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Abstract
The aim of the present paper is to evaluate and compare the pore level hydrodynamic dis-
persion and effects of turbulence during flow in porous media. In order to compute these 
quantities, large eddy simulations of turbulent flow in five unit cells comprised of spherical 
particles are performed and the results are averaged over the cells. Visualizations of vorti-
cal structures reveal that the size of the turbulence structures is of the size of the pores. 
Investigations furthermore yield that volume-averaged values of the hydrodynamic disper-
sion are of the same order as the Reynolds stress within the pores. It is also shown that the 
effect of intra-pore turbulence and hydrodynamic dispersion on the redistribution of macro-
scopic momentum within the porous medium is negligible compared to Forchheimer term. 
A discussion is provided on the accuracy of the eddy viscosity hypothesis in the modeling 
of the volume-averaged intra-pore Reynolds stresses. Finally, the effect of variation in the 
pore-scale geometry on the turbulence structures and averaged values of hydrodynamic 
dispersion and Reynolds stress is investigated.
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List of Symbols
b	� Forchheimer coefficient
f ′	� Friction factor
H	� Unit cell dimension ( m)
d	� Sphere diameter ( m)
K	� Permeability ( m2)
k	� Turbulent kinetic energy ( m2s−2)
L	� Medium length in friction factor correlation ( m)
P	� Pressure ( Pa)
ReD	� Reynolds number based on particle diameter, �UDd∕�

ReH	� Reynolds number based on particle diameter, �UDH∕�

Sij	� Strain rate tensor ( s−1)
UD	� Darcian velocity ( ms−1)
Ui	� Velocity vector ( ms−1)
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U,V 	� Velocity components ( ms−1)
x, y, z	� Cartesian coordinates ( m)

Greek Symbols
φ	� Porosity
Δ	� Filter length
�	� Fluid density ( kgm−3)
�	� Fluid dynamic viscosity ( kgm−1s−1)
�t�	� Turbulent viscosity in porous media ( kgm−1s−1)
�	� Fluid kinematic viscosity ( m2s−1)
�SGS	� SGS kinematic eddy viscosity
�r
ij
	� SGS stress tensor

Special Characters
�	� General variable
�′	� Fluctuation from time average of �
⟨�⟩f 	� Intrinsic average
𝜙̄	� Time average of � in double decomposition or filtered � in LES equations
𝜙̃	� Fluctuation from volume average of �

1  Introduction

High velocity flows in porous media take place in industrial and natural applications such as 
cooling of electronic components, solid matrix heat exchangers, enhanced oil recovery, ther-
mal insulation and flow over vegetation (Jouybari et al. 2015). This has motivated research-
ers to study turbulence effects in porous media, in more detail than before, the latest years 
(De Lemos 2009; Vafai 2015). To this end, experimental observation and categorization of 
different flow regimes in porous media have been undertaken in many studies (Dybbs and 
Edwards 1984; Seguin et al. 1998; Khayamyan et al. 2017a, b; Larsson et al. 2018). It is 
observed that the flow in porous media is fully turbulent at a pore-based Reynolds number, 
ReD = �UDd∕� , of a few hundred. To exemplify, a classification of different flow regimes 
in porous media is proposed by Dybbs and Edwards (1984) based on an experimental study 
of flow through beds of rods, spheres and complex rod bundles. They observed that the 
flow in porous media becomes fully turbulent, for a Re based on averaged pore velocity and 
averaged pore size greater than 300. In addition to experimental studies, direct numerical 
simulations (DNS) of turbulent flow in porous media have also been used to investigate the 
pore-scale turbulence (Jin et al. 2015; Uth et al. 2016; Jin and Kuznetsov 2017). However, 
detailed experimental measurement and DNS are laborious due to the often complex struc-
ture of the pores resulting in time-consuming experimental procedures and high computa-
tional costs, respectively. These facts have motivated researchers to develop macroscopic 
turbulence models for high Re flow in porous media. Vafai et al. (2006) presented a thorough 
classification of turbulence models and divided these models into four categories based on 
the method of driving the governing equations for turbulent flow within porous media: (1) 
time averaging the transport equations in porous media (Antohe and Lage 1997; Getachew 
et al. 2000). It has been argued that this approach neglects the effect of turbulence within the 
pores (Nakayama and Kuwahara 1999), (2) volume averaging the Reynolds-averaged equa-
tions (Nakayama and Kuwahara 1999, 2008), (3) models based on morphology of porous 
media (Travkin and Catton 1992), and (4) models based on double decomposition concept 
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(Pedras and de Lemos 2001). Some of these macroscopic models contain extra production 
terms that are modeled to account for the effect of the solid matrix on the turbulent flow. In 
addition to the models mentioned above, different versions of the macroscopic turbulence 
models have been reported in the literature such as the zero equation model (Masuoka and 
Takatsu 1996), the one equation model (Alvarez et al. 2003), the multi-scale four equations 
eddy viscosity model of Kuwata et al. (2014) and a model based on a second moment clo-
sure derived in Kuwata and Suga (2013).

