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Abstract
Modeling coupled systems of free flow adjacent to a porous medium by means of fully 
resolved Navier–Stokes equations is limited by the immense computational cost and is 
thus only feasible for relatively small domains. Coupled, hybrid-dimensional models can 
be much more efficient by simplifying the porous domain, e.g., in terms of a pore-net-
work model. In this work, we present a coupled pore-network/free-flow model taking into 
account pore-scale slip at the local interfaces between free flow and the pores. We consider 
two-dimensional and three-dimensional setups and show that our proposed slip condition 
can significantly increase the coupled model’s accuracy: compared to fully resolved equidi-
mensional numerical reference solutions, the normalized errors for velocity are reduced by 
a factor of more than five, depending on the flow configuration. A pore-scale slip parameter 
�
pore

 required by the slip condition was determined numerically in a preprocessing step. We 
found a linear scaling behavior of �

pore
 with the size of the interface pore body for three-

dimensional and two-dimensional domains. The slip condition can thus be applied without 
incurring any run-time cost. In the last section of this work, we used the coupled model to 
recalculate a microfluidic experiment where we additionally exploited the flat structure of 
the micromodel which permits the use of a quasi-3D free-flow model. The extended cou-
pled model is accurate and efficient.
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1  Introduction

Coupled systems of free flow over a porous medium play an important role in many envi-
ronmental, biological and technical processes. Examples include evaporation from soil 
governed by atmospheric air flow (Vanderborght et al. 2017), intervascular exchange in liv-
ing tissue (Chauhan et al. 2011), preservation of food (Verboven et al. 2006), fuel cell water 
management (Gurau and Mann 2009) or heat exchange systems (Yang et al. 2018). Consid-
erable effort has been spent on modeling these kinds of systems where a discrete resolution 
of the complex porous geometry such as in direct numerical simulation (DNS) is often not 
computationally feasible for larger systems. The porous medium can instead be treated in 
an averaged sense, based on the concept of an REV (Whitaker 1999). Following the so-
called one-domain approach, one set of equations is used to describe both the free flow 
and the porous medium (Neale and Nader 1974). For the two-domain approach, a domain 
decomposition is performed where the free flow is usually described by the Navier–Stokes 
equations while the porous medium is accounted for by a lower-order model, such as Dar-
cy’s law (Ochoa-Tapia and Whitaker 1995; Layton et al. 2002; Jamet et al. 2009; Mosthaf 
et al. 2011). Appropriate coupling conditions between the two domains have to be formu-
lated to ensure thermodynamic consistency (Hassanizadeh and Gray 1989). While being 
computationally efficient, these upscaled models may provide an insufficient degree of 
detail on the pore scale crucial for certain applications, e.g., when local saturation patterns 
at the interface of a drying soil globally affect the system (Shahraeeni et  al. 2012). For 
these situations, a new class of so-called hybrid-dimensional models have been developed 
(Scheibe et al. 2015) which combine the high spatial resolution of pore-scale approaches, 
such as pore-network models, with the computational efficiency of REV-scale models. 
Pore-network models simplify the complex void geometry of the porous medium to a col-
lection of equivalent pore elements and provide a comparatively high degree of pore-scale 
accuracy at low computational demand (Oostrom et al. 2016). Balhoff et al. (2007b) cou-
pled a pore-network model to a Darcy-type continuum model. This concept was further 
developed (Balhoff et al. 2007a; Mehmani and Balhoff 2014) using mortar methods based 
on the work of Arbogast et al. (2007). Beyhaghi et al. (2016) proposed an iterative scheme 
to couple a pore-network model to free flow.

In our previous work (Weishaupt et  al. 2019), we have presented a fully monolithic, 
fully implicit coupled model employing the Navier–Stokes equations in the free-flow 
region and a pore-network model in the porous domain. The model was verified against 
numerical reference solutions for stationary single-phase flow and an example of transient 
compositional flow over a random network was given.

Pores intersecting with the free flow represent local deviations from the no-slip condi-
tion which otherwise holds at the solid matrix of the porous medium’s surface. This poses 
a conceptual weak point of our original model (Weishaupt et al. 2019) where no-slip cou-
pling conditions would always occur at pores with throats oriented normally with the cou-
pling interface. We address this issue here and introduce a pore-local slip condition which 
helps to correct the momentum exchange between pore-network and free flow.

As in our previous work, we still follow a monolithic coupling approach which does not 
require any coupling iterations since both sub-problems are solved simultaneously. Here, 
we further extend the capabilities of the coupled model by removing its former dependency 
on a direct linear solver. Instead, we now employ an iterative linear solver where an Uzawa 
method (Ho et al. 2017) serves as a preconditioner for the free-flow matrix blocks. This 
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enhances the model’s applicability to larger and three-dimensional systems while we still 
benefit from a fully coupled and implicitly mass conservative model formulation.

We assess the accuracy of the novel slip condition and demonstrate the improved mod-
el’s capabilities with a three-dimensional numerical example involving a randomly gener-
ated pore network.

Finally, we use the coupled model to recalculate high-resolution micro-Particle Image 
Velocimetry (micro-PIV) experiments performed on a micromodel comprising a free-flow 
channel over a regular porous structure at low Reynolds numbers (Terzis et al. 2019). Here, 
we exploit the micromodel’s flat geometry which permits the use of a two-dimensional 
free-flow model including a wall friction term (Flekkøy et al. 1995) in order to save com-
putational cost.

2 � Mathematical and Numerical Model Concepts

Without loss of generality, gravity is neglected in the following and we assume incom-
pressible steady-state flow conditions for sake of simplicity. Creeping flow ( Re < 1 ) is con-
sidered in this work.

2.1 � Free‑Flow Model

The Stokes equations are used for the description of incompressible steady-state laminar 
flow:

� is the fluid’s dynamic viscosity, v is the fluid velocity while p is the pressure.
The continuity equation closes the system:

2.2 � Pore‑Network Model

In the porous domain, a pore-network model is used where at each pore body (the intersec-
tion of two or more pore throats), the continuity of mass is required:

Here, Qij is the discrete volume flow rate in a throat connecting pore bodies i and j:

pi and pj are the pressures defined at the centers of the pores bodies. The throat conduct-
ance gij depends on the pore throat geometry and the fluid properties. For certain geom-
etries, simple analytical expressions for gij are available in the literature (Patzek and Silin 
2001). Otherwise, numerical upscaling (Mehmani and Tchelepi 2017; Weishaupt et  al. 
2019) may be used.

(1)∇ ⋅[�(∇v + ∇vT)] − ∇p = 0.

(2)∇ ⋅v = 0.

(3)
∑
j

Qij = 0.

(4)Qij = gij(pi − pj).
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2.3 � Coupling Conditions

Appropriate coupling conditions are required to ensure the continuity of mass and momen-
tum at the interface between porous medium ( ΩPNM ) and free flow ( ΩFF ) (Hassanizadeh 
and Gray 1989; Layton et al. 2002). Here, we formulate the coupling conditions for each 
discrete intersection of a pore body i with the boundary of the free-flow domain, yielding 
pore-local discrete coupling interfaces Γi.

The coupling pore bodies are cut in half by the interface and only the interior part of the 
volume is considered. We assume that the coordination number of pore bodies connected 
to the free-flow domain is always one, i.e, only one pore throat is connected to them.

