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Abstract
This paper presents the development of a model enabling the analysis of rarefied gas flow 
through highly heterogeneous porous media. To capture the characteristics associated with 
the global- and the local-scale topology of the permeable phase in a typical porous medium, 
the heterogeneous multi-scale method, which is a flexible framework for constructing two-
scale models, was employed. The rapid spatial variations associated with the local-scale 
topology are accounted for stochastically, by treating the permeability of different local-
scale domains as a random variable. The results obtained with the present model show that 
an increase in the spatial variability in the heterogeneous topology of the porous medium 
significantly reduces the relevance of rarefaction effects. This clearly shows the necessity 
of considering a realistic description of the pore topology and questions the applicability 
of the results obtained for topologies exhibiting regular pore patterns. Although the present 
model is developed to study low Knudsen number flows, i.e. the slip-flow regime, the same 
development procedure could be readily adapted for other regimes as well.
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1 Introduction

When the density of a gas is very small, or when it is forced through a very small 
channel, the gas can no longer be described using a continuum representation. In this 
case, one says that the flow is rarefied. Knudsen (1909) observed this rarefaction effect 
already in 1909, when he studied the flow of a gas driven through a tube at low pressure. 
He found that the flow rate differed from the one predicted by the Poiseuille formula, 
which is based on theory governing flow of continuous media. Another situation where 
a gas does not behave as a continuum is when it flows through channels where the mean 
free path of the gas molecules is comparable to the dimensions of the channel. The 
classification of rarefaction, in terms of the Knudsen number, Kn , which is defined as 
the ratio of mean free path to the characteristic dimensions of the channel, presented 
in Barber and Emerson (2006) tells us (i) that the flow is rarefied when Kn ≳ 10−3 , (ii) 
when 10−3 ≲ Kn ≲ 10−1 , the flow is in the slip-flow regime and continuum theory incor-
porating the slip flow boundary condition is applicable, (iii) for 10−1 ≲ Kn ≲ 101 , the 
flow is in the transition regime in which continuum theory is not applicable, and (iv) 
for Kn ≳ 101 , the flow is said to be in the free molecular regime, which admits the col-
lisionless Boltzmann equation to govern the flow behaviour.

In a porous medium, the fluid percolates through narrow channels and even more 
narrow constrictions, at which the pressure, consequentially, drops markedly. This 
means that gas rarefaction likely occurs when gas flows through a porous medium, and 
this is an event occurring in many applications such as gas production, storage and sepa-
ration, catalytic reactions in low-porosity ceramics and filtration in medical applications 
(Johansson et al. 2018). In general, quantified prediction of rarefied flow through a given 
porous medium requires a realistic and thus highly detailed representation of the flow 
domain. Recently, new imaging techniques have made it possible to capture the topol-
ogy of such domains (Maire and Withers 2014). Unfortunately, the models used to study 
rarefied gas flow become computationally expensive to solve even for well-described 
and simplistic types of topologies. This is also even more pronounced if the transition 
to rarefied flow is resolved with high accuracy by using kinetic theories based on the 
Boltzmann equation (Kalarakis et al. 2012; Pavan and Oxarango 2007) and its derived 
methods, such as the Bhatnagar–Gross–Krook kinetic equation (Germanou et al. 2018; 
Wu et al. 2017). Examples of some topologies that have been investigated can be found 
in Lasseux et  al. (2014) where regularly packed balls were considered and in Colin 
(2005), where well-defined patterns of micro-channels are considered. The relevance 
of constrictions was highlighted in Zheng et al. (2016), studying the regular multi-scale 
Sierpinski carpet type of topology. Related to this, several studies have investigated the 
effect of rarefaction in topologies defined by simple regular patterns (Yang and Weigand 
2018) and topologies with self-affine fractal nature (Zheng et  al. 2013; Wu and Chen 
2016). It has also been shown that the effect of rarefaction, i.e. how much does the flow 
differ from what would be expected from a continuum theory, cannot be explained by a 
simple parameter such as a representative pore size. Instead, it also depends on porosity 
(Meghdadi Isfahani 2017), heterogeneity (Zheng et al. 2017; Germanou et al. 2018) and 
anisotropy (Wang et al. 2016; Germanou et al. 2018), which doubtlessly complicates the 
analysis of rarefied gas in porous media. This underlines the importance of considering 
the structure of the pore topology, which significantly affects the behaviour of the flow 
(Yang and Weigand 2018), preventing a universal description to be developed (Kalara-
kis et al. 2012).
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There are a few recent publications considering rarefied gas flow through porous media 
with heterogeneous topology. For instance, Germanou et al. (2018), Wu et al. (2017) and 
Lasseux et al. (2016) considered topologies consisting of a randomly packed collection of 
two-dimensional balls, Kawagoe et  al. (2016) considered a random packing of spheres, 
Naraghi and Javadpour (2015) studied randomly generated topologies, and Wang et  al. 
(2016) considered topologies reconstructed from measurements. The objectives and main 
contributions of the present work have, therefore, been specified as (i) to investigate in 
detail the importance of considering the random variations of the topology of the porous 
medium, both for qualitative and for quantitative predictions, when studying rarefied gas 
flow through it, and (ii) to propose a modelling framework that permits adapting existing 
models to account for these variations. To this end, a stochastic two-scale model is pro-
posed here.

Conceptually, a good starting point for developing a two-scale model can be found in 
the successful use of the volume averaging method in the study of rarefied gas flow in 
porous media; see e.g. Lasseux et al. (2014, 2016) and Jin and Chen (2018). To find exam-
ples in which a heterogeneous porous medium has been explicitly considered, however, 
one must resort to the more prolific studies of the random nature of the non-rarefied (pres-
sure driven) flows in porous media; see, e.g. Ricciardi et al. (2005), Nordlund et al. (2006), 
Selvadurai and Selvadurai (2010), Guilleminot et al. (2012) and Selvadurai et al. (2014). 
The advantage of using these techniques is that they are well tested, and thus we know that 
they are correct. As most of the available two-scale models, these are formulated as a com-
bination of a global problem considering the macro-scale features and a local problem con-
sidering the micro-scale features. In this way, the global problem can be discretised using 
a coarse grid, which only needs to resolve the long wavelength variations induced by the 
macro-scale topology. This does, however, require permeability values obtained by solving 
problems defined at small, highly resolved domains, including the micro-scale details.

When working with highly heterogeneous porous media, however, these “small” 
domains must actually be rather large if they are expected to be representative of the whole 
domain of study. Unfortunately, when discretised, this may lead to a system of equations 
too large to be manageable in practice. This can be circumvented, e.g. by applying the 
approach presented in Nordlund et al. (2006), Guilleminot et al. (2012) and Pérez-Ràfols 
et al. (2016), which also is adopted here. In this approach, not one, but a number of small 
local-scale domains are sampled even though these, individually, are not considered to 
represent the statistics of the original topology. The variation within the sampled set of 
domains is included by considering their permeabilities as a random variable. This is the 
way the influence of the micro-scale topology which, spatially, varies significantly in per-
meability is treated in this type of approach. This means that the effect of the highly hetero-
geneous porous medium can be efficiently homogenised and included in the global prob-
lem, which solution can be easily computed. This does, however, imply that a quite large 
number of local-scale domains must be considered before convergence of the distribution 
can be observed, and this makes it a rather demanding problem numerically.