Interesting enough, while there is a relatively large focus on the effects of pore-scale 
turbulence in porous media, there exists a hydrodynamic dispersion term which is usu-
ally neglected. Using the double decomposition concept, Pedras and de Lemos (2001) 
showed that the dispersion term materializes along with the averaged Reynolds stress 
after the averaging processes. Based on the study of Vafai and Tien (1981), Nakayama 
and Kuwahara (1999, 2008) claimed that the effect of hydrodynamic dispersion is included 
in the Darcy–Forchheimer term being used to model the viscous and form drags exerted 
on the fluid passing through the solid matrix. Also, Nield (1991) reported that the omis-
sion of the dispersion term is a reasonable assumption by showing that the inertia term 
in the momentum equation for porous media can be neglected as compared to the Forch-
heimer term containing the square of velocity. Despite the wide variety of the macroscopic 
models presented for pore-scale Reynolds stresses in porous media and assumptions that 
have been made to model the hydrodynamic dispersion, to the author’s knowledge, none 
of the works reviewed above neither validated their assumptions nor compared their results 
with the values of these quantities averaged over the pores. This is maybe due to the com-
plexity of experimental measurement of these quantities and DNS simulation of turbulent 
flow within the pores even for an ordered porous media which makes such a data scarce in 
the literature. Recently, Jin and Kuznetsov (2017) carried out a DNS study for turbulent 
flow within an array of spheres in the range of Re based on the sphere diameter between 
260 < ReD < 470 and for the porosity between 0.69 and 0.8. They showed that not only the 
dispersion term but also the shear components of Reynolds stress can be neglected due to 
their small values compared to the Forchheimer term. However, their conclusion is limited 
to the mentioned porosity and particle Re and there is still a need to study the pore-scale 
Reynolds stress and hydrodynamic dispersion in higher Re, a wider range of porosities and 
different geometries. Such a study gives a better understanding of the macroscopic effects 
of these phenomena on the momentum distribution in porous media and can be used for the 
validation of assumptions made to model or neglect these quantities.

Motivated by this, the present study aims to investigate the importance of the intra-pore 
Reynolds stress and hydrodynamic dispersion terms in the averaged momentum equation that 
are obtained from double decomposition. To fulfill this aim, a detailed numerical pore-scale 
study of turbulent flow in porous media that consists of spherical particles will be carried out. 
Four ordered unit cells and one non-ordered unit cell with different porosities are considered 
for the large eddy simulations performed. At first, vortical structures within the geometries of 
interest are visualized for ReH = �UDH∕� = 1500 and 15,000 to investigate the turbulence 
structures within the pores. Subsequently, the normal and shear components of the hydrody-
namic dispersion and the Reynolds stress are evaluated, averaged and then compared for the 
two Re values. The averaged value of the hydrodynamic dispersion is also derived for a lami-
nar flow case, ReH = 150 , to compare its value against the quadratic drag term. Then distribu-
tions of shear components of hydrodynamic dispersion and Reynolds stress within the pores 
are studied. Finally, a discussion is provided on the validity of eddy viscosity hypothesis and 
the effect of variation in pore-scale geometry on the turbulence structures and averaged values 
of dispersion and Reynolds stress.
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2 � Physical Model

The simulations in the present study are carried out for a porous media formed by a 3D array 
of spheres, as shown in Fig. 1. A uniform macroscopic flow field is considered in the x-direc-
tion. The unit cell shown in Fig. 1a is treated as one cubic unit cell of a porous medium with 
the dimensions H × H × H where nine spherical particles with the diameter d are positioned 
at the corners and in the center of the cube. In order to study the effect of non-ordered placed 
particles on the hydrodynamic dispersion and Reynolds stress, a non-ordered geometry is also 
considered where an additional 10th sphere is placed at (− 0.266H 0.266H − 0.166H) with 
respect to the center of cube, as shown in Fig. 1b. Unit cells with different particle shapes have 
been extensively used in the literature to study the fluid flow through porous media such as 
LES and DNS study of turbulent flow in porous media (Kuwahara et al. 2006; Jin et al. 2015; 
Uth et al. 2016; Jin and Kuznetsov 2017; Chu et al. 2018), to calculate macroscopic quanti-
ties (Kundu et al. 2014; Yang et al. 2014) or to validate the macroscopic turbulence model 
in porous media (Nakayama and Kuwahara 1999; Pedras and de Lemos 2001). The simu-
lations are carried out for five porosities, � = 0.4 , 0.6, 0.8, 0.95 and 0.94 (random) and for 
ReH ≃ 150 , 1500 and 15,000, which are defined as

where UD is the Darcian velocity which is defined as UD = �⟨U⟩.

3 � Governing Equations

3.1 � Filtered Equations

The filtered equations governing the problem under consideration are obtained by applying a 
filtering operation to the continuity and momentum equations, as follows:

(1)� = 1 −
�d3

3H3
,

(2)ReD =
�UDd

�
, ReH =

�UDH

�
,

Fig. 1   The ordered and non-ordered unit cells in the present study



743Investigation of Hydrodynamic Dispersion and Intra-pore…

1 3

where �r
ij
 is the subgrid-scale (SGS) stress tensor, which includes the effects from the small-

scale turbulence and is defined as

The SGS stress tensor is correlated with the filtered strain rate tensor using the eddy viscos-
ity hypothesis as

where S̄ij =
1

2

(
𝜕Ui

𝜕xj
+

𝜕Uj

𝜕xi

)
 and �SGS are the filtered rate of the strain tensor and the eddy 

viscosity of the residual motions, respectively. The wall-adapted local eddy viscosity, 
WALE, model is used to model the SGS stress in this study as

where

where ḡ
ij
= 𝜕Ūi

/
𝜕xj . The value of Cw is set to 0.5 (Pope 2001; Ansys 2012). Δ is the fil-

ter cutoff width which defines the limit for the size of eddies that are resolved and those 
that are modeled. It is usually selected to be of the same order of the grid size (Versteeg 
and Malalasekera 2007). Assuming the grid cells with a different length Δx , width Δy and 
height Δz , the cutoff width is calculated as the cubic root of the cell volume as

