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Abstract
In this paper, we critique the performance of the node control volume finite element 
(NCVFE) method for modeling multi-phase fluid flow in heterogeneous media. The 
NCVFE method solves for the pressure at the vertices of elements and a control volume 
mesh is constructed around them. Material properties are defined on elements, while trans-
port is simulated on the control volumes. These two meshes are not aligned producing 
inaccurate results and artificial fluid smearing when modeling multi-phase fluid flow in 
heterogeneous media. We perform numerical tests to quantify and visualize the extent of 
this artificial fluid smearing in domains with different material properties. The domains 
are composed of tetrahedron finite elements. Large artificial fluid smearing is observed in 
coarse meshes; however, it decreases with the increase in mesh resolution. These findings 
prompt the use of high-resolution meshes for the method and the need for development of 
novel numerical methods to address this unphysical flow.

Keywords  Node control volume finite element method · Flow in heterogeneous and 
fractured porous media · Upstream mobility · Numerical simulation · Unstructured grid

1  Introduction

Finite volume and finite element discretizations have been extensively studied for the 
past few decades for different flow systems in heterogeneous and fractured porous media 
(Chen and Ewing 1997; Stefansson et  al. 2018; Abushaikha 2018; Abushaikha et  al. 
2017; Ahmed et al. 2019; Xia and Zhang 2006; Khoei and Haghighat 2011). One impor-
tant finite element method is the node control volume finite element (NCVFE) method 
which was developed by Baliga and Patankar (1980) to numerically solve fluid dynamics 
problems. They subdivided the domain using irregular triangular elements with control 
volumes surrounding nodes (vertices), Fig. 1. The pressure is solved on the nodes, while 
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the velocity components are solved on the elements sequentially. The secondary control 
volume mesh is necessary to assure local conservation of mass, momentum, and energy 
since these entities are discontinuous at the element interfaces. Quadrilateral elements 
were first used by Schneider and Raw (1986), and Fung et al. (1991), Forsyth (1991), 
while Eymard and Sonier (1994) applied the method to subsurface reservoir engineering 
problems’. Paluszny et al. (2007) extended the method to domains composed of differ-
ent types of elements (tetrahedron, hexahedron, prims and pyramids). After that, Geiger 
et  al. (2004) implemented discrete fracture models representing subsurface geological 
fractures using line elements embedded in two-dimensional domains composed of trian-
gle elements, while Monteagudo and Firoozabadi (2004) embedded triangles with tetra-
hedron elements to solve similar problems.

The usability of the NCVFE method to simulate multi-phase fluid flow in heteroge-
neous media and complex geological models has increased rapidly (Mello et al. 2009; 
Sadrnejad et  al. 2012; Schmid et  al. 2013) thanks to the mesh flexibility of the finite 
element method and the local conservation characteristics of the control volumes. How-
ever, since the geological data (material properties such as porosity and permeability) 
are assigned on the elements and the dynamic data (transport variables such as satura-
tion) are computed on the control volumes, artificial fluid smearing is observed between 
regions of different material properties. The effect of this issue can be decreased by 
refining the mesh or through the use of adaptive spatial meshing techniques as proposed 
by Jackson et al. (2013). However, the method will always allow the transport variables 
to be contained in control volumes that represent elements with different material prop-
erties, as discussed later. Vermuelen (1973) imposed the properties on the control vol-
umes which decreased the effect of the aforementioned issue; however, the shape of the 
control volume depends on the finite element mesh, thus the mesh flexibility is consid-
erably decreased.