The conservation of mass (neglecting density since we consider incompressible fluids in 
this work) across the interface is enforced via

The superscripts FF and PNM refer to the interfacial quantities of the free-flow domain 
and the pore-network model, respectively. n is a unit vector normal to the coupling inter-
face, pointing out of the own domain.

Compared to Weishaupt et al. (2019), we revise our coupling conditions for the mechan-
ical equilibrium, i.e., the conservation of momentum across the interface. We first recall 
that Eq.  (4), which yields the discrete volume flow per pore throat in the pore-network 
model, is based on the volume integration of the three-dimensional Stokes equations along 
the medial axis of the pore throat (Blunt 2017). Contrary to Darcy-type models (Whitaker 
1999; Layton et al. 2002), the pore body pressure of the pore-network model and the pres-
sure of the Stokes model employed in the free-flow region have thus a comparative physi-
cal meaning. Therefore, we require the pressures at the interface to be equal in order to 
satisfy the balance of forces perpendicular to the interface:

At the location of solid grains (no intersecting pore throat), a no-flow/no-slip condition 
for the free flow is assumed. Weishaupt et al. (2019) used the tangential component of the 
discrete pore velocity as a coupling condition for the free-flow model at the location of the 
intersecting pore:

The basis of the interface’s tangent plane is given by tk, k ∈ {0,… , d − 1} . The tangen-
tial component of the pore-body interface velocity is approximated as

Qij is the volume flow through pore throat ij while |ΓFF
i
| is the area of the discrete cou-

pling interface. nij is a unit normal vector parallel to the throat’s central axis and pointing 
toward the interface. Note that this is a simplification which does not take into account 
potential deflection effects of the fluid flow leaving the pore throat and entering the pore 
body (see Fig. 1a). Note that Eq. (8) does not impair mass conservation as it is only used 
for the approximation of the tangential momentum transfer.

(5)[v ⋅ n]PNM = −[v ⋅ n]FF.

(6)[p]FF = [p]PNM.

(7)[v ⋅ tk]
FF =

{
[v ⋅ tk]

PNM, k ∈ {0,… , d − 1} on ΓFF
i

0 else.

(8)[v ⋅ tk]
PNM =

Qij

|ΓFF
i
| [nij ⋅ tk]

PNM.
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The disadvantage of Eq. (7) is that pore throats orientated orthogonally with the interface 
( nij ⟂ [tk]

FF ) will always lead to a no-slip condition such that [v ⋅ tk]FF = 0 at the interface 
since [nij ⋅ tk]PNM = 0 . The same issue occurs for Qij = 0 , yielding [v ⋅ tk]PNM = 0.

Here, we propose a modified approach to approximate the slip velocity on ΓFF
i

 (see Fig. 1b). 
We require the continuity of tangential stress

Instead of trying to calculate the shear rate ∇v + ∇vT in the one-dimensional pore throats 
where only uniform, averaged flows along the center-line of the throats are defined, we use a 
simple parametrization

in close analogy to the widely used Beavers–Joseph interface slip condition for REV-scale 
models (Beavers and Joseph 1967; Jones 1973). The main difference here is that the slip 
coefficient �pore is now defined locally per pore and not given as averaged quantity of the 
entire porous medium’s interface. As we assume a constant and equal viscosity in both 
domains, the term [�]

PNM

[�]FF
= 1 is dropped for sake of brevity.

Our new coupling condition for the tangential component of the free-flow velocity thus 
reads

with

(9)[(−�(∇v + ∇vT) ⋅ n) ⋅ tk]
FF = [(−�(∇v + ∇vT) ⋅ n) ⋅ tk]

PNM.

(10)[(−(∇v + ∇vT) ⋅ n) ⋅ tk]
FF = �throat

[�]PNM

[�]FF

(
[v ⋅ tk]

FF − [v ⋅ tk]
PNM

)

(11)[v ⋅ tk]
FF =

{
vslip,k on pore throat,

0 else,

(12)vslip,k =
1

�pore

[
(−(∇v + ∇vT) ⋅ n) ⋅ tk

]FF
+
[
v ⋅ tk

]PNM
.

(a) (b)

Fig. 1   Pore-local slip conditions. Illustration of the two possible interface conditions for [v ⋅ tk]FF (here with 
k = 0 ). a Old condition (Eq. 7) assigning the pore-body tangential velocity at the interface directly. b Novel 
slip condition (Eq. 11) allowing [v ⋅ tk]FF ≠ [v ⋅ tk]

PNM
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1∕�pore corresponds to a local Navier slip length (Navier 1823) and is generally a tenso-
rial (Kamrin et al. 2010) and solution-dependent quantity (Yang et al. 2019). For certain 
geometries and flow configurations, it may be obtained by (semi-) analytical (Jeong 2001; 
Wang 2003; Schönecker and Hardt 2013) expressions which are, however, mathematically 
involved and often require numerical methods for their solution at some point. Further-
more, surface-averaged effective values of the slip length for periodic geometries are usu-
ally considered (Lauga and Stones 2003) while we require a local value for a single pore.

Since �pore is merely an input parameter for our model and the aim of this work is to 
investigate the benefit of using Eq. (11), we employ a simple numerical procedure to esti-
mate this value as described later on. We will furthermore show that �pore scales linearly 
with the diameter of the intersecting entity for our two- and three-dimensional setups. This 
implies that Eq. (11) can be applied at zero additional run-time cost, once the scaling fac-
tors for the geometries of interest have been determined in a preprocessing step.

2.4 � Implementation

The coupled model is implemented in DuMux, an open-source framework for simulating 
flow and transport in porous media (Flemisch et  al. 2011; Heck et  al. 2019; Koch et  al. 
2020), built upon dune (Bastian et  al. 2008a, b). We use dune-subgrid (Gräser and 
Sander 2009) for the generation of the reference solution grids and dune-foamgrid 
(Sander et al. 2017) for the pore-network model.

The free-flow model is discretized in space using a staggered-grid finite volume 
approach, also known as MAC scheme (Harlow and Welch 1965), which provides inher-
ently stable and oscillation-free solutions without the need of any stabilization techniques 
(Versteeg and Malalasekera 2007). The original model’s restriction to odd numbers 
(Weishaupt et al. 2019) of free-flow grid cells assigned to each pore throat has been lifted 
here.

As in Weishaupt et  al. (2019), we follow a fully monolithic coupling concept which 
means that all sub-models’ balance equations are assembled into one system of linear equa-
tions which is solved simultaneously such that no coupling iterations are required and the 
scheme is inherently conservative:

Here, A, B1, B2 and D are sub-matrices of the free-flow problem. P is the sub-matrix 
of the pore-network model and C1–C4 are the coupling matrix blocks. x is a sub-vector of 
unknowns for the velocity v or pressure p and the sub-domains FF (free flow) and PNM 
(pore-network model). r are the corresponding right-hand side sub-vectors.

Solving this system is challenging for Krylov-type iterative methods as it features a 
poorly conditioned system matrix including a saddle-point structure for incompressible flu-
ids ( D = 0 ) (Benzi et al. 2005). For this reason, we used a direct linear solver in Weishaupt 
et  al. (2019) which, however, does not scale very well in terms of memory and CPU-
time requirements for larger systems, especially in 3D. We overcome this limitation here 
by applying a flexible restarted GMRES iterative solver (Saad 2003) on Eq. (13) which 
requires appropriate preconditioning.