3.2 � Volume‑Averaged Equations for Flows in Porous Media

Based on the double decomposition approach proposed by Pedras and de Lemos (2001), 
the space–time-averaged mass and momentum equations in porous media are expressed as

(3)
�Uj

�xj
= 0,

(4)
𝜕Uj

𝜕t
+

𝜕UiUj

𝜕xi
= −

1

𝜌

𝜕p̄

𝜕xj
+ 𝜐

𝜕2Uj

𝜕xi𝜕xi
−

𝜕𝜏r
ij

𝜕xi
,

(5)�r
ij
= UiUj − UiUj.

(6)𝜏r
ij
= −2𝜐sgsS̄ij,

(7)𝜐sgs =
�
CwΔ

�2
⎛⎜⎜⎜⎝

�
Sd
ij
Sd
ij

�3∕ 2

�
S̄ijS̄ij

�5∕ 2
+
�
Sd
ij
Sd
ij

�5∕ 4

⎞⎟⎟⎟⎠
,

(8)Sd
ij
=

1

2

(
ḡ2
ij
+ ḡ2

ji

)
−

1

3
𝛿ijḡ

2
kk
,

(9)Δ = 3

√
ΔxΔyΔz.

(10)
𝜕𝜑

⟨
Ūj

⟩
𝜕xj

= 0,
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where fj takes into account the viscous and form drags excreted on the fluid passing 
through the porous matrix which is modeled by the Darcy–Forchheimer (Dupuit) expres-
sion as

The 𝜐̃ in Eq. (10) is the effective viscosity in the Brinkman modification. In the above 
equations, 𝜙̄ , �′ , ⟨�⟩ and 𝜙̃ denote the time averages, time fluctuations, volume averaged 
and fluctuations from volume-averaged value of a general parameter � . The double decom-
position of a general parameter � may, therefore, be written as

with the usage of the following relationships:

According to Pedras and de Lemos (2001), the order of time and volume averaging is 
irrelevant for the momentum equation. Following Pedras and de Lemos (2001) and starting 
with time decomposition yields

By instead starting from volume decomposition, the following expression is derived:

(11)

𝜕
�
Ūj

�
𝜕t

+
1

𝜑

𝜕

𝜕xi

�
𝜑
�
UiUj

��
= −

1

𝜑𝜌

𝜕

𝜕xj
(𝜑⟨p̄⟩) + 𝜐

𝜑

𝜕2
�
𝜑
�
Ūj

��
𝜕xi𝜕xi

+
𝜐̃

𝜑

𝜕
�
𝜑
�
Ūj

��
𝜕xi

+ fj,

(12)fj = −
𝜐

K
𝜑
⟨
Ūj

⟩
− b𝜑2

(⟨
Ūi

⟩⟨
Ūi

⟩)1∕ 2⟨
Ūj

⟩
.

(13)𝜙 =
⟨
𝜙̄
⟩
+
⟨
𝜙�
⟩
+ ̃̄𝜙 + 𝜙̄�,

(14)⟨𝜙⟩ = �
𝜙̄
�
,
�
𝜙�
�
= ⟨𝜙⟩�, ̃̄𝜙 = ̄̃𝜙, 𝜙̃� = 𝜙̃�.

(15)

𝜕

𝜕xi

(
𝜑
⟨
UiUj

⟩)
=

𝜕

𝜕xi

(
𝜑
⟨(

Ūi + U�
i

)(
Ūj + U�

j

)⟩)

=
𝜕

𝜕xi

(
𝜑
(⟨

ŪiŪj

⟩
+
⟨
U�

i
U�

j

⟩))
=

𝜕

𝜕xi

(
𝜑
(⟨

Ūi

⟩⟨
Ūj

⟩
+
⟨
̃̄Ui
̃̄Uj

⟩
+
⟨
U�

i
U�

j

⟩))

=
𝜕

𝜕xi

(
𝜑

(⟨
Ūi

⟩⟨
Ūj

⟩
+
⟨
̃̄Ui
̃̄Uj

⟩
+
⟨
U�

i

⟩⟨
U�

j

⟩
+
⟨
Ũ�

i
Ũ�

j

⟩))
.

