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Abstract
Foam can improve sweep efficiency in gas-injection-enhanced oil recovery. Surfactant-
alternating-gas (SAG) is a favored method of foam injection. Laboratory data indicate that 
foam can be non-Newtonian at low water fractional flow fw, and therefore during gas injec-
tion in a SAG process. We investigate the implications of this finding for mobility control 
and injectivity, by extending fractional-flow theory to gas injection in a non-Newtonian 
SAG process in radial flow. We make most of the standard assumptions of fractional-flow 
theory (incompressible phases, one-dimensional displacement through a homogeneous res-
ervoir, instantaneous attainment of local equilibrium), excluding Newtonian mobilities. For 
this initial study, we ignore the effect of changing or non-uniform oil saturation on foam. 
Non-Newtonian behavior at low fw implies that the limiting water saturation for foam sta-
bility varies as superficial velocity decreases with radial distance from the well. We discre-
tize the domain radially and perform Buckley–Leverett analysis on each narrow increment 
in radius. Solution characteristics move outward with fixed fw. We base the foam model 
parameters and non-Newtonian behavior on laboratory data in the absence of oil. We 
compare results to mobility and injectivity determined by conventional simulation, where 
grid resolution is usually limited. For shear-thinning foam, mobility control improves as 
the foam front propagates from the well, but injectivity declines somewhat with time. 
This change in mobility ratio is not that at steady state at fixed water fractional flow in 
the laboratory, however, because the shock front in a non-Newtonian SAG process does 
not propagate at fixed fractional flow (though individual characteristics do). Moreover, the 
shock front is not governed by the conventional condition of tangency to the fractional-
flow curve, though it continually approaches this condition. Injectivity benefits from the 
increased mobility of shear-thinning foam near the well. The foam front, which maintains 
a constant dimensionless velocity for Newtonian foam, decelerates somewhat with time for 
shear-thinning foam. For shear-thickening foam, mobility control deteriorates as the foam 
front advances, though injectivity improves somewhat with time. Overall, however, injec-
tivity suffers from reduced foam mobility at high superficial velocity near the well. The 
foam front accelerates somewhat with time. Conventional simulators cannot adequately 
represent these effects, or estimate injectivity accurately, in the absence of extraordinarily 
fine grid resolution near the injection well.

Keywords  Surfactant-alternating-gas · Foam · Non-Newtonian fluids · Fractional-flow 
theory · Enhanced oil recovery
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List of Symbols
C	� Constant (Eq. 4)
epdry	� Parameter in the STARS foam model controlling the abruptness of foam collapse 

at the limiting liquid saturation, unitless (Eq. A6)
F2	� Dry-out function in the STARS foam model, unitless. (Eq. A5)
fg	� Foam quality (gas fractional flow), unitless
fw	� Water fractional flow, unitless
FM	� Mobility reduction factor, unitless
fmdry	� Limiting liquid saturation in the STARS foam model, unitless. (Eq. A6)
fmmob	� Reference gas-mobility-reduction factor in the STARS foam model, unitless. 

(Eq. A5)
h	� Thickness of the reservoir, m
k	� Permeability, unitless
krg	� Gas relative permeability in the absence of foam, unitless
k0
rg

	� End-point gas relative permeability, unitless. (Eq. A2)
k
f
rg	� Gas relative permeability in the presence of foam, unitless. (Eq. A4)

krw	� Liquid relative permeability, unitless
k0
rw

	� End-point liquid relative permeability, unitless. (Eq. A1)
λw	� Liquid mobility, (Pa s)−1

λrt	� Total relative mobility, (Pa s)−1

n	� Power-law exponent, unitless
ng	� Gas Corey–Brooks exponent, unitless. (Eq. A2)
nw	� Liquid Corey–Brooks exponent, unitless. (Eq. A2)
μg	� Gas viscosity, Pa s
μw	� Water viscosity, Pa s
PD	� Dimensionless pressure rise at well, unitless
Pi−1	� Pressure at the inner boundary of the ith grid block, Pa. (Eq. B2)
Pi	� Pressure at the outer boundary of the ith grid block, Pa. (Eq. B2)
∇P	� Pressure gradient, Pa/m
∆Pf	� Pressure difference across the foam bank, Pa
∆Pw	� Pressure difference across the liquid bank, Pa
Q	� Total volumetric injection rate, m3/s
r	� Radius, m
rw	� Wellbore radius, m
re	� Outer radius, m
ri	� Radius at the inner boundary of the ith grid block, unitless
ri−1	� Radius at the outer boundary of the ith grid block, unitless
S	� Normalized liquid saturation, unitless
Sgr	� Residual gas saturation, unitless
Sw	� Liquid saturation, unitless
Swi	� Liquid saturation in the ith grid block, unitless
Swi−1	� Liquid saturation of the grid-block upstream of the ith grid block, unitless
Swr	� Residual liquid saturation, unitless
Sw*	� Limiting liquid saturation, unitless
t	� Time, s
tD	� Dimensionless time
∆t	� Time increment, s
Ut	� Total superficial velocity, m/s
Uw	� Liquid superficial velocity, m/s
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Ug	� Liquid superficial velocity, m/s
x	� Position, m
xD	� Dimensionless position, unitless
∆x	� Position increment, m

