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Abstract
The dispersion process in particulate porous media at low saturation levels takes place over
the surface elements of constituent particles and, as we have found previously by comparison
with experiments, can be accurately described by superfast nonlinear diffusion partial dif-
ferential equations. To enhance the predictive power of the mathematical model in practical
applications, one requires the knowledge of the effective surface permeability of the particle-
in-contact ensemble, which can be directly related with the macroscopic permeability of
the particulate media. We have shown previously that permeability of a single particulate
element can be accurately determined through the solution of the Laplace–Beltrami Dirich-
let boundary value problem. Here, we demonstrate how that methodology can be applied to
study permeability of a randomly packed ensemble of interconnected particles. Using surface
finite element techniques, we examine numerical solutions to the Laplace–Beltrami problem
set in the multiply-connected domains of interconnected particles. We are able to directly
estimate tortuosity effects of the surface flows in the particle ensemble setting.

Keywords Unsaturated porous media · Surface transport · Permeability · Laplace–Beltrami
equation

1 Introduction

Liquid transport in particulate porous media, such as sand, is customarily classified into
fully saturated, funicular and pendular regimes of spreading (Bear 1972; Herminghaus 2005;
Scheel et al. 2008a, b). The first two regimes of the liquid dispersion occur at relatively high
saturation levels s > sc ≈ 10%, where saturation s is defined as the ratio of the liquid volume
VL to the volume of available voids VE in a sample volume element V , s = VL

VE
. At high

saturation levels, above the critical value sc, liquid transport takes place in the pore space
either fully or partially filled by the liquid.

Our prime concern here is the special case of liquid dispersion at low saturation levels.
As the saturation level drops below the critical value, s ≤ sc, that is to the value relevant
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Fig. 1 Illustration of the liquid distribution in particulate porous media (grey) with pendular rings (blue) at
low saturation levels

to the pendular regime of spreading, the liquid volumes in the porous matrix become iso-
lated (Herminghaus 2005; Scheel et al. 2008a, b). As a result, at low saturation levels, the
liquid is only contained in the pendular rings formed at the locations of the particle contacts
and on the particle rough surfaces, and the liquid transport can only occur over the matrix
surface elements, as is illustrated in Fig. 1.

The analysis of this regime of wetting, which is crucial for studies of biological processes
and spreading of nonvolatile liquids in arid natural environments and industrial installations,
has shown that the liquid dispersion has many distinctive features and can be accurately
described by the so-called superfast nonlinear diffusion equation (Lukyanov et al. 2012,
2019).

Our main concern here is the wetting cycle, when the liquid spreads over a dry porous
matrix or over a matrix with a very low background saturation level up to sr ≈ 2%. These
conditions are similar to those in the case studied previously experimentally and theoretically
in Lukyanov et al. (2019). The main driving force of the dispersion process, as is often the
case during the wetting cycle, is capillary pressure developed at the moving front in the
process of wetting of dry porous matrix, while the liquid bridges play a role of variable liquid
reservoirs of uniform surface curvature. Note that, unlike at high saturation values s > sc, at
low saturation s < sc the capillary pressure is developed on the length scale of the surface
roughness.

Theoretically, the superfast nonlinear diffusion equation belongs to a special class ofmath-
ematical models. Unlike in the standard porous medium equation (Vazquez 2006), where
the coefficient of diffusion D(s) is either constant (leading to normal, Gaussian dispersive
behaviour) or a monotonically vanishing function of saturation (D(s) ∝ sm, m > 0, lead-
ing to hypodispersive behaviour), in this special case, the nonlinear coefficient of diffusion
demonstrates divergent behaviour as a function of saturation, D(s) ∝ (s − s0)−3/2, leading
to hyperdispersive character of the spreading process. Here, s0 is some minimal saturation
level (s0 ≈ 0.5%), which could be only achieved in a state when the liquid bridges cease
to exist completely (Lukyanov et al. 2012; Scheel et al. 2008a, b; Lukyanov et al. 2019).
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Surface Permeability of Particulate Porous Media 639

