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Abstract
Viscous fingering in porous media is an instability which occurs when a low-viscosity 
injected fluid displaces a much more viscous resident fluid, under miscible or immiscible 
conditions. Immiscible viscous fingering is more complex and has been found to be dif-
ficult to simulate numerically and is the main focus of this paper. Many researchers have 
identified the source of the problem of simulating realistic immiscible fingering as being in 
the numerics of the process, and a large number of studies have appeared applying high-
order numerical schemes to the problem with some limited success. We believe that this 
view is incorrect and that the solution to the problem of modelling immiscible viscous 
fingering lies in the physics and related mathematical formulation of the problem. At the 
heart of our approach is what we describe as the resolution of the “M-paradox”, where M 
is the mobility ratio, as explained below. In this paper, we present a new 4-stage approach 
to the modelling of realistic two-phase immiscible viscous fingering by (1) formulating the 
problem based on the experimentally observed fractional flows in the fingers, which we 
denote as f ∗

w
 , and which is the chosen simulation input; (2) from the infinite choice of rela-

tive permeability (RP) functions, k∗
rw

 and k∗
ro

 , which yield the same f ∗
w
 , we choose the set 

which maximises the total mobility function, �
T
 (where �

T
= �

o
+ �

w
 ), i.e. minimises the 

pressure drop across the fingering system; (3) the permeability structure of the heterogene-
ous domain (the porous medium) is then chosen based on a random correlated field (RCF) 
in this case; and finally, (4) using a sufficiently fine numerical grid, but with simple trans-
port numerics. Using our approach, realistic immiscible fingering can be simulated using 
elementary numerical methods (e.g. single-point upstreaming) for the solution of the two-
phase fluid transport equations. The method is illustrated by simulating the type of immis-
cible viscous fingering observed in many experiments in 2D slabs of rock where water dis-
places very viscous oil where the oil/water viscosity ratio is (�

o
∕�

w
) = 1600 . Simulations 

are presented for two example cases, for different levels of water saturation in the main 
viscous finger (i.e. for 2 different underlying f ∗

w
 functions) produce very realistic fingering 

patterns which are qualitatively similar to observations in several respects, as discussed. 
Additional simulations of tertiary polymer flooding are also presented for which good 
experimental data are available for displacements in 2D rock slabs (Skauge et al., in: Pre-
sented at SPE Improved Oil Recovery Symposium, 14–18 April, Tulsa, Oklahoma, USA, 
SPE-154292-MS, 2012. https​://doi.org/10.2118/15429​2-MS, EAGE 17th European Sym-
posium on Improved Oil Recovery, St. Petersburg, Russia, 2013; Vik et al., in: Presented at 
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SPE Europec featured at 80th EAGE Conference and Exhibition, Copenhagen, Denmark, 
SPE-190866-MS, 2018. https​://doi.org/10.2118/19086​6-MS). The finger patterns for the 
polymer displacements and the magnitude and timing of the oil displacement response 
show excellent qualitative agreement with experiment, and indeed, they fully explain the 
observations in terms of an enhanced viscous crossflow mechanism (Sorbie and Skauge, 
in: Proceedings of the EAGE 20th Symposium on IOR, Pau, France, 2019). As a sensitiv-
ity, we also present some example results where the adjusted fractional flow ( f ∗

w
 ) can give a 

chosen frontal shock saturation, S∗
wf

 , but at different frontal mobility ratios, M(S∗
wf
) . Finally, 

two tests on the robustness of the method are presented on the effect of both rescaling 
the permeability field and on grid coarsening. It is demonstrated that our approach is very 
robust to both permeability field rescaling, i.e. where the (kmax/kmin) ratio in the RCF goes 
from 100 to 3, and also under numerical grid coarsening.

Keywords  Viscous fingering · Immiscible displacement · Two-phase flow · viscous 
instability · M-paradox

1  Introduction

Viscous instability in fluid displacements in porous media is a classical physical problem 
with a long and rich history. Here, we focus on viscous instability where the source of the 
effect is that the displacing phase viscosity (μ1) is a much lower than that of the displaced 
phase (μ2), i.e. (μ2/μ1) >> 1. Both miscible and immiscible viscous unstable displacements 
have been extensively described in the literature in both Hele-Shaw cells and also in porous 
media (see review by Homsy 1987).

The continuum transport equations describing both miscible and immiscible displace-
ment in porous media are quite well established. The general derivation of these equations 
can be carried out by applying material balance and then, in a porous media, invoking a 
form of the Darcy Law, either in its single-phase or two-phase forms to obtain (in 2D or 
3D) a pressure equation. Solution of this pressure equation yields the velocity field, which 
may then be used in a transport equation to describe either the single-phase or two-phase 
transport. In the former miscible case, the two fluids are viewed to be miscible in all pro-
portions, and the viscosity of any mixture of the 2 fluids (the less and the more viscous) is 
described by a mixing rule for the viscosity, μmix = μmix (f, μ1, μ2, a, b, …) where f is the 
fraction of one of the fluids, a, b,… are some model parameters and the viscosity tends 
correctly to the limits (μ1 or μ2) where f = 0 or 1. Experimental and numerical modelling 
results of miscible viscous fingering in 2D (rectangular and five-spot) models show excel-
lent agreement (Sorbie et al. 1995; Zhang et al. 1997).

The generalised two-phase equations are more complex in that they contain both vis-
cous and capillary pressure terms, and these are described in several books and papers (e.g. 
Peaceman 1977; Aziz and Settari 1979; Pinder and Gray 2008). In the context of immis-
cible viscous fingering, these equations have been laid out very clearly in the recent study 
by Bakharev et al. (2020). We take the immiscible displacing phase as water ( �1 = �w ) and 
the displaced phase as a viscous oil ( �2 = �o ). Henceforth, we will consider only water and 
oil as the immiscible displacing and displaced phases, respectively. We assume an incom-
pressible fluid-porous medium system, i.e. fluid and rock densities are independent of pres-
sure. Then, in the absence of gravity, the coupled two-phase equations for pressure (say Po ) 
and saturation (say So ) in 3D are as follows:

https://doi.org/10.2118/190866-MS
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where the quantities, �o and �w are the oil and water phase mobilities, �o = (kro∕�o) and 
�w = (krw∕�w) , kro and krw are the relative permeability (RP) functions, �o and �w are the 
fluid viscosities, where the subscripts o and w refer to oil and water, respectively. The abso-
lute permeability is represented by the tensor, k , although in this work we will take this to 
be diagonal and isotropic; that is, in 2D:

where kxx = kyy . A full two-phase tensor formulation is presented elsewhere (Pickup and 
Sorbie 1996), but all of the findings of this paper can be carried over into such a general-
ised formulation. The capillary pressure, Pc , is introduced to close the equations by relat-
ing the pressures in the phases (which are different) through a nonlinear capillary pressure 
term, Pc(Sw) = Po − Pw , which is a function of one of the phase saturations, say Sw , but by 
definition, Sw + So = 1 , so either phase saturation can be used. In the viscous dominated 
limit, then Pc(Sw) = 0 , which assumes that there is a single pressure, P = Po = Pw , and the 
above equations reduce accordingly.

The vast majority of two-phase immiscible simulations in porous media, in applications 
such as aquifer remediation, packed bed flow, in CO2 storage or in oil reservoirs, are car-
ried out including only viscous forces and usually gravity. Capillarity is neglected—that 
is it is assumed that, Pc(Sw) = 0—as it is viewed to be a “small scale” (mm–cm) or even a 
“pore scale” effect. However, the two-phase transport, described by Eq. (2), strictly must 
have a lower capillary length scale, Lcap , which is related to capillary diffusion. This is 
discussed further below, but the issue should be kept in mind for the development of our 
approach to immiscible viscous fingering below.

