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Abstract
Most analyses of fluid flow in porous media are conducted under the assumption that the 
permeability is constant. In some “stress-sensitive” rock formations, however, the variation 
of permeability with pore fluid pressure is sufficiently large that it needs to be accounted 
for in the analysis. Accounting for the variation of permeability with pore pressure renders 
the pressure diffusion equation nonlinear and not amenable to exact analytical solutions. In 
this paper, the regular perturbation approach is used to develop an approximate solution to 
the problem of flow to a linear constant-pressure boundary, in a formation whose perme-
ability varies exponentially with pore pressure. The perturbation parameter αD is defined 
to be the natural logarithm of the ratio of the initial permeability to the permeability at the 
outflow boundary. The zeroth-order and first-order perturbation solutions are computed, 
from which the flux at the outflow boundary is found. An effective permeability is then 
determined such that, when inserted into the analytical solution for the mathematically lin-
ear problem, it yields a flux that is exact to at least first order in αD. When compared to 
numerical solutions of the problem, the result has 5% accuracy out to values of αD of about 
2—a much larger range of accuracy than is usually achieved in similar problems. Finally, 
an explanation is given of why the change of variables proposed by Kikani and Pedrosa, 
which leads to highly accurate zeroth-order perturbation solutions in radial flow problems, 
does not yield an accurate result for one-dimensional flow.

Article Highlights 

•	 Approximate solution for flow to a constant-pressure boundary in a porous 
medium whose permeability varies exponentially with pressure.

•	 The predicted flowrate is accurate to within 5% for a wide range of permeability-
variations.

•	 If permeability at boundary is 30% less than initial permeability, flowrate will be 
10% less than predicted by constant-permeability model.
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1  Introduction

Most analyses of fluid flow through porous rock formations are conducted under the assump-
tion that the permeability at any given physical location is constant. In many situations, this 
is a reasonable assumption. However, in some “stress-sensitive” rock formations, the varia-
tion of permeability with pore fluid pressure is sufficiently large that it cannot be neglected. 
Unfortunately, accounting for the variation of permeability with pore fluid pressure renders 
the governing pressure diffusion equation nonlinear and thus not amenable to exact analytical 
solutions.

This type of nonlinear pressure diffusion problem is often attacked by using the pseudo-
pressure (Raghavan et al. 1972; Tabatabaie et al. 2017), which is essentially a Kirchhoff trans-
formation. This has the effect of slightly “lessening” the effect of the nonlinearity, by moving 
the nonlinearity from the second-order space-derivative term, to the first-order time-derivative 
term. However, it does not fully linearize the governing PDE, and this final linearization is 
usually accomplished by simply evaluating the resulting nonlinear coefficient at some suitable 
“average” pressure.

Another approach that has been used to attempt to analytically account for the stress 
dependence of the permeability as it appears in the pressure diffusion equation is the perturba-
tion approach pioneered by Kikani and Pedrosa (1991). They started by expressing the dimen-
sionless pressure in terms of a new variable, η, as follows:

where γD is a dimensionless parameter that is proportional to the logarithmic derivative 
of the permeability with respect to pore pressure. (Note that the notation used in Eq. (1), 
which is that used by Kikani and Pedrosa, is not the same as will be used in the remainder 
the present paper.) Equation  (1) is essentially a Kirchhoff transformation (Vadasz 2010), 
although this connection has not usually been made when discussing this problem in the 
petroleum engineering context. Vadasz (2010) used a Kirchhoff transformation to solve 
a nonlinear diffusion equation in the context of heat conduction and showed that it is a 
special case of a Cole-Hopf transformation, which actually has some advantages over the 
Kirchhoff approach.

Kikani and Pedrosa (1991) found that, for the problem of radially symmetric flow to a ver-
tical well under conditions of constant production rate, the 0th-order perturbation solution for 
their auxiliary function η actually provided a very accurate approximation for the pressure, 
in the late-time regime. Ren and Guo (2018) extended this approach to the problem of radial 
flow under conditions of constant well-bottom pressure, as well as to a few other problems. 
Other researchers have also followed this approach, for problems including dual-porosity 
and other effects, generally stopping at the 0th-order solution (Wang et al. 2015; Huang et al. 
2018). However, as will be seen below, the 0th-order KP-type solution does not work well for 
the problem of flow to a linear constant-pressure boundary. Instead, a “traditional” perturba-
tion approach will be used, to first-order, without using the change of variables embodied in 
Eq. (1).