Since the objective of this work is to investigate the importance of considering the ran-
dom variations of the topology of the porous medium, and not to improve the fundamental 
description of rarefied gas flow, only the most simplistic underlying physics will be con-
sidered. For the model developed here, we will, therefore, consider the slip-flow regime 
10−3 ≲ Kn ≲ 10−1 . Indeed, with a model constructed in a similar way as the one in Las-
seux et al. (2016), we can obtain coefficients, e.g. permeability, intrinsic to the topology, 
which can be interpreted in a stochastic manner. We stress, however, that a similar two-
scale stochastic framework could be constructed from other local-scale models that, for 
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instance, describe the slip flow differently, concern other types of rarefied flow or even 
include more complex physics; see e.g. Moyne and Christian (2003), Charrier and Dubroca 
(2004), Wu et al. (2017) and Germanou et al. (2018).

The remainder of this paper is organised as follows: firstly, in Sect. 2, a reference prob-
lem to aid the presentation is introduced. Then, the underlying physics and the mathemati-
cal model will be presented in Sect. 3. Thereafter, in Sects. 4 and 5, the proposed two-scale 
model and its stochastic extension will be introduced. Lastly, the interplay between rarefac-
tion and variability of the topology of the porous medium will be discussed in Sect. 6, and 
a closure of the paper will be given in Sect. 7.

2  Benchmark Topology

For the numerical simulations performed by means of the stochastic two-scale model 
developed in this work, we have chosen a collection of randomly packed balls, to represent 
a benchmark for topology of heterogeneous porous media. To this end, we have chosen to 
use the topology depicted in Fig. 1.

This particular collection of balls was measured with X-ray microtomography, using a 
Zeiss Xradia Versa 510 system. The sample consists of 200 steel spheres with diameter 
2.0 mm randomly packed inside a PMMA tube with inner diameter 14 mm. The full height 
of the bed is 10.2 mm, resulting in a packing ratio of 0.53. The steel spheres (balls) are 
designed for use in bearings and has a well-determined uniformity and size distribution 
specified by the manufacturer. The scanning was carried out with an X-ray tube voltage 
and output of 160 kV and of 10 W, respectively. The field of view (FOV) was 15.2 mm, 
and the spatial resolution in terms of voxel size 14.9 μ m. The total number of projection 
images was 1601, acquired with and exposure time of 14 s, resulting in a total scan time of 
approximately 7 h.

Fig. 1  A visualisation of the original measurement of 200 randomly packed 2.0-mm-diameter balls, 
obtained using X-ray microtomography (a), from which the set of local-scale topologies used to describe 
the problem’s stochastic nature was sampled and adapted for the numerical solution procedure. The random 
nature of the packed bed becomes clearer when looking at the centre cross section of the reconstructed vol-
ume (b, c)
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As stated above, the diameter of the balls is 2.0 mm. We have, however, applied a 
scaling of the topology to match the requirements of the current investigation. More 
precisely, we have taken samples from the measurement depicted in Fig. 1, to construct 
the flow domains for the local-scale problem presented in Sect. 4.2. For the numerical 
analysis of the effects of rarefaction and variability of the topology, the samples were 
scaled so that the side l of the cubical local-scale domain is equal to the radius of the 
balls. A motivation for this choice will be given in Sect. 4.

A collection of randomly packed balls was chosen as a benchmark topology because 
it is simple, but still exhibits the random spatial variation expected in a heterogeneous 
porous medium. As such, it can be used to illustrate the applicability of the model and 
it also makes it possible to study the influence of the spatial variability of the topology 
on the effect of rarefaction. It should, however, be emphasised that the modelling frame-
work developed herein can be applied to study the flow of rarefied gases through other 
more complex types of heterogeneous porous media, provided that the due assumptions 
are met. Moreover, when considering more complex geometries, the random variations 
exhibited by the porous medium can only be expected to be more influential than in the 
simpler geometry considered here.

3  Modelling Rarefied Gas Flow

Let us consider the steady-state regime of (slightly) rarefied gas flow with Knudsen 
numbers 10−3 ≲ Kn ≲ 10−1 . To this end, the Stokes momentum equations for compress-
ible flow and the continuity equation will here be combined with a first-order slip-flow 
boundary condition. Indeed, 

 where we have assumed that inertia forces are small compared to the viscous ones, that the 
flow is in steady-state, isothermal conditions and that the fluid can be modelled as an ideal 
gas with constant viscosity ( � ) and obeying the well-known constitutive relationship (2) 
between density and pressure

where M is the molar mass in kg/mol, T is the temperature in K and R = 8.314J∕(molK) 
is the universal gas constant. In (1), p, v , � and � are the pressure, velocity, density and 
dynamic viscosity of the fluid, which occupies the volume Vf  , and � =

(
2 − �v

)
∕�v , where 

�v is the accommodation coefficient. In the first-order slip-flow boundary condition, at the 
interface �sf  between the solid and the fluid (1c), � is the mean free path of the molecules 
given by

(1a)−∇p + ��
2
v +

�

3
�(�⋅v) = 0, inVf ,

(1b)�⋅(�v) = 0, inVf ,

(1c)v = −��(� − nn)⋅
(
n⋅

(
�v + �v

T
))
, on�sf ,

(2)� = Mp∕(RT),
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where kB is the Boltzmann constant, T is the temperature and � is the collision diameter. 
Moreover, the unit normal vector at �sf  is denoted as n and � indicates the identity matrix.

Together with adequate boundary conditions, (1) can be solved for the pressure (p) and 
the velocity (v), which approximately describe the state of the rarefied gas flow. Due to 
the small size of the pores, however, a very fine mesh would be required and solving the 
problem becomes extremely computationally intensive, even when considering fairly small 
domains. For this kind of situations, a two-scale formulation can provide for the solution. 
This will be the topic of the following section.