(13)
⎛
⎜⎜⎝

A B1 C1

B2 D C2

C3 C4 P

⎞⎟⎟⎠

⎛⎜⎜⎝

xv,FF
xp,FF
xp,PNM

⎞⎟⎟⎠
=

⎛⎜⎜⎝

rv,FF
rp,FF
rp,PNM

⎞⎟⎟⎠
.
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As a very first step toward an effective solution strategy, a simple Uzawa algorithm 
(Benzi et al. 2005; Ho et al. 2017) is used for the free-flow sub-system

with

A−1 is approximated using an algebraic multigrid method (Shapira 2008) and � is a 
relaxation factor determined according to Benzi et al. (2005).

A simple Jacobi (diagonal) preconditioner is applied to the pore-network sub-system

The further development of this rather elementary preconditioning strategy is part of 
ongoing work and techniques such as presented in Kuchta et  al. (2018) could certainly 
improve the solver’s efficiency.

3 � Numerical Determination of ˇpore and Assessment of Accuracy

In this section, we present a simple numerical procedure to estimate the pore-scale slip 
coefficient �pore for two different geometries: (1) a hemispherical, three-dimensional pore 
body and (2) a two-dimensional square cavity.

3.1 � Numerical Determination of the Slip Coefficient ˇpore

Figure 2 shows the computational domains used to evaluate �pore : In the three-dimensional 
setup (Fig. 2a), a hemispherical pore body with radius ri intersects with the lower bottom 
of a cubic free-flow channel, whose side lengths Lx, Ly and Lz are ten times larger than ri . 
For sake of simplicity, we neglected the pore throat adjacent to the pore body and hence, 
[v]PNM ⋅ tk = 0 . We will discuss this choice later on. In order to assess the dependence of 
�pore on the pore radius, we performed multiple simulations with different ri while keeping 
the overall proportions of the geometry constant (i.e, scaling Lx = Ly = Lz accordingly). 
Re ≪ 1 with respect to the channel hydraulic diameter was held for all setups. Flow was 
induced in two different ways in order  to investigate the influence of the boundary con-
ditions on �pore : first, a pressure drop Δp between the inlet on the left side and the out-
let on the right side of the channel was assigned which corresponds to a situation typical 
for micro-PIV experiments. Second, shear-driven flow was considered by moving the top 
wall of the domain at a given velocity which resembles a near-interface flow field for free 
or atmospheric flow conditions. Figure 2b shows the two-dimensional setup with a square 
pore body for which the same procedure as for the 3D setup was performed.

Having checked for grid convergence, the domains were meshed uniformly such 
that 40 cells per pore diameter were used for each simulation. Since �pore will later on 
be used in the coupled model which is implemented in DuMux, we also employed the 

(14)
(
A B1

B2 D

)(
xv,FF
xp,FF

)
=

(
rv,FF
rp,FF

)
,

(15)xv,FF,m+1 = xv,FF,m + A−1
(
rv,FF −

(
Axv,FF,m + B1xp,FF,m

))
,

(16)xp,FF,m+1 = xp,FF,m + �
(
rp,FF −

(
B2xv,FF,m+1 + Dxp,FF,m

))
.

(17)Pxp,PNM = rp,PNM.
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free-flow solver (not being coupled to another model) of the latter for determining �pore 
for sake of comparability. Currently, only structured, axis parallel grids are supported 
here, but we assured that our results are in accordance with simulations performed on an 
unstructured grid (allowing a smoother description of the hemispherical cavity’s bottom 
surface) performed with the open-source CFD tool OpenFOAM (Jasak 2009).

For the pressure-driven cases, all boundaries were equipped with no-flow/no-slip 
conditions, except at the inlet and the outlet where fixed pressures pin = 1 × 10−6 Pa 
and pout = 0 Pa were assigned. Preliminary simulations showed that a fully developed 
flow within the channel (with respect to the x-axis) was achieved this way, without the 
need of using periodic boundary conditions at the inlet and the outlet (which are not 
yet supported by the free-flow model in DuMux). For the shear-driven setup, we set 
pin = pout = 0 Pa and a constant velocity vx,top = 4 × 10−8 ms at the top wall of the chan-
nel. For the 3D geometry, we eliminated the wall friction on the lateral sides of the free-
flow channel ( zmin and zmax ) by setting symmetry boundary conditions. We solve Eqs. 
(1) and (2) to obtain the stationary flow field for an incompressible fluid (water) with 
� = 1 × 10−3Pa s.

In theory, Eq. (12) holds on each point on the local interface between the free-flow 
channel and the pore Γi (see Fig. 2) such that the value of �pore actually depends on the 
relative position on Γi . As a simplification for the numerical evaluation of �pore and, 
more importantly, for an efficient application of the slip concept within the coupled 
model, we instead consider one integral value of �pore for each Γi . As mentioned above, [
v ⋅ tk

]PNM
= 0 as there is no pore throat attached to the body and Qij = 0 (see Eq.  8). 

For the given setup (3D), n = (0,−1, 0)T and we only consider t0 = (1, 0, 0)T as the flow 
is mainly in x-direction. We average the relevant velocity gradients and the streamwise 
horizontal velocity component vslip,0 =

[
v ⋅ t0

]FF
=
[
vx
]FF on Γi in order to estimate �pore 

by re-arranging and simplifying Eq. (12):

(a) 3D setup (b) 2D setup

Fig. 2   Setups for the numerical determination of �pore . The distribution of vx along the domain’s vertical 
extent Ly for a pressure-driven flow is sketched by the colored surface (a) and line (b), respectively. The 
dotted areas mark the pore-local slip interfaces Γi on which the averaging is performed



251A Hybrid‑Dimensional Coupled Pore‑Network/Free‑Flow Model…

1 3

Here, ⟨⋅⟩ is a surface average defined on Γi . In this setup, �pore is isotropic because Γi is of 
symmetric circular shape. For other shapes (such as ovals), the value of �pore would depend 
on the orientation of the pore body relative to the channel-flow direction.

The results of �pore for the 3D setup with different pore radii ri are given in Table 1. 
Non-dimensionalizing these values by multiplication with the respective value of ri 
yields a constant value of �∗

pore
= �poreri = 5.73 for pressure-driven flow and �∗

pore
= 6.44 

for shear flow. The results thus vary by around 12% for different boundary conditions. 
The linear scaling of �pore with respect to ri for the given setups is a direct consequence 
of the linear nature of Eq. (1). Using a dimensionless velocity v∗ = v∕vref and a dimen-
sionless gradient ∇∗ = Lref∇ (with vref and Lref = ri as reference velocity and reference 
length), Eq. (18) can be re-written as

For our uniformly scaled setups, any change of Lref yields the same dimensionless 
velocity field scaled by an appropriate vref (we keep the values of pin and pout or vx,top 
fixed). The averaged values of the dimensionless shear rate and slip velocity on Γi in 
Eq. (19) are proportional to each other and �∗

pore
 becomes a constant for each uniformly 

scaled setup.
As a next step, we assessed the impact of altering the free-flow channel’s aspect ratio 

by halving and doubling its vertical size Ly for a pore radius of ri = 200 × 10−6 m . As 
shown in the last two rows of Table  1, this leads to a slightly different value of �∗

pore
 

because this new problem is not just a uniformly scaled variant of the previous set-
ups ( Ly ≠ Lx ), as discussed before. The difference is largest for a decrease of Ly in the 
pressure-driven case ( −4% ). This is probably due to the rather pronounced change of the 
parabolic velocity profile within the free-flow channel when reducing its height (while 
keeping the pressure gradient constant). For the shear-driven flow, increasing Ly does 
not change �∗

pore
 , as the linear flow profile in the free-flow channel remains its shape. 