Fig. 1   Triangle finite element mesh (dashed lines) with the corresponding node control volume mesh (solid 
lines) imposed on the vertices of elements. a The material properties (gray color) are defined on the ele-
ments, here representing a fracture (white is lower permeability matrix), b The pressure and transport vari-
ables are computed on the node control volumes (blue color). The control volume mesh spans both the 
fracture and matrix material properties promoting unphysical flow across the boundaries of elements
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Nick and Matthai (2011) and Bazar-Afkan and Matthai (2011) proposed novel numeri-
cal approaches to solve the issue of artificial fluid smearing using triangular elements, and 
Abushaikha et al. (2015) changed the location of the degrees of freedom from the verti-
ces to the interfaces to minimize the degree of smearing using tetrahedron elements. It 
is important to note that many papers have suggested new schemes that can eliminate the 
effect of artificial smearing (Abushaikha et al. 2017; Abushaikha 2018; Salinas et al. 2018; 
Abd et  al. 2019; Abd and Abushaikha 2020; Abushaikha and Terekhov 2020; Li et  al. 
2020; Nardean et al. 2020) even when discrete fracture modeling is implemented (Zhang 
and Abushaikha 2019).

In this paper, we quantify and numerically assess the artificial smearing produced by 
the NCVFE for multi-phase fluid flow in heterogeneous media. We use unstructured mesh 
with tetrahedron elements, while the total fluid mobility is calculated by using an arith-
metic average of fluid saturations of the shared control volumes. This allows for the com-
putation of the unphysical error of the artificial smearing for various tests using domains 
of hugely different material properties. To visualize the artificial smearing better, we plot 
the results on the actual control volumes contrary to most of the literature (Geiger et al. 
2004; Monteagudo and Firoozabadi 2004; Mello et al. 2009; Sadrnejad et al. 2012; Schmid 
et  al. 2013; Jackson et  al. 2013; Vermuelen 1973; Nick and Matthai 2011; Bazar-Afkan 
and Matthai 2011; Edwards 2006) as they plot the solutions on the vertices of elements 
which tends to underestimate the extent of the problem. The paper is organized as follows. 
In Sect.  2, we introduce the governing equations followed by a brief description of the 
NCVFE method in Sect. 3. We then present some numerical tests in Sect. 4 and we end 
with some conclusions in Sect. 5.

2 � Governing Equations

In the following, we present the equations of a two-phase immiscible fluid flow of water 
and oil in heterogeneous porous media. The flow is characterized by the continuity equa-
tion and Darcys law (Darcy 1856; Bear 1972), and a slightly compressible rock is consid-
ered. The mass balance for the fluid phase � is,

S is the saturation of the phase, � is the porosity of the rock, � is the density of the phase, 
q is the volumetric source–sink rate of the phase, � is the Darcy velocity for phase, and t is 
time. We also assume capillarity and gravity forces are negligible. The Darcy phase veloc-
ity is,

where P is the phase pressure, K is the absolute rock permeability, and � is the phase 
mobility,

where kr is the relative permeability of phase and � is fluid viscosity of phase.

(1)
�(���S�)

�t
= −∇.[����] + ��q�

(2)�� = −��K∇P�

(3)�� =
kr�(S�)

��
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The relative permeability is saturation dependent, while the fluid viscosity is constant. 
We assume a closed system with known initial boundary conditions where source/sink 
terms are represented by wells. Moreover, a pressure equation is written based on the conti-
nuity equations for the phases (Eq. 1). The equations of each phase are combined to form a 
pressure equation where time derivatives of saturations are represented explicitly (Durlof-
sky 1993),

where Cr is rock compressibility, qt is the total volumetric source-sink rate of both phases 
and �t is the total mobility given by:

Then, Darcy’s law, Eq. 2, is used to calculate the phase velocities using the solution of the 
pressure field, Eq. 4. Moreover, we use Eq. 1 to account for the advection and transport 
of fluid. The pressure and the advection equations are coupled nonlinearly using the total 
mobility, Eq. 5. The mobility depends on the saturation that changes over time and space.