Note, in that respect, that in the domain of spreading liquid bridges are supposed to never
vanish, so that the condition s > s0 is always fulfilled in the model, and there is no actual
singularity of the mathematical description (Lukyanov et al. 2012, 2019). The character of
the dispersion process may often change from hypodispersive to hyperdispersive depending
on the spreading scenario, that is on the driving forces of the spreading process (de Gennes
1985; Bacri et al. 1985; Novy et al. 1989; Toledo et al. 1993; Meleá 2003), especially in
multi-phase systems during forced imbibition cycles used in petroleum engineering (Meleá
2003). If the forcing, external pressure at the system inlet is strong enough, the low saturation
zone may not have a chance to be developed, and hypodispersive character of the spreading
front is observed.

Returning to our mathematical model at low saturation values, in the macroscopic approx-
imation, that is after averaging over some volume element containing many particles of the
porous medium, the diffusion process in the slow creeping flow conditions can be described
by the following nonlinear diffusion equation

∂s

∂t
= ∇ · {D(s)∇s} , t > 0, (1)

where

D(s) = D0(s)

(s − s0)3/2
, s > s0,

for D0 > 0.
The details of derivation of (1) can be found in Lukyanov et al. (2012) and Lukyanov et al.

(2019), here we note that, the resultant governing nonlinear Eq. (1) directly follows from the
conservation of mass principle

∂(φs)

∂t
+ ∇ · Q = 0, (2)

where φ is porosity defined as φ = VE

V
, which is further assumed to be constant, and Q is

the macroscopic flux density. The macroscopic flux density Q is defined in such a way that
the total flux through the surface of a macroscopic sample volume element is given by the
surface integral

∫
Q · n dS, where n is the normal vector to the surface of the sample volume

element.
To obtain (1) from (2), one needs to apply the capillary pressure–saturation relation-

ship (Halsey and Levine 1998; Lukyanov et al. 2012, 2019) dictated by the liquid bridges
behaviour

p = −p0
Ac

(s − s0)1/2
(3)

and the local Darcy’s law (Rye et al. 1998; Or and Tuller 2000) describing the surface flow
in the rough layer of the particle elements

− κm

μ
∇u = q. (4)

here Ac =
√

3
4

1−φ
φ

Nc
π
, Nc is the coordination number, that is the average number of bridges

per a particle, p0 = 2γ
R cosφc, γ is the coefficient of the surface tension of the liquid, φc is

the contact angle made by the free surface of the liquid bridge with the rough solid surface of
the constituent particles, R is an average radius of the porous medium particles, q and u are
the averaged local flux density and pressure in the rough surface layer, μ is liquid viscosity,
and κm is the local coefficient of permeability of the rough surface, which is proportional
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to the average amplitude of the surface roughness δR , that is the width of the surface layer
conducting the liquid flux

κm ∝ δ2R . (5)

One needs to emphasise here that two levels of averaging are involved in obtaining the final
governing Eq. (1). While Eqs. (1)–(3) are ‘truly’ macroscopic, that is obtained by averaging
using a volume element V containing many grain particles, Eq. (4) is only an average over
some rough area of a single particle containing many surface irregularities, so that quantities
q and u are also only local averages over that sample surface area.

Therefore, to transit from (4) to themacroscopic description, the spatial averaging theorem
formulated in Whitaker (1969) should be applied. That is, using intrinsic liquid averaging
〈· · · 〉l = V−1

l

∫
Vl

. . . d3x , where Vl is liquid volume within the sample volume V , one has

〈u〉l = p and 〈q〉l SeS = Q. Here, S is the surface area of the sample volume V with the
effective area of entrances and exits Se. Note, the ratio Se/S is not just a geometric property,
but also takes into account the connectivity of the porous elements. For example, the effective
area of entrances and exits Se is only defined by the pathways open to the flow.

As a result of the two-level averaging

D0(s) = Ac
K (s)

μ

p0
2φ

,

where K (s) = κm
Se
S is the coefficient of permeability defined by

Q = −K

μ
∇ p.