4  The Two‑Scale Model

In this section, a two-scale model is built upon the rarefied gas flow model, introduced in 
the previous section. This two-scale model will, as we will see, form the basis for the two-
scale stochastic model, presented in Sect. 5. The present model will be based on the hetero-
geneous multi-scale method (HMM), which is a fairly general framework that can be used 
to construct two-scale models for various different physics; see e.g. E and Engquist (2003) 
for details. The reason for selecting this framework before more rigorous and well-estab-
lished methods such as the volume averaging method employed in Lasseux et al. (2016) 
or the two-scale homogenisation technique, see e.g. Lukkassen et al. (2002), is that it is as 
readily applied and more flexible at the same time. Indeed, the proposed modelling frame-
work can be adapted to other underlying base models, by following the same procedure as 
we present here. Also, it avoids certain assumptions that would be in contradiction with the 
stochastic part of the model introduced in Sect. 5. For instance, the two-scale homogenisa-
tion technique demands periodicity and the volume averaging method requires the local-
scale domain to be large compared with a typical size of the pores. We note, moreover, that 
this type of framework has previously been applied to a similar problem; see Pérez-Ràfols 
et al. (2016). We will, however, show that the resulting model in many ways is equivalent 
to the model derived by Lasseux et al. (2016), which is based on the more rigorous volume 
averaging method.

A schematic illustration of how the present two-scale model is constructed is depicted in 
Fig. 2. As usual, when constructing a two-scale model, global- and local-scale domains are 
defined. The global-scale domain covers the whole topology of interest, and, as indicated 
by the red grid, a coarse mesh is applied. Effectively, this means that only the large features 
of the topology are considered here, whereas the fine details of the topology are considered 
at the significantly smaller local-scale domain, with mesh resolution high enough to cap-
ture them.

Following the HMM framework, two steps are taken here to couple the global and 
the local scale. That is, (i) the global-scale problem is defined with a set of coupling 
variables—in this case permeabilities which summarise the effect of the fine details of 
the topology in an averaged sense and (ii) these permeabilities are computed based on 
the solution of the local-scale problem, defined on a small highly resolved local-scale 
domain. The global-scale model governs the fundamental physical nature, and in the 
case of fluid flow, it is a standard practice to employ a mass conservation criterion. 
When constructing the local-scale problem for the present work, the gas rarefaction 

(3)� =
kBT

√
2��2p

,
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physics is described by combining the Stokes momentum equation with the slip-flow 
boundary condition and the continuity equation, i.e. (1). One must, however, pay special 
attention when describing the boundary conditions for the local-scale domain so that the 
interfaces between the local- and the global-scale domains are described in a consistent 
manner.

In the following subsections, the two aforementioned steps will be developed to 
model rarefied gas flow through heterogeneous porous media. To this end, it will be 
assumed that L >> l , where L is the characteristic size of the global-scale and l char-
acterises the size of the local-scale domain. This results in that the global-scale vari-
ables vary slowly and that they, therefore, can be assumed constant inside each local-
scale domain. In the majority of the available two-scale models for flow through porous 
media, it is also required that l >> dp , where dp represents the characteristic diameter 
of the pores. This is to ensure that the results obtained from two different local-scale 
domains would be similar. One of the advantages with the present stochastic two-scale 
approach, which is based on the HMM, is that rather large variations in the local-scale 
response (due to the stochastic nature of the topology) can be considered and having 
l ≳ dp is, therefore, sufficient. The numerical investigation includes a study of the rar-
efaction effect associated with the size of the channels that the voids between the balls 
constitute. This is done by analysing the effect of l, and the results are presented in 
Sect. 6.

Fig. 2  Schematic illustration of the two-scale model. The original flow problem takes place in a large 
domain, of which a two-dimensional slide is depicted on the left. At this scale, this domain looks homoge-
neous. When zooming in, however, one sees that there is a rapid variation of the topology of the solid phase 
(dark areas) and fluid phase (light areas). In this zoomed image, a coarse global-scale mesh is defined, as 
depicted by the coarse grid in red. An example of a local-scale domain, Vf  , centred at �ijk , is highlighted in 
green. A three-dimensional representation of this domain is depicted on the right. The mass fluxes QI , in 
all three directions I = 1 , I = 2 and I = 3 , from and towards the neighbouring domains, are depicted with 
yellow arrows. Note that the directions and magnitudes of the arrows in the figure exemplify a given flow 
situation
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4.1  The Global‑Scale Problem

As stated previously, in the case of fluid flow, the associated global-scale problem is nor-
mally expressed as an equation describing conservation of mass. This is also the case here, 
and the discretised form is formulated by means of the finite volume method. To this end, 
a coarse grid is marked in red in Fig.  2, in which the elements are the local-scale cells 
where the mass-flow balance is imposed. More precisely, for the steady-state case consid-
ered here, mass-flow balance for a local-scale cell Vf  , centred at �ijk ∶=

(
X1i,X2j,X3k

)
 , will 

be equated as

where QI  indicate the net in- and out mass fluxes of the local-scale domain Vf  centred at 
�ijk , in each direction I = 1, 2, 3 . In order to compute these mass flow components, a law 
of the form of Darcy’s law is used. There are, however, various ways that can be applied to 
discretise such law, and for the present analysis, we have adopted the one in (5), in which 
only the diagonal terms of the permeability matrix are included, i.e. 

 where Pijk is the global-scale pressure defined as Pijk ∶= P
(
�ijk

)
 , KIijk is the permeability 

in the XI-direction of the local-scale domain Vf  , centred at �ijk , coloured in green in Fig. 2, 
�ijk ∶= �(Pijk) the fluid’s density at the pressure Pijk and l is the size of the domain. We note 
that we have here assumed that the domain is a cube with all three dimensions equal. Oth-
erwise, the term l should be replaced by Ao∕lp , where Ao is the area of the outlet and lp is 
the dimension in the direction of the pressure gradient.

The particular choice of law in (5) does not contain the off-diagonal terms ( KIJ , I ≠ J ) of 
the permeability tensor, meaning that a pressure drop in a given direction does not contrib-
ute to flow in the directions perpendicular to it. The reason for only considering the perme-
abilities in the main directions (by including only the diagonal terms KI ∶= KII ) is related 
to the construction of the local-scale domains, which is the same as in the model presented 
in Patir and Cheng (1978). A more detailed justification and an explanation of the implica-
tions of this choice is given in the end of Sect. 4.2.2. Note, moreover, that, despite we use 
a law of the form given in (5), we do not assume that Darcy’s law per se applies, as we will 
allow the permeability to be vary with pressure due to rarefaction effects.

By approximating the values of the pressure at the mid-grid nodes �i±
1

2
ij
 with the fol-

lowing expression

and analogously for the other directions, the fluxes in each direction in (5) become 

(4)Q1ijk + Q2ijk + Q3ijk = 0,

(5a)Q1ijk =
K1ijk

�
l
(
�
i−

1

2
jk
P
i−

1

2
jk
− �

i+
1

2
jk
P
i+

1

2
jk

)
,

(5b)Q2ijk =
K2ijk

�
l
(
�
ij−

1

2
k
P
ij−

1

2
k
− �

ij+
1

2
k
P
ij+

1

2
k

)
,

(5c)Q3ijk =
K3ijk

�
l
(
�
ijk−

1

2

P
ijk−

1

2

− �
ijk+

1

2

P
ijk+

1

2

)
,

(6)P
i±

1

2
jk
≈

Pi±1jk + Pijk

2
,
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 An equation for the global-scale pressure can now be obtained from (4) and (7) 

In the following section, we will describe and define the local-scale problem and how to 
obtain the fluxes QIijk and, thereafter the permeabilities KIijk , so that we can solve (8) for 
the global-scale pressure Pijk . We note that, since we will explicitly allow permeability to 
vary from cell to cell, the effects of porosity and velocity variations between cells will be 
implicitly considered, and Brinkman correction terms will not be necessary.