Reducing Ly for the same flow configuration only slightly ( +0.3% ) affects �∗
pore

.

(18)�pore ≈

��
−(∇v + ∇vT) ⋅ n) ⋅ t0

�FF�

⟨vslip,0⟩ =

��
�vx

�y
+

�vy

�x

�FF�

��
vx
�FF� .

(19)

Table 1   Values of �
pore

 and �∗
pore

= �
pore

r
i
 for the 3D hemispherical pore body

r
i
(1 × 10

−6
m) L

y
∕r

i
 (–) Pressure-driven Shear-driven

�
pore

(m−1) �∗
pore

 (–) �
pore

(m−1) �∗
pore

 (–)

25 10 229,393 5.73 257,492 6.44
50 10 114,697 5.73 128,746 6.44
100 10 57,348 5.73 64,373 6.44
200 10 28,674 5.73 32,187 6.44
200 5 27,449 5.49 32,310 6.46
200 20 28,931 5.79 32,183 6.44
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The same findings as described above generally also hold for the two-dimensional 
square cavity (see Fig. 2b), for which we repeated the same evaluating steps as for the 3D 
geometry. Table 2 shows that �∗

pore
 for the shear-flow setup is around 4% larger than the 

value for pressure-driven flow, whereas it again reacts more sensitive to a change of the 
free-flow channel’s vertical extent ( −3.6% and 2% compared to Ly∕ri = 10 ) in the latter 
configuration.

In summary, our very simple and heuristic method to estimate �pore has shown that this 
value scales linearly with the pore diameter, and that the chosen set of boundary conditions 
mildly affects the results. As shown by Moffatt (1964), a series of diminishing vortices can 
be observed within the cavity. Compared to the slip velocity on Γi , the intensity of these 
recirculations is negligible and the vortex structures will be completely overlaid for situ-
ations with flow in the adjacent pore throat (Sects. 3.2, 4, 5). We therefore consider our 
setups as presented in Fig. 2 representative for our further analysis.

As previously mentioned, a direct comparison of our findings for the values of �pore 
with literature values for the Navier slip length is not straightforward because typically, 
surface-averaged, effective values for periodic structures are reported. However, one can 
roughly estimate the maximum slip length over a single two-dimensional quadratic cav-
ity by 0.5ri , based on the center position of the first vortex within the cavity (Schönecker 
and Hardt 2013). This yields a value of 1 × 10−4 m for the cavity with ri = 2 × 10−4 m 
which is therefore around twice as large as our numerically determined mean slip length of 
1∕�pore = 4.36 × 10−5 m (shear-driven flow). We again want to stress that the focus of this 
paper is not on finding a generalized method for describing �pore but rather on evaluating 
the effect of using the slip condition in the context of our coupled model for which �pore 
serves as an input parameter.

3.2 � Evaluation of the Slip Condition’s Accuracy Improvement

Having estimated �pore numerically, we investigate the benefit of using the new slip condi-
tion (Eq. (11)) in the coupled model compared to Eq. (7), yielding a no-slip condition for 
throats oriented orthogonally with the interface ( [v]PNM ⋅ [tk]

FF = 0 ) or featuring no flow 
( [v]PNM = 0 ). For this purpose, we consider a three-dimensional cubic free-flow channel 
with side lengths of 5 × 10−4 m intersecting with a single pore ( ri = 1 × 10−4 m ) and throat 
( rij = 5 × 10−5 m ). Six different geometrical setups are investigated by varying the throat’s 
orientation represented by the polar and the azimuth angles ( �pol and �az ), as shown in 
Fig. 3. The vertical position of the lower pore body center is fixed at y = −4 × 10−4 m such 

Table 2   Values of �
pore

 and 
�∗
pore

= �
pore

r
i
 for the 2D square 

pore body

r
i
(1 × 10

−6
m) L

y
∕r

i
 (–) Pressure-driven Shear-driven

�
pore

(m−1) �∗
pore

(–) �
pore

(m−1) �∗
pore

 (–)

25 10 176,198 4.40 183,328 4.58
50 10 88,097 4.40 91,660 4.58
100 10 44,049 4.40 45,830 4.58
200 10 22,024 4.40 22,915 4.58
200 5 21,181 4.24 22,936 4.59
200 20 22,464 4.49 22,913 4.58
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that the length of the throat is slightly different for each setup (which is accounted for in the 
throat’s conductance in Eq. (20)).

We use DuMux to solve the stationary Stokes equations (Eqs. 1, 2) on the fully resolved, 
three-dimensional domains in order to obtain reference solutions. Again, 40 grid cells per 
pore diameter are employed and water ( � = 1 × 10−3 Pa s ) is considered.

Flow is induced in the channel by applying a pressure drop pin − pout = 1 × 10−6 Pa 
between the inlet and the outlet, as shown in Fig. 3. The bottom of the lower half-pore is 
equipped with a fixed pressure of pbottom . No-flow/no-slip conditions hold at all remain-
ing boundaries. We investigate four different flow configurations by varying the ratio 
between the bottom and the inlet pressure pbottom∕pin = {0.33, 1, 10, 100} . The first ratio of 
0.33 corresponds to an extraction, i.e., the liquid is sucked out of the channel through the 
pore throat. For the remaining three ratios, liquid is injected from the pore throat into the 
channel.

Having obtained reference solutions, the coupled model is applied twice to each case, 
using Eq. (7) or Eq. (11), respectively. We used a numerical upscaling approach in a pre-
processing step as described in the appendix of Weishaupt et al. (2019) to determine the 
throat conductance: a pressure boundary value problem is solved numerically on a dis-
cretely resolved, reduced but equivalent pore structure in order to relate the pressure drop 
within the pore throat and bodies to the resulting volume flow. This yields, for the given 
geometry,

Here, � and lij are the fluid’s viscosity and the throat length, excluding the two adjacent 
pore-body radii. The first term of Eq. (20) differs by less than 1% from the correspond-
ing analytical value for a cylindrical tube. The second term of Eq. (20) accounts for the 

(20)gij(lij) ≈
1

�

(
2.44 × 10−18 m−2

lij
+

2

5.45 × 10−14m3

)−1

.

Fig. 3   Geometry used for error 
analysis. �pol is the polar angle 
corresponding to the vertical 
inclination of the throat. The 
azimuth angle �az corresponds 
to the horizontal orientation of 
the throat
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pressure drop within the two adjacent pore bodies. Following the results of the previous 
section, we chose �pore = 57348m−1 according to Table 1.

The benefit of using the novel slip condition in the coupled model is quantified by

where errv is the normalized velocity error norm for the free-flow region (“old” when using 
Eq. 7 and “new” when using Eq. 11),

vref is the velocity in the free-flow region of the reference solution while Δv is the cor-
responding difference between the reference solution and the one of the coupled model. In 
analogy to Eq. (21), we determined �p = �old

p
∕�new

p
 to evaluate the influence of Eq. (11) on 

pressure.
Figure 4 shows �v (full markers) and �p (empty markers) for all geometric setups over 

the ratio of Reynolds numbers within the channel and the pore throat Rebulk∕Rethroat , based 
on the corresponding mean velocity and the hydraulic diameter of the structures. For the 
injection scenarios ( pbottom∕pin ≥ 1 ), an increase of pbottom leads to higher flow rates within 
the pore throat which in turn decreases Rebulk∕Rethroat as the pressure drop pin − pout driv-
ing the main-channel flow is kept constant. For pbottom∕pin = 0.33 (extraction), the lowest 
flow rate in the throat is obtained for �az = 0◦ and �pol = 60◦ (red circle). Here, the flow 
coming from the channel and entering the throat is reversed and rotated by 150◦.