1  Introduction

1.1 � Fractional‑Flow Theory

Fractional-flow theory, or the method of characteristics, has proved useful for understand-
ing a variety of processes for enhanced oil recovery (EOR) (de Nevers 1964; Claridge and 
Bondor 1974; Pope 1980; Lake 1989; Noh et al. 2004; Lake et al. 2014; Borazjani et al. 
2016; Farajzadeh et  al. 2019). Fractional-flow theory has been applied to foam EOR by 
Zhou and Rossen (1995), Rossen et al. (1999, 2011, 2017), Namdar Zanganeh et al. (2011), 
Boeije and Rossen (2018), Al Ayesh et al. (2017), and Salazar Castillo (2019a). Its predic-
tions are not rigorous because of the number of simplifying assumptions made, but they 
provide valuable insights, even if the assumptions are not strictly satisfied. This theory 
applies to Newtonian displacements directly, and it has been extended to model a collec-
tion of non-Newtonian foam cases (Rossen et al. 2011). In this paper, we make the usual 
assumptions of fractional-flow theory (Rossen et al. 2011), namely:

1.	 One-dimensional (radial or linear) flow.
2.	 Two mobile and incompressible phases.
3.	 Instantaneous equilibrium adsorption of surfactant on the rock. In this study, for sim-

plicity, we assume adsorption was satisfied during the injection of the preceding liquid 
slug.

4.	 No dispersive processes, including fingering, capillary diffusion or dispersion.
5.	 Instantaneous attainment of local steady-state mobilities, which depend on local satura-

tions. In this study, mobilities depend on total superficial velocity as well.
6.	 No chemical or biological reactions.

In addition, in this study of non-Newtonian flow, we make an additional assumption:

7.	 Fixed total volumetric injection rate Q.

The isothermal flow of two immiscible and incompressible fluids through a permeable 
medium is governed by the following equation (Lake et al. 2014):

where tD and xD denote dimensionless time and position, respectively, and Sw and fw denote 
liquid saturation and liquid fractional flow, respectively. The dependence of tD and xD on 
the geometry of a cylindrical reservoir with wellbore radius rw and open-outer-boundary 
radius re is described by the following equations:

(1)
�Sw

�tD
+

�fw

�xD
= 0

(2)xD =
r2 − r2

w

r2
e
− r2

w
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where � and h denote porosity and the thickness of the reservoir, respectively.
The superficial velocity of an incompressible fluid injected at a fixed rate Q into a cylin-

drical reservoir decreases continuously from the wellbore radius to the outer radius. This 
implies that non-Newtonian fluids experience not only a different superficial velocity but 
different rheology, as a function of radial position. Mathematically, this means that fw is a 
function of Sw and xD. The fractional-flow analysis with this additional constraint results 
in characteristics that in general do not have a fixed dimensionless velocity (Rossen et al. 
2011; Wu et al. 1993). Liquid fractional flow is fixed for each characteristic as it travels 
through the porous medium, although liquid saturation is not.

1.2 � Foam in Porous Media

Foam increases sweep efficiency during gas injection in enhanced oil recovery applications 
(Holm 1968; Schramm 1994; Patzek 1996; Skauge et  al. 2002; Blaker et  al. 2002; Zhu 
et al. 2013; Lake et al. 2014). It is also used in aquifer remediation and in acid diversion in 
well-stimulation treatments (Thompson and Gdanski 1993; Behenna 1995; Hirasaki et al. 
1997a, b; Talabani et al. 2001; Cheng et al. 2002; Maire et al. 2015; Portois et al. 2018). 
Foam flow in porous media exhibits two flow regimes: a low-quality (large fw) regime 
and a high-quality (small fw) regime (Osterloh and Jante 1992; Alvarez et al. 2001). The 
low-quality regime is characterized by a gas-mobility reduction and a pressure gradient 
independent of liquid superficial velocity, whereas the high-quality regime is characterized 
by a limiting capillary pressure Pc* and a pressure gradient independent of gas superficial 
velocity.

Foam can be non-Newtonian in both regimes. There are several reasons for this behav-
ior. Foam flowing through smooth tubes shows shear-thinning behavior (Hirasaki and Law-
son 1985). Flow in periodically constricted tubes is even more shear thinning (Xu and Ros-
sen 2003). Gas trapping further reduces gas mobility (Falls et al. 1989), so if gas trapping 
declines as pressure gradient increases (Tang and Kovscek 2006); this provides a separate 
mechanism of shear-thinning behavior. Rheology in the low-quality regime is consistently 
found to be shear thinning with respect to total superficial velocity at fixed fw, but foam 
can be either shear thickening or shear thinning in the high-quality regime. Rheology in 
the high-quality regime is controlled by the limiting capillary pressure Pc* (Khatib et al. 
1988). Jimenez and Radke (1989) present a model that predicts that Pc* decreases with 
increasing gas velocity, which would imply that pressure gradient would decrease, rather 
than hold constant, as gas velocity increases with at liquid velocity.

Figure 1 shows two examples of the two flow regimes for two foams. On the top, the 
foam is shear thinning with respect to liquid superficial velocity, or with respect to total 
superficial velocity at fixed fw. In the contour plot, increasing liquid superficial velocity 
from Uw1 = 0.1 to Uw2 = 0.5 m/s corresponds to an increase in pressure gradient from ∇P
1 ≈ 800 psi/(2 ft) to ∇P2 ≈ 1200 psi/(2 ft). The power-law exponent corresponding to this 
behavior is n = [log∇P2 − log ∇P1]/[logUw2 − logUw1] ≈ 0.30 (see Eq. 4, below). On the bot-
tom of Fig. 1, foam is shear thickening with respect to liquid superficial velocity. In that 
case, as Uw increases from about 0.2 to 0.4 ft/d, ∇P increases from about 150 to about 450 
psi/ft; n ≈ 1.7.