The global surface permeability of the particles K as a function of saturation is one of the
main elements of the model to accurately represent liquid dispersion at low saturation levels.
It is fully defined by the particle geometry and the geometry of the liquid bridge contact
areas, Figs. 1 and 2.

In particular, the disposition and the size of the liquid bridges on the particle surface, that
is the size of the domains Ω1,2 and the angle α, should play a leading role in defining the
resistance to the surface flow. It is not difficult to discern that any variations of the contact
area covered by the liquid bridges (pendular rings), that is areas Ω1,2 shown in Fig. 2, or the
value of the bridge volume, should affect the global permeability.

Fig. 2 Illustration of the flow and
solution domains on the surface
Γ of a spherical particle, and
their geometric arrangements. In
the picture, Ω0 is the domain of
the surface flow and the surface
area covered by the liquid bridges
corresponds to the domains Ω1
and Ω2
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Surface Permeability of Particulate Porous Media 641

Previously, we have shown that permeability of a single particle element can be deter-
mined by means of a solution to the equivalent Laplace–Beltrami boundary value problem
formulated in the flow domain Ω0 with the boundaries ∂Γ1,2 in Fig. 2 (Sirimark et al. 2018).
We briefly formulate that problem and summarise the previous results in the next part. Here,
we note that, based on the analysis of the problem, we have been able to show that in a special
azimuthally symmetric case of spherical particles, when the two areas covered by the liquid
bridges, domains Ω1 and Ω2 in Fig. 2, are oriented symmetrically to each other, that is at
α = π , the permeability K is supposed to follow the scaling

K (s) ∝ 1

| ln(s − s0)| .
We have studied several generalisations of the symmetric problem, such as arbitrary ori-

ented domains, α �= π , on the surface of the spherical particle, and particles of arbitrary
shapes emulating the shape of a real sand grain. While variations of the particle shape were
found to produce a relatively modest effect on the particle surface permeability, the orienta-
tion of the boundaries, emulating tortuosity effects, was found to produce a stronger impact
due to the substantial variation of the distance, on average, between the boundary contours
∂Γ1,2. It became clear that while the previously obtained scaling was a good first step to
estimate the surface permeability of particulate porous media, a more general case of an
ensemble of interconnected particles should be analysed to enhance the model predictive
power and at the same time to estimate rigorously the effects of tortuosity of the surface flow
in the particle assembly. In this study, we will simulate a general case of an ensemble of
many particles linked by liquid bridges. We will concentrate on the bunch of spherical parti-
cles, but of different radii and randomly arranged in configurations. We compare the random
pack configuration results with some symmetric case to estimate the effects of tortuosity and
formulate practical recipes to apply the superfast diffusion model.

2 Microscopic Model of the Surface Permeability of the Elements

Microscopically, the liquid creeping flow through the surface roughness of each particle can
be described by a local Darcy-like relationship (4) between the surface flux density q and
averaged (over some area containing many surface irregularities) pressure in the grooves
u (Rye et al. 1998; Or and Tuller 2000). Assuming incompressibility of the liquid and that
the liquid layer thickness is constant δR = const, one has

∇ · q = 0. (6)

Equation (4) taking into account (6) can then be transformed into the Laplace–Beltrami
equation defined on the surface Γ of the particle

�Γ u = 0. (7)

here �Γ designates the Laplace–Beltrami operator, which is defined on the surface element
Γ through the surface gradient ∇Γ tangential to the surface. Formally, let nΓ denote the
unit normal to the surface Γ , Fig. 2. Then, one can define the surface gradient of a smooth
function u as∇Γ u := ∇u−(∇u ·nΓ )nΓ , and then, the Laplace–Beltrami operator is defined
as �Γ u = ∇Γ · ∇Γ u.