4.2  The Local‑Scale Problem

In this section, the local-scale problem, that needs to be solved in order to obtain the per-
meabilities KIijk from (7), which are required to solve (8) for the global-scale pressure Pijk , 
will be defined. But, before we present the details for this, we will elaborate on the require-
ments for obtaining KIijk.

At the global scale, each component KIijk of KI represents the permeability in the XI

-direction of the local-scale cell Vf  centred at �ijk . The spatial variation of the topology 
implies that obtaining KIijk would require solving as many local-scale problems as there 
are local-scale cells Vf  . In Sect. 5, we will present the stochastic model, which presents an 
effective way of avoiding this problem. Moreover, it should be noted that (7) is not a simple 
linear equation, and an approximation that the density’s variation is small enough to con-
sider it constant within each local-scale domain Vf  , i.e. �ijk will, therefore, be applied. This 
leads to that KIijk (approximately) can be determined as

where �IPijk =
(
Pi−1jk − Pi+1jk

)
 , with QIijk computed from the solution obtained by solv-

ing the local-scale problem (12). This implies that KIijk would depend on the pressure Pijk 
as well as �ijk and � . For a fluid which is iso-viscous and almost incompressible, a com-
bination of a non-dimensionalisation and a Taylor expansion of the permeability can be 
adopted to alleviate the need to compute KIijk for all the values of �IPijk and �ijk for the 
global-scale grid employed.

(7a)Q1ijk =
K1ijk

2�
l
(
�
i−

1

2
jk
Pi−1jk +

(
�
i−

1

2
jk
− �

i+
1

2
jk

)
Pijk − �

i+
1

2
jk
Pi+1jk

)
,

(7b)Q2ijk =
K2ijk

2�
l
(
�
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1

2
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(
�
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1

2
k
− �

ij+
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)
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1

2
k
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)
,

(7c)Q3ijk =
K3ijk
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)
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(
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)
,
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Let us now consider a full three-dimensional local-scale domain, such as the one illus-
trated to the right in Fig 2, which would be used to compute KIijk . Note that the boundaries 
�i , �o and �l , as specified in Fig 2 (right), are for the flow in the x1-direction. Since the per-
meabilities at other locations and in other directions are computed analogously by choosing 
the appropriate domain, the presentation will in the following be exemplified for K1ijk . At 
the local scale, the flow in the x1-direction is given by

where v1 = v1⋅�1 ( �1 being the unit vector in x1-direction) is the velocity of the fluid in the 
x1-direction and v1 is the solution to (12). Note that, in (10), the mass flow has been defined 
through integration of the velocity over the whole volume instead of along the output 
surface, hence the 1/l term. Due to the topology of the domain and the chosen boundary 
conditions, the two formulations are equivalent. The latter formulation is, however, more 
robust when employed for numerical computation, and it also compares better with other 
two-scale models. By (10) and by employing the approximation (6), the permeability as 
defined in (9) can be computed as

In order to obtain v1 , a model governing the flow through the local-scale domain is 
required. For this purpose, we have chosen to adopt the incompressible form of the model 
posed in (1), which together with the appropriate boundary is defined as 

 We do note that assuming that the density does not vary is not technically correct, since it 
is coupled to the pressure, which varies linearly through the domain. Despite that, provided 
the local-scale domains are much smaller than the global-scale geometry, the pressure drop 
inside a single domain can be expected to be small compared to its mean value. As a result, 
the density variation would also be small as compared to its mean value within the domain. 
Therefore, the error induced by assuming that the density is constant is expected to be 
small. The great simplification introduced by this extra assumption then justifies taking it. 
Also, �̄� is defined as the mean free path at the average pressure, p̄ , i.e.

(10)Q1ijk =
1

l ∫Vf

�ijkv1dVf ,

(11)K1ijk =
2�

(
Pi−1jk − Pi+1jk

)
1

l2 ∫Vf

v1dVf .

(12a)�⋅v = 0, in Vf ,

(12b)∇p = ��
2
v, in Vf ,

(12c)v1 = − 𝜉�̄�(� − nn)⋅
(
n⋅

(
�v + �v

T
))
, on 𝛤sf ,

(12d)p = P
i−

1

2
jk
, on �i,

(12e)p = P
i+

1

2
jk
, on �o,

(12f)n⋅�v = 0, on �l.
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The pressure boundary conditions at the inlet �i and the outlet �o ensure that the v1 compo-
nent of the solution v is determined correctly, but note that the approximation (6) is used to 
determine the values for P

i±
1

2
jk

 . At the sides of the cell that are neither the inlet nor the 
outlet, �l , a no-flow symmetry condition has been specified. A discussion on the validity of 
this boundary condition is given in Sect. 4.2.2.

4.2.1  Dimensionless Formulation of the Local‑Scale Problem

The local problem as posed in (12), and its variants in x2 - and x3-directions, can be used to 
compute the permeabilities Kn directly. However, since the global pressure (at each side of Vf  ) 
enters the problem via the boundary conditions, the local-scale flow components obtained 
from its solution would depend on the global pressure too. Since neither of them are known a 
priori, the local problems would then have to be solved for a whole range of mean pressures 
( ̄p ) and pressure pairs (P

i−
1

2
jk
,P

i+
1

2
jk
) , requiring a tremendous computational effort. To relax 

this problem, the independent- and dependent variables in (12) are made dimensionless by the 
scaling (14), which also include a translation of the pressure solution. Indeed, by introducing 
the scaling

into (12), we obtain 

 where ∇∗ indicates that the derivatives are taken with respect to x∗ . We note that the aver-
aged dimensionless mean free path can be expressed as

(13)�̄� =
kBT

√
2𝜋𝛿2p̄

,

(14)p∗ =
p − P

i+
1

2
jk

(
P
i−

1

2
jk
− P

i+
1

2
jk

) , v∗ = v ∕

(
P
i−

1

2
jk
− P

i+
1

2
jk

2

l

𝜇

)

, 𝜆∗ =
�̄�

l
, x∗ =

x

l
,

(15a)�
∗
⋅v

∗ = 0, in V∗
f
,

(15b)∇∗p∗ = �
∗2
v
∗, in V∗

f
,

(15c)v
∗
1
= − 𝜉𝜆∗(� − nn)⋅

(
n⋅

(
�
∗
v
∗ + �

∗
v
∗T
))

, on 𝛤 ∗
sf
,

(15d)p∗ = 1, on � ∗
i
,

(15e)p∗ = 0, on � ∗
o
,

(15f)n⋅�
∗
v
∗ = 0, on � ∗

l
,

(16)𝜆∗ =
kBT

√
2𝜋𝛿2l

�
p̄∗
�
P
i−

1

2
jk
− P

i+
1

2
jk

�
+ P

i+
1

2
jk

� ,



230 F. Pérez-Ràfols et al.

1 3

according to (13) and (14). Thus, although P
i−

1

2
jk

 and P
i+

1

2
jk

 , which are approximated by 
means of (6), do not appear explicitly in (15), they affect the solution through 𝜆∗ . Note that 
𝜆∗ also contributes to the nonlinearity of the local-scale problem as it includes the local-
scale variable p̄∗ , which represents the dimensionless mean value of the pressure within Vf .