(16)

𝜕

𝜕xi

�
𝜑
�
UiUj

��
=

𝜕

𝜕xi

�
𝜑
��⟨Ui⟩ + Ũi

���
Uj

�
+ Ũj

���

=
𝜕

𝜕xi

�
𝜑
�⟨Ui⟩

�
Uj

�
+
�
ŨiŨj

���
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𝜕

𝜕xi

�
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���
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�
+
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+
�
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��
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��
Ūj

�
+
�
U�

i

��
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j

�
+
�
ŨiŨj

���

=
𝜕

𝜕xi

⎛⎜⎜⎜⎜⎝
𝜑

⎛⎜⎜⎜⎜⎝

�
Ūi

��
Ūj

�
���������

I

+
�
U�

i

��
U�

j

�

���������
II

+
�
̃̄Ui
̃̄Uj

�

���
III

+
�
Ũ�

i
Ũ�

j

�

�����
IV

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠
.
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As can be observed from Eqs. (15) and (16), the final form of the two approaches are 
identical. It is, in this context, worth to mention that the Reynolds stress in porous media, 
which is usually discussed in the literature, is the sum of terms II and IV as

which is commonly modeled as

According to Pedras and de Lemos (2001), the physical significance of the four terms 
on the RHS of Eq. (16) is as follows:

	 (I)	 Convection of macroscopic mean velocity.
	 (II)	 Macroscopic Reynolds stress due to the fluctuation of macroscopic velocity.
	 (III)	 Dispersion due to space fluctuation of time mean velocity within the pores present 

in both laminar and turbulent flows.
	 (IV)	 Dispersion due to both time and space fluctuation of velocity within the pores.

4 � Numerical Simulation and Boundary Condition

The governing equations are solved using the commercial code Ansys CFX 16.2. The 
parallelization of the computational domain is carried out using the MeTis partitioning 
method and simulations are carried out on a LINUX cluster applying MPI-4.1.3 message-
passing libraries (MPI) (Hellström et al. 2007). The bounded central difference is used to 
discretize the advection terms while the unsteady terms are discretized using the second-
order backward Euler scheme. The time step is selected so that the Courant number falls 
between 0 and 1. Symmetry boundary conditions are applied on the bottom, top and side 
boundaries, periodic boundary conditions are set at the inlet and outlet and no-slip bound-
ary conditions are used on the walls of the spheres.

5 � Grid Independency, Verification and Validation

The grid independence study is done using three element sizes for each porosity as shown 
in Fig. 2. It can be observed that the time-averaged velocity distribution along the y-direc-
tion is very close to each other in all studies which are exemplified in Fig. 2 for � = 0.95 
and � = 0.6 . The largest number of elements is still chosen for the rest of the simulations 
in this study since y+ below 1 is guaranteed for this case. As a result, element meshes of 
approximately 1.8 × 106 , 1.9 × 106 , 1.7 × 106 and 1.2 × 106 are constructed for � = 0.95 , 
0.8, 0.6 and 0.4, respectively.

As a sort of validation of the simulations, the results of volume-averaged turbulent 
kinetic energy are compared with those obtained with LES in Kuwahara et al. (2006) for 

(17)
𝜌𝜑

⟨
U�

i
U�

j

⟩
=
⟨
U�

i

⟩⟨
U�

j

⟩

���������
II

+
⟨
Ũ�

i
Ũ�

j

⟩

�����
IV

,

(18)𝜌𝜑
�
U�

i
U�

j

�
= 𝜇t𝜑

⎡⎢⎢⎢⎣

𝜕
�
𝜀
�
Ū
�
i

�
𝜕xj

+
𝜕
�
𝜀
�
Ū
�
j

�

𝜕xi

⎤⎥⎥⎥⎦
−

2

3
𝜌𝜑⟨k⟩𝛿ij.
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turbulent flow in an array of staggered square cylinders and the k − � modeling of turbu-
lent flow as reported in Yang et al. (2014) for the array in Fig. 1. As can be observed, the 
values obtained in the present study are in a good agreement with those reported by Yang 
et al. (2014) and lower than that obtained in the LES study of Kuwahara et al. (2006) which 
is due to square geometry of their cylinders cross section which enhances the production 
of turbulent kinetic energy. This is also observed by Yang et al. (2014) where the values 
obtained by k − � modeling of turbulent flow in an array similar to that in Fig. 1 are signifi-
cantly lower than the results from the k − � simulation reported by Nakayama and Kuwa-
hara (1999) for the staggered arrangement of square cylinders, see Table 1.

Further validation of the present results is carried out in Table 2 where the Blake-type 
friction factor, as derived in the present study, is compared with that of Ergun and Orning 
(1949) and numerical simulation of turbulent flow in an array of cylinders reported in Hell-
ström et al. (2010). The Blake-type friction factor is calculated as

Introducing this correlation into the Ergun experimental relationship yields

(19)f � =
Δp

L

d

��2⟨U⟩2
�3

1 − �
.

Fig. 2   Two examples of grid independence study in a � = 0.6 , b � = 0.95

Table 1   Comparison of the 
averaged turbulent kinetic energy

a This value is not in the range of the simulations performed by Yang 
et al. (2014) and is calculated using the fitted correlation proposed in 
their study

⟨k⟩ LES present k − � (Yang 
et al. 2014)

k − � (N-K) LES (Kuwa-
hara et al. 
2006)

Geometry Figure 1 Staggered arrangement of 
square cylinders

� = 0.4 1.34 0.54a 3.5 2.1
� = 0.6 0.36 0.297 1.91 1.2
� = 0.8 0.145 0.14 0.82 0.5
� = 0.95 0.039 0.039 0.18 Not reported
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Since the porosity of packed beds usually is low, the comparison is only shown for 
� = 0.4 and � = 0.6 . As can be observed, the present results are closer to the numerical 
simulation in Hellstöm et al. (2010) at higher Re while both numerical simulations predict 
values lower than those obtained by the correlation based on experimental measurements 
of Ergun and Orning (1949). Hellstöm et al. (2010) discussed that the turbulence effects 
must be included in the simulations for Re′ larger than of the order of 100. Neglecting tur-
bulence results in an underprediction of the friction factor.