2 � Immiscible Viscous Fingering: Experimental Review

There is an extensive literature on viscous fingering from the initial work of Engelberts 
and Klinkenberg (1951) and Hill (1952) and the early classical work of Taylor and Saff-
man (1959). Indeed, we find that the earliest explicit mention of the term “viscous fin-
gering” is in the paper by Engleberts and Klinkenberg (1951), and this is for immiscible 
(oil/water) fingering. Focusing only on immiscible fingering, this earlier work up to the 
late 1980s has been reviewed by Homsy (1987) and Kueper and Frind (1988). How-
ever, there is vastly more work on the theory (stability analysis, numerics, etc.) than 
on experiments (e.g. Chuoke et  al. 1959; Alemán and Slattery 1988; Chikhliwala and 
Yortsos 1988). One of the earliest studies showing immiscible fingering was in the work 
of van Meurs and van der Poel (1958) reproduced in Fig.  1. In this work, refractive 
index matched oil and beads were used to construct high permeability bead packs and 
thus when water was injected into the oil (viscosity ratio, (�o∕�w) = 80 ) the resulting 
fingers could be seen and photographed directly. The viscous fingers in their experiment 

(1)∇ ⋅

[

(

�o + �w
)

k ⋅ ∇Po − �wk ⋅ ∇Pc

]

= 0

(2)�

(

�So

�t

)

= ∇ ⋅

[

�ok ⋅ ∇Po

]

,

k =

(

kxx 0

0 kyy

)

,
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are quite beautiful, and they also give a very early but unheeded clue on how to model 
them; in their experiments, the authors could measure oil recovery but they could not 
directly measure the water saturation, Sw , in the fingers. However, it is evident visually 
that Sw in the main fingering region is quite high, certainly in the range Sw ≈ 0.3–0.8, 
and this is important, as we explain below.

More recent work on immiscible viscous fingering in 2D rock slabs has been reported 
by researchers in the group of Skauge and co-workers (Skauge et al. 2012, 2013, 2020). 
Two examples of immiscible fingering from this school are shown in Fig.  2 from the 
work of (a) Vik et al. (2018) where (�o∕�w) ≈ 500 and (b) Skauge et al. (2012) where 
(�o∕�w) = 2000 , although both of these groups looked at a wide range of viscosity 
ratios. In these experiments, X-ray imaging and X-ray saturation measurements were 
used both to visualise the viscous fingers and also to measure the local water (and oil) 
saturations in the 2D rock slabs, as shown in Fig. 2c. It is this direct calibrated measure-
ment of water saturation in the viscous fingers that is crucial to the modelling develop-
ments in this paper. Again, this work confirms directly that the water saturation in the 
fingers, Sw , is “high”; direct evidence of this is given in several of the papers from this 
group (Skauge et al. 2012, 2013; Vik et al. 2018). For example, point A in Fig. 2c shows 
that the water saturation in the finger can be Sw ~ 0.58.

2.1 � 1D Buckley–Leverett Analysis and the “M‑Paradox” for Unstable Displacement

Linear two-phase immiscible displacement is frequently analysed in 1D using the Buck-
ley–Leverett (BL) equation which applies in the viscous dominated limit of the flow 
equations, i.e. when capillary pressure, Pc = 0 (Buckley and Leverett 1942). In 1D 
incompressible flow, there is no requirement for a pressure equation (only pressure dif-
ferences can be calculated from the flow solutions), and the BL equation for the devel-
opment of the Sw(x, t) profile is given by:

where vt is the total velocity, vt = Q∕(A.�) , Q is the volumetric flow rate, A the cross-
sectional area and ϕ the porosity. The function fw

(

Sw
)

 is the fractional flow of the water 
(displacing) phase within the porous medium which is given by the following well-known 
variant forms of the same equation (Dake 1978):

(

�Sw

�t

)

= −vt

(

�fw

�x

)

= −vt

(

�fw

�Sw

)(

�Sw

�x

)

,

(a) (b) (c)Np = 0.06 p = 0.095 p = 0.12

Fig. 1   Immiscible viscous fingering of water (white fluid) displacing oil (dark fluid) in a high permeability 
2D pack with (�

o
∕�

w
) = 80 , from van Meurs and van der Poel (1958). Np is the number of PV injection of 

the water phase
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An important quantity governing viscous instability in an immiscible system is the 
mobility ratio, M

(

Sw
)

=
(

�w
/

�o
)

=
(

krw.�o

)/(

kro.�w

)

 (Dake 1978). Note that, if the 
magnitudes of the relative permeabilities were similar (i.e. krw ≈ kro ), then M would be 

fw
(

Sw
)

=
1

1 +
(

kro.�w

krw.�o

) =
1

1 +
(

�o

�w

) =
M
(

Sw
)

[

M
(

Sw
)

+ 1
] .

(a) ( / ) 500o wµ µ ≈ ; from Vik et al, 2018 (SPE 190866)

(b) ( / ) 2000o wµ µ ≈ from Skauge et al 2012

(c) ( / ) 2000o wµ µ ≈ from Skauge et al 2013

Fig. 2   Immiscible viscous fingering in a high permeability Bentheimer rock slab where the images are cap-
tured by X-ray imaging and X-ray local saturation measurements and, by suitable calibration, water satura-
tions can be measured; a is from Vik et al. (2018), b is reconstructed from Skauge et al. (2012) and c is 
reconstructed from Skauge et al. (2013)
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(almost) independent of Sw and M ≈
(

𝜇o

)/(

𝜇w

)

>> 1 for unstable immiscible displace-
ment of oil by water. Indeed, there is one common convention to take the relative perme-
ability terms in M to be at their respective relative permeability (RP) endpoints where krw 
and kro are evaluated at Sw = 1 − Sor and Sw = Swi , respectively, that is:

where Swi and Sor are the initial water saturation and the residual oil, respectively. Defining 
M
(

Sw
)

 in this way would give a value of M close to M ≈
(

𝜇o

)/(

𝜇w

)

>> 1 ; the authors 
would describe this as “conventional wisdom”.

It is well known that the BL equation leads to a shock front solution with a water satura-
tion shock front height, Sw = Swf , which can be found from the fractional flow, as shown 
in Fig. 3 where the tangent construction gives the Swf as shown (Dake 1978). In this figure, 
“normal” relative permeabilities based on the widely used Brooks–Corey (BC) form are 
given, i.e. krw

(

Sw
)

= �w.
(

Swn
)1∕�w and kro

(

Sw
)

= �o(1 − Swn)
1∕�o , where the normalised 

water saturation, Swn , is given by Swn =
(

Sw − Swi
)/(

1 − Sor − Swi
)

 (Brooks and Corey 
1964, 1966).

To illustrate what is predicted by 1D BL theory, Fig.  3 shows “conventional” 
(Brooks–Corey, BC) oil/water relative permeabilities, krw

(

Sw
)

 and kro
(

Sw
)

 , as functions of 
Sw , and the corresponding fractional flow curves fw

(

Sw
)

 using these relative permeability 
functions for oil/water viscosity ratios, (�o∕�w) = 1600 and 5. We would expect the higher 
viscosity ratio case to lead to viscous instability and the lower case to be much more stable 
or at least should show less pronounced fingering. The Sw(x, t1) profiles along the system at 
dimensionless time t = t1 = 0.05 predicted by BL theory are shown in Fig. 1b for each vis-
cosity ratio, and the calculated values of shock front height,Swf , and the value of the mobil-
ity ratio at this shock front, i.e. M(Swf) , are shown in this figure. The Sw(x, t) profiles in 
Fig. 1b show that shock fronts form for each viscosity ratio and, as is well known, a higher 
Swf is observed for the (�o∕�w) = 5 case than for the 1600 ratio case. However, as a result 
of the calculated values of Swf , the rather counter-intuitive result is that the value of Swf for 
the high viscosity contrast case yields a value of M(Swf) at the shock front which is quite 
low; M(Swf) = 1.22 in this case, which is “stable”. On the other hand, the more “stable” 
case for the viscosity ratio of 5 gives M(Swf) = 6.60. We refer to this behaviour of the two 
(�o∕�w) cases here, as the “M-paradox”.