The second assumption δR = const implies that the surface layer is fully saturated, that is
its content is not changing on the particle surface. The approximation of the fully saturated
rough surface layer is well fulfilled, if the characteristic pressure amplitude |u| is less than the
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capillary pressure amplitude defined on the length scale of the surface roughness δR , which
is of the order of δR ∼ 1µm in typical sands (Alshibli and Alsaleh 2004), as is demonstrated
in Rye et al. (1998). That is, |u| < uc = γ

δR
, and, for example for water (γ = 72mN/m) at

δR = 1μm, this results in |u| < 7.2 × 104 Pa.
Alternatively, if the surface layer somehow is not fully saturated, parameter δR should

be interpreted as the characteristic width of the liquid layer within the rough surface layer
and one needs to presume that variations of the pressure |δu| are negligible |δu| 
 uc.
This is usually the case in slow, creeping flow conditions in porous media, and in fact, it
is a criterion for the use of macroscopic approximation to such flows (Bear 1972). As is
shown in Lukyanov et al. (2019), strong negative capillary pressure on the level of uc is only
expected at the moving front, so that the approximation is well fulfilled in the macroscopic
flow domain. Note also that, it is always assumed throughout this study that

δR 
 R,

that is the amplitude of the surface roughness (or the width of the liquid layer) is always
much smaller than the particle size.

2.1 Permeability of a Single Particle Element

Consider, as the simplest example, a spherical particle of radius R with a closed surface Γ ,
which is split into three sub-domains Ω0, Ω1 and Ω2 with the surface boundaries between
them ∂Γ1 and ∂Γ2, as is shown in Fig. 2. The location of the sub-domainsΩ1 andΩ2 to each
other on the surface is fixed by the tilt angle α. The sub-domains Ω1 and Ω2 correspond to
the contact area covered by the liquid in the bridges, while the surface flow, described by
(4), takes place in Ω0. Our prime concern is permeability of the surface elements, so that we
only consider steady-state problems.

The distribution of liquid pressure u, as it follows from (7), should satisfy the Laplace–
Beltrami equation now defined on the surface of the sub-domain Ω0

�Ω0u = 0. (8)

Note that, in fact, the condition of the fully saturated surface layer is not essential in
calculation of the flows over one particle element of the porous media. It is sufficient to
presume that the variation of the capillary pressure on the length scale of the particle |δu|
is negligible, that is |δu| 
 uc. In the case, when the surface layer is not fully saturated,
parameter δR should be interpreted as the effective thickness of the layer filled by the liquid.

At the same time, liquid pressure variation in the bridges is negligible in slow, creeping
flows in comparison with that in Ω0. So that, one can assume that

u|∂Γ1 = U1 = const, u|∂Γ2 = U2 = const, (9)

which are the boundary conditions to the Laplace–Beltrami Dirichlet boundary value prob-
lem. The Dirichlet boundary value problem (8)–(9) has at least a unique weak solution, if
the domain Ω0 and the boundaries ∂Γ1,2 are smooth (Dziuk 1988; Pigola et al. 2005; Dziuk
and Elliott 2013), which, if it is found, allows to calculate the total flux through the particle
element

QT = δR
κm

μ

∫

∂Γ1

∂u

∂ns
dl = −δR

κm

μ

∫

∂Γ2

∂u

∂ns
dl, (10)
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Surface Permeability of Particulate Porous Media 643

where ns is the normal vector to the domain boundaries ∂Γ1,2 on the surface, δR is the average
amplitude of the surface roughness, that is the width of the surface layer conducting the liquid
flux and the line integral is taken along a closed curve in Ω0, for example the boundary ∂Γ1.

If the total flux QT is determined, one can define the global permeability coefficient of a
single particle K1. This can be done, if we assume that the particle has a characteristic size
D and so that it can be enclosed in a volume element V = D3 with the characteristic side
surface area D2. Then, the effective flux density Q can be represented in terms of K1 (and
the total flux QT)

Q = QT

D2 = −K1

μ

U2 −U1

D
, (11)

if the flow is driven by the constant pressure difference U2 − U1 applied to the sides of the
volume element.