(3)tD =
Qt

�
(

r2
e
− r2

w

)

h�
≅

Qt

�r2
e
h�
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“Implicit Texture” models, here referred to as “IT’ models for simplicity, are regularly 
used in combination with fractional-flow theory to describe foam displacements (Ros-
sen et al. 2011; Al Ayesh et al. 2017). Unlike “Population Balance” models (Patzek 1985; 
Falls et al. 1988; Fergui et al. 1998; Kovscek et al. 1994), they assume local equilibrium 
in the dynamics of bubble creation and destruction and represent the effects of foam on 
gas mobility through a mobility-reduction factor (Cheng et  al. 2000). “Population Bal-
ance” models can also be constrained to conditions of local equilibrium between foam-
generation and foam-destruction processes (Kam et al. 2007; Kovscek et al. 2010). In the 
present study, we use an IT model because it requires fewer parameters and avoids some of 
the numerical challenges that are present in “Population Balance” models (Ashoori et al. 
2012).

Fig. 1   Illustrations of the two steady-state foam regimes. On the top, pressure difference across a 2-ft sand-
pack as a function of superficial velocities of water (Uw) and gas (Ug). In this case, foam is shear thinning in 
the high-quality (upper left) regime (Osterloh and Jante 1992). On the bottom, pressure gradient as a func-
tion of superficial velocities in a coreflood study (Alvarez et al. 2001). This case is shear thickening in the 
high-quality regime
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Most IT models allow for non-Newtonian behavior in the low-quality regime (Computer 
Modeling Group 2015; Cheng et al. 2000) but not in the high-quality regime. The limiting 
capillary pressure, which controls behavior in the high-quality regime (Khatib et al. 1988), 
corresponds to a limiting water saturation Sw*. Since foam does not alter the liquid rela-
tive permeability function (Eftekhari and Farajzadeh 2017), a stronger foam corresponds 
to lower limiting liquid saturation, Sw* (Zhou and Rossen 1995). Thus, non-Newtonian 
behavior in the high-quality regime requires that Sw* be a function of water superficial 
velocity. If it depended on gas superficial velocity, the pressure-gradient contours in Fig. 1 
would not be vertical. In this study, however, for simplicity, we assume that Sw* is a func-
tion of total superficial velocity.

1.3 � Fractional‑Flow Solution for Gas Injection in a Newtonian SAG

Surfactant-alternating-gas, or SAG, is the preferred method to inject foam into a reservoir 
for both operational and sweep-efficiency reasons (Blaker et  al. 2002; Shan and Rossen 
2004). This method of injection offers, among other advantages, better injectivity than 
direct foam injection and a low-mobility shock front that displaces the fluids ahead of it, 
while it propagates downstream. The shock is to a state at very low fw and thus is gov-
erned by the high-quality regime (Fig. 2). Here, for simplicity, we focus on the injection 
of the first gas slug. The initial condition I is 100% saturation of surfactant solution, and 
the injection condition J is at residual water saturation, Swr. The path connecting I and J 
along the fractional-flow curve fw(Sw) does not have monotonically increasing slope dfw/
dSw; therefore, a portion of the trajectory is replaced by a discontinuity, or shock, from I to 
a point of tangency to the fw(Sw) curve. Because of the abrupt foam collapse as a function 
of Sw near Sw* (Khatib et al. 1988), the fw(Sw) curve is steep near Sw* (Rossen and Zhou 
1995). This means the point of tangency is at low fw, in the high-quality regime. An exam-
ple is depicted in Fig. 2.

A spreading wave forms behind the shock. The spreading wave is made of character-
istics that travel with fixed saturation and velocity (for a Newtonian process). Figure  3 
shows the dimensionless time-distance diagram of one SAG process. The shock (solid line) 
mobility has a fixed value; behind it, the spreading wave contains many characteristics, 
with a continuous range of (fixed) mobilities. Figure 3 illustrates this for four characteris-
tics (dotted lines).

Fig. 2   On the left, a fractional-flow curve adapted from Boeije and Rossen (2017). Black diamonds are 
coreflood data used to construct the fractional-flow curve. Red dots denote the initial (I) and injection (J) 
conditions. On the right, an expanded view of the same curve near the point of tangency defining the shock
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The methodology described above has been shown to be more accurate than numerical 
simulation as long as the assumptions of fractional-flow theory apply (Rossen 2013). In 
particular, the abrupt transition imposed by the limiting capillary pressure is difficult to 
model correctly using finite-difference methods without using an extremely refined grid 
near the wellbore (Leeftink et al. 2015). Boeije and Rossen (2015) use the theory to derive 
an analytical formula to estimate the injectivity of the first gas slug in a SAG process. The 
formula predicts that, soon after injection begins, the pressure gradient across the foam 
bank is nearly constant as it advances.

2 � Fractional‑Flow Solution for Gas Injection in Non‑Newtonian SAG 
Processes

There are a number of studies of non-Newtonian behavior in 1D linear flow, in which a 
single fractional-flow curve describes the process: e.g., Wu et  al. (1992) and Yi (2004), 
and Subramanian et al. (1997, 1999) describe flow from one porous medium to another, 
described by a different fractional-flow function. Bedrikovetsky (1993) describes the 
solution for a 1D drainage of a dome-shaped reservoir with a gas cap. In this case, the 
fractional-flow function varies with vertical position. Jamshidnezhad et  al. (2008) solve 
for steady-state gravity segregation in 2D radial flow for non-Newtonian fluids, where the 
fractional-flow function varies with radial distance from the well. Wu et al. (1991) solve for 
1D linear displacement of a Newtonian fluid by a non-Newtonian fluid. El-Khatib (2006) 
studied numerically the immiscible displacement of non-Newtonian fluids in communicat-
ing stratified reservoirs.