(1)PD =
−1

�
D

ln(1 − �
D
�),
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2 � Model Development

In this paper, the problem of one-dimensional flow to a planar boundary held at constant 
pressure will be examined. This model would apply at early times to flow to a hydraulic 
fracture in an oil reservoir, for example. It would also apply, at early times, to flow from a 
matrix block to a nearby fracture, in a dual-porosity reservoir.

The governing equation for this problem will be briefly outlined, following the deriva-
tion given in standard textbooks such as Zimmerman (2018). The conservation of mass 
principle for one-dimensional flow through a porous medium can be expressed as

where ρ [kg/m3] is the fluid density, q [m/s] is the Darcy flux, and � [−] is the porosity of 
the rock. Darcy’s law is used to relate the flux to the pressure gradient:

where P [Pa] is the pore fluid pressure, μ [Pa s] is the fluid viscosity, and k(P) [m2] is the 
permeability, which will be assumed to vary with the pore pressure. Inserting Darcy’s law 
into the conservation of mass equation yields

Applying the chain rule and product rule, this equation takes the form

Invoking the usual assumption that the fluid compressibility cf [1/Pa] and rock pore 
compressibility c� [1/Pa] can be considered constant over the range of pressures of interest, 
the above equation reduces to

A simple order-of-magnitude estimate shows that the ratio of the second term on the left 
to the first term on the left is cfΔP , where ΔP is some characteristic pressure change. For 
liquid flow in a reservoir, cf  will be on the order of a GPa, and ΔP will be at most a few 
tens of MPa, so this second term will be neglected. (An elegant method for treating cases 
in which this term cannot be neglected, using a Cole-Hopf transformation, has been pre-
sented by Marshall (2009)). Hence, the governing equation for this process is

where c = c� + cf  is the total compressibility of the system. In this model, the only source 
of mathematical nonlinearity is the pressure dependence of the permeability.

Equation  (7) is the nonlinear partial differential equation that governs the one-dimen-
sional flow of a slightly compressible reservoir fluid in a stress-sensitive reservoir. If flow 

(2)−
�(�q)
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�t
,
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takes place to a constant-pressure boundary, then the following initial and boundary condi-
tions apply:

3 � Permeability Model

If the pore fluid pressure decreases, the pores will contract, and the permeability of the 
rock will tend to decrease (Sisavath et al. 2000). For many rock formations, this effect is 
small enough to ignore. For some “stress-sensitive” formations, the change in permeability 
will be too large to be neglected. Numerous mathematical models and correlations have 
been developed to model the reduction in permeability, as a function of effective stress. 
A commonly used model (Yilmaz et al. 1991; Kikani and Pedrosa 1991), which fits many 
data sets (Franquet et al. 2004), is that of an exponential dependence of permeability on 
pore pressure:

where ki is the permeability at some reference pressure Pi , and the parameter � [1/Pa] is 
often referred to as the permeability modulus. The reference pressure can conveniently be 
identified with the initial reservoir pressure.

4 � Integral Equation Formulation

McWhorter and Sunada (1990) developed a method for solving a one-dimensional non-
linear diffusion problem, by reformulating the governing partial differential equation as an 
integral equation, which can be solved numerically to a high degree of accuracy using an 
iterative approach. Although their formulation was developed in the context of “unsatu-
rated” flow of water in a two-phase air–water system, it can easily be adapted to the present 
problem, as well as other problems governed by a nonlinear diffusion equation (Bajwa and 
Blunt 2016). The modified McWhorter–Sunada approach can be used to provide a bench-
mark for the perturbation solution. A brief derivation of this formulation, specialized to the 
current pressure-sensitive permeability model, will now be given.

Returning to Eq. (7), a Boltzmann variable is first defined as

According to the standard procedure for transforming equations into the Boltzmann 
domain, Eq.  (12) takes the form of the following second-order ordinary differential 
equation:

(8)P(x, t = 0) = Pi,

(9)P(x → ∞, t) = Pi,

(10)P(x = 0, t) = Pf .