6 � Results and Discussion

At first, the flow field is studied in different geometries and Re. Then the importance of the 
hydrodynamic dispersion and the Reynolds stress is discussed by averaging their values 
over the unit cells as shown in Fig. 1. In several of the plots presented, the Q-criterion is 
used to reveal vortical structures in the flow. The value of Q is defined as the second invari-
ant of the velocity gradient tensor and its positive values identify vortical structures. Notice 
that the values of Q that discloses the vortical structures vary between the porosities and 
Re. Therefore, the Q values presented in this work are normalized with the maximum value 
of Q, QM , in each case, following Uth et al. (2016). The iso-surfaces of Q are also colored 
with the y-velocity to show their motion.

6.1 � Pore‑Scale Flow Field

The vortical structures become more fragmented as ReH is increased from 1500 to 15,000 
for all porosities studied, see Fig. 3. In the case of � = 0.95 and � = 0.94 , these structures 
are nearly similar to those observed for turbulent flow passing over one sphere (Rodriguez 
et al. 2011; Rodríguez et al. 2018). This is due to the larger space between the particles 
for this porosity. Also, a similar tendency to form a hairpin vortex as reported in Prahl 
et al. (Prahl et al. 2009) for an in-line arrangement of spheres can be seen as the vortex 
formed by the upstream sphere passes around the trailing sphere for the larger porosities 
and ReH = 1500 . Examples of such structures are indicated by the black arrows in Fig. 3 
for ReH = 1500 and � = 0.95 , � = 0.94 and � = 0.8 . It can be observed that large vortices 
break into smaller ones and form a turbulent wake behind the spheres as the Re increases 
to ReH = 15000 for larger porosities, as shown with the black open arrows in Fig. 3. As 
can be seen in Fig. 3, the length scale of the vortical structures is of the same order of or 
smaller than the pore size in all porosities and Re studied here. Although some of them 

(20)f � = 1.75 +
150

Re�
, Re� =

��⟨U⟩d
�(1 − �)

.

Table 2   Comparison of the 
Blake-type friction factor

Case Re
′ f ′ Present f ′ (Hellström et al. 2010) f ′ Ergun

� = 0.4 213 1.35 1.65 2.45
2131 1.02 0.89 1.82

21,317 0.42 0.47 1.75
� = 0.6 279 1.08 0.87 2.25

2795 0.67 0.39(Re� = 1000) 1.8
27,950 0.28 Not reported 1.75
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Re 1500H =
0.02MQ Q =

Re 15000H =
0.02MQ Q =

0.95ϕ =

0.8ϕ =

0.6ϕ =

0.4ϕ =

0.94ϕ =

Fig. 3   Vortical structures within the unit cell identified by iso-surfaces of Q for a different φ and Re
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penetrate into the neighboring pores, as can be seen from the periodicity of some vorti-
cal structures, still their size is smaller than the pore dimension. In order to investigate the 
effect of randomness of the solid structure on turbulence structures in the pores, one sphere 
is added to the unit cell with � = 0.95 which reduces slightly its porosity to � = 0.94 . A 
trend similar to that observed for � = 0.95 can be observed for � = 0.94 and the added 
particle does not change the general form of the turbulence structures within the pores, 
see Fig.  3. The effect of the number of unit cells on the size of the turbulent structures 
is studied by considering turbulent flow in two unit cells placed in parallel and in series 
with respect to the main flow direction for the case of � = 0.6 and ReH = 1500 . As can be 
observed in Fig. 4, adding these unit cells do not affect the shape of the turbulent structures 
and these structures are similar to those obtained in Fig. 3 for one unit cell. The present 
results show that pore-scale prevalence hypothesis of Uth et al. (2016) is still valid for the 
range of porosities between 0.4 and 0.95, ReH = 15000 and also for a random geometry.