3 � Node Control Volume Finite Element (NCVFE) Method

In the NCVFE method, the domain is subdivided into finite elements and a secondary grid 
is imposed around the nodes (vertices) of the elements forming a control volume mesh, 
Figs. 1 and 2. The pressure is solved on the vertices of elements using the Galerkin finite 
element method and the transport variables (i.e., fluid saturation) are solved on the con-
trol volumes. The secondary grid is constructed to provide a continuous velocity field 
between the control volumes, since the velocity field is discontinuous between the ele-
ments’ interfaces (Fung et al. 1991; Geiger et al. 2004). This guarantees mass conservation 
of the system. Material properties, such as porosity and permeability are still defined on the 

(4)�Cr

�P

�t
− ∇.��t∇P = qt

(5)�t =
kro

�o

+
krw

�w

Fig. 2   a Tetrahedron mesh , b The corresponding node control volume mesh (red lines) imposed on the ver-
tices of the tetrahedron finite elements
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elements. Some authors refer to this method as the control volume finite element (Baliga 
and Patankar 1980; Fung et al. 1991; Sadrnejad et al. 2012; Jackson et al. 2013). Here, we 
include the term “node” as qualifier for the sake of clarity, and to distinguish the method 
from newly development methods in the literature (Nick and Matthai 2011; Abushaikha 
et al. 2015).

In the NCFVE method, a multi-phase flow problem is solved in two steps. The first step 
is to calculate the pressure using finite element method; here we use the well-established 
Galerkin method (Huyakorn and Pinder 2014). Then, the advection of fluid between the 
node control volumes is calculated using the finite volume method. Next, we discuss these 
steps in detail.

3.1 � Galerkin Finite Element Method

In the finite element method, an integral formulation for the governing flow equation is 
derived to solve for the pressure at each node in the mesh. Let us consider the differential 
operator

where L[P] is the differential operator defining the pressure, and F is the external 
source–sink terms. An approximate solution of the pressure in each element is defined as

where P̂(e) is the approximate solution for pressure within element (e), n is the number of 
nodes within element (e), and Pi unknown values of pressure for each node within element 
(e), and N(e)

i
 is the interpolation function for each node within element (e) and the sum of 

interpolation functions equals to one at every point within the element

In this paper, we use first-order Courant (Courant 1943) (linear) interpolation functions 
and the derivative of Eq. 7 equals

When we substitute the pressure value in Eq. 6 with the approximate solution of pressure, 
Eq. 7, a residual R occurs at each node in the problem domain, and the pressure equation 
no longer equals zero

Several methods are available to eliminate this error; here we use the method of weighted 
residuals (Geiger et al. 2004; Istok 2010). In this method, Eq. 10 is multiplied by a weight-
ing function W and the weighted average of the residuals in the domain is forced to equal 
zero

(6)L[P] − F = 0

(7)P̂(e) =

n∑
i=1

N
(e)

i
Pi

(8)
n∑
i=1

N
(e)

i
(x, y, z) = 1

(9)∇P̂(e) =

n∑
i=1

Pi∇N
(e)

i

(10)L(P̂) − F = R ≠ 0
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Replacing the differential operator in Eq. 11 with Eq. 4 leads to

In the Galerkin finite element method, the weighing function W is identical to the interpo-
lation function N. Based on Eq. 12, the residual for node i in tetrahedron element (e) equals

where V (e) is the volume of tetrahedron. The material properties (permeability and poros-
ity) are assumed piece-wise constant within the element (Geiger et al. 2004; Nick and Mat-
thai 2011), and the total fluid mobility is calculated by using an arithmetic average of fluid 
saturations of the shared control volumes (Baliga and Patankar 1980; Huber and Helmig 
1999). For simplicity, we make Eq. 13 equal to

where R(e)

M,i
 is the conductance residual, R(e)

C,i
 is the capacitance residual, and R(e)

F,i
 is the force 

residual.
We integrate by parts the first term of Eq. 14 and replace the derivative of the approxi-

mate solution of pressure using Eq. 9

Neglecting the second term in Eq. 15 since no-flow at boundaries and making the conduct-
ance matrix by rearranging the conductance residual equations of the nodes of element (e),

where [M(e)] is the conductance matrix, and for tetrahedron element equals,

(11)∫�

W(L(P̂ − F)d� = 0

(12)∫�

W(�Cr

�P

�T
− ∇.��t∇P − qt)d� = 0

(13)
R
(e)

i
= − (K�t)

(e) ∫V (e)