(11)k(P) = kie
�(P−Pi),

(12)� =
x√
t
.
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Since the limits t → 0 and x → ∞ both correspond to � → ∞ in the Boltzmann 
domain, the three conditions (8–10) reduce to the following two boundary conditions:

A flux in the Boltzmann domain can be defined as follows:

Inserting Eq. (16) into Eq. (13), and making use of the chain rule, leads to

Differentiating again, making use of Eq. (16), yields

(Replacing q(�) with q(P) is permissible, because q and P are each monotonic functions of 
η.)

Integration with respect to P yields

where λ is a dummy variable of integration. It follows from Eq. (17) that dq∕dP vanishes at 
� = 0 , which is to say, it vanishes when P = Pf  . Hence,

Integrating again yields

where ω is another dummy variable of integration. Reversing the order of integration leads 
to

(13)
d
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Dividing through by q(Pf ) leads to

The flux must vanish when � → ∞ , where P = Pi , and so it follows from Eq. (23) that

Inserting this expression into Eq. (23) yields

This is an integral equation for the fractional flow function, F(P) . This equation can 
easily be solved by an iterative procedure, by defining the iterated functions Fn(P) , as 
follows:

in which the current estimate Fn(P) is inserted in the integrals on the right, to generate a 
new estimate, Fn+1(P) . The iterations continue until successive functions differ by less than 
some prescribed amount, such as 10–5. A sensible initial guess, which satisfies the bound-
ary conditions F(Pi) = 0 and F(Pf ) = 1 , is F0(P) = (Pi − P)∕(Pi − Pf ).

The flux in the physical (x, t) domain is now found from Darcy’s law and Eq. (16):

in which q(x, t) is the flux in the physical domain, and q(P) is the “flux” in the Boltzmann 
domain, as defined by Eq. (16). Since P = Pf  when x = 0 and � = 0 , the flux at the outflow 
boundary is given by

(22)q(P) − q(Pf ) = −
�c

2

P

∫
Pf

k(�)
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where q(P) is found from Eq. (24), using the converged value of the fractional flow func-
tion F. The numerical results obtained from this solution will be presented and discussed 
in Sect. 6, where they serve as a benchmark for the results obtained using the perturbation 
approach.

5 � Perturbation Approach

The classical regular perturbation approach (Hinch 1991) will now be applied to the nonlinear 
differential equation boundary-value problem defined by Eqs. (7–10). The first step is to insert 
the exponential permeability function (11) into Eq. (7) and expand out the left-hand side, to 
yield:

where Di = ki∕��c is the hydraulic diffusivity of the system at the initial pressure, Pi.
A dimensionless pressure drawdown is now defined as

which can be inverted to yield P(x, t) = Pi − PD(Pi − Pf ) . Inserting this expression into 
Eq. (29) yields and dividing through by −(Pi − Pf ) , yields

The dimensionless combination �(Pi − Pf ) will be denoted by �D , where �D is a dimen-
sionless stress sensitivity parameter. It follows from Eq. (11) that �D = ln(ki∕kf ) , where ki is 
the initial permeability before production starts, and kf  is the lowered permeability at the out-
flow boundary due to the drawdown. In terms of this parameter, Eq. (31) can be written as

From eqs. (8–10), the initial and boundary conditions for this problem take the form

A dimensionless Boltzmann variable can be defined as (Ghez 1988):

(28)q(x = 0, t) =
q(Pf )√

t
,

(29)
�2P

�x2
+ �

(
�P

�x

)2

=
e�(Pi−P)

Di

�P

�t
.

(30)PD =
Pi − P(x, t)

Pi − Pf

,

(31)
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− �(Pi − Pf )

(
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�x

)2
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e�(Pi−Pf )PD

Di

�PD

�t
.

(32)
�2PD

�x2
− �D

(
�PD

�x

)2

=
e�DPD

Di

�PD

�t
.

(33)PD(x, t = 0) = 0,

(34)PD(x → ∞, t) = 0,

(35)PD(x = 0, t) = 1.
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In the Boltzmann domain, Eq. (32) takes the form of the following second-order ordi-
nary differential equation:

The limits t → 0 and x → ∞ both correspond to � → ∞ , and so the three conditions 
(33–35) reduce to the following two boundary conditions:

Since �D = 0 for a reservoir that is not stress sensitive, the parameter �D can serve as 
the perturbation parameter in this problem. When �D = 0 , Eq. (32) reduces to the tradi-
tional diffusion equation in the (x, t) domain, and Eq. (37) reduces to the form that the 
diffusion equation has in the Boltzmann domain, so it is seen that this problem will be 
a regular perturbation problem (Hinch 1991). Finally, since Eqs. (32) and (37) contain 
no singular points, the radius of convergence of the perturbation series will be infinite.