The error reduction provided by Eq. (11) strongly depends on Rebulk∕Rethroat , while the 
orientation of the throat does not have a significant impact.

For Rebulk∕Rethroat > 10 , errv is reduced by a factor of more than five for all cases con-
sidered, while errp is more than halved. For comparison, we also considered the case of 
�az = 0◦ and �pol = 0◦ where the boundary of the lower pore body was closed such that no 
flow occurred in the throat. This corresponds to the simplified configuration used for the 
evaluation of �pore in the previous section. Here, we obtained a benefit of �v = 5.63 and 

(21)�v =
errold

v

errnew
v

,

(22)errv =
‖Δv‖2
‖vref‖2 =

�∑
i(Δv

2
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+ Δv2
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z
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.

Fig. 4   Error reduction for dif-
ferent configurations. The filled 
markers show the reduction 
of the velocity-related error �v 
(Eq. 21) for different geometrical 
setups and flow configurations. 
The empty markers show the 
corresponding value �p for the 
pressure
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�p = 2.44 which shows that the simplifications made for the determination of �pore do not 
impair the accuracy of the method for the given cases.

However, we observe a steep drop of �v and �p for Rebulk∕Rethroat < 10 . In order to 
assess whether this is due to the above-mentioned simplifications, we re-evaluated �pore for 
�az = 45◦, �pol = 0◦ and pbottom∕pin = 100 based on the results of the corresponding refer-
ence solution, taking into account the horizontal flow velocity within the pore throat such 
that

This yields a new value of �pore = −21,541m−1 . The negative sign is due to the fact 
that in this case, the velocity within the pore throat is actually higher than the free-
flow velocity at the interface. Using this new value for the coupled model only slightly 
improves the results with �v = 1.14 and �p = 1.17 (compared to �v = 1.08 and �p = 1.13 ). 
The decrease of � is therefore caused by something else, as shown in Fig.  5: for 
pbottom∕pin = 1 (Fig.  5a), the flow directly above the coupling pore is mainly parallel to 
the free-flow channel’s x-axis. It is entirely governed by the pressure drop between the 
channel’s inlet and outlet which also results in a rather homogeneous pressure distribu-
tion along the coupling interface. In strong contrast to this, Fig.  5b shows the effect of 
the pronounced inflow coming from the pore throat when pbottom∕pin = 100 . This influx 
causes the velocity field to diverge due to the locally increased pressure on the left side 
of the coupling interface. The velocity field is therefore not governed by the free-flow 
channel’s bulk pressure gradient anymore but shaped by the local influx at the pore. 
This can also be quantified in terms of the standard deviation of the pressure field on 
the coupling interface Γi : for pbottom∕pin = {0.33, 1, 10, 100} , the standard deviation is 
1.09 × 10−7 Pa, 1.09 × 10−7 Pa, 1.13 × 10−7 Pa and 3 × 10−7 Pa , respectively. It thus corre-
lates inversely proportional with �v and �p (Fig. 4). The coupled model assumes a constant 
pressure on Γi (Eq. 6) for the balance of normal forces. This assumption is obviously not 
met for high flow rates within the coupling throat. This issue is, however, not related to the 
slip condition proposed here. Furthermore, in many technical and environmental applica-
tions, the free-flow bulk velocity is likely to be considerably higher than the velocity within 

(23)�pore, new ≈

⟨[
�vx

�y
+

�vy

�x

]FF⟩

⟨[
vx
]FF⟩

−
[
vx
]PNM .

(a) pbottom/pin = 1 (b) pbottom/pin = 100

Fig. 5   Pressure field and velocity vectors of the reference solution at the coupling interface as seen from the 
top (x–z-plane) for �az = 45◦ , �pol = 0◦
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the pore throats at the interface, corresponding to Rebulk∕Rethroat > 10 where Eq. (11) per-
forms well.

In conclusion, the novel slip condition reduces the coupled model’s error with respect to 
the reference solution in the free-flow channel by a factor of over five for the velocity and 
by more than two for the pressure, provided that the ratio between the Reynolds numbers 
in the channel and in the throat Rebulk∕Rethroat > 10 . The pore throat’s orientation does not 
have a significant effect. If the flow through the interface pore strongly affects the overall 
flow field, the coupled model’s accuracy is limited by the coupling condition for the nor-
mal momentum exchange, which assumes a uniform pressure at the pore. This could be 
addressed in future work.

The next section features a three-dimensional showcase where the coupled model is 
applied to a free-flow channel above a randomly generated pore network.

4 � A Three‑Dimensional Showcase with a Random Network

This example serves to illustrate the coupled model’s ability to handle unstructured pore 
networks in 3D while reducing the computational cost compared to a fully resolved refer-
ence solution. Figure 6 shows the setup which features a free-flow channel above a ran-
domly generated network of pores which was created following the procedure described 
by Raoof and Hassanizadeh (2009). Starting from a regular lattice of 3 × 3 × 3 pores 
( Δx = Δy = Δz = 2 × 10−4 m ) where the nodes are connected to all neighbors, some con-
nections are deleted randomly. The remaining connections are the pore throats with a uni-
form radius of rij = 5 × 10−5 m while the nodes are the pore bodies with ri = 1 × 10−4 m . 
We assured that throats only intersect at the pore bodies and that the coordination number 
of the latter at the interface is always one. The resulting network (shown in black in Fig. 6) 
features 42 throats and 26 pore bodies. A three-dimensional grid featuring 4,320,307 uni-
form cells (including 3,200,000 cells in the free-flow channel) was then constructed based 
on this network, as shown in gray in Fig. 6. As in the previous sections, we chose the grid 
resolution such that 40 cells per pore body diameter are used.

Fig. 6   3D geometry consisting of 
a free-flow channel and a random 
network. The opaque gray 3D 
reference geometry was created 
from the random 1D network 
shown in black
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Flow is induced in the channel and in the network by setting 
pin = 1 × 10−6 Pa, pout = 0 Pa and pbottom = 1 × 10−6 Pa . All remaining boundaries are 
set to no-flow/no-slip. Equation (20) and �pore = 57348m−1 are considered for the coupled 
model. Water with � = 1 × 10−3 Pa s is used.

Solving the stationary Stokes equations (Eqs. 1, 2) with DuMux on a single core (Intel 
Xeon CPU E5-2683 v4 @ 2.10 GHz, 62 GB RAM) took 65min for the reference model 
and 47min for  the coupled model, regardless of whether using Eq. (11) or Eq.   (7). The 
total CPU time including grid creation, matrix assembly and I/O was 82min for the refer-
ence model and 54min for the coupled model. The speedup of 65

47
= 1.4 with respect to 

solver time corresponds to the ratio of the number of degrees of freedom for the reference 
model and for the coupled model, 17,480,883

12,872,026
= 1.36 , showing the almost linear scaling 

behavior of the iterative solver.
The coupled model’s results (Fig. 7b) match closely with the reference solution (Fig. 7a) 

in a qualitative sense. Some local deviations of up to 20% with respect to v occur at pore 
bodies with pronounced inflow which corresponds to the discussion related to Fig. 5.