2.2 Surface Permeability of a Sphere in the Case of Azimuthally Symmetric Domain
Boundaries

Consider now a spherical particle in an azimuthally symmetric case, when the domain bound-
aries ∂Γ1 and ∂Γ2 are oriented at the reflex angle α = π and have a circular shape. We use a
spherical coordinate systemwith its origin at the particle centre and the polar angle θ counted
from the axis of symmetry passing through the centre of the circular contour ∂Γ1. In this case,
the Dirichlet boundary value problem (8)–(9) admits an analytical solution, so that particle
permeability can be determined explicitly. Indeed, problem (8)–(9), if we assume that the
liquid pressure distribution u is a function of θ only and independent of the azimuthal angle,
is equivalent to

1

sin θ

∂

∂θ

(

sin θ
∂u

∂θ

)

= 0, θ0 < θ < π − θ1, (12)

with the boundary conditions

u|θ=θ0 = U1, u|θ=π−θ1 = U2. (13)

The analytic solution to problem (12)–(13) after applying the boundary conditions can be
represented in the following form

u = Ψ0(U2 −U1) ln

{
sin θ

sin θ0

1 + cos θ0

1 + cos θ

}

+U1, (14)

where

Ψ0 = 1

ln
{
sin θ1
sin θ0

1+cos θ0
1−cos θ1

} .

One can now calculate the total flux and the permeability, using its definition (11),

QT = −K1

μ
D(U2 −U1) = −2π sin θ0δR

κm

μ

∂u

∂θ

∣
∣
∣
∣
θ=θ0

= −(U2 −U1)2πδRΨ0
κm

μ
. (15)

So that, taking D = 2R,

K1 = πΨ0
δR

R
κm . (16)
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Parametrically, the coefficient of permeability (16) is inversely proportional to the particle
radius R, so that larger particles create stronger resistance to the flow. Noticeably, the coef-
ficient demonstrates strong dependence on the surface layer thickness δR , that is K1 ∝ δ3R
since it is anticipated that κm ∝ δ2R , so that evaluation of this parameter in applications is
crucial for the accurate estimates of the liquid dispersion rates.

One can see, if we take θ1 = θ0, in fact assuming small variations of the bridge size
and the pressure over one particle diameter, and θ0 
 1, in fact considering small values of
saturation, s 
 1, that the permeability coefficient K1 tends to zero, that is

K1 = δR

2R

πκm

| ln θ0| + o

(
1

| ln θ0|
)

. (17)

How does the result affect the superfast diffusion model (1), and basically how can it be
incorporated into the main diffusion equation? If we approximate the permeability coeffi-
cient K by K1 obtained in the azimuthally symmetric case at θ1 = θ0, (17), and, using an
approximate relationship between the radius of curvature R sin θ0 of the boundary contour
∂Γ1 and the pendular ring volume (Herminghaus 2005), one can show that

sin2 θ0 ≈ θ20 = √
s − s0.

Therefore, finally

K (s) ≈ K1(s) ≈ 2
δR

R

πκm

| ln(s − s0)| . (18)

As it follows from (18), the distinctive particle shape results in logarithmic correction to the
main nonlinear superfast diffusion coefficient D(s) = D0(s)

(s−s0)3/2
, such that

D(s) ∝ 1

| ln(s − s0)|(s − s0)3/2
.

Apparently, the correction will mitigate to some extent the divergent nature of the dispersion
at the very small saturation levels s ≈ s0, smoothing out the characteristic dispersion curves.

2.3 Surface Permeability of a Chain of Spheres in the Case of Azimuthally Symmetric
Domain Boundaries

Consider now how the problem can be formulated in the case of several particles arranged
in a single chain, as is illustrated in Fig. 3 in the case of two coupled by the bridge particles.
To create the flow in the system of two coupled particles, one can set pressure difference
between ∂Γ

(1)
1 and ∂Γ

(2)
2 . Mathematically, this is equivalent of setting Dirichlet boundary

conditions on ∂Γ
(1)
1 and ∂Γ

(2)
2 as in the previous case of a single particle. The boundaries

∂Γ
(2)
1 and ∂Γ

(1)
2 are ‘internal’, that is common to the bridge linking the flow between the

two particles. Apparently, the pressure is supposed to be the same on the two contours

u1 |
∂Γ

(2)
1

= u2 |
∂Γ

(1)
2

= const (19)

and due to conservation of mass in steady-state conditions in the absence of sinks and sources
of the liquid one has