6.2 � Averaged Hydrodynamic Dispersion and Reynolds Stress

The LES study of turbulent flow within the pores of porous media provides the opportunity 
to directly evaluate the volume-averaged values of hydrodynamic dispersion and Reynolds 
stress, term III and term II + IV [from Eq. (17)], on the RHS of Eq. (15), respectively. As 
can be seen in Figs. 5 and 6, the normal and shear components of the volume-averaged 
hydrodynamic dispersion are of the same order as their Reynolds stress counterparts for 
all porosities and Re investigated. In order to investigate the effects of dispersion on the 
averaged momentum equations in laminar flow, the hydrodynamic dispersion is calculated 
for ReH = 150 in Fig. 7. Notice that all of the values in these figures are normalized with 
the square of the Darcy velocity. As can be seen in Figs. 5b, 6b and 7b, the shear compo-
nents of both the hydrodynamic dispersion and the Reynolds stress are small in all Re and 
porosities studied here and vary non-monotonically with porosity and Re while the normal 
components are not negligible and decrease with an increase in porosity. It can be observed 
from Fig. 7b that the longitudinal component of hydrodynamic dispersion ( uu ) is relatively 
large in ReH = 150 . This can imply that the longitudinal dispersion can highly affect the 
flow through porous media (Sozen and Vafai 1993). Meanwhile, Amiri and Vafai (1994) 
reported that the transverse components of hydrodynamic dispersion ( vv and ww ) may play 
a more important role in heat transfer through porous media despite their lower values. Fig-
ure 8 illustrates the variation in hydrodynamic dispersion and Reynolds stress with Re. As 
can be seen in most cases, the normal components of the Reynolds stress increase slightly 
with an increase in Re from 1500 to 15,000. It can be observed that the normal components 
of hydrodynamic dispersion in the longitudinal direction (uu) dominate over other normal 
components and decrease with an increase in Re for � = 0.4 and � = 0.6 . Also, in the cases 
of � = 0.8 and � = 0.95 , a slight increase is observed with the increase in Re from 150 to 
1500 followed by a decrease as the Re is increased to 15,000. Such a trend is observed for 
the nonuniformity in the spatial distribution of time-averaged velocity in Khayamyan et al. 
(2017a). In their work, the initial increase with Re is attributed to the enhancement of iner-
tial effects as the flow regime changes from creeping flow to transitional regime while the 
subsequent reduction with an increase in Re is assumed to be due to the turbulence effects 
becoming dominated which enhance mixing resulting in more uniform distribution. It is 
predicted that this phenomenon may be reflected in macroscopic quantities such as disper-
sion, as observed in Figs. 5, 6 and 7. The results obtained here shed some light on the shear 
components of the tensors in Eq. (15). The results presented in Figs. 5b, 6b and 7b suggest 
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that the shear components, containing two space fluctuating velocities, may be normally 
distributed in space with a mean value close to zero. This conclusion is based on the fact 
that the averaged values of the shear components in Figs. 5b, 6b and 7b are negligible and 
have positive and negative values without any specific trend with regard to porosity or Re. 
The validity of this conclusion will be examined in the following section.   

As mentioned above, the results presented in Figs. 5, 6 and 7 are normalized with U2
D
 . 

Since the Forchheimer term in the averaged momentum equation is a function of the U2
D
 , 

the negligible values of normalized dispersion and Reynolds stress shear components 
may suggest that these components are negligible compared to the Forchheimer term. 
The validity of this conclusion can be further examined by evaluating the ratio of the 

Fig. 4   Vortical structures within two unit cells placed in parallel and in series, respectively, with respect 
to the main flow direction for � = 0.6 and ReH = 1500 . The structures are identified by iso-surfaces of Q 
( Q∕QM = 0.02)
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gradients of volume-averaged Reynolds stress and dispersion shear components to the 
Forchheimer pressure drop. To this end, it is necessary to assume a condition in which 
the gradient of the volume-averaged Reynolds stress and dispersion terms are nonzero. 
Consider an extreme case where the volume-averaged macroscopic Reynolds stress and 

Fig. 5   Volume-averaged values of hydrodynamic dispersion and Reynolds stress at ReH = 15000 a shear 
components, b normal components
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dispersion reduce to zero in a neighboring unit cell which is H away. For this case, the 
gradients of these quantities reach their maximum and the ratio of gradients of Term III 
and Term II + Term IV to the Forchheimer term will be given as

Fig. 6   Volume-averaged values of hydrodynamic dispersion and Reynolds stress at ReH = 1500 a shear 
components, b normal components
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Fig. 7   Volume-averaged values of hydrodynamic dispersion at ReH = 150 a shear components, b normal 
components
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Ũ�

j

��

U2
D

0.4ϕ =

0.6ϕ =

0.8ϕ =

0.95ϕ =

Fig. 8   Variation in normal and shear components of hydrodynamic dispersion and Reynolds stress with Re



755Investigation of Hydrodynamic Dispersion and Intra-pore…

1 3

Based on the results presented in Figs.  5, 6 and 7 and 1∕bH values derived using 
b = 150(1 − �)

/
�3d and Eq. (1), the ratios of Eqs. (22) and (23) are presented in Fig. 9. 

Hence, the terms containing the gradients of the -veraged Reynolds stress and disper-
sion shear components are negligible compared to the Forchheimer term in the averaged 
momentum equation. It should be noted that only the Forchheimer term is considered in 
Eqs. (22) and (23) since viscous effects are negligible compared to the form drag (Forch-
heimer term) for the Re investigated according to Ergun correlation (1949) and LES results 
in Kuwahara et  al. (2006). Jin and Kuznetsov (2017) showed that the shear components 
of intra-pore Reynolds stress do not affect the macroscopic transport of flow properties 
due to their negligible averaged values and their net local effect is to increase the averaged 
drag and therefore pressure drop. Hellström et al. (2010) numerically studied the effect of 
intra-pore turbulence and showed that ignoring the turbulence within the pores results in an 
underprediction in the pressure drop and friction factor.