The coupled model’s normalized errors for the free-flow channel (Eq.  22) are 
errv = 4.78 × 10−3 and errp = 4.92 × 10−3 when considering Eq. (11), compared to 
errv = 2.84 × 10−2 and errp = 1.14 × 10−2 for Eq. (7). This yields (Eq. 21) �v = 5.94 and 
�p = 2.32 which is in the same range as in the previous section when Rebulk∕Rethroat > 10 
(Fig. 4). For the given setup, Rebulk = 5.85 × 10−6 (based on the channel’s hydraulic diame-
ter and mean velocity) while Rethroat = 3.22 × 10−8 (evaluated using the throats adjacent to 
the interface pores with a uniform hydraulic diameter of 2rij and the mean velocity within 
those throats).

Repeating all simulations with an increased bottom pressure of pbottom = 1 × 10−5 Pa 
leads to Rebulk∕Rethroat = 10.22 , yielding �v = 3.18 and �p = 1.7 which is again in accord-
ance with our previous findings (Fig. 4).

In conclusion, this example showed that the coupled model can also be effectively 
applied to larger three-dimensional network structures where the benefit of using the pro-
posed slip condition shows the same scaling behavior with Rebulk∕Rethroat as in our previous 
error analysis considering only a single throat. In the next and last section, we will recalcu-
late a microfluidic experiment using the coupled model.

(a) reference solution (b) coupled model with novel slip condition

Fig. 7   Results for the random 3D network. The velocity (magnitude) directly above the coupling interface 
is shown by the plane in red and blue. The gray velocity vectors are scaled by magnitude. The one-dimen-
sional network in (b) is extruded for visualization purposes



258	 K. Weishaupt et al.

1 3

5 � Recalculation of a Micromodel Experiment

In this section, we use the coupled model to recalculate a micromodel experiment of 
Terzis et  al. (2019) where we exploit the quasi-two-dimensional nature of the experi-
mental setup. The latter is especially suited for applying the proposed slip condition 
(Eq. 11) as it features only pore throats intersecting normally with the coupling inter-
face which would result in a no-slip condition when using Eq. (7).

The micromodel geometry is shown in Fig. 8. It features three main regions: (1) the 
free-flow channel at the top, (2) the porous medium made of 80 × 20 evenly spaced 
quadratic pillars and (3) a triangular reservoir region which was included into the design 
to facilitate the complete saturation of the model with water through an auxiliary inlet 
(not shown) at the bottom. This inlet was closed during the experiments. Details on 
the experimental procedure can be found in Terzis et al. (2019). For convenience, two 
dimensionless lengths x/l and y/l are introduced, where l = 240 × 10−6 m is the width 
of the pores in the porous region. The model has a uniform height of 200 × 10−6 m in 
z-direction. Note that the inlet and outlet parts of the actual micromodel are longer to 
ensure a fully developed flow profile at the beginning of the porous medium during the 
experiment. For the simulations, these parts of the channel have been shortened (and 
correspond to the dimensions given in the drawing) for efficiency reasons while a fully 
developed flow was still achieved by applying pressure boundary conditions at the inlet 
and the outlet ( pin = 1 × 10−3 Pa and pout = 0 Pa ). All remaining walls were set to no-
slip/no-flow. Again, water is used ( � = 1 × 10−3 Pa s).

As in the previous sections, we first generate a three-dimensional reference solution 
for comparison with the coupled model. This is achieved, after ensuring grid conver-
gence, by uniformly meshing the entire micromodel using more than 62 million regular, 
axis-parallel cells, such that each pore throat is discretized with 20 cells in all direc-
tions. Since the free-flow model of DuMux is not parallelized yet, we use the open-
source CFD tool OpenFOAM (Jasak 2009) for obtaining the stationary flow field in this 
case for sake of efficiency. A close match between the reference solution and the experi-
mental data of Terzis et al. (2019) is found, as shown in Appendix 1.

Fig. 8   Schematic of the micromodel used in the experiment (redrawn from Terzis et al. 2019) with dimen-
sions, origin of coordinates and flow direction. The model has a height in z-direction of 200 μm , the pillars 
are quadratic with l = 240 μm and evenly spaced throughout the porous domain
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For the coupled model, we simplify the micromodel geometry by reducing it to a 
two-dimensional plane where the z-coordinate and all velocities in this direction are 
omitted. Assuming a parabolic flow profile along the z-axis, Flekkøy et al. (1995) pro-
posed a drag term which accounts for the wall friction of the virtual frontal and rear-
ward boundary:

h is the virtual height of the model domain while c is a constant which determines 
whether the maximum velocity at the central plane of the channel at 0.5h ( c = 8 ) or the 
height-averaged one ( c = 12 ) is recovered. This approach has been applied successfully for 
a number of different applications with Hele-Shaw-type flow (Venturoli and Boek 2006; 
Laleian et al. 2015; Kunz et al. 2015; Class et al. 2020) and provides the best accuracy for 
h ≪ w where w is the width of the flow channel. Equation (24) is added as a momentum 
source term to the left side of Eq. (1).

We chose a factor of c = 8 to obtain the maximum, center-plane velocities because this 
corresponds to the experimental micro-PIV data and a comparison with the 3D Open-
FOAM results is straightforward since we just need to extract the center plane from the 3D 
simulation data rather than performing an averaging along the z-axis. Note that the cou-
pling between the free-flow domain and the pore-network model is still realized in terms of 
volumetric flow rates which can be approximated from the quasi-3D model by

n is a unit vector normal to the line s over which the flow is evaluated, extruded in the 
virtual z-direction by the domain’s height h . The factor 2/3 transfers the maximum velocity 
to a height-averaged one, assuming again a parabolic profile along the omitted z-axis.

In the following, the results of four different models will be discussed: the center-plane 
data ( z = 100 × 10−6 m ) of the three-dimensional reference model (OpenFOAM), the 
results of the quasi-3D model applied to the entire micromodel (DuMux) and those of the 
coupled model using either Eq. (7) or Eq. (11) (DuMux). The coupled model treats the 
free-flow channel and the triangular region with the Stokes equations (Eqs. 1, 2) while the 
porous domain is accounted for by the pore-network model. We used the quasi-3D model 
to determine the input parameter �pore = 30,983m−1 as described in Sect. 3. Interestingly, 
introducing the wall friction term fdrag leads to a nonlinear scaling of �pore over ri . Further 
investigation of this behavior is required in future work. The throat conductance including 
the pressure loss within the pore bodies,

with gij,t = 3.05 × 10−10 m3∕(Pa s) and g1∕2,i = g1∕2,j = 8.47 × 10−10 m3∕(Pa s) , was deter-
mined using again the quasi-3D model and the numerical upscaling approach described in 
the appendix of Weishaupt et al. (2019).

In contrast to the previous numerical examples, we employ the direct linear solver UMF-
Pack (multifrontal LU factorization, Davis 2004) to solve the linear system of equations 
in DuMux. This is feasible and actually more efficient than using the iterative approach 
described in Sect.  2.4 due to the system’s moderate size with 9,412,010 and 3,737,351 
degrees of freedom for the quasi-3D model and the coupled one, respectively. The 

(24)fdrag = −c
�

h2
v.

(25)Qquasi-3D =
2

3
h
∫s

(v ⋅ n)ds.

(26)gij =
(
g−1
ij,t

+ g−1
1∕2,i

+ g−1
1∕2,j

)−1

,
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corresponding CPU times were 11 min and 5 min on a single core of the same machine as 
before.