∮

∂Γ
(2)
1

∇u1 · ns1 |∂Γ
(2)
1

dl = −
∮

∂Γ
(1)
2

∇u2 · ns2 |∂Γ
(1)
2

dl (20)
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Fig. 3 Illustration of the solution
domains in a system of two
coupled spherical particles and
their geometric arrangements

wherens1 andns2 are the outward tangential normal vectors to the boundary contours ∂Γ
(2,1)
1,2 ,

and u1 and u2 designate distribution of pressure on each particle, respectively.
As a result, the problem to define the flow and the permeability of the system corresponds

to a system of two Laplace–Beltrami equations

1

sin θ

∂

∂θ

(

sin θ
∂u1
∂θ

)

= 0, θ0 ≤ θ ≤ π − θ0 (21)

and
1

sin θ

∂

∂θ

(

sin θ
∂u2
∂θ

)

= 0, θ0 ≤ θ ≤ π − θ0, (22)

but with a slightly different set of the boundary conditions

u1 |θ=θ0 = U1 (23)

u2 |θ=π−θ0 = U2, (24)

u1 |θ=π−θ0 = u2
∣
∣
θ=θ0

(25)

and (

sin θ
∂u1
∂θ

)∣
∣
∣
∣
θ=π−θ0

=
(

sin θ
∂u2
∂θ

)∣
∣
∣
∣
θ=θ0

, (26)

where θ0, as before, defines the size of the bridge footprint on the particle surface in the
spherical coordinate system with the axis of symmetry passing through the centre of the
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bridge area, Fig. 3. Since we assumed, due to relatively small variations of pressure over a
few grain particles, that all bridges are roughly identical, we have only one parameter θ0 to
describe the bridge size.

Apparently, Eqs. (21) and (22) can be integrated twice, similar to the previous problem of
a single particle (12), to obtain

u1 = C0 ln
sin θ

1 + cos θ
+ C1, (27)

u2 = B0 ln
sin θ

1 + cos θ
+ B1, (28)

where C1,2 and B1,2 are free constant parameters to be found from the boundary conditions.
It is not difficult to see from (26), that one hasC0 = B0 implying continuity of the contact

flux. Applying the remaining boundary conditions (23)–(25), from (27) and (28)

u1 = Ψ
(2)
0 (U2 −U1) ln

(
sin θ

1 + cos θ

1 + cos θ0

sin θ0

)

+U1, (29)

u2 = Ψ
(2)
0 (U2 −U1) ln

(
sin θ

1 + cos θ

1 − cos θ0

sin θ0

)

+U2, (30)

where

Ψ
(2)
0 = 1

2 ln
(
1+cos θ0
1−cos θ0

) .

One can now calculate total flux and define permeability of the coupled spherical particles
K2

QT = −K2

2μ
D(U2 −U1) = −2π sin θ0δR

κm

μ

∂u1
∂θ

∣
∣
∣
∣
θ=θ0

= −(U2 −U1)2πδRΨ
(2)
0

κm

μ
, (31)

where D is the characteristic length scale of the cross section in the problem, κm is local
permeability of the surface layer, and δR is the layer width and μ is liquid viscosity.

So that, taking simply D = 2R,

K2 = 2πΨ
(2)
0

δR

R
κm . (32)

One can see that the permeability of a system of two coupled particles K2 is identical to
that of a single particle (16), basically from Eqs. (16) and (32)

K2

K1
= 2Ψ (2)

0

Ψ0
= 1.

It is not difficult to discern by deduction that in a general case of N coupled particles in a
chain

KN = πNΨ
(N )
0

δR

R
κm = K1 (33)

where

Ψ
(N )
0 = 1

N ln
(
1+cos θ0
1−cos θ0

) .
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Fig. 4 Schematic illustration of
the particle ensemble and the
sample volume element setup

Note, a setup ofmany beads coupled by liquid bridges can be potentially used inmicrofluidics
to create flexible water channels (Chen et al. 2016). If the radius of curvature of the particle
chain is much larger than the particle size, the transport through such a microfluidic system
should be defined by the permeability of a single particle, relationship (16), if the particle
shape can be approximated by a sphere.