Having solved (15), the permeability can be computed from the dimensionless form,

as K1 = l2K∗
1
 . The reason for the variation in K1 with Xijk resides in the definition of 𝜆∗ , and 

the way in which this dependency will be treated is presented in Sect. 4.2.3.

4.2.2  Comparison with the Volume Averaging Method

As we have stated previously, the method used here is less rigorous than other methods 
used for constructing two-scale methods such as homogenisation or the volume averag-
ing method. The choice of HMM was motivated by the fact that some assumptions of 
those methods are incompatible with the construction of the present model. For example, 
demands such as periodicity of the local-scale domain (needed for homogenisation) or that 
the typical pore size is much smaller than the local-scale domain (needed for the volume 
averaging method) are hard to reconcile with the large variation in permeability between 
neighbouring local-scale domains assumed in this work. As discussed in this section, how-
ever, the resulting local-scale problem is very similar to those obtained with the more rig-
orous methods. To show that, we compare the local-scale problem (15) and the problem 
(3.7) in Lasseux et al. (2016), which they obtained by using the volume averaging method.

Note first that our problem (15) can be seen as a projection of theirs in x∗
1
-direction, 

so that only K∗
1
 , and not the whole permeability tensor, is considered. This goes for the 

problems defined to obtain K∗
2
 and K∗

3
 too. From this point of view, the equations are equal 

if one interprets their D as v∗ and their d as p∗ − x∗
1
 . (a more explicit comparison for a 

similar case can be found in Pérez-Ràfols et al. (2016)). Note also that (3.7e) in Lasseux 
et al. (2016) is equivalent to (17) and that the periodicity condition (3.7d) is replaced by 
the combined symmetry and Dirichlet boundary conditions imposed here. The main differ-
ences between our formulation and the one in Lasseux et al. (2016) are, therefore, that we 
omit the off-diagonal terms of the permeability tensor and that the faces other than the inlet 
and outlet have no-flow condition instead of being periodic boundaries as in Lasseux et al. 
(2016). We shall now see, however, that these differences are not as notable as they seem.

In the present analysis, the local-scale domains, acquired from the X-ray microtomog-
raphy scan, are not periodic, as clearly seen in Fig. 3a. If this domain is not manipulated, 
this would impede imposing periodic boundaries in the faces other than the inlet and the 
outlet. Indeed, the fluid domain would not match at the periodic boundary. Due to the small 
size of the local-scale domain, as compared to the size of the balls, this is hard to solve 
unless the local-scale domain is mirrored. Such a mirrored domain was studied in Almqvist 
et al. (2011), where the authors compared local-scale problems including no-flow condi-
tions with the periodic local-scale problem obtained by homogenisation. They could show 
that, if the local-scale domain was mirrored, the two problems were equivalent. Moreover, 
the off-diagonal terms in their “flow-factor matrix” vanish, provided that the local-scale 
domain has been obtained by mirroring. This directly translates to the present three-dimen-
sional problem, and it means that the solutions to (15) and (3.7) in Lasseux et al. (2016) are 

(17)K∗
1 ijk

= ∫V∗
f

v∗
1
dV∗

f
,
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equivalent, provided that the local-scale domain in the periodic problem is constructed by 
mirroring.

Moreover, we note that, because of the rapid spatial change in permeability, flow perpen-
dicular to the global-scale pressure drop will arise in all global-scale simulations, thus reduc-
ing the possible error coming from the zero off-diagonal terms. Also, as shown in Almqvist 

Fig. 3  In (a), the permeable phase sampled from the measurement of the bed of random packed balls 
in Fig.  1, constituting an example of a local-scale domain. The dimensionless size of the domain equals 
the radius of the balls. In sub-figures (b–e), the colour map depicts the pressure ( p∗

J
 ) resulting from solv-

ing (20) (b) and (21) with J = 1 (c), 2 (d) and 3 (e). The streamlines correspond to the velocities ( v∗
J
 ), 

resulting from solving the same problems. The corresponding permeability values are K∗
1 (0)

= 7.5 ⋅ 10−4 , 
K∗
1 (1)

= 2.1 ⋅ 10−2 , K∗
1 (2)

= −2.9 ⋅ 10−3 and K∗
1 (3)

= 1.8 ⋅ 102
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et  al. (2011) and in Almqvist et  al. (2007, 2008) by means of another approach related to 
homogenisation, the off-diagonal terms do not significantly influence the global-scale solu-
tion, if the local-scale topologies do not exhibit distinct directionality. Actually, topologies 
with a directionality aligned with or perpendicular to the flow direction are intrinsically sym-
metric; thus, the off-diagonal terms are identical to zero in these cases.

4.2.3  Expansion of the Local‑Scale Problem in ��̄∗

In the previous section, we have shown that the permeability’s dependence on global-scale 
conditions resides in 𝜆∗ defined in (16). More precisely, these global-scale conditions are the 
global-scale pressure P and the temperature T. Since we are considering ideal gas flow under 
iso-thermal conditions, the temperature is just an input, the viscosity � is constant and density 
is given by the pressure, following the constitutive relationship (2). This effectively means that 
the global-scale pressure is the only variable that couples the scales. Next, we will present a 
methodology for how to fully decouple the scales. We start by noting that, in (15), 𝜆∗ appears 
in combination with � , i.e. as the product 𝜉𝜆∗ . In order to estimate the magnitude of this prod-
uct, one should recall that, in this work, only low Knudsen number flows are considered, i.e. 
10−3 ≲ Kn ≲ 10−1 . The Knudsen number can be expressed as

where dp , in this case, characterises the size of the voids between the balls. Now since 
𝜆∗ = �̄�∕l , where l is chosen such that l ≳ dp , it is clear that 𝜆∗ ≲ Kn . Since � is of order 
unity, we have that 𝜉𝜆∗ ≲ 10−1 . Therefore, 𝜉𝜆∗ is small enough to allow for expansions of 
the dependent variables v∗

1
 and p∗ in terms of it and is also what they did in Lasseux et al. 