A previous work on non-Newtonian foam displacements (Rossen et  al., 2011) was 
limited to foam injection or gas injection in a SAG process behind the shock front and 
included only shear-thinning behavior. The SAG analysis showed the effect of chang-
ing gas saturation and non-Newtonian behavior in the near-well region after the shock 
passes out of this region. The results showed that shear-thinning behavior affects mobil-
ity near the well; this implies that the injectivity is better than that predicted by a 

Fig. 3   A dimensionless time-distance diagram for gas injection in a Newtonian SAG process (Boeije and 
Rossen 2017). The mobilities of the shock and of a few of the characteristics are included
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Newtonian model. As in the Newtonian case, the finite-difference simulator requires an 
extremely refined grid (especially near the wellbore) to match the analytical solution.

In this study, we extend the previous work to include both shear-thinning and shear-
thickening behavior, as observed in the laboratory (Fig. 1). Equally important, we pro-
vide a methodology to solve issues that arise, e.g., when new characteristics emerge 
from the shock or when a characteristic and the shock collide. Finally, we show the 
consequences of non-Newtonian behavior for overall injectivity and mobility control at 
the leading edge of the foam bank.

We consider a homogenous cylindrical reservoir that is initially fully saturated with 
surfactant solution. Starting at time zero, gas is injected at a fixed volumetric rate Q into 
the reservoir. In this situation, the gas-injection process is governed by the high-qual-
ity regime, where foam strength depends on the limiting water saturation, Sw*, named 
fmdry in the foam model described in “Appendix A.” Under these assumptions (includ-
ing incompressible fluids), total superficial velocity ut is a function of radial distance 
from the well.

In Fig. 1, total mobility of foam is a power-law function of water superficial velocity 
Uw, not total superficial velocity Ut. Here, for simplicity, we assume that it is a power-
law function of Ut. In the high-quality regime, Sw ≈ Sw*, i.e., fmdry in our model. For 
the purpose of deriving model parameters, consider injection of foam at fixed water 
fractional flow but decreasing superficial velocity as foam moves further from the well. 
From the power-law equation (Bird et al. 2007),

Applying Darcy’s law to the water phase, with water saturation fixed at fmdry,

where n, C, ∇P , k , krw
(

Sw
)

 , and �w denote, respectively, the power-law exponent, a con-
stant, pressure gradient, permeability, liquid relative permeability, and liquid viscosity. 
Combining these equations, one can show that the ratio 

[

krw
(

Sw
)

∕Un−1
t

]

 is a constant, 
which considering cylindrical flow can be rewritten as [krw

(

Sw
)

∕r1−n] . As next step, we 
apply this ratio to the outer radius re and at any other radius r. Finally, using a Corey model 
for krw (see “Appendix A”), we derive an expression for fmdry as a function of r:

where fmdry(r) denotes the water saturation at which foam collapses at a given radial posi-
tion, Swr is the irreducible water saturation, r radius, and nw the Corey–Brooke exponent for 
krw(Sw). The subscript e denotes a reference value, in our study taken at the outer radius re.

Equation (6) indicates that for a shear-thinning foam the fractional-flow curve shifts 
to the left (smaller Sw) as the radius increases, while for a shear-thickening foam it shifts 
to the right. Figures  4 and 5 illustrate this shifting for a shear-thinning foam with a 
power-law exponent of n = 0.33 and for a shear-thickening foam with an exponent 
n = 1.34, respectively. Figures 4 and 5 reflect non-Newtonian behavior only in the high-
quality regime, not in the low-quality regime since it is the high-quality regime that 
dominates behavior during gas injection in a SAG process (Fig. 2).

(4)∇P = CUn
t

(5)∇P =
kkrw

(

Sw = fmdry
)

�w

fwUt

(6)fmdry(r) = Swr +
(

fmdrye − Swr
)

(

r

re

)
n−1

nw
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We discretize the reservoir domain in increments along xD. Within each increment, 
foam properties are assumed to be constant, i.e., Newtonian. Therefore, within each 
increment, the characteristics and the shock are straight lines. However, as each char-
acteristic crosses to the next increment, its velocity changes. This continuous variation 
of velocity makes the characteristics curve on a large scale; Fig. 6 shows an example, 
using for illustration very large increments in xD (∆xD = 0.1); in our calculation, the 
increments are much smaller. The approximation to continuous variation in properties 
becomes exact in the limit as the increment in xD approaches zero.

Fig. 4   Fractional-flow curves for different radii for a shear-thinning foam with a power-law exponent of 
n = 0.33. The parameter fmdry varies from 0.356 at the wellbore radius (rw = 0.1 m) (blue curve) to 0.312 at 
r = 1.0 m (red), 0.286 at r = 10 m (yellow), and 0.271 at the outer radius (re) = 100 m (purple)

Fig. 5   Fractional-flow curves for different radii for a shear-thickening foam (n = 1.34), where fmdry varies 
from 0.259 at rw = 0.1 m (blue curve) to 0.262 at r = 1 m (red), 0.266 at r = 10 m (yellow), and 0.271 at the 
outer radius re = 100 m (purple)
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In a non-Newtonian scenario, a characteristic no longer carries its water-saturation value 
as it crosses between increments, but it does carry its water fractional-flow value instead 
(Wu et al. 1993; Rossen et al., 2011). The individual characteristics within the spreading 
wave do not collide with each other, because, at any value of xD, velocity dfw/dSw decreases 
monotonically with Sw. Thus, individual characteristics spread further apart as they move 
downstream. Interactions with the shock are possible, however. We use the approach of 
Lake et al. (2003) to resolve the complications raised by the collision between a character-
istic and a shock or by an accelerating shock that sheds additional characteristics.