The dimensionless pressure is therefore sought in the form of the following series:

in which Pn
D
(�) denotes the nth perturbation function (i.e., n is not a power exponent). This 

series is inserted into Eq. (37), and all terms, including the exponential, are expanded out 
in a power series in �D , to yield:

In order for a power series to identically equal zero, the coefficient of each power of 
�D must vanish. For the (�D)0 term, this leads to the following homogeneous ODE for 
P0

D
(�):

This is nothing other than the unperturbed problem that corresponds to �D = 0 , the solution 
to which, after integrating and satisfying the boundary conditions (38,39), is (Ghez 1988)

Note also for future reference that
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The (�D)1 term leads to the following inhomogeneous ODE for P1
D
(�):

In terms of the new variable y(�) = dP1
D
(�)∕d� , and after making use of eqs. (43) and 

(44), this ODE can be written as

The general solution of this equation can be written as the sum of the homogene-
ous solution and a particular solution to the inhomogeneous problem. The homogene-
ous solution is readily found to be yh(�) = Ce−�

2 , where C is an arbitrary constant. A 
particular solution to the inhomogeneous equation can be found by using the method of 
variation of parameters (Coddington 1961), which starts by writing

Substitution of this expression into Eq. (46) leads to the following ODE for g(�):

This equation can be integrated using standard tables of integrals (Edward and Murray 
1968):

Substitution of this result into Eq. (47) yields

The general solution for y(�) is therefore of the form

Recalling that y(�) = dP1
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where D is a constant of integration.
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Since the 0th-order solution P0

D
(�) already satisfies the boundary conditions (38) 

and (39), it follows that all higher-order functions Pn
D
(�) must satisfy zero boundary 

conditions. The condition that P1
D
(0) = 0 shows that D must be 0. The condition that 

P1
D
(∞) = 0 leads to

The definite integral appearing in Eq.  (53) can be evaluated (Edward and Murray 
1968) to yield

from which it follows that

The final expression for P1
D
(�) is found by inserting Eq. (55) into Eq. (52):

In principle, the perturbation calculations could be continued, so as to obtain the 
second-order term, etc. However, it soon becomes apparent that the number of indi-
vidual terms appearing in Pn

D
(�) grows very rapidly, and P2

D
(�) would, for example, con-

tain several dozen terms. Thus, pursuing the perturbation solution to higher orders does 
not seem to be feasible. Instead, the first-order solution will be used to obtain the flux 
(exactly) to first order in �D , and this result will be extended to larger values of �D by 
invoking an appropriate “effective permeability,” as discussed below in Sect. 7.

By inserting Eq. (43) for P0

D
(�) , and Eq. (56) for P1

D
(�) , into series (40), the pressure 

profile, to first order in �D , is seen to be given by

Pressure profiles, in the Boltzmann domain, are plotted in Fig.  1, for �D = 0 and 
�D = 1 . Since the pressures are fixed at both the outflow boundary and in the far field, 
the additional perturbation function vanishes at both boundaries. As �D increases, the 
pressure gradient at the outflow boundary increases, but the permeability at the out-
flow boundary decreases by a greater proportion, and so the flux will decrease, as 
would be expected. This latter fact can be seen by noting that flux is proportional to the 
area between the pressure drawdown curve and the line PD = 0 , and this area clearly 
decreases as �D increases. The precise decrease in flux due to this stress dependence is 
calculated in the following section.
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6 � First‑Order Perturbation Expression for the Flux

The flux of fluid out of the reservoir is found by starting with Darcy’s law, and using the chain 
rule, along with Eqs. (30) and (36), to express the pressure gradient �P∕�x in terms of the 
pressure profile in the Boltzmann domain:

The flux at the outflow boundary is found by evaluating Eq. (58) at � = 0 , which corre-
sponds to x = 0 . For example, returning to the case of no stress dependence, then k(P) = ki , 
and Eq. (44) shows that dPD∕d� = −(2∕

√
�)e−�

2 , and so at the boundary, dPD∕d� = −2∕
√
� . 