(2016).
Indeed, 

 where Rv
m
 and Rp

m are the residuals of the expansions up to order m. We really want to 
stress here that the expansion considered here intends to capture only the effect of 𝜉𝜆∗ on 
the topology. Obviously, as the original equations are of first order in Kn , we do not claim 
that the model provides for an approximation of higher order for the behaviour of the gas.

Introducing (19) into (15) and requiring that the system must be valid for each order of 𝜉𝜆∗ 
independently, we find for J = 0

(18)Kn = �̄�∕dp = 𝜆∗ l∕dp,

(19a)v
∗ = v

∗
(0)

+

m∑

J=1

(
𝜉𝜆∗

)J
v
∗
(J)

+ Rv
m
,

(19b)p∗ = p∗
(0)

+

m∑

J=1

(
𝜉𝜆∗

)J
p∗
(J)

+ Rp
m
,

(20a)�
∗
⋅v

∗
(0)

= 0, in V∗
f
,

(20b)∇∗p∗
(0)

= �
∗2
v
∗
(0)
, in V∗

f
,

(20c)v
∗
(0)

= 0, on � ∗
sf
,
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 and, for J ≥ 1

 These problems are similar to (15), but as they do not include 𝜉𝜆∗ , they are independent of 
the global-scale pressure, making the global and the local scale fully decoupled. Thus, hav-
ing solved the virtual problems (20) and (21), the auxiliary dimensionless permeabilities 
K∗
I J

 , for each �ijk , can then be computed as

Thereafter, an approximation of the permeability K1 can be obtained by

as KI = l2K∗
I
 . Note that KI (0) = l2K∗

I 0
 represents the permeability without slip and the terms 

KI (J) = l2
(
𝜉𝜆∗

)J
K∗
I J

 , for J = 1, 2,… ,m , corrects for slip flow. We can, therefore, define 
rarefaction correction factors SI (J) = KI (J)∕KI (0) and write the permeability KI as

The advantage of expressing the effect of rarefaction in terms SI (J) instead of KI (J) is that 
the correlation between KI (J) and the former is less strong than with the latter. It is also on 
this basis that we neglect the correlation completely, while constructing the resulting sto-
chastic model, which then becomes much simpler.

(20d)p∗
(0)

= 1, on � ∗
i
,

(20e)p∗
(0)

= 0, on � ∗
o
,

(20f)n⋅�
∗
v
∗
(0)

= 0, on&� ∗
l
,

(21a)�
∗
⋅v

∗
(J)

= 0, in V∗
f
,

(21b)∇∗p∗
(J)

= �
∗2
v
∗
(J)
, in V∗

f
,

(21c)v
∗
(J)

= − (� − nn)⋅
(
n⋅

(
�
∗
v
∗
1(J−1)

+ �
∗
v
∗
1(J−1)

T
))

, on� ∗
sf
,

(21d)p∗
(J)

= 0, on � ∗
i
,

(21e)p∗
(J)

= 0, on � ∗
o
,

(21f)n⋅�
∗
v
∗
(J)

= 0, on� ∗
l
.

(22)K∗
I (J)ijk

= ∫V∗
f

v∗
I (J)

dV∗
f
.

(23)K∗
I
≈ K∗

I (0)
+

m∑

J=1

(
𝜉𝜆∗

)J
K∗
I (J)

(24)KI ≈ KI (0)

(

1 +

m∑

J=1

(
𝜉𝜆∗

)J
SI (J)

)

.
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4.2.4  A Realisation of a Local‑Scale Solution

Before presenting the stochastic two-scale model, we present an example of a local-scale 
result, with topology and solutions shown in Fig. 3. The topology of the permeable phase 
of the local-scale domain depicted in grey in Fig. 3a has been randomly sampled from the 
original measurement shown in Fig. 1 and its size is comparable to the radius of the balls. 
In Fig. 3b-e, the pressure p∗0 and velocity v∗0 of the virtual problem (20) and p∗J and v∗

J
 of 

(21), for J = 1 , 2 and 3, are depicted. These were obtained using COMSOL Multiphysics. 
A maximum element size of 0.033 has been used on the boundaries of the dimensionless 
local-scale domains, while the elements within the bulk were restrained to a maximum 
size of 0.13. The maximum growth rate in the transition between bulk and boundary was 
chosen as 1.18. This has led, in this particular case, to around 4 × 105 elements, although 
some of the domains were resolved with the double amount of elements. The reason for 
the smaller elements on the boundary surfaces and for the (relatively) small growth rate is 
to capture a more accurate representation of the velocity gradient close to the boundaries 
of the local-scale domain. Note that this is necessary in order to accurately capture the 
boundary condition (21c), which is the driving force of the flow. It has been shown to be 
quite challenging to accurately resolve this condition for several reasons, that is, (i) due to 
the fine mesh needed, (ii) the effect of measurement errors and irregularities on the surface 
(note that the curvature is particularly affected by those) and (iii) the cumulative nature of 
the error as J increases. One can, in fact, identify some oscillations in the resulting pres-
sures when inspecting closely Fig. 3, particularly in Fig. 3d.

Focusing now on the flow pattern, the case J = 0 depicted in Fig. 3b is the most intui-
tive as it has pressure-drop type of boundary conditions and as it reflects flow without rar-
efaction. It thus makes sense that the flow occurs from left to right, with the streamlines 
getting closer to each other when moving from the larger inlet to the smaller outlet. The 
others are harder to interpret as the driving force behind the flow is given by the boundary 
condition (21c). In Fig. 3d, for instance, one can clearly see that the main portion of the 
flow occurs along the boundary. One should notice that the absolute value of p∗J increases 
as J increases since, in general, ||�

∗
v
∗
J
|| >

||v
∗
J
|| which then translates into an increased pres-

sure. The same occurs with the magnitude of the velocity. In the non-scaled version of 
the problem, this increase can be shown to be of order 1/l. The scaling, not being able to 
capture the average velocity, cannot either fully erase this increase. The relevance of this is 
that, in order for any convergence to be expected in (23), we must have 𝜉𝜆∗ < 1 . This, how-
ever, should not be a problem in general, since we need 10−3 ≲ Kn ≲ 10−1 for the local-
scale problem to be valid. Recall that 𝜆∗ differs from the Knudsen number by a factor dp∕l , 
where dp is the characteristic size of the voids between the balls. In our case, dp∕l ≃ 10−1 , 
and the difference is a factor of ten, but in other arrangements or porous media, this is a 
concern that one should be aware of.