6.3 � Discussion on the Distribution of Intra‑pore Reynolds Stress and Hydrodynamic 
Dispersion

In order to examine the distribution of the shear components of the tensors in Eq. (15) in 
this section, double decomposition of the i = 1, j = 2 component of 

⟨
UiUj

⟩
 is considered 

keeping in mind that the results will be similar for the case when i = 1, j = 3 . A double 
decomposition of ⟨U1U2⟩ yields

By volume averaging of the velocity components over the unit cells of Fig. 1, it is found 
that the only nonzero component of velocity is the one in the x-direction ( 

⟨
Ū1

⟩
≠ 0 ) 

while 
⟨
Ūi

⟩
i=2,i=3

≈ 0 and 
⟨
U�

i

⟩
≈ 0 . Therefore, the terms I and II that correspond to con-

vection and macroscopic Reynolds stress vanish in Eq.  (24). The negligibility of term II 
supports the earlier observation on the limitation of turbulent structures to the pore size. 
These results can suggest that the term II is also negligible in the volume-averaged Reyn-
olds stress presented in Eq. (17) and therefore Figs. 5, 6, 7, 8 and 9. However, since the 
LHS of Eq. (17) is calculated and presented in Figs. 5, 6, 7, 8 and 9, the Reynolds stress 
is expressed as Term II + IV in these figures. It should be noted that a 1D assumption of 
the flow in real porous media is relatively accurate in many applications. Khayamyan et al. 
(2017a, b) showed that the most probable y-velocity in a randomly distributed packed bed 
is zero for a range of Re from laminar to turbulent flow. Therefore, only the term V in 
Eq.  (24) remains which is associated with the pore-scale spatial fluctuations of velocity 
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Fig. 9   Values of Eqs. (21) and (22) calculated in different porosities
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and can be decomposed into terms III and IV. The aim of this section is to inspect the 
distribution of the term V within the pores. To this end, two random contours of Ũ1Ũ2 are 
extracted for each porosity at ReH = 1500 , as shown in Fig. 10. A histogram of the image 
data has been extracted in which the range of variation in Ũ1Ũ2 is divided into 256 bins 
and the histogram counts associated with each bin are returned. Due to the white back-
ground, the histogram shows large amounts for large bins. In order to rectify this problem, 
the data associated with these bins are not considered to prevent the effect of this noise in 
the calculations. Then, the normalized probability density function (NPDF) and cumulative 

Fig. 10   Positions of two random planes in each porosity for a � = 0.95 , b � = 0.94 , c � = 0.8 , d � = 0.6 , 
e � = 0.4
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distribution function (CDF) are used to scrutinize the Ũ1Ũ2 field within the planes shown 
in Fig. 11. The NPDF of the Ũ1Ũ2 shows the probability of Ũ1Ũ2 values normalized with 
the probability of the most probable Ũ1Ũ2.

As can be observed in Fig. 11, the most probable values of Ũ1Ũ2 in two random planes 
are close to zero. It is also found that the CDF of this most probable value is close to the 
0.5 suggesting that the probability of Ũ1Ũ2 values lower than this value is equal to the prob-
ability of values greater than most probable value. Therefore, the averaged value of Ũ1Ũ2 , ⟨
Ũ1Ũ2

⟩
 , is negligible as observed in Figs. 5 and 6. This observation indicates that all of the 

terms in Eq. (24) are negligible for the conditions considered in the present study. This is in 
agreement with the results in Figs. 5 and 6. It should be noted that the terms I and II are not 
generally zero. To exemplify, if there is macroscopic turbulence and large structures in the 
porous medium, it is expected that term II becomes important. However, Uth et al. (2016) 
showed that large structures do not survive in porous media except for unrealistically high 
porosities such as � = 0.995.

6.4 � Reynolds Stress in the Averaged Momentum Equation

Based on the observations made above, it is found that turbulent structures larger than the 
pore sizes are not present. It is also observed that turbulent structures are confined to the 
pores, and therefore, they are not able to affect the transport of macroscopic quantities. In 
this case, the validity of the eddy viscosity hypothesis is put into jeopardy as

In the absence of macroscopic turbulent effects, the term II in Eq. (25) is zero mean-
ing that microscopic turbulence structures within the pores are responsible for the 
macroscopic momentum diffusion which is not possible based on the conclusion made 
by the pore-scale simulations here. In order to further examine this conclusion, a case 
of turbulent flow in two unit cells located close to a solid wall is simulated for � = 0.6 
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and ReH = 1500 , see Fig.  12a. Obviously, the macroscopic mean shear rate now is 
nonzero enabling an evaluation of the accuracy of the eddy viscosity hypothesis for 
flow in porous media. The turbulence structures in the geometry of Fig. 11a are dis-
closed using the iso-countors of Q-criterion in Fig. 12b. It can be observed that these 
structures are of the size of the pores as observed in the previous simulations. Also, the 
term II in Eq.  (25) is negligible since 

⟨
U�

j

⟩
≈ 0 . In this case, the eddy viscosity 

hypothesis used in Eq. (25) incorrectly relates the volume average of the shear compo-
nents of pore-scale turbulence effects, term IV, to macroscopic the momentum 
transport.

Figure 13 shows the term IV as calculated from the LES and averaged over the unit 
cell 1 of Fig. 12a for different nondimensional times, t∗ , for i = 1, j = 1 and i = 1, j = 2 . 
It is observed that other macroscopic quantities such as normal stress, 

⟨
U′U′

⟩/
U2

D
 , 

friction factor, f ′ and velocity gradient, H
UD

𝜕(𝜑⟨Ūi⟩)
𝜕xj

 obtain a nearly constant value after 

a nondimensional time of t∗ ≈ 9H∕UD , while the shear stress 
⟨
U′V ′

⟩
 continues to vary 

with time. This observation agrees with those presented in Figs. 5a and 6a for the vol-
ume-averaged shear stresses at different porosities. Therefore, it can be concluded that 
the amount of macroscopic velocity gradient is independent of the volume-averaged 
value of the pore-scale Reynolds stresses.