Hence, Eq. (58) shows that q(x = 0, t) = −(Pi − Pf )
√
�cki∕��t , which is the known classi-

cal result (Stewart 2011; Zimmerman 2018). The minus sign that appears in the equation for 
the flux indicates that the fluid is flowing towards the boundary, whereas the x-coordinate axis 
points away from the boundary.

Returning to the pressure-dependent case, Eq. (58) gives, after making use of Eq. (57) for 
PD(�),

(58)

q = −
k(P)

�

�P

�x
= −

k(P)

�

�P

�PD

dPD

d�

��

�x
=

k(P)

�
(Pi − Pf )

dPD

d�

1

2
√
Dit

=
(Pi − Pf )

√
��ck(P)

�
√
4kit

dPD

d�
= (Pi − Pf )k(P)

�
�c

4�kit

dPD

d�
.

(59)

q(x = 0, t) = (Pi − Pf )kie
−�D

√
�c

4�kit

(
dPD

d�

)

�=0

= (Pi − Pf )e
−�D

√
�cki

4�t

(
dP0

D

d�
+ �D

dP1
D

d�
+⋯

)

�=0

.

Fig. 1   Pressure profiles, in 
the Boltzmann domain, for 
the problem of 1D flow to a 
constant-pressure boundary in a 
stress-sensitive formation, show-
ing the influence of the dimen-
sionless permeability modulus, 
�
D
 , according to the first-order 

perturbation solution
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Equation  (44) shows that dP0

D
(0)∕d� = −2∕

√
� , and Eq.  (56) shows that 

dP1
D
(0)∕d� = −2(� − 1)∕�3∕2 , from which it follows that

The normalized flux, normalized with respect to the case of no pressure dependence, 
i.e., the case �D = 0 , can be written as

Since the bracketed term has already neglected all terms of second-order or higher in 
�D , the entire expression is only reliable to first order. Expanding the right-hand side in a 
Taylor series in the parameter �D , and neglecting the higher-order terms, leads to

This expression is exact, to first order. In Fig. 2, it is compared to the numerical val-
ues obtained from the McWhorter–Sunada integral equation formulation, Eq.  (28). The 
flux computed from the first-order perturbation solution has 5% accuracy up to about 
�D = 0.8 . Recalling that �D = ln(ki∕kf ) , it follows that �D = 0.8 corresponds to kf = 0.45ki . 
Hence, the first-order solution has 5% accuracy for situations in which the stress sensitiv-
ity of the formation has caused the permeability at the outflow boundary to be less than 
half of the initial permeability. For more extreme cases, which may arise from a greater 

(60)

q(x = 0, t) = − (Pi − Pf )e
−�D

�
�cki

4�t

�
2√
�
+

2(� − 1)

�
√
�

�D +⋯

�

= − (Pi − Pf )e
−�D

�
�cki

��t

�
1 +

(� − 1)

�
�D +⋯

�
.

(61)
q(x = 0;�D)

q(x = 0;�D = 0)
= e−�D

[
1 +

(� − 1)

�
�D +⋯

]
.

(62)
q(x = 0;�D)

q(x = 0;�D = 0)
= 1 −

1

�
�D +⋯ = 1 − 0.318�D +⋯ .

Fig. 2   Boundary flux, for 
the problem of 1D flow to a 
constant-pressure boundary in 
a stress-sensitive formation, as 
a function of the dimension-
less stress sensitivity parameter, 
�
D
 , according to the numerical 

solution, the first-order perturba-
tion solution (short dashes), 
and “effective permeability” 
approach (long dashes). The flux 
is normalized against the flux for 
the case of no stress sensitivity
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stress sensitivity of the formation, a greater drawdown, or a combination of both factors, 
the accuracy of the first-order solution degrades further. This can be partially remedied by 
appealing to the concept of effective permeability, as shown in the following section.