∇N
(e)

i
⋅ ∇P̂(e)dV + (�Cr)

(e) ∫V (e)

N
(e)

i

[
�P̂(e)

�t

]
dV

− ∫V (e)

N
(e)

i
q
(e)
t dV

(14)R
(e)

i
= R

(e)

M,i
+ R

(e)

C,i
+ R

(e)

F,i

(15)R
(e)

i
= −(K�t)

(e) ∫V (e)

(∇N
(e)

i

n∑
i=1

Pi∇N
(e)

i
)dV + (K�t)

(e) ∫S(e)
N

(e)

i

�P̂(e)

�x
dS

(16)
⎡⎢⎢⎣

R
(e)

i

⋮

R(e)
n

⎤⎥⎥⎦
M

=
�
M(e)

� ⎡⎢⎢⎣

Pi

⋮

Pn

⎤⎥⎥⎦

(17)[M(e)]4×4 = (K�t)
(e)V (e)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�N
(e)

i

�x

�N
(e)

i

�y

�N
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i

�z
�N

(e)

j

�x

�N
(e)

j
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where �N
(e)
n

�x
,�N

(e)
n

�y
 , and �N

(e)
n

�z
 are node n interpolation function derivatives in the X, Y and Z 

directions for element (e). They are given in "Appendix A".
For the second term in Eq. 14, we evaluate the time derivative of the approximate solu-

tion of pressure over the element volume. In this paper, we use the lumped formulation 
as it is considered more stable and produces fewer oscillations during multi-phase flow 
(Eymard and Sonier 1994; Bastian and Helmig 1999). The time derivative of the approxi-
mate solution of pressure is defined by,

where N∗(e)

i
 are the lumped interpolation function for the time derivative of pressure at 

node i and its product equals,

Substituting Eq. 18 in the second term of Eq. 14 gives the capacitance residual for node i 
in element (e),

We make the capacitance matrix by rearranging the capacitance residual equations of the 
nodes of element (e),

where [Ce] is the capacitance matrix of element (e) and applying Eq. 19 for Eq. 20 gives 
the lumped capacitance matrix for tetrahedron element,

For the third term in Eq. 14, where the well is located in element (e), the flow rate is dis-
tributed on the elements nodes depending on the well location in the element,

where (x0, y0, z0) are the coordinates of the well location in element (e).

(18)
�P̂(e)

�t
=
�
N

∗(e)

i
…N∗(e)

n

� ⎡⎢⎢⎢⎣

�P1

�t

⋮
�Pn

�t

⎤⎥⎥⎥⎦

(19)N∗
i
N∗
j
=

{
1

n
if i = j

0 if i ≠ j

(20)R
(e)

i,C
= ∫V (e)

N
(e)

i

⎡⎢⎢⎢⎣
�Cr

�
N

∗(e)

i
…N∗(e)

n

� ⎡⎢⎢⎢⎣

�P1

�t

⋮
�Pn

�t

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎦
dV

(21)
⎡⎢⎢⎣

R
(e)

i

⋮

R(e)
n

⎤⎥⎥⎦
C

=
�
C(e)

� ⎡⎢⎢⎣

Pi

⋮

Pn

⎤⎥⎥⎦

(22)[C(e)]4×4 = �Cr

V (e)

4

⎡⎢⎢⎣

1 0

⋱

0 1
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Discretizing the time derivative in Eq. 21 using backward Euler method and adding all the 
matrices in their corresponding global matrices, Eq. 12 becomes the final pressure equation,

where t is the time index and we use implicit pressure and explicit saturation (IMPES) 
(Fanchi 2018). Eq. 24 is an Ax = B equation and is solved for the unknown, next time-step 
pressure [P]t+1 , using a linear solver. Next, we discuss the construction procedure of a node 
control volume mesh in a domain of tetrahedron elements.

