://doi.org/10.1029/2003GL019320
https://doi.org/10.3762/bjnano.5.138
https://doi.org/10.1016/j.chemgeo.2016.09.038


312	 M. Siena et al.

1 3

Renard, F., Putnis, C.V., Montes-Hernandez, G., Ruiz-Agudo, E., Hovelmann, J., Sarret, G.: Interactions 
of arsenic with calcite surfaces revealed by in situ nanoscale imaging. Geochim. Cosmochim. Acta. 
159, 61–79 (2015). https://​doi.​org/​10.​1016/j.​gca.​2015.​03.​025

Renard, F., Røyne, A., Putnis, C.V.: Timescales of interface-coupled dissolution-precipitation reactions 
on carbonates. Geosci. Front. 10, 17–27 (2019). https://​doi.​org/​10.​1016/j.​gsf.​2018.​02.​013

Riva, M., Neuman, S.P., Guadagnini, A.: Sub-gaussian model of processes with heavy-tailed distribu-
tions applied to air permeabilities of fractured tuff. Stoch. Environ. Res. Risk Assess. 27, 195–207 
(2013a). https://​doi.​org/​10.​1007/​s00477-​012-​0576-y

Riva, M., Neuman, S.P., Guadagnini, A.: New scaling model for variables and increments with heavy-tailed 
distributions. Water Resour. Res. 51, 4623–4634 (2015). https://​doi.​org/​10.​1002/​2015W​R0169​98

Riva, M., Neuman, S.P., Guadagnini, A., Siena, M.: Anisotropic scaling of berea sandstone log air per-
meability statistics. Vadose Zo. J. (2013b). https://​doi.​org/​10.​2136/​vzj20​12.​0153

Ruiz-Agudo, E.R., Putnis, C.V.: Direct observations of mineral fluid reactions using atomic force micros-
copy: the specific example of calcite. Mineral. Mag. 76, 227–253 (2012). https://​doi.​org/​10.​1180/​min-
mag.​2012.​076.1.​227

Salamon, P., Fernàndez-Garcia, D., Gómez-Hernández, J.J.: Modeling tracer transport at the MADE site: 
the importance of heterogeneity. Water Resour. Res. (2007). https://​doi.​org/​10.​1029/​2006W​R0055​22

Siena, M., Guadagnini, A., Bouissonnié, A., Ackerer, P., Daval, D., Riva, M.: Generalized sub-gaussian pro-
cesses: theory and application to hydrogeological and geochemical data. Water Resour. Res. (2020). 
https://​doi.​org/​10.​1029/​2020W​R0274​36

Siena, M., Riva, M., Giamberini, M., Gouze, P., Guadagnini, A.: Statistical modeling of gas-permeabil-
ity spatial variability along a limestone core. Spat. Stat. 34, 100249 (2019). https://​doi.​org/​10.​1016/j.​
spasta.​2017.​07.​007

Smith, M.E., Knauss, K.G., Higgins, S.R.: Effects of crystal orientation on the dissolution of calcite by 
chemical and microscopic analysis. Chem. Geol. 360–361, 10–21 (2013). https://​doi.​org/​10.​1016/j.​
chemg​eo.​2013.​09.​015

Teng, H.H.: Controls by saturation state on etch pit formation during calcite dissolution. Geochim. Cosmo-
chim. Acta. 68, 253–262 (2004). https://​doi.​org/​10.​1016/​S0016-​7037(03)​00423-X

Trindade Pedrosa, E., Kurganskaya, I., Fischer, C., Luttge, A.: A statistical approach for analysis of dissolu-
tion rates including surface morphology. Minerals. 9, 458 (2019). https://​doi.​org/​10.​3390/​min90​80458

Xu, M., Hu, X., Knauss, K.G., Higgins, S.R.: Dissolution kinetics of calcite at 50–70°C: an atomic force 
microscopic study under near-equilibrium conditions. Geochim. Cosmochim. Acta. 74, 4285–4297 
(2010). https://​doi.​org/​10.​1016/j.​gca.​2010.​04.​066

Ye, M., Meyer, P.D., Neuman, S.P.: On model selection criteria in multimodel analysis. Water Resour. Res. 
(2008). https://​doi.​org/​10.​1029/​2008W​R0068​03

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1016/j.gca.2015.03.025
https://doi.org/10.1016/j.gsf.2018.02.013
https://doi.org/10.1007/s00477-012-0576-y
https://doi.org/10.1002/2015WR016998
https://doi.org/10.2136/vzj2012.0153
https://doi.org/10.1180/minmag.2012.076.1.227
https://doi.org/10.1180/minmag.2012.076.1.227
https://doi.org/10.1029/2006WR005522
https://doi.org/10.1029/2020WR027436
https://doi.org/10.1016/j.spasta.2017.07.007
https://doi.org/10.1016/j.spasta.2017.07.007
https://doi.org/10.1016/j.chemgeo.2013.09.015
https://doi.org/10.1016/j.chemgeo.2013.09.015
https://doi.org/10.1016/S0016-7037(03)00423-X
https://doi.org/10.3390/min9080458
https://doi.org/10.1016/j.gca.2010.04.066
https://doi.org/10.1029/2008WR006803

	Statistical Characterization of Heterogeneous Dissolution Rates of Calcite from In situ and Real-Time AFM Imaging
	Abstract
	Article Highlights
	1 Introduction
	2 Materials and Methods
	2.1 Calcite Dissolution Mechanisms
	2.2 Experimental Settings
	2.3 Surface Topography Data and Spatial Distributions of Rate
	2.4 Statistical Modeling Framework

	3 Results
	3.1 Evolution of Calcite Dissolution Patterns
	3.2 Evaluation of the Pit Spreading Rate
	3.3 Analysis and Statistical Modeling of Dissolution Rates

	4 Conclusions
	References