7 � Effective Permeability Concept

For heterogeneous rock masses in which the permeability is constant at each point in space, 
but varies spatially, the concept of “effective permeability” is often invoked. Roughly 
speaking, the effective permeability is the value that, when inserted into the solutions that 
can be obtained for the uniform permeability case, would yield the correct flux for the 
actual inhomogeneous problem. Exact expressions for the effective permeability can be 
obtained only for simple cases such as layered rocks, although accurate approximate meth-
ods have been devised for more realistic permeability distributions (Renard and de Marsily 
1997). In all such scenarios, the effective permeability is essentially some sort of spatial 
average of the local permeability.

In the present problem, the permeability varies in space due to the fact that the perme-
ability varies with pressure drawdown, and the drawdown varies in space and time. Hence, 
classical “spatial averaging” upscaling methods for computing effective permeability will 
not apply. However, a modified version of this concept can still be invoked, as will now be 
explained.

Based on the form of the permeability variation given by Eq.  (11), it follows that the 
permeability at the outflow boundary is given by kf = kie

−�D . The permeability in the far 
field is of course ki , and so the permeability throughout the formation varies between these 
two extremes. It seems reasonable and simple to put keff = kie

−��D , for some constant γ that 
will be expected to lie between 0 and 1. If this expression is inserted into the expression for 
the flux for the constant-permeability case, the result is

All that is known with certainty in this problem is that the first-order flux is given by 
Eq. (60). Hence, it seems sensible that the factor γ should be chosen so as to make Eq. (63) 
agree with Eq. (60) to first order in �D . Since e−��D∕2 = 1 − ��D∕2 +⋯ , this matching cri-
terion requires that �∕2 = 1∕� , which is to say, � = 2∕� . This choice leads to an effective 
permeability of keff = kie

−(2∕�)�D , and a boundary flux of

which corresponds to a normalized boundary flux of

This expression is plotted in Fig.  2, where it is seen to have much better accu-
racy, over a larger range of values of �D , than does the first-order expression given by 
Eq.  (62). In fact, this new flux approximation has 5% accuracy out to about �D = 2 . 
As this value of �D corresponds to a situation in which kf = 0.14ki , i.e., a sevenfold 

(63)q(x = 0, t) = −(Pi − Pf )

√
�ckeff

��t
= −(Pi − Pf )

√
�cki

��t
e−��D∕2.

(64)q(x = 0, t) = −(Pi − Pf )

√
�ckeff

��t
= −(Pi − Pf )

√
�cki

��t
e−�D∕� ,

(65)
q(x = 0;�D)

q(x = 0;�D = 0)
= e−�D∕� = e−0.318�D = (kf∕ki)

0.318.
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reduction in permeability due to the drawdown at the outflow boundary, Eq.  (65) is 
therefore accurate for a very wide range of expected scenarios.

8 � Summary and Discussion

A first-order perturbation solution has been derived for the problem of one-dimensional 
flow to a planar boundary held at constant pressure, in a pressure-sensitive rock forma-
tion in which the permeability varies exponentially with pressure. The solution yields a 
result that is exact to first order in the parameter �D = ln(ki∕kf ) , where ki is the permea-
bility at the initial reservoir pressure, and kf  is the permeability at the outflow boundary. 
This solution gives a normalized flux (normalized against the flux for the case �D = 0 ) 
of 1 − 0.318�D , which is to say, 1 − 0.318 ln(ki∕kf ) . Although the problem has been dis-
cussed in terms of production of fluid from the reservoir, the result is equally applicable 
to injection, in which case �D will be negative, and the injectivity will be enhanced by 
the stress sensitivity.

The first-order solution was found to have 5% accuracy for values of �D up to about 
0.8. In order to extend this range of accuracy, an “effective permeability” was then 
defined so that, when inserted into the analytic solution for the case of no stress sensi-
tivity, it yields a flux that agrees exactly, to first order, with the perturbation solution. 
This effective permeability was found to be given by

The flux obtained using this effective permeability has 5% accuracy up to values of �D as 
large as 2.