3.2 � Node Control Volume Mesh

A node control volume is a secondary grid constructed around the vertices of the finite ele-
ment mesh. In this section, we discuss the procedure for constructing a node control volume 
mesh, and the computation of the area normal vectors for tetrahedral elements. Both the area 
normal vectors along with node control volume mesh are needed to assure that the fluxes on 
the interfaces of the control volumes are continuous and perpendicular to ensure local conser-
vation of mass. This procedure is necessary since the velocity field is discontinuous between 
the elements interfaces.

A node control volume between tetrahedron elements is constructed around the shared 
node with hexahedron sectors. Each sector has eight vertices. The vertices are located at the 
shared node, the barycenter of the host element and the barycenter of the three interfaces and 
the three edges of the host element connected to the node; see Figs. 3 and 4. The area normal 
vector (��) of each control volume is calculated where each sector has three faces connected 
to the flow and each face has two interface line vectors, see Fig. 4. The cross-product of the 
interface line vectors gives the area normal vectors of each face,

(24)([C]t +△t[M]t)[P]t+1 = [C]t[P]t +△t([F]t+1)

(25)��� =

{
(�J1 × �J2) if Tl > 0

−(�J1 × �J2) if Tl < 0

(26)��� =

{
(�K1 × �K2) if Tl > 0

−(�K1 × �K2) if Tl < 0

Fig. 3   Four tetrahedron elements (left), a node control volume (dashed lines) constructed on the shared 
node between the four tetrahedron elements (center), area normal vectors of one sector (grey areas) of a 
node control volume in a tetrahedron finite element (right)
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where ��J is the area normal vector of face J, TI = (J − I) ⋅ ((K − J) × (L − J)) and i, j, k, 
l are the coordinates of the vertices and all different. We use TI as a reference to assure the 
flow is out of the control volume. �J1 is the first interface line vector of face J. Please refer 
to "Appendix A" and Fig. 4 for the values of interface lines for the faces.

The equations are performed for each sector in the node control volume. The pore 
volume of a node control volume in a tetrahedron element mesh is calculated by,

where V(n) is the pore volume of the node control volume (n), and E is the number of ele-
ments sharing the control volumes.

3.3 � Fluid Saturation Calculation in Node Control Volumes

After constructing the node control volume mesh and calculating the area normal vector 
for each sector in the node control volumes, we integrate the transport equation, Eq. 1, 
over the node control volume (n). After that, the divergence theorem is applied and the 

(27)��� =

{
(�L1 × �L2) if Tl > 0

−(�L1 × �L2) if Tl < 0

(28)V(n) =

E∑
e=1

V (e)�(e)

4

Fig. 4   Node control volume sector around node I of a tetrahedron (top-left), vertices of sector (top-right), 
interface line vectors of faces for sector (bottom-left), and area normal vectors of sector (bottom-right)
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equation is discretized in time using the backward Euler approach (similar to Eq. 24). 
The next time-step phase saturation in control volume (n) is calculated by,

where SI is the number of faces in node control volume (n), and the flux(n),j) is the flux of 
face j in node control volume (n) and calculated by,

where �t
w
 is calculated using the pervious time-step phase saturation of the upstream con-

trol volume, and ∇P(e) is calculated from Eq. 9. Equation 24 is calculated for every node 
control volume in the mesh, and in this paper we calculate the water saturation.

3.4 � NCVFE Implementation Algorithm

Finally, we present algorithm 1 of the NCVFE implementation . The pressure is implicitly 
calculated and saturation calculations are explicit (IMPES). The number of nodes in the 
mesh represent the degrees of freedom of the system.

4 � Numerical Tests

In this section, we perform a numerical study of the NCVFE method. We test its accuracy 
in modeling two-phase fluid flow in regions with large variations in their material proper-
ties, i.e. between matrix regions and sealing/conductive faults (Tests I and II).

A meshing software, GMSH, (Geuzaine and Remacle 2009) is used to create 3-D tetra-
hedron finite element meshes that are used in the upcoming test. Each test has a mesh of 
a different element size that is refined by manipulating the element length (h). A quadratic 
model is used to construct the oil and water relative permeability curves, and a unifrom 
porosity of 0.2 is used. The water and oil viscosities are 0.4 and 2.5 mPa.s respectively and 
the rock compressibility equals 4.0 × 10−10Pa−1 . At intial conditions, we assume that the 
domain is fully saturated with oil.