M
(

Sw
)

=
(

krw(Sw = 1 − Sor).�o

)/(

kro(Sw = Swi).�w

)

,

Fig. 3   a Conventional relative permeabilities,k
rw

 and k
ro

 , and the associated fractional flow curves, fw,5 
and fw,1600 for 

(

�
o
∕�

w

)

 = 5 and 1600, respectively, and b the corresponding 1D water saturation profiles, 
S
w
(x, t = t

1
), where t

1
 = 0.1; the corresponding Buckley–Leverett shock front saturations, S

wf
 , and the 

mobility ratio at this front, M
(

S
wf

)

 , are also shown
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The name “M-paradox” becomes even more well-deserved when we consider the 
results of a very fine grid 2D numerical simulation of “viscous fingering” using the con-
ventional relative permeabilities in Fig. 3 for the high viscosity contrast case, (�o∕�w) = 
1600. An example 2 D simulation for this two-phase case of a water → oil displacement 
with this high viscosity contrast is shown in Fig. 4. In this figure, the initial water satu-
ration is Swi = 0.17 (where krw

(

Swi
)

= 0 ) and in the location in the middle of the finger 
(shown by the small arrow), then Sw = 0.205. Thus, in the middle of the finger, the water 
saturation is barely above the initial value ( ΔSw = Sw − Swi ≈ 0.035 ). The simulation 
results in very low water saturations in the fingers yielding “wispy” or “ghost” fingers 
which do not at all resemble experiments such as those shown in Fig. 1 or 2 which show 
much higher Sw values in the main fingers. Later in this paper, we will offer a resolution 
of the M-paradox.

Thus, the M-paradox is that, for very adverse viscosity ratio, (�o∕�w) >> 1, a low BL 
shock is formed in 1D two-phase flow which has a low value of M(Swf) ≈ 1, which is in 
turn “stable”. The corollary is that as we attempt to make the displacement more stable 
by greatly reducing (�o∕�w) , for example to ~ 5, the M(Swf) becomes greater, i.e. about 
~ 6.6 in this case, which is hence apparently less stable.

The BL solution is, as discussed, a 1D solution and viscous fingering is an inher-
ently 2D (or 3D) phenomenon. Thus, the BL solution misses any 2D flow mechanisms 
but “compensates” for the fingering in an “averaged” manner by giving the low satura-
tion “pseudo-BL finger” shown in Fig. 3b. In fact, we conclude that 1D BL theory is at 
best somewhat misleading, and at worst simply incorrect, when viscous fingering occurs 
since this is a 2D phenomenon, and this has also been suggested recently by others (Luo 
et al. 2017; Sorbie and Skauge 2019). A “middle road” interpretation is that BL theory 
is adequate, but some care must be taken in one’s choice of relative permeability func-
tions to ensure that physically sensible results are obtained.

Fig. 4   Simulation of “viscous 
fingering” with conventional 
relative permeabilities showing 
the “wispy” or “ghost” fingers 
where the S

w
 in the water finger 

(shown as red) is just above ( ΔS
w
 

~ 0.02–0.03) the initial (immo-
bile) water saturation, S

wi
 = 0.17
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3 � Method for Modelling Immiscible Viscous Fingering

A number of studies modelling immiscible fingering using direct numerical simulation 
have appeared in the literature, which were nicely summarised recently in the work on 
immiscible fingering by Bakharev et  al. (2020). Although this particular study was both 
careful and thorough, the forms of the experimental relative permeabilities do not lead eas-
ily to fingering of the sort observed in the work quoted in Figs. 1 and 2 of this paper, espe-
cially since a homogeneous randomly perturbed permeability field was used in their work 
(Bakharev et al. 2020).

To develop an improved approach for the direct numerical simulation of immiscible 
viscous fingering, we start from the conclusion that 1D BL theory is inappropriate, or at 
least should be used with caution, for any process or mechanism which is fundamentally 
2D (or 3D) in nature, as viscous fingering clearly is. We also note that, proceeding with 
“normal” relative permeabilities leads to the incorrect fractional flows observed in the vari-
ous regions in viscous fingering, i.e. in the fingers and in the bypassed zones. Physically 
(see Figs. 1 and 2), we observe that the water saturation Sw is quite high in the fingers and 
is very low in the bypassed regions of high So (where Sw = Swi ). The 4-part approach we 
propose to correct these shortcomings, which arise from the M-paradox, is summarised as 
follows:

	 (i)	 We start from a chosen fractional flow function, denoted f ∗
w
 , where we specify a 

higher “shock front” saturation,S∗
wf

 , than is found from the conventional relative 
permeabilities. However, from f ∗

w
 alone, only the ratio of relative permeabilities can 

be found, and it is straightforward to show that

		    However, if the form of one of the RPs is assumed, for example, k∗
rw

 , then the other 
RP, k∗

ro
 in this case, is given by

		    Alternatively, we can choose generalised forms of both k∗
rw

 and k∗
ro

 such that we 
obtain the f ∗

w
 (and thus S∗

wf
 ) we require. But this still gives an infinite set of potential 

RP pairs ( k∗
rw

 and k∗
ro

 ) which give the same f ∗
w
 , and this is addressed next.

	 (ii)	 The new fractional flow function, f ∗
w
 , can be chosen to agree with experiment in 

terms of the water saturation in the finger, i.e. to avoid the “ghost” fingering situation 
illustrated in Fig. 4. However, we note in (i) above that there is an infinite choice of 
RP functions which yield the same f ∗

w
 . Below, we describe a very general parameteri-

sation of the RP functions used to represent k∗
rw

 and k∗
ro

 , which enables us to generate 
a wide range of such function (for the same f ∗

w
 ). The clue to which is the “correct” 

set of RP functions comes from two connected sources, (a) the conjecture that the 
“correct” set of RPs is that which maximises the total mobility function, �

T
 (where 

�
T
= �

o
+ �

w
 ), i.e. minimises the pressure drop across the fingering system, and (b) 

from linear stability analysis of the two-phase unstable system. This is discussed in 
more detail below.

(

k∗
ro

k∗
rw

)

=

(

�o

�w

)

(

1

f ∗
w

(

Sw
) − 1

)

.

k∗
ro
= k∗

rw

(

�o

�w

)

(

1

f ∗
w

(

Sw
) − 1

)

.
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	 (iii)	 We then choose a heterogeneous flow domain, which we define here as a random 
correlated field (RCF) with a given level of permeability (k) heterogeneity (i.e. the 
variance or range of k, which can be described by a Dykstra–Parsons coefficient or 
simply as a (kmax/kmin) ratio) and a correlation structure defined by its dimensionless 
correlation length, �

D
= (�∕L) , where and � and L are the correlation length of the 

permeability field and the system length, respectively. Other choices are also pos-
sible to match the actual permeability fields and correlation structures for specific 
cases. However, the RCF incorporates both heterogeneity and structure in a simple 
and quantifiable manner. [*NB The Dykstra–Parsons coefficient, VDP, is a measure 
of the degree of permeability heterogeneity. If permeability is plotted on a log prob-
ability plot then, VDP = (k50 − k84.1)∕k50 , where k50 is the 50% probability (median) 
permeability value (mD) and k84.1 is the permeability (in mD) with probability of 
84.1% (at one standard deviation).]

	 (iv)	 We then choose a sufficiently fine spatial grid (in 2D Δx and Δy ) for the numerical 
simulations where (Δx∕L) ~ (Δy∕L) << �

D
 (where ~ implies “of order”). If a conven-

tional numerical reservoir simulator is used using very simple single-point upstream 
weighting for the spatial derivatives in the two-phase transport equation, then the 
level of dispersivity in the calculation is of order, � ≈ (Δx∕2) (Peaceman 1977).

The above “recipe” for modelling immiscible viscous fingering may at first appear 
somewhat arbitrary, but it has a very strong physical rationale, and each aspect of this 
approach is discussed in turn below. The first point on the choice of fractional flow, f ∗

w
 , is to 

“correct” the “error” in the 1D BL equation, if conventional RP functions are used. This is 
similar in some respects to the approach reported in Luo et al. (2017) who also adjust the 
fractional flow to give a more appropriate curve to describe the averaged behaviour of the 
system in the presence of viscous fingering. Luo et al. (2016) then proceeded to match this 
adjusted fractional flow curve to production data for unstable immiscible water flooding 
and also polymer flooding. They did not take the following steps to actually simulate the 
fingering directly, as we do in this work.