Figure  9 shows the center-plane velocity and pressure fields of the reference and the 
coupled model using Eq.  (11). As observed in the experiment (Terzis et  al. 2019, cf. 
Appendix 1), the flow enters the porous domain almost vertically on the left side of the 
porous medium, traverses it mainly parallel and re-enters the channel on the right side of 
the porous domain. A substantial fraction of flow passes through the triangular reservoir 
at the bottom of the model as this features less resistance than the narrow flow channels 
within the porous medium. The maximum resulting Reynolds number, both with respect to 
the free-flow channel and the one of the pore throats (considering the hydraulic diameter), 
is always below 1 × 10−3.

There is a high level of visual agreement between the reference and the coupled solu-
tion. Local velocity deviations in the free-flow channel of up to 4% can be observed, espe-
cially on the leftmost and rightmost vertical throat intersecting with the interface. This is 
probably due the velocity gradients which are highest at these positions and the sudden 
change of flow direction. In addition, the aspect ratio between the model height h and the 
flow cross-section changes from a value of 0.1 ( 200 μm

2000 μm
 ) in the channel to a less favorable 

value of 0.83 ( 200 μm
240 μm

 ) in the pore throats, which impairs the validity of Eq. (24).
The volumetric flow rates for each throat at the interface are given in Fig.  10. The 

throats are labeled from left to right from #1 to #81. The in- and outflow behavior across 
the interface is symmetrical and, as expected, no flow occurs at the horizontal center of the 
micromodel (#40). The coupled models’ results are almost identical to the ones of refer-
ence solution, regardless of whether Eq. (7) or Eq. (11) is used which means that the verti-
cal mass exchange between the free flow and porous medium is not significantly influenced 
by the slip velocity above the throats.

In Fig. 11, the central throat # 40 intersecting with the interface at y∕l = 0, x∕l = 80.5 is 
magnified and the velocity vectors of the 3D reference, the quasi-3D and the coupled mod-
els are shown. The main channel flow slightly dips into the throat cavity on the left just to 
re-enter the main channel on the right. There is no net mass flux across the interface. This 

(a) referencev (b) reference p

(c) coupled v (d) coupled p

Fig. 9   Velocity and pressure fields for the micromodel setup. The center-plane ( z = 100 × 10−6 m ) velocity 
(magnitude) and pressure fields of the 3D reference solution obtained with OpenFOAM are shown in (a) 
and (b). The corresponding results of the coupled model using the novel slip condition are given in (c) and 
(d) where the one-dimensional elements of the pore network have been extruded for visualization purposes. 
Note that the pore throats in the coupled model show averaged velocities based on Eq. (4) which are by 
implication smaller than the peak free-flow velocities at the associated interface
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flow behavior is generally reflected by all models. Using Eq. (11) instead of Eq. (7) in the 
coupled model noticeably improves the agreement with the reference solution’s vectors, 
both in magnitude and orientation.

The vertical velocity component of both coupled models is essentially determined by 
the coupling condition for the conservation of momentum in normal direction (Eq. 6) and 
is thus more or less identical corresponding to our previous findings in Fig. 10. The black 
vectors feature strongly decreased x-components due to the no-slip condition at the cou-
pling interface yielded by Eq. (7) for this type of geometry.

The same pattern can be observed in Fig. 12 which shows a close-up of the two left-
most throats at the interface. Here, we see a pronounced downward flow from the free-flow 
channel into the porous domain. Again there is a much better match with the reference 
solution if the slip velocity is taken into account using Eq. (11).

Table  3 summarizes the normalized errors for the free-flow channel and the triangu-
lar region of micromodel setup. In the first row, the 3D center-plane results (OpenFOAM) 

1 11 21 31 41 51 61 71 81
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Fig. 10   Pore-local volume fluxes. Discrete volumetric flow rates at all throats intersecting with the interface 
for all numerical models, normalized by the maximum flow rate of the 3D reference model (OpenFOAM). 
“new” refers Eq. (11), “old” to Eq. (7)

Fig. 11   Near-interface flow field. Close-up of the interface region at the central throat ( x∕l = 80.5, y∕l = 0 ). 
The yellow, purple and black velocity vectors correspond to the quasi-3D model, the coupled model 
considering Eq. (11) and the coupled model considering Eq. (7). The opaque white vectors with con-
tours (barely visible as they mostly overlap with the quasi-3D vectors) correspond to the 3D center-plane 
( z = 100 × 10−6 m ) results of OpenFOAM
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serve as reference solution. As seen in the last column, the largest portion of the error 
originates from the quasi-3D simplification (here the quasi-3D free-flow model is applied 
to the entire geometry).

As explained above, the coupled model employs the quasi-3D model in the  free-flow 
channel and in the triangular region and the relevant input parameters �pore and gij have 
been determined using the quasi-3D model. For sake of comparability, we therefore con-
sider the latter (applied to the whole geometry) as a reference for the coupled models in the 
second row of Table 3 and obtain a benefit for using the novel slip condition (Eq. 21) of 
�v = 2.52 and �p = 1.25 . For the entire free-flow channel, Rebulk∕Rethroat = 12.25 ( Rethroat 
based on the mean velocity of the throats at the interface and their hydraulic diameter) for 
which we would expect slightly higher values of � according to Fig. 4. However, the flow 
across the interface is not uniform (see Fig. 10) and Rebulk∕Rethroat = 1.87 for the leftmost 
and rightmost throat, for which even lower values of � were found in Fig. 4. The smaller 
an interfacial throat’s distance from the center x∕l = 80.5 , the lower Rethroat and the more 
favorable the conditions for applying Eq. (11) which explains the results for � ranging in-
between the bounds presented in Fig. 4.

Finally, Fig. 13 sheds some light onto the horizontal flow conditions within the free-
flow channel, the porous medium and the triangular region at the vertical center line of 
the micromodel. Depicted are the normalized horizontal velocities at x∕l = 80.5 and the 
integral volume flows Q at the throats directly left to the center line at x∕l = 79.5 , like-
wise normalized. As the pore-network model only yields averaged velocities within the 
pore throats, vx is only drawn in the free-flow channel and the triangular region, where it 

Fig. 12   Near-interface flow field. Close-up of the interface region at the two leftmost throats 
( 0 ≤ x∕l ≤ 3, y∕l = 0 ). The yellow, purple and black velocity vectors correspond to the reference (quasi-3D) 
model, the coupled model considering Eq. (11) and the coupled model considering Eq. (7). The opaque 
white vectors with contours (barely visible as they mostly overlap with the quasi-3D vectors) correspond to 
the 3D center-plane ( z = 100 × 10−6 m ) results of OpenFOAM

Table 3   Normalized errors for 
the free-flow channel and the 
triangular region of micromodel 
setup

The values of err
v
 and err

p
 (Eq. 22) are given both with respect to the 

3D center-plane solution (OpenFOAM) and the quasi-3D solution 
(DuMux)

References Coupled 
(Eq. 11)

Coupled (Eq. 7) Quasi-3D

err
v

err
p

err
v

err
p

err
v

err
p

1 × 10
−2 (–)

3D Center plane 2.80 0.46 3.37 0.47 2.62 0.44
Quasi-3D 0.66 0.04 1.67 0.04 – –
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matches almost perfectly the solution of the quasi-3D model. Both coupled models and the 
quasi-3D one also give rise to very similar integral volume flows within the throats, which 
deviate by around 6% from the values of the 3D simulation. This can be explained by the 
aforementioned unfavorable aspect ratio of 0.83 in the pore throats which impairs the accu-
racy of Eq. (24) used for the quasi-3D model from which subsequently also the throat con-
ductances were derived by numerical upscaling, as described previously. The inset image 
on the lower left of Fig. 13 shows, as expected, a higher value of vx right at the interface 
when Eq. (11) is used in the coupled model.