The pore volume injected (PVI) is defined as

where VP is the total pore volume of the system.
To visualize the tests results better, we plot the solutions on the control volumes.

(29)St+1
w,(n)

=
St
w,(n)

CVt +△t
�
−
∑SI

j
flux(n),j + q(n),w

�

CVt+1

(30)flux(n),j = (�t
(e

w
K(e)∇�(e))(n),j ⋅ ��(n),j

(31)PVI =
1

VP
∫

t

o

qtdv
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4.1 � Buckley–Leverett Validation

In this section, we compare the analytical solution of the Buckley–Leverett function with 
the saturation profiles produced by the NCVFE method at different mesh resolutions. The 
solution is one-dimensional with negligible gravity and capillarity effects. The tested 
domain is a rectangular tube dimensions of 1 m × element length × element length for the 
tetrahedron elements. The results are plotted in Fig. 5-a where both the analytical and the 
numerical profiles are shown. The analytical solutions produces a sharper front of water 
saturation which is expected, and a finer grid is needed (0.001 element length) to achieve 
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Fig. 5   Comparison of the analytical solution of the Buckley–Leverett problem at distance 0.5 m from the 
left-hand boundary to the numerical solution of the NCVFE method using three meshes for tetrahedron 
(left) Convergence of the L

2
 error of water saturation as a function of the mesh element length for the 

numerical solutions of the Buckley–Leverett problem using the 3-D tetrahedral elements
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a close match to the analytical solution. This shows that the NCVFE method is capable of 
mapping the water front movement for relatively fine grids. The upcoming tests will dis-
cuss in details the effect of the mesh resolution on the water saturation calculations.

Furthermore, we computed the error L2norm at the different mesh resolutions for tetra-
hedron elements to measure the rate of convergence using the following equation:

The sub-linear convergence rate is around 0.4 and can be noticed in Fig. 5b. The conver-
gence rate is relatively low because of the sharp shock-front of the analytical solution and it 
is in line with other finite element descritization schemes (Geiger et al. 2004; Abushaikha 
et al. 2017). The overall results show that the NCVFE method is capable of modeling the 
nonlinear behavior of the two-phase flow and validated through Buckley–Leverett function.

4.2 � Test I: Barriers Case

In our first test, we incorporate 20 barriers into a domain to test the sealing capability of 
the NCVFE method. The tested domain is a square of a side length of 1 m and a depth of 
0.05 m where barriers aperture (width) is 0.04 m . The injector is located at the left bound-
ary of the domain, where water is injected at a constant rate. The resolution of the mesh 
is varied at the injector side as well. Figure 6 and Table 1 show the mesh properties along 
with error in the saturation calculation (we will discuss this error in details later).

Figure 7 shows the water saturation employing the three different meshes from Table 1 
at different injected pore volume. In the coarse mesh, as the water propagates inside the 
domain, it fully invades the barriers and does not honour the zero permeability property of 
the elements. The method allows the water to move in a control volume that contains ele-
ments with zero permeability; the correct solution should have no flow in such elements. 

(32)L
Sw
2

=

√∑
i

Vi(Swi − Sw
ex)2

Fig. 6   a Domain of Test I; there are 20 barriers no-flow (zero permeability) regions in the domain with 
aperture size of 0.04 m, b Location of the injector and the producer, and the direction of the flow
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The degree of nonphysical water invasion decreases as the mesh is refined. This is a classic 
case of the artificial fluid smearing produced by the NCVFE method between regions of 
different of material properties. To measure and quantify this behavior, we calculate the 
error in water saturation in the barriers using

(33)e(Sw) =
1

VZ
∫ |Sw − Sref

w
|dv

Table 1   The error of Test I 
resulting from estimating the 
water saturation in the barriers

Element length[m] Elements Nodes e(S
w
)