5  The Stochastic Two‑Scale Model

The model described in Sect. 4 allows for computing the flow in a two-scale manner. Fol-
lowing it literally, however, would imply computing the permeability for each of the local-
scale domains Vf  , defined by the elements of the global-scale grid. This is, obviously, not 
practical from a computational point of view, but most importantly, it is not necessary. 
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This can be explained as follows. Despite that the permeability can vary greatly between 
each local-scale domain, the values will follow a certain probability distribution, governed 
by the structure of the porous medium. The approach adopted for the stochastic two-scale 
model here is, therefore, to compute the permeability for as many local-scale domains as 
it takes to obtain a representative probability density function (PDF), which describes the 
variability with respect to the topology. Subsequently, the PDF is used to randomly gener-
ate a permeability distribution occupying each element of the global-scale domain, which 
in a statistical sense represents the original one. Note that this is actually more informative 
than a deterministic solution, since it describes how the flow through a whole set of statisti-
cally equivalent realisations varies and not just how the flow through one particular realisa-
tion varies. These ideas are elaborated upon within this section, which first describes how 
the local-scale permeability variability can be characterised and how the associated PDF’s 
can be obtained. Thereafter, the recipe for constructing the global-scale model is presented.

5.1  Characterisation of Local‑Scale Variability

As stated previously, the permeability is regarded as a random variable given by a PDF, 
which describes its variability with respect to the local-scale topology. We remark that the 
size (l) of scaled domain, obtained by scaling the original measurement depicted in Fig. 1, 
is of the same order as the diameter of the balls ( dp ). This implies that there is a rather high 
possibility that the resulting permeabilities exhibit a strong correlation with each other. 
There are, however, cases where the correlation is expected to be small. For example, if the 
centre of one of the balls is located close to the centre of one of the boundaries, then the 
permeability in the direction normal to the boundary surface would be minimal, while the 
permeabilities in the other direction may be rather large in comparison.

In the present work, nine local-scale domains (such as the one exemplified in Fig. 3) 
were extracted from the original domain in Fig. 1 and then scaled to one of the four differ-
ent sizes l = 18 , 32, 56 and 100μ m. Thereafter, 27 permeabilities (in all three directions for 
each of the nine local-scale domains) were computed, as described in (24). Because of not 
considering the correlation, a single PDF for the permeability distributions in all three 

Fig. 4  Histograms for K∗
I 0

 , SI (1) , 
SI (2) and SI (3) , established from 
27 realisations (nine cells times 
three directions). The purple line 
represents the best normal or 
log-normal PDF fit. The relevant 
means are logKI (0) = −6.137 , 
log SI (1) = 2.746 , SI (2) = 22.651 
and log SI (3) = 11.395 , while 
the standard deviations are 
slogKI

= 2.7 , slog SI (1) = 1.0 , 
sSI (2)

= 360 , slog SI (3) = 1.8 . The 
errors on the means are 0.52, 
0.19, 70 and 0.34, respectively
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directions could be established based on the 27 resulting permeabilities. The results in 
terms of K∗

I (0)
 , SI (1) , SI (2) and SI (3) , are summarised in the histograms depicted in Fig. 4.

It is clear that the spread is quite large (notice that the only one with linear x-axis is 
SI (2) ), which, of course, is to be expected due to the small size of the domain. In order to 
utilise these results to generate permeabilities and distribute them over the global-scale 
mesh, we have chosen to fit normal (Gaussian) distributions whenever possible. In cases 
where normality could not be assumed, i.e. for K∗

I (0)
 , SI (1) and SI (3) , log-normal distribu-

tions were used instead. This choice is motivated by the fact that these variables can only 
take positive values, and the criteria for not using normal distributions were based on the 
Lilliefors’ 1967 statistical test. As indicated in Fig. 4, the uncertainty in the coefficients of 
the fitted distributions is now much smaller and thus can be used in the global-scale simu-
lation. The log-normal distribution and other options as well have been used to model the 
variability of the permeability of porous media previously; see e.g. (Selvadurai et al. 2014; 
Selvadurai and Selvadurai 2010) for the former and Ricciardi et al. (2005) which employed 
the beta distribution. One advantage with the log-normal distribution is that the uninten-
tional generation of negative values of permeability is avoided. Albeit being out of the 
scope of this paper, an interesting, and more complex, approach would be to follow the one 
in Guilleminot et al. (2012), where the maximum entropy principle is used to find the dis-
tribution that introduces the smallest bias. At last, it should be noted that for a flow close to 
the percolation limit, many of the local-scale domains would exhibit zero permeability. 
Such a distortion does, in turn, mean that it will no longer be possible to describe it using a 
log-normal distribution.

5.2  Construction of the Global‑Scale Model

At this point, the apparent permeability KI (0) , as well as the correction functions SI (J) , has 
been described by log-normal and normal distributions. We will now proceed with the con-
struction of the global-scale model, for which a mesh, with nodes at each �ijk , of the whole 
domain of study is first defined. Then, values of KI (0) and SI (J) are randomly sampled from 
the corresponding distribution and, thereafter, assigned to each element Vf  (centre points 
at �ijk ) of the mesh. With the values of KI (0) and SI (J) generated, the permeabilities K1 , K2 
and K3 can be obtained and (8) can be solved for the global-scale pressure distribution Pijk . 
Once the pressure distribution has been obtained, the total flow can simply be computed by 
summing up the flows of the cells located at the outlet of the global-scale domain. Com-
puted in this way, the resulting total flow is a direct result of one realisation of a randomly 
generated permeability map. Realisations of randomly generated permeability maps and 
subsequent computations of the total flow must and are, therefore, repeated until a con-
verged mean value and standard deviation are obtained.

6  The Interplay Between Rarefaction and Variability

In order to study the interplay between rarefaction and the variability of the local-scale 
permeability, with respect to the local-scale topology, numerous global-scale simulations 
were performed. The global-scale domain was discretised using a mesh consisting of 100 
cells in the x1-direction and 10 cells in both the x2 - and the x3-directions. To drive the flow, 
a pressure drop ( pi = 105 Pa and po = 104 Pa) was applied in the x1-direction and periodic 
boundaries are applied in the x2 - and x3-directions. This configuration, with the cell aspect 
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ratio aligned with the direction of the pressure gradient, ensures that the pressure drop over 
each cell would lead to density variations small enough for the local-scale flow to be con-
sidered as incompressible and modelled by (12). The size of the local-scale domain, l, was 
used to vary the topology and four different sizes were considered, i.e. l = 18 , 32, 56 and 
100 μ m. In this way, the size of the balls and the voids between are also scaled. These 
choices of l were taken to vary the Knudsen number (18), while keeping it within the range 
of applicability of the presented model. The fluid is assumed to be nitrogen and in this 
work modelled as an ideal gas � = pM∕(RT) , with M = 28 g/mol , R = 8.314 J/molK) , vis-
cosity ( � = 10μPas ) and the temperature was specified as T = 273 K.