Figure 7 illustrates our solution approach for a shear-thinning foam. For illustration pur-
poses, we use two very large increments in xD. Within the first increment (Fig. 7a), starting 
at the wellbore, the fractional-flow curve is fixed and the Buckley–Leverett solution is the 
same as for a Newtonian SAG, i.e., a shock followed by a spreading wave. As the shock 
(point A) leaves the first increment and enters the second increment, conserving its value fw 
(Fig. 7b), it slows down as it displaces initial condition I. As the characteristics behind the 
shock cross the boundary to the second increment, their velocities increase. An example is 
the characteristic B (denoted B’ in the second increment) directly behind the shock, which 
accelerates and intersects the shock. This collision imposes a new Buckley–Leverett prob-
lem with initial condition (fw = 1) and injection condition B’. The solution is a new shock 
from fw = 1 to B’; see Fig. 7c. This new shock does not necessarily satisfy the tangency 
condition, though, if it does not, other characteristics behind it approach as well; further 
collisions are possible. Whenever this occurs, we solve locally the arising Buckley–Lever-
ett problem using the same methodology. Figure 8 illustrates the collision of a characteris-
tic and the shock in a dimensionless time-distance diagram. In our discrete approximation 
to the continuous variation in properties, the shock velocity is recalculated as it enters each 
new increment. When a collision occurs within an increment, the characteristic that was 
the shock is eliminated, replaced by the characteristic that collides with (Ponners 2017; ter 
Haar 2018).

We construct the fractional-flow solution for a shear-thickening foam by considering, 
again, two large increments in xD starting at the injection face. For a shear-thickening foam, 
the first increment corresponds to a weaker foam, represented by the red fractional-flow 
curve in Fig. 9. Within first increment, the solution is a shock from a point of tangency 
to point I at fw = 1, followed by a spreading wave as in a Newtonian SAG; see Fig. 9a. As 
the shock enters the next increment in xD (Fig.  9b), it imposes a new Buckley–Leverett 
problem with initial condition fw = 1 and injection condition A’. The solution is a spreading 
wave from A’ to a new point of tangency and an accelerated shock. The state previously 
immediately upstream of the shock is now a characteristic within the spreading wave; see 
Fig. 9c. As the shock enters each new increment, additional characteristic(s) split off from 
it. Figure 10 summarizes the fractional-flow solution on a dimensionless time-distance dia-
gram. Note that while collisions occur within increments for shear-thinning foam, addi-
tional characteristics are created at the boundaries between increments for shear-thickening 
foam (Ponners 2017; ter Haar 2018).

We carry out the calculations as follows. We discretize xD into 1000 increments, spaced 
so that total superficial velocity decreases by 0.7% between consecutive increments of 
increasing radial position. Thus, increments are smaller near the wellbore, where total 
superficial velocity changes rapidly. For shear-thinning foam, we calculate velocities for 
300 characteristics in the first increment. In each new increment in xD moving outward, 
we calculate the intersection point between the shock and the characteristic immediately 
behind it. If the intersection is within the increment, we recalculate the new shock velocity 
and eliminate the characteristic from that point forward. We then check whether the next 
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characteristic would then intersect the new shock trajectory within the increment; if so, we 
update shock velocity and eliminate the next characteristic, and so forth.

For shear-thickening foam, we calculate velocities for 300 characteristics starting in the 
outermost increment, corresponding to re. We carry out calculations moving inward; in 
essence working from Fig. 9a–c at each new increment moving inward. At each new incre-
ment, we calculate the shock velocity using the tangency condition. Any characteristics 
with larger velocities are eliminated. (Thus, in our calculations, characteristics are elimi-
nated as we move inward, rather than created in moving outward.) In the example shown 
below, there are 169 characteristics left at rw, so resolution is good throughout the domain 
of interest.

For both shear-thinning and shear-thickening cases, results were substantially unchanged 
whether we started with 200 or 300 characteristics, or whether they were initially spaced 
equally in Sw or in fw. Also, for both rheologies, results were unchanged whether we started 
with 1000 or 1100 increments in xD.

In the end, we have a table of dimensionless times at which each characteristic passes 
the outer boundary of each increment in xD, along with the values of fw and Sw for that 
characteristic. From Sw, the total mobility corresponding to that characteristic in that incre-
ment can be determined.

We compute the pressure difference between the wellbore and the outer radius by inte-
grating ∇p(r) between rw and re (Al Ayesh et al. 2017; Ponners 2017; ter Haar 2018). We 
define dimensionless pressure rise at the well PD by dividing by the pressure difference 
needed to inject water into a fully liquid-saturated reservoir at the same volumetric injec-
tion rate Q. Assuming a water viscosity of 0.001 Pa s,

Computing PD requires converting the table of dimensionless times when characteristics 
and shocks pass boundaries between increments into a table of positions of characteris-
tics within the various increments at a fixed time. We use linear interpolation to calculate 
the dimensionless positions of the shock and characteristics within the increments. Within 

(7)PD =

Q

2�kh
∫ re
rw

1

r�rt(sw)
dr

Q

2�kh�w
ln
(

re

rw

) =

∫ re
rw

1

r�rt(sw)
dr

1

1000
× ln

(

re

rw

)

Fig. 8   Dimensionless time-
distance diagram illustrating 
collision of characteristic and 
shock in a shear-thinning foam; 
cf. Figure 7
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each increment, between each pair of characteristics, we take the average of the mobilities 
of the two characteristics to determine the difference in pressure between the two. Then, 
the total relative mobility (λrt) as a function of xD at a fixed tD can be used to numeri-
cally solve the integral in Eq. (7) by summing up the increments between characteristics. 
In our final results, we distinguish ∆Pf, the pressure difference across the foam bank, from 
∆Pw, the pressure difference across the water-saturated region ahead of foam (region I in 
Figs. 8 and 10). For a Newtonian foam, the pressure difference across the foam bank ∆Pf 
approaches a constant value soon after injection begins (Boeije and Rossen 2018).