Secondly, from the infinite set of possible RP functions, k∗
rw

 and k∗
ro

 , consistent with the 
chosen f ∗

w
 , we choose the set which maximises the �

T
 function, this ensures that the result-

ing finger pattern has the lowest pressure drop possible. The pressure drop across the sys-
tem has the formal structure

and so it is strictly the functional ∫ dx

�T
 which should be minimised. However, this is not 

really a 1D integral and the actual calculation required for any 2D (or 3D) spatial saturation 
distribution, Sw (x, y), involves the pressure drop calculation, i.e.

which is the pressure equation presented in Sect. 1 (with Pc = 0). For the ΔP to be a mini-
mum across the system (i.e. that the path of least resistance is followed by the fingering 
system), then �T must be a maximum. We regard this as a type of “variational principle” 
for the fluid flow and present it here as a conjecture. It is consistent with the very sharp 
pressure drops that are observed in all immiscible fingering experiments. Further evidence 
that the maximum mobility assumption is correct is provided by the results from linear 

ΔP =
vt

k ∫
dx

�T

∇ ⋅

[

(

�T(Sw)
)

k ⋅ ∇Po

]

= 0
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stability analysis for immiscible fingering by Chikhliwala and Yortsos (1988); they show 
that the criterion for unstable finger growth are equivalent to conditions on the relative per-
meabilities which are met by the maximum mobility principle. This issue of maximum �T 
will also be supported by further evidence in a forthcoming publication.

It also turns out that for the analytic forms for the RPs that we choose, it appears we 
can always find this optimal �

T
 function. Chikhliwala and Yortsos (1988) derived some 

conditions, based on linear stability theory, on the form of the RP curves on the onset of 
viscous instability in two-phase flow. We have found that their conditions indicate the same 
choice of RP as would lead to this same condition on �

T
 . Intuitively, it might be thought 

that this condition would be best met by having the largest mobility (i.e. the largest k∗
rw

 ) for 
the water phase and this is indeed partly true, but the fact that the 2 RP functions are con-
strained (by f ∗

w
 ), means that there is in fact a maximum physical �

T
 that is achievable. This 

issue will be developed in much more detail with supporting calculations in a forthcoming 
paper.

Thirdly, in point (iii) above, we recognise that the fingering process is quite random, but 
in a 2D domain we can match the correlation structure to the possible numbers of fingers 
that initially emerge. Thus, if we take a smaller �

D
 , then we expect to see more initial fin-

gers and we would expect the actual number of fingers in the early time, N
f
 to be of order, 

N
f
≈
(

1∕�
D

)

 . If this latter conjecture is approximately true, then taking (Δx∕L) = (Δy∕L) 
<< �

D
 , ensures that the grid Peclet number, N

Pe,grid
 , fully resolves the emerging fingers; 

this quantity is given as follows:

where Dnum is the level of numerical dispersion ( Dnum = �.v ), and since � ≈ Δx∕2 , then 
N
Pe,grid

≈ 2Nx where Nx is the number of grid blocks (in the flow direction), Thus, by defi-
nition, we are simulating the system at a high mesh Peclet number which is more than ade-
quate to resolve the emergent fingering, since we have ~ 

(

�DL∕Δx
)

 grid blocks per average 
finger. A second way of viewing this matter follows the discussion introduced at the end of 
Sect. 1 of this paper, and concerns the capillary length, Lcap . This is the length scale below 
which capillarity (from Pc ) would “wash out” very small viscous fingers, and hence is 
equivalent to a certain level of capillary dispersion, Dcap . It is shown elsewhere (Stephen 
et al. 2001) that the form of this nonlinear capillary dispersivity is:

where we note it is the slope of the capillary pressure that governs the capillary dispersion. 
In our approach, we essentially identify Dnum ≈ Dcap . In fact, Dcap is a nonlinear function 
which is zero at both Sw = Swi and at Sw = (1 − Sor) (since the mobilities λw and λo are, 
respectively, zero at these limits), and hence, it has a maximum value of Dmax. The quantity 
Dmax can be calculated from the relative permeabilities and the slope of the Pc, and hence, 
the corresponding Lcap (dispersivity) can be found. The fine grid defines the level below 
which capillary effects resolve the immiscible fingering; thus, by definition, the simulation 
of viscous dominated fingering may be carried out, as shown below.

For a given permeability field, we find that this is perfectly adequate down to dimen-
sionless correlations lengths of �D ≈ 1∕100 since we can obtain very similar behaviour 
(number of emergent macroscopic fingers, breakthrough times and recovery profiles) under 

N
Pe,grid

=
v ⋅ L

Dnum

=
v ⋅ L

� ⋅ v
=

L

�
,

Dcap = −
�o ⋅ �w

(

�o + �w
)∇Pc,
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grid coarsening (as demonstrated later in this paper). In a later paper, we will describe the 
effects of capillary pressure explicitly for both water-wet and oil-wet systems, since rather 
different behaviour is observed for each of these cases (Stokes et al. 1986).

There is an additional (unforeseen) effect which also helps in the numerical resolution 
of the emerging immiscible fingers. From point (i) above, when we choose the fractional 
flow function, f ∗

w
 , and then derive the underlying RP functions, it turns out that these func-

tions are “forced” to have a rather restrictive form which also helps to better define the 
fingers and to suppress most of the numerical dispersion arising in the system. This is not 
obvious until some of the numerical results are presented below.

4 � Input Data: Modified Fractional Flow ( f ∗
w

/rps), rcf ( V
DP

/�
D

 ) and Grid 
Resolution

In the immiscible water → oil displacement simulations presented here, we take the very 
adverse viscosity ratio, (�o∕�w) = 1600 . The general analytical forms of the relative per-
meability curves used to construct the fractional flow function, f ∗

w
 , used in the immiscible 

fingering simulations are as follows:

where Swn and Son are the normalised water and oil saturation, respectively, where 
Son = 1 − Swn and Swn =

Sw−Swi

(1−Sor−Swi)
 ; the constants �w, �o, �w and �o and the normal 

Brooks–Corey parameters and �w, �o, �w and �o are additional constants which allow us to 
have some flexibility in the forms of the RPs, and hence on the f ∗

w
 function.

We have found that these empirical forms of the RP functions give us sufficient flex-
ibility to generate any chosen modified fraction flow function, f ∗

w
 , which we wish. In 

addition, the above RP analytical equations reduce to the Brooks and Corey forms when 
�w = �o = �w=�o = 1 ;i.e. krw

(

Sw
)

= �w.
(

Swn
)1∕�w and kro

(

Sw
)

= �o(1 − Swn)
1∕�o(as used in 

the simulation in Fig. 4).
For the base case simulation of fingering (Case 1), we construct the fractional flow 

function, f ∗
w
 , shown in Fig. 5c which is based on the RP functions which are also shown in 

Fig. 5a and b on linear and a semi-log scales, respectively; as noted above, (�o∕�w) = 1600 . 
The various parameters used to generate the RPs are also given in this figure. In this case, 
we chose the RPs by trial and error in order to obtain a flood front saturation height of 
S
wf

= 0.275 which is sufficiently well above the initial water saturation, S
wi

= 0.17 to gen-
erate a higher water saturation in the fingers. Note also here that the M

(

Sw
)

 value at the 1D 
shock front, where Sw = Swf , is M

(

Swf
)

= 19 , which is sufficiently high to be unstable, but 
is far below the “conventional” value of mobility ratio M ≈

(

�o∕�w

)

≈ 1600 . An addi-
tional Case 2 was also chosen with the higher shock front saturation 0.34S

wf
= 0.34 , all 

functions and parameters for this case are shown in Fig. 6. We note that these calculated 
RPs may now be thought of as “pseudo-relative permeabilities” which arise from choosing 
the fw* function and then maximising the λT . Features of the RPs such as crossover point 
and end point levels are “lost” since these characteristics refer to “normal” relative perme-
abilities measured under viscous stable conditions.