Based on the discussion presented above, it can be concluded that the intra-pore tur-
bulence effects within the pores are not able to affect the distribution of macroscopic 
quantities. As a result, not only the eddy viscosity hypothesis but also all the mod-
els that present a relationship between the intra-pore turbulence and the macroscopic 
quantities are not accurate in this condition.

Fig. 12   a The geometry of two unit cells located close to the solid wall. b Q-criterion for � = 0.6 , 
ReH = 1500 and Q∕QM = 0.02
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6.5 � Effect of Pore‑Scale Geometry

The results presented until now are obtained for BCC (body centered cubic system) 
arrangement of spheres in a unit cell and one random geometry (see Fig. 1). In this sec-
tion, the effect of varying the arrangement of spherical particles to FCC (face centered 
cubic system) and changing the positions of 10th particle in the random geometry on the 
hydrodynamic dispersion and Reynolds stress components will be studied. Figure 14 illus-
trates the vortical structures obtained for FCC cubic cell in ReH = 15000 and for � = 0.6 
and � = 0.95 . As can be observed, the iso-surfaces of Q are similar to those found for the 
BCC arrangement in Fig. 3 and the vortical structures are of the order of pore size. Also, 
it is shown in Fig. 15 that the averaged values of hydrodynamic dispersion and Reynolds 
stress normal components differ slightly between BCC and FCC arrangements for � = 0.8 
and � = 0.95 in ReH = 15000 . This can be attributed to large space between the spheres in 
these cases so that the change in the arrangement of spheres does not change significantly 

Fig. 13   Variation in macroscopic dimensionless quantities with nondimensional time
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Fig. 14   Vortical structures within the unit cell identified by iso-surfaces of Q∕QM = 0.02 for ReH = 15000 
a � = 0.95 , b � = 0.6

Fig. 15   Comparison of a normal components of hydrodynamic dispersion, b shear components of hydrody-
namic dispersion, c normal components of Reynolds stress, d shear components of Reynolds stress between 
FCC and BCC arrangements in ReH = 15000
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the flow path and therefore these quantities. However, a somewhat different behavior is 
observed for � = 0.4 and � = 0.6 in Fig.  15. By putting spheres at the side surfaces of 
cube in FCC arrangement in lower porosities, the main flow in x-direction does not have 
enough space to disperse and is more confined to the pore space. Therefore, the normal 
components of hydrodynamic dispersion in x-direction (uu) for the FCC arrangement are 
lower than that in BCC. Meanwhile, the level of normal components of Reynolds stresses 
are lower in the FCC arrangement for � = 0.4 and � = 0.6 . This can be attributed to the 
larger surface area of solid walls in the FCC arrangement for the same spheres volume as 
that in BCC which damps turbulence within the flow. The shear components of hydrody-
namic dispersion and Reynolds stresses in the FCC arrangement shown in Fig. 15b, d have 
the same non-monotonic trend and range of values as those calculated in the BCC arrange-
ment. Generally, the components of hydrodynamic dispersion and Reynolds stresses calcu-
lated in the BCC and FCC arrangements are of the same order of magnitude which shows 
that a change in the pore-scale geometry does not affect the flow structure within the pores. 
Figure 16 illustrates the effect of variation in the position of 10th particle in the random 
geometry of Fig.  1b on the intra-pore turbulence and hydrodynamic dispersion. In this 
case, the position of 10th sphere is changed to (0.166H − 0.3H 0.166H) with respect to the 
center of cube. It is observed that the macroscopic values of normal components of hydro-
dynamic dispersion and Reynolds stress are nearly similar in two cases. Although the mac-
roscopic values of shear components vary with a change in the position of 10th sphere in 
the random geometry, their values are still negligible similar to those observed in Fig. 5b.  

7 � Conclusion

Pore-scale simulations of turbulent flow in the unit cells of porous media have been car-
ried out in the present study. Through visualization of vortical structures, it is observed 
that the size of these structures is of the order as the pore size for all porosities and Re 
investigated. Therefore, it is concluded that these structures are not able to directly mod-
ify the macroscopic flow field. By averaging the hydrodynamic dispersion and Reynolds 
stress values over the unit cells, it is observed that they are of the same order of mag-
nitude and their normal components increase with a decrease in porosity. Meanwhile, 
it is shown that the averaged values of the hydrodynamic dispersion and the Reynolds 
stress shear components are significantly lower than the square of the Darcian velocity 
which appears in the Forchheimer term. Inspecting the distribution of the hydrodynamic 
dispersion and intra-pore turbulence shear components in different planes for all porosi-
ties studied reveals that the most probable values of these quantities are very close to 
zero and their values are distributed normally in the pore space. This phenomenon is 
observed for all porosities regardless of ordered or non-ordered distributions of parti-
cles. Further discussion on the validity of the eddy viscosity hypothesis reveals that it is 
not appropriate to model the shear components of averaged intra-pore Reynolds stresses 
since they do not affect the macroscopic distribution of averaged quantities. Finally, 
the effect of variation in pore-scale geometry on the averaged dispersion and Reynolds 
stress values is studied and it is shown that, despite the change in values, their order of 
magnitudes is similar in different geometries.
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