2.1 � Application

We apply the methodology described above to a homogeneous cylindrical reservoir with 
wellbore and open-outer-boundary radii of 0.1 m and 100 m, respectively. The superficial 
velocity varies by a factor of 1000 from the outer radius to the wellbore radius. Experimen-
tal data on the non-Newtonian behavior of foam in the high-quality regime extend over 
ranges very much smaller than this (cf. Fig. 1); thus, our results illustrate the implications 
if these trends continue over a much-wider range of velocities.

The STARS foam model is able to reproduce an abrupt, though not complete, foam col-
lapse at a water-saturation value fmdry (previously referred as Sw*) (Computer Modeling 
Group. 2015; Cheng et al. 2000). However, this version of the dry-out function can under-
estimate the injectivity observed in the field during gas injection in a SAG (Rossen et al. 
2017). Therefore, in this study, we use the Namdar-Zanganeh modification of this model, 
which assumes complete foam collapse at residual water saturation Swr (Namdar-Zanganeh 
et  al. 2011; Rossen et  al. 2016). See “Appendix A” for a description of the foam model 
used in this study.

With the exception of fmdry, all rheological and petrophysical properties are constant 
(Table 1). As the base case, we use the fmdry value determined by Kapetas et al. for Ben-
theimer sandstone (2017) and apply it to the outer radius (re = 100 m). At other radial posi-
tions, fmdry is given by Eq.  (6). The experimental data of Kapetas reflect a very strong 
foam, with very low mobility.

We apply power-law exponents similar to those reported by Alvarez et  al. (2001) 
(n = 1.34) and by Osterloh and Jante (1992) (n = 0.33) to the entire range of velocities. 

Fig. 10   Dimensionless time-
distance diagram corresponding 
to a shear-thickening foam
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(Alvarez et al. present estimates for several sets of data; most are less shear thickening than 
that used for illustration in Fig.  1.) As noted, these trends were determined experimen-
tally over a much-narrower range of velocities than assumed here. Our results illustrate the 
implications if those trends continue over the entire range of velocities around an injection 
well.

2.2 � Results

2.2.1 � Shear‑thinning foam (n = 0.33)

For the shear-thinning case, we use the average power-law exponent, n = 0.33, from the 
data of Osterloh and Jante (1992). Figure  11 depicts the resulting dimensionless time-
distance diagram using our methodology. The characteristics accelerate with increasing 
dimensionless distance, while the shock slows down.

Figure  12 plots total relative mobility as a function of dimensionless position for 
tD = 0.5. As expected, there is an abrupt transition in mobility at the shock. This drop in 

Table 1   Summary of the input 
parameters used in this study 
(Kapetas et al. 2017)

Viscosities
µw = 0.001 Pa s µg = 0.00002 Pa s
Corey relative permeability parameters
Swr = 0.25 Sgr = 0.2
k0

rw = 0.39 k0
rg = 0.59

nw = 2.86 ng = 0.7
Foam parameters
fmdry = 0.271
fmmob = 47,700
epdry = 400

Fig. 11   Dimensionless time-
distance diagram for the shear-
thinning foam with a power-law 
exponent n = 0.33. For illustra-
tion purposes, we plot only 50 
characteristics
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mobility offers good mobility control at the leading edge of the foam bank. Moving back 
toward the well, mobility increases, which helps gas injectivity. These advantages are also 
observed with a Newtonian foam.

Figure 13 plots water saturation behind the shock as a function of fmdry, as the shock 
advances from the wellbore to the outer radius. Also plotted is the water saturation satis-
fying the conventional tangency condition for the same values of fmdry. At the wellbore, 
the initial shock is determined by the tangency condition, but the two deviate as the shock 
advances. In addition, the mobility at the shock needs not match exactly the power-law 
function observed for fixed-quality (fixed fw) injection in Fig.  1, used to construct our 
model parameters (Eq. 6). The mobility at fixed fw in the high-quality regime depends pri-
marily on fmdry, but the tangency condition in a SAG process is sensitive to other factors 
as well. Figure 14 shows total relative mobility at the shock as a function of dimensionless 
position. Also plotted is the mobility that would be computed from the tangency condi-
tion at each position. The mobility at the shock decreases as the shock advances, but not in 
exact agreement with the tangency condition.

Fig. 12   Total relative mobility (λrt) as a function of dimensionless position (xD) at a fixed dimensionless 
time (tD = 0.5) for a non-Newtonian foam with power-law exponent n equal to 0.33

Fig. 13   Water saturation behind the shock plotted as a function of fmdry, as both change with radial posi-
tion, for shear-thinning foam with power-law exponent n equal to 0.33. The blue curve shows the water 
saturation behind the shock for the shear-thinning foam, and the green curve shows the saturation for the 
shock calculated with the tangency condition for a fractional-flow curve at the same dimensionless position
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Figure 15 shows total dimensionless pressure rise at the well (PD) during injection of 
the first pore volume of gas for this shear-thinning foam. The magnitude of pressure rise 
is very large, which reflects the extremely strong foam found by Kapetas et  al. in their 
corefloods. We believe the trends here would also be reflected in weaker foams applied in 
the field. Total dimensionless pressure increases up to foam breakthrough, in contrast to a 
Newtonian SAG process. For comparison, Fig. 15 shows also PD for two Newtonian foams, 
applying properties at the outer and wellbore radii, i.e., fmdry = 0.356 and 0.271, through-
out the entire displacements. The injectivity of the shear-thinning foam lies between the 
injectivity corresponding to the two Newtonian limiting cases.