An additional fractional flow plot is shown in both Fig. 5c (Case 1) and Fig. 6c (Case 
2) where a viscous “polymer” with �w replaced by �p = 25 �w is shown. The shock 

krw
(

Sw
)

=
�w

[

1 + �w

(

Swn

Son

)−�w
]1∕�w

and kro
(

Sw
)

=
�o

[

1 + �o

(

Son

Swn

)−�o
]1∕�o

,
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front tangent construction is slightly different in this case, as discussed in Pope (1980) 
and Sorbie (1991), and for Case 1, this results in a slightly higher shock front Sw = Swf 
= 0.306 and a mobility ratio of M

(

Swf
)

= 14.625 . This is a little more stable than the 
waterflood case (where M

(

Swf
)

= 19 ) but it does not appear that injecting polymer 
would make a very significant difference in this case to increasing the displacement of 
oil. We will return to this issue in the results section of this paper. For Case 2, the corre-
sponding polymer values are Sw = Swf = 0.395 and a mobility ratio of M

(

Swf
)

= 20.96 . 
It may be surprising to find that the frontal mobility value for the polymer in Case 2 is 
actually higher than that of water, but this is partly to do with the manner of the poly-
mer construction (see Pope (1980) and Sorbie (1991)) and the frontal Swf value for the 
polymer is still above that of the water.

Fig. 5   The chosen Case 1 RP functions, k∗
rw

 and k∗
ro

 on a a linear and b a log-linear scale along with c the 
generated modified “fingering” fractional flow function, f ∗

w
 , giving the shock front saturation S

w
= S

wf
 = 

0.275, in this case; initial water saturation is S
wi

 = 0.17 and residual oil (where k
ro

 = 0) is S
or

 = 0.2

Fig. 6   The chosen Case 2 RP functions, k∗
rw

 and k∗
ro

 on a a linear and b a log-linear scale along with c the 
generated modified “fingering” fractional flow function, f ∗

w
 , giving a higher shock front saturation S

w
= S

wf
 

= 0.34, in this case; initial water saturation is S
wi

 = 0.17 and residual oil (where k
ro

 = 0) is S
or

 = 0.2
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For the permeability field, we choose a square domain where L = Lx = Ly , where the 
dimensionless length, L = 1. Three random correlated fields are chosen with the same base 
case level of heterogeneity in terms of the Dykstra–Parson coefficient ( VDP = 0.66) with 
dimensionless correlation lengths, �D = 1/30, 1/15 and 1/10 as shown in Fig. 7. The perme-
ability range is shown in inset of Fig. 7 and ranges from kmin = 10 mD to kmax 1000 mD, 
and thus, the base case kmax/kmin = 100; this is reduced in some of the simulations pre-
sented below. Specifying the grid structure with Nx = 2000 in the direction of flow and Ny 
= 1000 in the transverse direction fully defines the system. A standard numerical reservoir 
simulation model was used for these calculations which employed a very simple numerical 
scheme (single-point upstreaming) for the two-phase transport equations. Sufficiently, short 
time steps were taken to ensure the time truncation error was negligible.

5 � Numerical Results

5.1 � Water → Oil Viscous Fingering Simulations

The system for viscous dominated two-phase immiscible flow is now fully defined; the 
relative permeabilities (RPs) are given for Case 1 in Fig. 5 and for Case 2 in Fig. 6. All RPs 
were derived from the desired f ∗

w
 curves also shown in Figs. 5c ( Swf = 0.275) and 6c ( Swf 

= 0.34), the viscosity ratio is (�o∕�w) = 1600 and the 3 heterogeneous permeability RCFs, 
with λD = (1/10), (1/15) and (1/30), are given in Fig.  7. The 2D system is square with 
dimensionless side lengths L = Lx = Ly = 1 and the grid size is Nx = 2000 in the direction 
of flow and Ny = 1000 (perpendicular to it). Water injection starts with system at initial 
water saturation, S

wi
 = 0.17 (where k

rw
 = 0).

Case 1 Simulations
The results of the simulation of these unstable water → oil displacements for Case 1 

are shown in Fig. 8, at 5 times (PV injected). We recall that the water shock front satura-
tion ( Swf ) from the fractional flow curve for Case 1 in Fig. 5 is Swf = 0.275 , where the 
mobility ratio, M

(

Swf
)

= 19 . In Fig. 8, the water saturation colour scheme shows red for 

Fig. 7   The 3 heterogeneous permeability random correlated fields (RCF) used in the viscous fingering sim-
ulations, where the dimensionless correlation lengths are, from left to right, �

D
 = (1/10), (1/15) and (1/30). 

The permeability range is shown in inset and ranges from kmin = 10 to kmax 1000



344	 K. S. Sorbie et al.

1 3

Sw = 0.3–0.4 and black is the initial water saturation, Swi = 0.17 (where krw = 0 ). It is 
clear that the viscous fingers are very clearly defined and sharply resolved in these sim-
ulations, and several observations can be made. As conjectured earlier in this paper, the 
early time results in Fig. 8a at T = 0.005PV show the emergence of many small fingers 
with clearly more of these in the shortest correlation length case where λD = (1/30) and 
fewest in the largest λD = (1/10) case. As the displacement progresses, then for the long-
est correlation length case (λD = (1/10)), fewer dominant fingers emerge more rapidly 
and break through earlier, as shown in Fig. 8b–d (from 0.01 to 0.045PV). The corollary 
is that, for the shortest λD = (1/30) case, a much larger number of smaller fingers persist 
for longer and, as a result, breakthrough is later. At the latest time shown here in Fig. 8e 
at time = 0.08PV, it is clear that there are larger regions of defending fluid (oil) which 
have been bypassed by the water fingers for the longer correlations length cases with λD 
= (1/10). A consequence of all this behaviour is observed in the oil recovery (%) versus 
time (PV) results and the water production profiles versus time (PV), both shown in 
Fig. 9. These results show that the longer the correlation length, the less efficient the oil 
recovery is, and earlier the breakthrough and rise of water fraction in the produced flu-
ids from the system. Figure 9 also shows that, after 0.5PV of injection, the oil recovery 
is quite low at ~ 12–14% of the original oil in the system; after 2PV of injection, this 
only rises to ~ 14.5–16% (not shown).

The corresponding dimensionless pressure drop (ΔPD) across the whole system is 
shown for the 3 simulation cases in Fig. 10, where ΔPD is defined as, ΔPD = ΔP/ΔP0, 
where ΔP is the calculated pressure drop as a function of PV injected and ΔP0 is the 
pressure drop at the same injection rate initially when only (viscous) oil is flowing. 
Again, this agrees well qualitatively with experiment in form (Skauge et al. 2012, 2013; 
Vik et al. 2018), but in our calculation we find, as expected, the longer the dimension-
less correlation length, the earlier the breakthrough (Fig. 8) and the sharper the drop in 
ΔPD.

Case 2 Simulations
A second case is presented for the details described in Fig. 6 (Case 2) for an f ∗

w
 with 

higher frontal saturations of S
wf

= 0.34 . The purpose of this second case is first to show 
an example with a higher water saturation in the fingers than in Case 1. In addition, the 
Case 1 set of RPs in Fig. 5 was “close” to the lowest pressure (maximum mobility, �

T
 ) 

criterion discussed in Sect. 4, but the Case 2 set of RPs (shown in Fig. 6) has genuinely 
maximised �

T
 . This is shown in Fig. 11 where the results for 4 sets of RPs (numbered 

1–4) constrained to have the same fractional flow function, f ∗
w
 (Fig.  11b), are used to 

calculate the total mobility functions shown in Fig. 11a. The Case 2 RPs in Fig. 6 give a 
�
T
 function which coincide with the dashed line, which is the maximum possible mobil-

ity that is achievable for this case. To find this maximum mobility, the end points of 
the RPs were fixed (at Swi and Sor) and all other parameters in the RPs were allowed to 
vary, until a max λT was found consistent with the given fw*. For a given experimental 
case, the fw* would be chosen to match the saturations in the fingers, the RPs were then 
found by maximising mobility (λT) and with these RP functions, all other quantities 

Fig. 8   Viscous fingering simulations for Case 1 with (�
o
∕�

w
) = 1600 in RCFs shown in Fig. 7 with λD = 

(1/10), (1/15) and (1/30). The saturation patterns are shown at the dimensionless times (in PV) indicated 
in (a–e). The water shock front saturation ( S

wf
 ) from the fractional flow curve in Fig. 5c is S

wf
= 0.275, 

and the water saturation colour scheme shows red for S
w
= 0.3–0.4 and black is the initial water saturation, 

S
wi

= 0.17 (where k
rw

= 0)

▸
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emerge from the normal immiscible simulations, i.e. the fingering patterns, oil recover-
ies, watercuts and pressure drops. This matter will be discussed in more detail and its 
relation with linear stability analysis will be explained further in a forthcoming paper.