Since the “exact” solution to this type of problem can be obtained by numerically 
solving an integral equation using a rapidly convergent iterative procedure, this raises 
obvious questions regarding the value of the perturbation solution. One partial answer 
to this question is that the perturbation method yields a flux that is exact to first order 
in the parameter �D , and any exact result for this type of highly nonlinear problem is 
certainly welcome. However, the main value of the foregoing exercise is probably as a 
“proof of concept,” to show the feasibility of using perturbation series to solving non-
linear fluid flow problems in porous media. Although the perturbation approach for 
addressing porous media flow problems was pioneered in 1991 by Kikani and Pedrosa 
(1991), most researchers who subsequently followed their approach essentially stopped 
at the 0th-order solution. As shown in detail by Ren and Guo (2018), the 0th-order solu-
tion to the problem, obtained after invoking the change of pressure variable suggested 
by Kikani and Pedrosa (1991), yields very accurate solutions for flow problems in radial 
geometries, particularly at large times. However, the analogous solution for the linear 
flow geometry actually has very poor accuracy, as will now be shown.

The Kikani-Pedrosa-type 0th-order solution for the present problem can easily be 
derived by following the steps taken by Ren and Guo (2018) in their solution for the 
problem of flow to a vertical well at the center of a bounded circular reservoir under 
conditions of constant wellbore pressure. In fact, the steps are completely analogous, 
and so only the key results will be given here. Using the notation of the present paper, 
the dimensionless pressure variable can be expressed in terms of a new variable, �D:

(66)keff = kie
−2�D∕� = kie

−(2∕�) ln(ki∕kf ) = ki(ki∕kf )
−0.637 = k0.363

i
k0.637
f

.
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(This is essentially a Kirchhoff transformation (Vadasz 2010), although this connection has 
not usually been made in papers that discuss this problem in a petroleum engineering con-
text). The function �D can be expanded in a perturbation series, the 0th-order term of which 
is the solution to the unperturbed differential equation, subject to the following boundary 
condition at the outflow boundary:

It follows that the KP 0th-order solution for this problem is

The flux corresponding to this approximate solution is found by inserting Eq.  (69) 
into the general expression (59):

The normalized flux at the boundary, normalized with respect to the case of a reservoir 
having no pressure sensitivity, therefore takes the form

Expansion in a Taylor series yields

But it is known from Eq. (62), and from the numerical solution, that the first two terms 
in the expansion for the normalized flux are 1 − 0.318�D . Hence, the 0th-order KP solution 
to this problem is not exact to first-order in the stress sensitivity parameter �D , and is actu-
ally not particularly accurate. Finding a result accurate to first order in �D would require 
computing the �D1 term in the perturbation expansion for �D.

This result at first seems to conflict with the findings of Ren and Guo (2018), who 
showed that the 0th-order KP solution for the radial flow problem is extremely accu-
rate. But this accuracy was observed at large times and did not extend to very small 
values of dimensionless time, as these authors in fact pointed out. Although values of 
tD = kit∕𝜙𝜇cr

2
w
< 1 are not of much practical importance in reservoir engineering or 

hydrology, the solution developed by Ren and Guo (2018) would yield a flux that diverges 

(67)PD =
−1

�D
ln(1 − �D�D).

(68)�D(x = 0, t) =
1 − e

−�D

�D
.

(69)PD(�) =
−1

�D
ln[1 − (1 − e−�D )erfc(�)].

(70)

q(x = 0, t) =(Pi − Pf )

�
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4�t
e−�D

�
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d�

�

�=0
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4�t
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�D

2√
�

(1 − e−�D )
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�
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��t

(1 − e−�D )
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.
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q(�D = 0)
=
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�D
.
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further below the correct flux as tD → 0 . A hint of this divergence can be seen in their 
Fig. 2b, if one visually extrapolates the numerical and perturbation fluxes to values below 
the range of graph, which stops at tD = 1.

Although the radial flow problem exhibits different behavior in the small-time and large-
time regimes, the flow problem in a linear geometry has a self-similar solution and there-
fore does not possess different “early time” and “late-time” regimes (ignoring the eventual 
influence of any far-field boundary). Moreover, the flux in the radial flow problem must 
asymptotically approach the flux in the 1D problem, as tD → 0 (Crank 1975, Eq. (58)). The 
early-time flux in the radial problem must therefore be identical to the flux in the 1D prob-
lem, and so, in some sense, the solution to the 1D problem is an “early time” solution. In 
both the radial flow and linear flow cases, the 0th-order KP-type solution does not yield 
accurate results for “early times,” and hence, the present findings are not contradictory or 
paradoxical. The flux expression derived in the present paper for the 1D flow problem; on 
the other hand, it has reasonably good accuracy, even for quite large values of �D.
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