Fig. 14   Total relative mobility behind the shock (blue curve) as a function of dimensionless position for a 
shear-thinning foam with power-law exponent n equal to 0.33. The green curve shows total relative mobility 
for the corresponding positions calculated from the tangency condition

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
D
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P D

n=1; fmdry=0.356

n=1; fmdry=0.271
n=0.33

Fig. 15   Dimensionless pressure rise (PD) as a function of dimensionless time (tD) for a shear-thinning foam 
with power-law exponent n equal to 0.33
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These results illustrate two general trends for gas injection in SAG with shear-thin-
ning foam: mobility control at the foam front improves as foam advances from the well, 
but injectivity declines. The mobility at the shock is consistently less than that esti-
mated from the tangency condition for the fw(Sw) function starting at a radius, r = 0.13 m. 
Mobility at the shock decreases to about a factor of 0.04 of its original value, instead of 
(1000)−0.67 ≈ 0.01 suggested by the power law.

2.2.2 � Shear‑Thickening Foam (n = 1.34)

Figure 16 presents the dimensionless time-distance diagram for a shear-thickening foam 
with a power-law exponent of 1.34, and this exponent is within the range of exponents 
reported by Alvarez et al. (2001) based on coreflood data. The characteristics slow down 
as they advance, and new characteristics appear at the shock, which accelerates. Figure 17 
shows total relative mobility at the shock as it advances; in this case, it everywhere satisfies 
the tangency condition. The increase in mobility at the shock, however, is much less than 
suggested by the power-law exponent at fixed fw. Mobility increases by about a factor of 
3.3, instead of (1000)0.34 ≈ 10.5 suggested by the power law. This discrepancy is explained 
by the fact that the shock satisfies the tangency condition at each increment and therefore 
no longer carries a unique fw value.

Figure  18 plots dimensionless pressure rise at the well (PD) as a function of dimen-
sionless time. The maximum dimensionless pressure occurs near the start of gas injection, 
with value of PD approximately equal to 55. As gas injection progresses, the dimensionless 
pressure drops to 40 before the shock breaks through. Thereafter, it decreases at an even 
faster rate. As the dimensionless pressure declines far from the injection well, the mobility 
control offered by the foam bank suffers. As in shear-thinning SAG, the shear-thickening 
case lies between the two limiting cases (based on mobilities at rw and at re). However, in 
contrast with a shear-thinning foam, the strongest foam, with fmdry = 0.259, is located in 
the near-wellbore region.

Fig. 16   Dimensionless time-distance diagram for a shear-thickening foam with a power-law exponent (n) of 
1.34. For illustration purposes, we plot only 50 characteristics



418	 R. O. Salazar Castillo et al.

1 3

We also modeled a shear-thickening foam with n = 1.67, value reported by Alvarez 
et al. (2001). As seen in Fig. 5, for n = 1.34, fmdry approaches Swr near the wellbore. For 
n = 1.67, and assuming a strong foam at re, fmdry approaches so close to Swr near the well-
bore that the adjustment of Namdar-Zanganeh, which requires foam collapse at Swr, gives 
shear-thinning behavior very near the well. Therefore, we do not show that case. Details 
are in Ter Haar (2018).

Fig. 17   Total relative mobility at shock as a function of dimensionless position for a shear-thickening foam 
with power-law exponent n = 1.34

Fig. 18   Total dimensionless pressure (PD) as a function of dimensionless time (tD) for the Newtonian 
foams that apply at the wellbore radius (on the left, fmdry = 0.259) and at the outer radius (on the right, 
fmdry = 0.271)
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2.2.3 � Finite‑Difference Simulation

In this section, we present the evolution of total dimensionless pressure for non-Newto-
nian SAG processes during gas injection, calculated using a finite-difference simulator. A 
description of the discretization scheme used in the simulator is included in Appendix B; 
see also Bos (2017). As in the fractional-flow calculations, the input parameters correspond 
to the petrophysical and foam parameters listed in Table 1.

Figure 19 shows total dimensionless pressure calculated using 100 and 500 grid blocks 
in radial geometry, linearly spaced in r, for shear-thickening foam with n = 1.34. With 500 
grid blocks, the first block extends from the wellbore at 10 cm to 30 cm. The fluctuations 
in Fig.  19 reflect the movement of the shock through consecutive grid blocks (Rossen 
2013). Qualitatively, the behavior resembles the fractional-flow results: injection pressure 
decreases from the beginning of gas injection and decreases even at a faster rate after foam 
breaks through. However, even with this extraordinary grid resolution, the injectivity cal-
culated by the finite-difference simulator is in significant error.

3 � Conclusions

In this paper, we present a method of solution for initial gas injection in a non-Newtonian 
SAG process that includes the interactions between the shock and the characteristics. The 
methodology can be applied to both shear-thinning and shear-thickening behavior.

For a shear-thinning foam, we find that mobility control improves as the foam front 
propagates from the well, but injectivity declines somewhat with time. However, the injec-
tivity is still more favorable than for a Newtonian foam with the same mobility at the outer 
radius. In a case of a foam with marginal mobility control, there could be problems with 
viscous fingering as foam initially advances from the near-well region. For a shear-thin-
ning foam, the shock does not necessarily satisfy the conventional tangency condition that 

Fig. 19   Effect of grid resolution on calculated injectivity using finite-difference simulation. In blue, the 
dimensionless pressure evolution calculated using 100 grid blocks, for a foam with power-law exponent 
n = 1.34. In green, using 500 grid blocks, for the same foam parameters; in red fractional-flow calculation
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applies to Newtonian foam, though it does continually approach it. In addition, the mobility 
at the front needs not fit the power-law behavior seen at fixed gas fraction in the laboratory.