Before presenting the outcome of the study, let us define what we hereafter will refer to 
as the rarefaction effect R and the variability effect V  , which will be used in order to inter-
pret the results. To this end, we have chosen the following definitions:

and

where Qr
v
 denotes the flow including both variability of the permeability and gas rarefac-

tion, Q0
v
 with variability but without rarefaction. Similarly, Qr

0
 denotes the total flow with-

out considering the variability but including rarefaction and Q0
0
 when both variability and 

rarefaction are excluded. Indeed, when rarefaction is not considered, the Knudsen number 
is zero (so is 𝜆∗ ) and the total flow Q0

v
 is determined by only K∗

I (0)
—computed by (24), and 

not the correction functions SI (J) . When including the variability of the permeability, it is 
included via the PDF according to Fig. 4, only. When variability is not considered, the flow 
( Qr

0
 ) is determined by the permeabilities KI , which are computed by (24), assuming that the 

permeability KI (0) and the correction functions SI (J) are constant and equal to the mean val-
ues; logKI (0) = −6.137 , log SI (1) = 2.746 , SI (2) = 22.651 and log SI (3) = 11.395 of the cor-
responding probability density function.

The effects of gas rarefaction and the effect of variability of the local-scale permeability 
with respect to the local-scale topology, with varying domain size (l), are visualised in 
Fig. 5.

As expected, V0 is constant, since, in the absence of rarefaction, scaling the geometry 
only changes the flow by a multiplicative factor. Therefore, Q0

v
 and Q0

0
 are changed by the 

same factor and their ratio remains unchanged. Of course, the variability still does have 
a significant effect and V0 is not unity. When there is rarefaction, however, the variabil-
ity effect Vr increases as l increases and that the influence of gas rarefaction decreases at 
the same time. This is also confirmed by the results depicted in Fig. 5 (right), which also 
shows that including the variability reduces the rarefaction effect. These results are consist-
ent with the ones presented by Germanou et al. (2018) when studying a two-dimensional 
random pack of spheres with a deterministic model. Let us now elaborate on the possible 
explanation for them. To this end, we start by revisiting the work by Pérez-Ràfols et  al. 
(2016), where it was shown that the total flow will be significantly lower in the case when 
there is no gas rarefaction. Indeed, due to the variability in the local-scale permeability, 
the fluid does not follow a direct path between the inlet and the outlet. Instead, it meanders 
through the local-scale cells, looking for the path offering the least resistance. This does, 

(25)V
r =

Qr
v

Qr
0

, V
0 =

Q0
v

Q0
0

(26)Rv =
Qr

v

Q0
v

, R0 =
Qr

0

Q0
0

,
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however, increase the effective tortuosity, making the course of flow longer. In turn, this 
lowers the pressure drops and reduces the total flow. Moreover, the probability of passing 
through a low-permeability region on this meandering path is increased, and this reduces 
the total flow. In practice, this acts as a flow restriction, increasing the pressure upstream.

When the flowing gas is rarefied, the presence of these restrictions will cause a cas-
cade effect, as the increase in pressure upstream leads to a decrease in 𝜆∗ which reduces 
the effective permeability there (24). In turn, this will cause a further decrease on flow 
and a further increase in pressure (and thus permeability) further upstream. The relevance 
of this effect is shown in Fig.  6, in terms of the global-scale pressure and the averaged 

Fig. 5  The relationship between flow and the size of the local-scale domain including the variability of 
the permeability with respect to the local-scale topology, both with and without gas rarefaction (left) and 
including gas rarefaction both with and without including the variability of the permeability with respect to 
the local-scale topology (right)

Fig. 6  Non-dimensional global pressure ( P∕po ) over the local cells as a function of normalised length, from 
inlet (0) to outlet (1) (left) and the corresponding increase in 𝜆∗ , which is related to the Knudsen number 
Kn (right). Results obtained without including the effect of rarefaction are depicted by the continuous black 
lines, and those that do are depicted in colour, including error bars for the variability. The results are pre-
sented for the four local-scale cell sizes l = 18 , 32, 56 and 100 μm and the legend is the same for both the 
figures
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dimensionless mean free path 𝜆∗ (which is directly proportional to the Knudsen number 
Kn ). Clearly, the global-scale pressure becomes larger (left) at locations far from the outlet 
and 𝜆∗ becomes smaller (right). It should be noticed, however, that this reduction likely 
vanishes for a flow situation close to the percolation threshold. In such case, it is the criti-
cal constriction that controls the flow and what happens far away from there is rather irrel-
evant. Thus, although still present, the cascade effect would only very slightly influence the 
total flow.

One might note that through the discussion of the results, there has been no need to 
invoke the precise nature of the problem. Indeed, we have only used the fact that permeabil-
ity increases due to rarefaction but not the precise way in which this occurs. This suggests 
that the reduction in the rarefaction effect induces in the total flow—due to the variability 
of the local-scale permeability—can be expected to be relevant in a more general case, not 
necessarily involving slip flow nor connected to the particular model used here. Of course, 
the strength of the reduction due to the rarefaction effect can vary notably in other cases, 
and this requires more detailed investigations. A critical implication of the result presented 
here is that, in general, a universal relation between the rarefaction effect and the intrinsic 
permeability, as presented in Bravo (2007) and Kalarakis et  al. (2012), cannot be estab-
lished. Indeed, rarefaction would affect the flow through two different porous media with 
the same intrinsic permeability differently, depending on the characteristics of their local-
scale topology. Of course, if the porous medium studied is close enough in terms of their 
spatial variation, as in Bravo (2007) and Kalarakis et al. (2012), such general relations can 
be found even for fairly different topologies.

We note that the heterogeneous multi-scale method is feasible and that it may be used 
when constructing two-scale models. This implies that the same procedure followed here 
can be applied to models with second-order corrections (Wang et al. 2017) or more com-
plex models describing the transition regime, e.g. Moyne and Christian (2003) and Char-
rier and Dubroca (2004). Although the computational effort to run sufficiently many local-
scale cases would still be high, it would be markedly lower compared to if a domain large 
enough to obtain converged results would be considered. A difficulty may arise in case 
when the local-scale permeability depends on both the pressure drop and the mean pres-
sure in a more complex way. In such a case, covering a sufficient range of conditions may 
be very computationally expensive. The expenses could, however, be significantly reduced, 
by realising only the conditions that are strictly necessary. An efficient design of experi-
ments, which takes into consideration the variation of the permeability with varying con-
ditions and using knowledge-based interpolation schemes, would be required for this. An 
example of such approach can be found in the work by de Boer et al. (2016), albeit applied 
to a problem originating in another field of research.

7  Concluding Remarks

The modelling framework developed and presented here was applied to study fluid flow 
through porous media confined within the slip-flow regime, although it could be adapted 
to study other cases as well. This framework is based on a two-scale approach in which the 
highly heterogeneous nature of the porous medium is modelled by treating the permeability 
of local-scale domains as a random variable. By utilising the present model, it was shown 
that the rarefaction effect is significantly reduced because of the variability of permeability 
with respect to the local-scale topology. This underpins the importance of considering the 
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characteristics of the local-scale topology and that results obtained by studying the flow 
through topologies exhibiting regular patterns cannot be used to draw useful conclusions 
pertaining to the effects of rarefied flows through highly heterogeneous porous media.
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