PVI=0.5 PVI=1.0

0.05 1272 458 0.474 0.603
0.04 8329 2,509 0.369 0.472
0.02 36,543 9,808 0.287 0.361
0.015 88,513 21,467 0.231 0.286
0.01 250,924 53,211 0.170 0.212
0.0085 410,249 87,863 0.142 0.177

Fig. 7   Test I water saturation at injected pore volumes 0.1 (left), 0.25 (center), 1.0 (right) for: mesh of ele-
ment size 0.05 m (top), mesh of element size 0.02 m (center), mesh of element size 0.01 m (bottom). See 
Table 1
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where VZ is the total pore volume of the barriers, Srefw  is the reference solution for water 
saturation in the zone which equals the initial water saturation.

Figure 8 and Table 1 show this error. The error is large and decreases as the mesh is 
refined. We also calculate the convergence rate of the NCVFE method for this test (Janicke 
and Kost 1996),

where NDF is the number of degrees of freedom, p is the order of convergence and d is the 
spatial dimension. For this case, p ≡ 1 (where d = 3 ) which is in agreement with the linear 
tetrahedron elements employed in the method (Janicke and Kost 1996).

Sealing faults or non-permeable layers are heavily present in subsurface reservoirs. They 
divide a field in to different reservoirs or compartments where the fluids are stored. There-
fore modeling nonphysical communication between the reservoirs or permeability zones 
will produce inaccurate flow behaviors and predictions of recovery. High mesh resolutions 
are required to minimize this behavior, as we saw in this test.

To summarize , we used the NCVFE method to model water invasion into the non-
permeable regions of a porous domain. This invasion caused the appearance of artificial 
smearing problems inside the region. This nonphysical flow is attributed to the procedure 
of constructing the control volume around the vertices of the elements. These elements 
with different material properties share interfaces which promotes nonphysical communi-
cation, however this behavior becomes less significant as the mesh of the domain is refined.

4.3 � Test II: Fractures Case

In this case, we model the fluid flow for a fractured network based on an outcrop sample 
taken from the Lias formation (limestone) from Bristol Channel, UK (Abushaikha 2013). 
We model the fractures explicitly using tetrahedron elements with different aperture sizes 
for the fractures ranging from 0.4 to 3 cm. The domain has dimensions of 68.4 × 48.6 × 1 
cm and has 14 matrix blocks surrounded by conductive fractures; see Fig. 9. The injector is 

(34)e ∼ N
(p∕d)

DF

Fig. 8   The error of Test I result-
ing from estimating the water 
saturation in the using NCVFE 
method at 0.5 and 1 pore volume 
injected as the element length 
varies
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located at the right boundary where water is injected at a constant rate in a similar fashion 
to the schematic shown in Fig. 6b. The mesh properties are shown in Table 2.

To understand the implications of the flow attributed to the NCVFE method, we change 
the permeability of the matrix zones to negligible values. The results are considered as a 
reference solution that represents the water flow through the fractured zones without invad-
ing the matrices.The outcrop is shown in Fig. 9, where the permeability of the fractures is 
10,000 mD.

Figure 10 shows the water saturation in three different meshes from Table 2 at different 
injected pore volumes. For the coarse mesh, the water heavily invades the matrix regions 
delaying the flow in the fractured network. As the mesh is refined, the water propagates 
faster inside the fracture regions with fewer invasion of the matrix. To analyze this behav-
ior, we calculate the water cut at the right hand boundary as a function of pore volumes 
injected to measure the breakthrough time. The water cut is given by

where qt = qw + q0 , qw and qo is the water and oil production flow rate, respectively.
Figure  11a shows the water breakthrough times at the right hand boundary for the 

meshes of Table 2 using Eq. 35. As observed in Fig. 10, the water reaches the right hand 
boundary faster when the mesh is refined. This behavior is in contradiction with common 
mesh convergence studies since the opposite is the norm (Fanchi 2018). To distinguish 
which type of dispersion is causing this behavior, physical or numerical, we mesh the frac-
ture network without the matrix regions and estimate the water breakthrough times at the 
right hand boundary for the element lengths of Table 2 in Fig. 11b. We notice that as the 
fracture network is refined, the water breakthrough time is delayed; opposite to Fig. 11a. 
Therefore, the artificial smearing produced by NCVFE is causing this behavior where the 
physical dispersion is eclipsing the truncated numerical error of the mesh refinements pro-
moting the delay of breakthrough times for the coarse meshes.