For a shear-thickening foam, mobility control deteriorates as the foam front advances, 
though injectivity improves somewhat with dimensionless time. However, injectivity is 
less favorable than for a Newtonian foam with the same mobility far from the well. In case 
of marginal mobility control, the foam could have problems with viscous fingering far from 
the injection well.

Overall, injectivity is a complex result of changing saturations and varying superficial 
velocities very near the well. Conventional simulators cannot adequately represent these 
effects, or estimate injectivity accurately, in the absence of exceptional grid resolution near 
the injection well.
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Appendix A: Corey–Brooks Relative Permeability Model and Foam 
Model

According to the Corey–Brooks relative permeability model, the water and gas relative 
permeabilities are defined as

where krw, krg, k0rw,k0
rg

, nw, ng, S, Sw, Swr, and Sgr denote, respectively, liquid and gas rela-
tive permeabilities, the end-point water and gas relative permeabilities, the water and gas 
Corey–Brooks exponents, normalized water saturation, water saturation, and residual water 
and gas saturations.

In the presence of foam, the STARS model (Computer Modeling Group 2015; Cheng 
et al. 2000) incorporates a mobility-reduction factor, FM, in the gas phase as follows,

where ut, fg, k, krg, k
f
rg , μg, and ∇P denote, respectively, total superficial velocity, quality 

(gas fractional flow), permeability, gas relative permeability in the absence and the pres-
ence of foam, respectively, gas viscosity, and pressure gradient.

(A1)krw = k0
rw
Snw

(A2)krg = k0
rg
(1 − S)ng

(A3)S ≡
Sw − Swr

1 − Swr − Sgr

(A4)utfg = −
kk

f
rg

�g

∇p = −
kkrgFM

�g

∇P

http://creativecommons.org/licenses/by/4.0/
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The mobility-reduction factor, FM, models the effects of surfactant concentration, water 
saturation, oil saturation, gas velocity, capillary number, and the critical capillary number 
on gas mobility. Here, we focus on the dependence on water saturation (and, by implica-
tion, on capillary pressure), which controls behavior in the high-quality regime and, for 
simplicity, exclude the effect of changing or non-uniform oil saturation. In that case

where the parameter fmmob is the reference gas-mobility-reduction factor for wet foams. 
We further assume complete foam collapse at residual water saturation, Swr, employing the 
version of F2 proposed by Namdar-Zanganeh et al. (2011):

where fmdry denotes the limiting liquid saturation at which foam collapses and epdry is a 
parameter that controls the abruptness of this collapse.

Appendix B: Discretization Scheme in Finite‑Difference Simulator/

Equation 1 is discretized as follows,

where Swi, Swi−1, fw, t, ∆t, and ∆x denote the saturation of the given grid block, the satura-
tion of the grid-block upstream of this block, water fractional flow, time, time increment, 
and dimensionless grid-block length, respectively.

The pressure evolution is calculated using Darcy’s Law. In our discretization scheme, 
Darcy’s Law takes the form,

where Pi−1, Pi, ri, ri−1, Swi, λrt, Q, h, and k denote the pressures and radii at the inner and 
outer boundaries, respectively, of the grid block, the saturation in the grid block, total rela-
tive mobility, total volumetric injection rate, thickness of the reservoir, and permeability, 
respectively.

Appendix C: Description of Computer Programs for the Fractional‑Flow 
Theory Solution and the Finite‑Difference Numerical Solution

We coded in Matlab both the fractional-flow solution and the finite-difference simulator 
programs. We describe the structure of these programs in the flow diagrams presented in 
Fig. 20 and in Fig. 21. 

(A5)FM =
1

1 + fmmobF2

(A6)

F2 = 0.5 +
arctan

(

epdry
(

Sw − fmdry
))

�
−

[

0.5 +
arctan

(

epdry
(

Swr − fmdry
))

�

]

(B1)Swi(t + Δt) = Swi(t) + Δt

(

fw
(

Swi−1(t)
)

− fw
(

Swi(t)
)

Δx

)

(B2)Pi−1 = Pi +

(

Q

4�hK

)

(

1

�rt
(

ri, Sw i

) +
1

�rt
(

ri−1, Sw i

)

)

ln

(

ri

ri−1

)
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We tested the convergence of both programs. For the fractional-flow theory solution 
program, we increased the number of characteristics from 200 to 300 and the number of 
rings (increments in xD) from 1000 to 1100. The solutions converged at these resolutions. 
For the finite-difference simulator, we increased the number of grid blocks. We matched 
the fractional-flow solution for the Newtonian case using 2500 grid blocks and running the 
simulation up to a dimensionless time tD = 0.01. Running a simulation with a longer tD at 
this grid-block resolution was not possible because of RAM memory limitations.

The computation time for the fractional-flow solution was below 1 hour for the cases 
examined here using a personal computer with 16 GB of RAM and an Intel i7 processor. 
Whereas for the finite-difference simulator, the computation time increased exponentially 
as we increased the number of grid blocks Bos and Salazar Castillo (2019). In order to be 
able to run the program in a reasonable amount of time (below 2 h), we had to adjust the 
length of the simulation by reducing tD.

The codes can be found in Bos and Salazar Castillo (2019) and in Salazar Castillo (2019b). 
More details and previous versions of the codes can also be found in Bos (2017), Ponners 
(2017) and ter Haar (2018).

Fig. 20   Flow diagram corresponding to the algorithm for the fractional-flow solution
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