In summary, this section showed how the coupled model can be applied to recalculate a 
microfluidic experiment. We considered the results of a fully resolved 3D simulation and 
the one of a simplified quasi-3D model for comparison with the coupled model. The latter 
also made use of the quasi-3D approach in the free-flow regions. The coupled model was 
more than twice as fast as the quasi-3D model applied to the entire domain while providing 
a high degree of accuracy, especially when making use of Eq. (11).

6 � Conclusion

In this work, we have extended and improved the hybrid-dimensional coupled model of 
Weishaupt et al. (2019) where only two-dimensional setups were considered and the cou-
pling conditions for tangential momentum transfer would effectively yield no-slip condi-
tions for throats oriented orthogonally with the coupling interface. Here, we introduced 
a novel condition for pore-scale slip and considered three-dimensional computational 
domains. The accuracy of this condition was assessed in detail on the example of a single 
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Fig. 13   Horizontal velocity profiles and volumetric fluxes over height. Velocity profiles vx over y at 
x∕l = 80.5 and discrete volumetric flow rates at x∕l = 79.5 for all numerical models, normalized by the 
maximum values of the 3D reference model (OpenFOAM). The coupled model only features continuous 
velocities in the free-flow channel and the triangular region. “new” refers Eq. (11), “old” to Eq. (7)
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pore intersecting with a free-flow domain under various geometrical settings and flow con-
ditions. The slip condition can reduce the normalized error within the free-flow domain by 
a factor of more than five, provided the flow through the intersecting pore does not sub-
stantially influence the free-flow velocity field, i.e, Rebulk∕Rethroat > 10 . These findings also 
hold when the coupled model is applied to a complex, three-dimensional random network 
coupled to a free-flow channel. Weishaupt et al. (2019) used a direct linear solver due to 
the poorly conditioned monolithic system matrix. We lifted this constraint here be apply-
ing an iterative linear solver in combination with a simple preconditioning strategy based 
on the Uzawa algorithm (Ho et  al. 2017). Following the first promising results obtained 
here, we will investigate further ways to improve the linear solver, such as proposed by 
Kuchta et al. (2018), while also aiming for parallelization. In addition, alternatives to our 
monolithic coupling scheme will be investigated (Bungartz et al. 2016; Jaust et al. 2020). 
The limitation to free-flow grids conforming with the discrete pore bodies at the coupling 
interface could be addressed in future work by considering mortar techniques (Song et al. 
2013; Mehmani and Balhoff 2014).

In the last section of this work, we applied the coupled model for the recalculation of a 
microfluidic experiment (Terzis et al. 2019). Here, the coupled model’s results were in high 
accordance with the numerical reference solution and the proposed slip condition again 
proved beneficial.

In summary, the coupled, hybrid-dimensional model is an interesting and efficient 
option for the simulation of coupled systems of free flow over a permeable medium. It can 
be certainly used as a powerful design tool during the optimization of microfluidic experi-
ments as well as in industrial applications providing accurate results in a timely manner.
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Appendix 1: Comparison of 3D Simulation Results with Micro‑PIV 
Experimental Data

Figure  14 is a reproduction of Fig.  7a presented in Terzis et  al. (2019), using the same 
experimental data and color scheme. In Fig.  14c, the results of the micro-PIV measure-
ments are shown in terms of vy and the velocity vector fields for four different locations 

http://creativecommons.org/licenses/by/4.0/
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A, B, C and D, as indicated in Fig. 14a. Figure 14b displays the corresponding simulation 
results (OpenFOAM) which show a very good agreement with the experimental data in a 
qualitative sense, reproducing the same distinct flow patterns at the various locations: in 
region A, a pronounced inflow from the free-flow channel into the porous structure can be 
observed which diminishes in streamwise direction. Region C basically shows a mirrored 
flow field as the fluid leaves the porous medium and re-enters the channel symmetrically 
compared to A. Here, the vertical flow intensity increases again in streamwise direction. 
In region B, at the center of the porous domain, no net influx or outflux occurs. The fluid 
crosses the interface in a downwards motion on the right sides of the solid blocks (red 
spots) and returns to the free flow channel at left sides of the blocks (blue spots). Region D 
lies inside the porous domain and features mainly parallel flow in x-direction.

In Fig.  15a, a more quantitative comparison is performed. Here, vx is averaged in 
x-direction between 75 ≤ x∕l ≤ 85 along a vertical column, as shown by area E in Fig. 15b. 
Both the experimental and numerical data are given and the graphs are normalized by the 
respective maximum values in the free-flow region. A very good fit can be found, both 
qualitatively and quantitatively. The local deviations can be explained by measurements 

(b) (c)

Fig. 14   Comparison of flow fields obtained by numerical simulation with OpenFOAM (b) and micro-PIV 
measurement results (c, reproduced from the original data of Terzis et al. 2019). The regions A, B, C and D 
are shown in (a)
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Fig. 15   Experimental and numerical velocity profiles. a Comparison of averaged velocity profiles 
( 75 ≤ x∕l ≤ 85 ) between simulation (OpenFOAM) and experiment. The original data of Terzis et al. (2019) 
were used. vx is averaged in x-direction between 75 ≤ x∕l ≤ 85 at different locations of y, see area E in (b). 
c Camera image of a pillar within the porous domain showing the surface roughness of the pillar as a poten-
tial source of error
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Fig. 16   Experimental and numerical flow angles. Comparison of the flow angles � close to the interface 
between free flow and porous medium at y∕l = 0.5 (a) and y∕l = 0.1 (b) for the simulation and the experi-
ment. The original data of Terzis et al. (2019) were used
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uncertainties (Terzis et  al. 2019) or small-scale structural differences between the actual 
micromodel geometry and the computational domain, such as surface roughness (Silva 
et al. 2008) which is not captured by the numerical model. While Fig. 15c shows that the 
pillars of the micromodel are indeed not entirely smooth and that the corners are slightly 
rounded, the numerical model only considers perfectly smooth squares with sharp corners. 
This could also explain the local deviations of flow angles � close to the interface between 
the free-flow channel and porous medium, as presented in Fig. 16. A detailed analysis of 
the impact of the pillars’ rounded edges is beyond the scope of this work and should be 
addressed in future studies.

Figure 16 shows a symmetric characteristic of the flow angles due to the inflow into the 
porous medium and the outflow back into the free flow channel. On the left, the velocity 
vectors feature a negative inclination as the flow enters the porous domain while the same 
angles with opposed sign can be found on the right side, where the flow returns to the free 
flow channel. The local oscillations are caused by the same up- and downwards movement 
of the flow between the pillars as explained for region B in Fig. 14. The angles are greater 
for y∕l = 0.1 , which is closer to the interface, as the free flow in channel senses a stronger 
influence of the porous medium compared to y∕l = 0.5.

In summary, the three-dimensional numerical model is able to reproduce the experi-
mental data adequately. The obtained reference solution is thus suited for comparison with 
the reduced model’s results as described in Sect. 5.
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