To measure this artificial smearing in the matrix regions, we use Eq. 33 to define the 
error. Figure 12 and Table  2 show the error produced, and as the mesh is refined the 

(35)WC =
qw

qt

Fig. 9   a Outcrop sample from Lias formation (limestone) from Bristol Channel 2, b discrete fracture mod-
els of the outcrop case
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error decreases. Similarly, using Eq. 34, a first-order convergence rate is noticed where 
d = 3 . It is worth mentioning that the first half of the convergence rate slope is also 
first order because the element length of the first two meshes is larger than the depth of 
the domain; effectively we have d = 2.

In this test, a delay of flow in the fracture region and breakthrough time was noticed 
due to the numerical extension of the fracture width. This can be attributed to artificial 
smearing that causes inaccurate predictions of water saturation calculations. The role 
of fractures is very important in understanding the flow in reservoirs and optimizing 
recovery factors, and their properties (dimensions and aperture size) greatly influence 
the kinetics and the recovery of hydrocarbons. Therefore, high-resolution meshes are 

Fig. 10   Test II water situations at injected pore volumes 0.075 (left), 0.15 (center), 0.45 (right) for: mesh of 
element size 100 mm (top), 10 mm (center), 5 mm (bottom). See Table 2

Table 2   The error of Test II 
resulting from estimating the 
water saturation in the barriers

Element 
length [m]

Elements Nodes e(S
w
)

PVI=0.15 PVI=0.45

100 2106 719 0.124 0.301
25 7645 2540 0.103 0.172
10 35,959 11,224 0.059 0.084
7.0 66,943 21,178 0.045 0.064
5.0 155,401 45,202 0.039 0.054
4.0 269,393 75,028 0.033 0.045
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recommended for NCVFE when modeling highly conductive zones especially between 
regions with large variations in their material properties, as we saw in this test and the 
previous test. Simulations such as these could be used to determine empirical fracture- 
matrix transfer functions (Abushaikha 2008) that encapsulate the average recovery in 
geological realistic fracture networks to be used in full field case studies.

5 � Summary and Conclusions

In this paper, we have investigated the accuracy of the NCVFE method to model two-phase 
fluid flow in heterogeneous and fractured porous media. In modeling sealing faults, the method 
performed poorly as the barriers were fully penetrated by the displacing water. The water did 
not respect the zero-permeabilities defined on the elements and flowed through them, because 
the NCVFE encompasses elements with both zero and finite permeabilities. In representing 
conductive faults (fractures), the NCVFE method did not perform any better. Very high mesh 

Fig. 11   a The water cut at the right-hand boundary for Test II versus pore volumes injected for the meshes 
without the matrix regions. b The water cut at the right hand boundary for Test II versus pore volumes 
injected

Fig. 12   The error of Test II 
resulting from estimating the 
water saturation in the using 
NCVFE method at 0.1 and 0.45 
pore volume injected as the ele-
ment length varies
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resolutions were needed to obtain a reasonable representation of the fluid flow inside the frac-
ture region. The low resolution mesh suffered a large amount of unphysical flow to the matrix 
regions and a major delay in breakthrough time compared to the high-resolution meshes.

We conclude that NCVFE requires high mesh resolutions to model multi-phase flow in 
heterogeneous systems reasonably. The critical drawback of the NCVFE method is that the 
material properties are defined on the elements, while the fluid saturation is calculated on the 
vertices of elements. Essentially, the saturation is updated on a coarse mesh that is not aligned 
with the assignment of rock properties.
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Appendix A

The interpolation function N and their derivatives are defined for a triangle and tetrahedron as 
follows:

Triangles

where

Tetrahedrons
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where
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