For the Case 2 RPs, and with all other data as in Case 1, the water → oil displacement 
patterns are shown at 4 times in Fig. 12 for the 3 permeability models in Fig. 7. Note that the 
red colour now corresponds to a higher saturation than in the Case 1 displacements in Fig. 12, 
but that the same qualitative features are observed for Case 2 as for Case 1, e.g. more earlier 

Fig. 9   Oil production profiles for Case 1 as fraction of oil versus time (PV) and water fraction (watercut) of 
the total produced fluid versus time (PV), for the water → oil displacement calculations shown in Fig. 8, for 
each of the 3 permeability fields in Fig. 7. Note that the oil recovery factors (solid lines) and water fractions 
(dashed lines) have the same line style (green—λD = (1/30); orange—λD = (1/15); brown—λD = (1/10))

Fig. 10   Total normalised pressure drop, ΔPD versus time (PV) for the Case water → oil displacement cal-
culations shown in Fig. 9, for each of the 3 permeability fields in Fig. 7
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fingers for the shorter correlation length permeability field, etc. Since the water saturation is 
higher in the fingers in Case 2, then a more efficient oil displacement by water and a later 
breakthrough time is expected and this is confirmed by the results in Fig. 13. The oil recover-
ies now range from ~18 to 22% after 0.5 PV of injection which is again quite typical for such a 
viscous oil. Also, as a result of the higher Case 2 water saturations, the pressure profiles, plot-
ted as dimensionless pressure drops (defined above) in Fig. 14, are higher than observed for 
Case 1, although they have the same qualitative order for the different λD fields.

5.2 � Simulation of Polymer Flooding of the Unstable Water → Oil Displacement

The injection of low-viscosity water into a very viscous oil results in unstable dis-
placement, as in the two examples presented above (Cases 1 and 2) where the ratio 
(�o∕�w) = 1600 . Polymeric solutions of a few 100 s to a few 1000 s of ppm (mg/L in 

Fig. 11   a The total mobility functions, f ∗
w
 , and b the fixed fractional flow, f ∗

w
 , for the various example RP 

curves that give this f ∗
w
 ; the Case 2 RP curves, k∗

rw
 and k∗

ro
 , (see Fig. 6) give the maximum f ∗

w
 function pos-

sible (minimum pressure drop) as shown in (a) where the blue line and dashed line coincide

Fig. 12   Viscous fingering simulations for Case 2 with (�
o
∕�

w
) = 1600 in RCFs shown in Fig. 7 with λD = 

(1/10), (1/15) and (1/30). The saturation patterns are shown at the dimensionless times (in PV) indicated in 
(a–d). The water shock front saturation ( S

wf
 ) from the fractional flow curve in Fig. 5c is S

wf
= 0.34, and the 

water saturation colour scheme shows red for S
w
= 0.35–0.5 and black is the initial water saturation, S

wi
= 

0.17 (where k
rw

= 0)
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water) can greatly viscosify the aqueous phase and we may ask if increasing the viscos-
ity of the aqueous phase by a factor of × 25 or so would make any difference. In Figs. 5c 
and 6c, the construction to the Case 1 and Case 2 fractional flows is shown, respectively, 
for a viscous “polymer” with �w replaced by �p = 25 �w (Pope 1980; Sorbie 1991) . 
For Case 1, this results in a slightly higher shock front Sw = Swf = 0.306 and a mobil-
ity ratio at the front of M

(

Swf
)

= 14.625 ; cf. the waterflood M
(

Swf
)

= 19 . This suggests 
that injecting polymer would not make much difference to increasing the displacement 
of oil, in this case. Indeed, when applying extended (1D) BL theory to test this out, it 

Fig. 13   Oil production profiles for Case 2 as fraction of oil versus time (PV) and water fraction (water-
cut) of the total produced fluid versus time (PV), for the water → oil displacement calculations shown in 
Fig. 12, for each of the 3 permeability fields in Fig. 7. Note that the oil recovery factors (solid lines) and 
water fractions (dashed lines) have the same line style (brown—λD = (1/30); orange—λD = (1/15); green—
λD = (1/10))

Fig. 14   Total normalised pressure drop, ΔP versus time (PV) for the Case 2 water → oil displacement cal-
culations shown in Fig. 12, for each of the 3 permeability fields in Fig. 7
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appears that a modest improvement in displacement efficiency (~15 to 25%) is achiev-
able as shown in Sorbie and Skauge (2019). However, in a series of experiments per-
formed in sandstone slabs, Skauge et al. (2012) showed that the level of improvement by 
injecting polymer was really quite remarkable (+ 50 to 70%). The X-ray analysis made 
it possible to visualise changes in local saturation, and accelerated oil production was 
explained, and visualised as crossflow of oil that moved into the established water chan-
nels (i.e. into the path of least resistance). Salmo and Skauge (2015, 2017) derived rela-
tive permeabilities by history matching experiments dominated by crossflow.

Seright et al. (2018) also noted that a polymer with �p = 25 �w greatly improved the 
oil displacement by ~ 60%+ for an oil with �o = 1600�w . Our own analysis of Seright 
et al.’s result showed that about 1/3 of this increase can be explained by extended BL 
theory (Sorbie and Skauge 2019). Another important observation from the work of Vik 
et al. (2018) was that, when polymer was injected, fingering still occurred (i.e. it was 
not completely suppressed, although it was a little less than in the waterflood). In addi-
tion, this experimental oil recovery increase was observed very rapidly (in PV) after 
tertiary* polymer injection (*when the polymer solution was injected after the original 
water fingers had broken through at the system outlet). The viscous crossflow phenom-
enon is discussed in more detail in Sorbie and Skauge (2019).

We now test if our approach can actually predict such a response by taking one of our 
viscous fingering simulations for the Case 1 RPs, the �D = (1/10) case, since this gives 
the least efficient recovery, and injecting a viscosified polymer of viscosity, �p = 25�w , 
thus reducing the ratio (�p∕�w) = 64 . However, the fingers have already broken through 
by 0.045PV of water injection (see Fig. 7d) and, by 0.1PV of injection, the watercut was 
already ~ 0.85 (i.e. 85% of the produced fluid is water) as shown in Fig. 8. In the poly-
mer fluid injection at 0.1PV, it is stressed that nothing else is changed in this simulation 
except the viscosity of the injected aqueous (polymer) phase.

The initial pattern of viscous fingers for the water displacing oil up to T = 0.1PV 
is exactly as already shown for Case 1 in Fig.  8. Results of the polymer injection (at 
0.1PV) are compared with those for the continued injection of water in Fig.  15. The 
distribution of the (red) water fingers is shown after 0.1PV just before polymer injection 
in Fig. 15a; the subsequent development of the fingering/water saturation distribution is 
shown in Fig. 15b–f at the PV of water/polymer solution injection indicated. Figure 16 
shows the oil recovery versus PV and the watercut versus PV injected for both the water 
injection only and the 0.1PV of water followed by polymer injection.

The results showing the water saturations in Fig.  15 show that even after polymer 
injection, the fingering pattern persists (as observed experimentally), but the water satu-
ration distributions are certainly modified in 4 important ways, as follows:

	 (i)	 Firstly, the saturations along the finger “backbones” increase, as evidence by the 
higher S

w
 “tendrils” along the main fingers clearly seen in Fig. 15d at 0.5PV to 15f at 

1PV. This is due to direct polymer displacement along the highly conducting fingers.
	 (ii)	 The more viscous polymer moving along these fingers causes sweep of the bypassed 

oil into the finger ahead of the polymer, from whence it is produced very rapidly. This 
is very clear evident of the viscous crossflow mechanism (see Sorbie and Skauge 
2019). Direct evidence of viscous crossflow can be seen visually by carefully com-
paring the Sw values at the edges of the waterflooding and polymer flooding fingers 
in Fig. 15. In particular, observe the edges of the “black” (high So) zone where this 
effect is clearest. This viscous crossflow effect is even more clearly evident in the 
animations of the dynamic displacements.
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	 (iii)	 The bypassed region shrinks and is more invaded by water flowing out of the main 
flowing channels. Again, this is the other part of the viscous crossflow mechanism.

Fig. 15   Simulation of the fingering pattern of a water displacing oil at 0.1PV (continuing results in Fig. 8), 
then from T = 0.1PV both water and viscosified polymer solution fingering patterns compared directly up to 
1PV at b 0.15PV, c 0.2PV, d 0.5PV, e 0.75PV and f 1.0PV, respectively

Fig. 16   The oil recovery versus PV for both the water displacing oil (solid brown line) and the polymer 
injected at 0.1PV (solid green line). The corresponding watercuts versus PV are shown for the water dis-
placing oil (dashed brown line) and the polymer (dashed green line). The solid orange line shows the period 
of polymer injection with normalised polymer concentration of 1; the normalised polymer concentration in 
the produced aqueous phase is shown (dashed orange line)
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	 (iv)	 Close to the inlet of the system (Fig. 15d–f), S
w
 increases significantly (white region) 

due to direct displacement by the viscous polymer. This region effectively “feeds” 
the downstream region with fluid.

As a result of the above fluid flow process—i.e. the superposition of the viscous cross-
flow mechanism and the viscous fingering mechanism—the incremental oil recovery 
is very significant as seen in Fig. 16. This figure shows that the % improvement in oil 
displacement relative to the waterflood alone is 61.5% at 1PV and this goes to a 73.8% 
increase at 2PV. Both the extremely large response in terms of oil recovery and the 
speed of this response are very close to the values of oil recovery and the response 
times observed experimentally (Skauge et al. 2012, 2013; Seright et al. 2018).

We repeat that no further adjustment of the RP functions ( k∗
rw

 and k∗
ro

 ) was required 
to achieve this result, i.e. no special “polymer RP functions” were required. Sim-
ply changing the water viscosity was sufficient to obtain the calculated “polymer” 
responses observed.

5.3 � Simulations Adjusting the Underlying Fractional Flows, f∗
w

In the sensitivity calculations presented here, we take an example with an even higher 
water saturation within the finger (i.e. a higher Swf ) than the 2 examples presented 
above (where Swf = 0.275 or 0.34, for Cases 1 and 2, respectively). In this case, we 
choose Swf = 0.46 but this can be done using an infinite range of fractional flow func-
tions as indicated in Fig. 17, where 4 possible f ∗

w
 versus Sw are given (Fig. 17a) along 

with the corresponding values of the frontal mobility ratio, M(Swf) , shown in the semi-
log plot of the universal curve of f ∗

w
versus M (Fig. 17b). The underlying relative per-

meabilities from the f ∗
w

 functions in Fig. 17a are not presented here. The 4 examples 
in Fig. 17 all have Swf = 0.46 ( Swf =0.45 for no. 3) but they have different frontal M 
values of, M(Swf) = 1.38, 3.66, 6.60 and 11.09 for nos. 1–4 in Fig. 17, respectively.

Simulations were carried out in the CRF permeability model with λD = (1/15) 
(Fig. 7), again with the viscosity ratio (�o∕�w) = 1600 and the same grid as in the base 
case for these 4 examples, and results are presented in Fig.  18. Full simulations of 
these 4 cases have been carried out but here only a snapshot of the phase displace-
ment fingering patterns is shown at 0.120PV for each numbered example in Fig.  18. 
As expected, the no. 1 simulation with M = 1.38 is stable and has a high ( Sw > 0.55) 
and “compact” water saturation behind the front, and hence, the observed retardation 
of this front relative to the other cases in Fig. 18 at the same time. The variation of the 
front in no. 1 is simply due to permeability heterogeneity of the CRF, with a “frontal 
roughness” of order ~ �

D
 . Some degree of actual viscous instability is seen in the other 

3 examples, although no. 2 with M = 3.66 still shows relatively high water saturation 
levels behind the front. Numbers 3 and 4, with M = 6.60 and 11.09, respectively, in 
Fig.  18 show gradually increasing instability and fingering with well-defined fingers 
forming in each case.

The main objective of these calculations is to demonstrate that, by manipulating 
the input fractional flow function, f ∗

w
 , then we can effectively chose the S

wf
 which we 

believe gives the correct saturations within the fingers and also the frontal mobility 
ratio, M

(

S
wf

)

 , which characterises the degree of immiscible instability.
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5.4 � Viscous Fingering Simulation Results Under Permeability Field Rescaling 
and Grid Coarsening

In order to test the robustness of the viscous fingering methodology proposed in this paper, 
and to support the arguments presented in Sect.  4, we apply two numerical tests to our 
method, using Case 1 as an example, as follows:

	 (i)	 Firstly, we take the �D = 1/15 RCF which, in the Case 1 model, has a permeability 
minimum of kmin,1 = 10 and maximum of kmax1 = 1000, and we perform an order 
preserving rescaling of the permeability field maintaining its exact structure, first to 
kmin,2 = 100 and kmax,2 = 1000, and then to kmin,3 = 333 and kmax,3 = 1000. To achieve 
this, the simple rescaling to the ki2 distribution, for example, is given by 

ki2 = kmin,2 +

(

ki1−kmin,1

kmax,1−kmin,1

)

(

kmax,2 − kmin,2
)

 ; and this is applied, where the old 

value of ki,1 in distribution 1 is replaced by ki2 in the new distribution 2. This is to 
ensure that it is not the permeability contrast that is dominating the fingers, but the 
field structure ( �D ), and some degree of heterogeneity.

Fig. 17   a Four example values of a fractional flow curves ( f ∗
w
 versus S

w
 ) with the same S

wf
 value ( S

wf
 = 

0.46—curve 3 has S
wf

 = 0.45) but different forms, and b the corresponding M(S
wf
) values located on a (uni-

versal) figure of f ∗
w
versus M(on log scale). Note that the actual values of, M(S

wf
) = 1.38, 3.66, 6.60 and 

11.09 for nos. 1–4, respectively
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	 (ii)	 Secondly, we again take Case 1 with �D = 1/15, and gradually 2 × 2 coarsen it from 
the base case simulation with Nx = 2000, Ny = 1000, to Nx = 1000/Ny = 500, and to 
Nx = 500/Ny = 250. The coarsening scheme takes the arithmetic average of the cells 
as the coarsened block permeability, and for transmissibility calculations, it takes 
the harmonic average across the adjacent coarse block interfaces.

For permeability field (CRF) rescaling, the CRFs look identical (not shown). The 
simulations of the actual fingering patterns look very similar in each case but are not 
identical, as shown by the example fingering patterns. The (kmax/kmin) = 100 and 10 
cases in Fig.  19a and b compared at times T = 0.025 and 0.08PV, respectively, look 
very similar; but the (kmax/kmin) = 3 case in Fig. 19a and b look somewhat different with 
more “linear” fingers. At the earlier time before breakthrough (0.025PV), the number 
of fingers is very similar in all 3 cases and the major fingers are in the same places, but 
the fine details differ slightly. After breakthrough at 0.08PV of water injection, the pat-
tern and quantity of bypassed oil are again approximately the same. However, the oil 
recoveries and watercuts shown in Fig.  19c are very close, with recoveries at 0.5PV 
being within ~ 2% of each other, despite the fact that the 

(

kmax∕kmin
)

 has been reduced 
from 100 to 3. Likewise, the profile of normalised pressure drop, 

(

ΔP∕ΔP0

)

 versus 
PV injected for all (kmax/kmin) = 100, 10 and 3 cases are almost identical as shown in 
Fig. 19d.

Figure 20 shows the effect of grid coarsening on the finger patterns and on the oil recov-
ery and watercut profiles for the �D = 1/15 model (Fig. 7). The finger patterns are shown 
at times T = 0.025 and 0.08 PV in Fig. 20a and b, respectively, for the 3 numerical grids 
Nx/Ny = 2000/1000, 1000/500 and 500/250. These patterns are again very similar but not 
absolutely identical in detail. However, the oil recoveries and watercut profiles versus PV 
shown in Fig. 20c are almost identical.

Fig. 18   Fingering patterns at 0.120PV of water injection for the CRF permeability model with �
D
 = (1/15) 

(Fig. 6), at viscosity ratio (�
o
∕�

w
) = 1600 and the same grid as in the base case simulations; note the S

w
 

scale where white denotes S
w
 ≈ 0.6 and above
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The conclusion from these results are that as long as we preserve the conditions in our 
4-part approach, viz. (i) the form of the f ∗

w
 (derived from the k∗

rw
and k∗

rw
 ), (ii) the maximum 

mobility ( �
T
 ) RP functions honouring f ∗

w
 , (iii) the permeability field as a CRF with a level 

of heterogeneity and structure ( �
D
 ) and (iv) a sufficiently fine grid, then the procedure is 

robust. Furthermore, it captures the main physics of the viscous fingering process.

6 � Summary, Discussion and Conclusions

Generating realistic immiscible viscous fingering by direct numerical simulation discretis-
ing the PDEs (partial differential equations) describing the process has long been recog-
nised as being a difficult task. This has been viewed by many as a problem of “the numer-
ics”, and many studies have appeared using higher-order numerical schemes of various 
types, with some limited success. However, the present authors do not view this as being 
the central issue in modelling immiscible fingering. We view it as being a problem of 
establishing the correct physics and related mathematics. Specifically, the problem arises 
due to a shortcoming in 1D fractional flow theory in describing fingering systems with 
“conventional” RPs, where the mechanism is inherently 2D (or 3D). We have described the 
consequences of this as the “M-paradox” which in turn when using “conventional” rela-
tive permeability (RP) functions reproduces the erroneous (or at best “averaged”) Buck-
ley–Leverett 1D result.

In this paper, we propose a novel 4-step methodology for simulating immiscible two-
phase viscous fingering in porous media. This is based on recognising the M-paradox and 
the experimental observation that the water saturation in displacing fingers is relatively 
high. Therefore, the 4 stages of this approach, involve (i) choosing the form of the f ∗

w
 to 

give sufficiently high S
wf

 in the fingering zone, (ii) recognising that this still only constrains 

Fig. 19   Water displacing oil viscous fingering simulations for the base case data in the �
D
 = (1/15) CRF for 

the original permeability range (kmin1 = 10 and kmax1 = 1000) and the rescaled ranges (kmin2 = 100 and kmax2 
= 1000) and (kmin3 = 333 and kmax3 = 1000) at a T = 0.020PV, b T = 0.075PV along with c the correspond-
ing oil recovery versus PV and watercut versus PV and d the normalised pressure drops, (ΔP/ΔPo), for each 
case
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the ratio 
(

k∗
ro
∕k∗

rw

)

 which is satisfied by an infinite number of possible sets of RP, then 
we choose the set which shows the maximum total mobility function, �

T
(iii) establishing 

the appropriate permeability field as a RCF (in this case) with a level of heterogeneity ( k 
variation) and structure ( �

D
 ) and (iv) simulating the process with a sufficiently fine grid, 

using very simple conventional numerical techniques (e.g. single-point upstreaming). It 

Fig. 20   This compares the base case water → oil displacement showing viscous fingering in the �
D
 = 1/15 

case with the original grid Nx/Ny = 2000/1000 (left) with the coarser grids Nx/Ny = 1000/500 (centre) and 
Nx/Ny = 500/250 (right) at times a T = 0.025PV and b T =0.08PV, along with c the (very similar) corre-
sponding oil recovery versus PV and watercut versus PV for all 3 cases
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is shown that following this scheme we can generate very realistic immiscible fingering 
which shows the detailed qualitative features of immiscible fingering patterns observed in 
2D experiments.

Considering the choice of f ∗
w
 for a given simulation of immiscible fingering in experi-

ments, we believe that it is probably best to match f ∗
w
 to the observed saturation levels 

in the fingers through a “history matching” procedure. The chosen Swf in f ∗
w
 can be suc-

cessively increased in order to match the (relatively high) water saturations in the experi-
mentally observed viscous fingers. This approach is currently being pursued to model the 
experiments of Skauge et al.

Results are illustrated by performing 2D ( L
x
 = L

y
 ) water → oil viscous fingering calcu-

lations for 2 example cases (Case 1 and Case 2) with (�o∕�w) = 1600 , in 3 permeability 
fields of the same heterogeneity (range of permeabilities) but different correlation lengths, 
�
D
 = 1/10, 1/15 and 1/30. The Case 1 f ∗

w
 has a shock saturation of S

wf
= 0.275 and Case 2 

has the higher shock saturation of S
wf

= 0.34 ; for both cases, S
wi

= 0.17 (where k
rw

= 0 ). 
Case 2 also has RPs (see Figs. 6, 11) where the mobility function �

T

(

Sw
)

 (pressure drop) 
has be accurately maximised (minimised); the Case 1 example is very “close” to this 
mobility maximum. As expected, many more proto-fingers are observed in the short cor-
relation case ( �

D
= 1∕30 ) in both Cases 1 and 2 and more major fingers persist for longer 

until later in the displacement sequence. In the long correlation length case ( �
D
 = 1/10), 

fewer proto-fingers develop into fewer major fingers more quickly. The oil recover/watercut 
versus PV injected results reflect this showing higher recoveries and later breakthrough for 
the low correlation case and vice versa for the long correlation case (with the middle corre-
lation length case being in the middle). The pressure drop behaviour across the system also 
agrees well qualitatively with the experimental observations.

Experimental observations of the displacement by water of very viscous oils performed 
by Skauge et al. (2012, 2013), Vik et al. (2018) and Seright et al. (2018) showed the very 
surprising result that oil recovery was greatly improved by viscosifying the injected water 
using polymer such that the viscosity of the polymer was, �p = 25�w . The direct experi-
mental observation was that the polymer did not stop fingering from occurring, despite 
the fact that the polymer application greatly increased oil recovery. The actual mechanism 
turned out to be viscous crossflow which is analysed and explained in Sorbie and Skauge 
(2019). The results in this paper fully confirm this but the full details are not presented 
here. Using the Case 1 simulation for the �

D
 = 1/10 case (which showed the least efficient 

oil recovery), a simulation of polymer flooding after 0.1PV of water displacement was per-
formed, making no further assumptions other than the viscosity of the “polymer” solution 
( �p = 25�w ). The prediction of the simulation was that oil recovery by polymer injection 
did indeed improve very significantly relative to the water injection by 61.5% at 1PV and 
73.8% at 2PV; these are very significant increases which agree very well with the experi-
mentally observed improvements referred to above. All other simulated quantities also 
agreed well with the experiment, viz. the timing of the incremental oil recovery was very 
“fast”, the fingering was still present, clear evidence for viscous crossflow was observed 
and the ΔP versus PV behaviour was similar (not presented here).

A further example was presented where the modified fractional flow, f ∗
w
 , could be speci-

fied to give a fixed even higher S
wf

 (0.46), but at various potential frontal mobility ratio val-
ues, M

(

S
wf

)

 . These are precisely the parameters which are required to model both experi-
mental and field-scale systems where viscous fingering occurs. This sensitivity calculation 
showed that we can go from quite (frontal) stable to more unstable displacements.

Finally, two quite stringent numerical tests were applied to the basic method of sim-
ulating immiscible fingering in water → oil displacements, using Case 1 and �

D
 = 
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1/15 to illustrate our findings. The first used a permeability field where the base case 
range of kmin to kmax = 10–1000, i.e. 

(

kmax∕kmin
)

= 100 , was rescaled to values of 
(

kmax∕kmin
)

= 10 and 3 . This was shown to make quite a small difference to the overall 
statistic of the fingering which were very similar (not absolutely identical) and the recover-
ies/watercuts were very close. Secondly, one of the base case models was coarsened from 
the original grid with Nx/Ny = 2000/1000 successively to Nx/Ny = 1000/500 and then Nx/Ny 
= 500/250. Again, the fingering pattern was very similar (not identical) and the recoveries 
and watercut profiles were almost identical.

This paper is far from being the last word on the numerical modelling of immiscible 
viscous fingering, but we hope that it will stimulate some interesting discussion and further 
promising research approaches.
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