One can conclude in this part, that if the porous media configuration is made of parallel
chains of particles oriented symmetrically to each other, and the flow is generated along the
chains, the surface permeability given by Eq. (16) is the exact result.

3 Surface Permeability of a Randomly Packed Particle Ensemble

In real systems, the particles are interconnected randomly, so that the effects of tortuosity
should substantially affect the permeability of the system (Carman 1937; Lorenz 1961; Bear
1972; Ghanbarian et al. 2013). To analyse those effects, we consider an ensemble of spherical
particles randomly packed, as is shown in Fig. 4. The randomly packed configuration of
approximately 3000–7000 particles has been generated by means of a molecular dynamics
technique by applying a constant force to every particle placed in a box with reflecting
boundaries (in the perpendicular direction to the box side), and interacting via the Lennard–
Jones potential with different characteristic length scales R distributed normally, that is

with the probability of the particle radius W (R) ∝ exp
(
− (R−R0)

2

�R2

)
at �R/R0 = 0.3. In

this study, there were particles with three different characteristic dimensions R1 = 1.3 R0,
R2 = R0 and R3 = 0.7 R0. The resultant porosity in the configurations was about 48%.

To obtain the configuration, the particle temperature controlled by the thermostat has been
gradually reduced to bring the system to a minimum energy, frozen state. A representative
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Table 1 Tabulated values of the system parameters in the random configurations used in the study

Configuration Parameters of the configurations

N1 N2 N3 R̄/R0 φS (%) LB
x /R0 LB

y /R0 LB
z /R0

1 5 6 4 1 52 5.2 4.6 5.5

2 5 7 5 1 47 5.7 4.8 4.9

3 5 4 4 1 47 5.2 3.7 5.3

Here N1, N2 and N3 are the number of particles in the configuration with radii R1 = 1.3 R0, R2 = R0 and

R3 = 0.7 R0, respectively, φS is porosity of the sample and R̄ = Nk Rk∑3
j=1 N j

Fig. 5 Illustration of the particle sample and the flow domains

sample volume element with dimensions LB
x , LB

y , LB
z then was cut off the system, as is

illustrated in Fig. 4, containing NS = 13−17 particles, see Table 1 for details. We have
generated several statistically independent sample configurations, and, as in the previous
examples, set constant pressure differenceU2−U1 at the boundaries of the sample elements,
Figs. 4 and 5.

The Laplace–Beltrami method then has been applied after establishing the position of the
liquid bridges coupling the particles in the sample. Two particles (of radii R1 and R2) are
assumed to be coupled by a liquid bridge if the distance between their centres r was only
slightly larger than the sum of their radii

R1 + R2 ≤ r < R1 + R2 + 0.05max(R1, R2).

The size of a single liquid bridge footprint HB on the particle surface can be characterised,
as before, by the polar angle θ0 in the polar coordinate systemwith the symmetry axis passing
through the centre of the circular contour, the boundary of the area covered by the bridge,
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Fig. 6 Illustration of the pendular
ring characteristic geometry

as is shown in the symmetric case in Fig. 3. That is, HB = 2Rk sin θ
(k)
0 . Due to the specific

geometric properties of the pendular rings (constant mean curvature surface), we assume
that even in the case of a distribution of particles with different radii Rk , the size of the
bridge area in the sample is approximately the same in the low saturation limit s 
 1
(θ(k)

0 
 1) (Herminghaus 2005; Halsey and Levine 1998; Willett et al. 2000).
Indeed, when s 
 1, the pressure in the pendular ring p is defined by the smallest radius

of curvature r1, Fig. 6, p ≈ −γ cosφc/r1, which is related with the second radius

r1 ≈ r22/2Rk, (34)

so that when s 
 1, one has r2 � r1. Obviously, r2 defines the size of the area covered by
the bridge, HB = 2r2 = 2Rk sin θ

(k)
0 .

If we have two particles of different radii, say R1 and R2, in contact, the size of the bridge
area will be approximately the same r (1)

2 ≈ r (2)
2 at low saturation levels, s 
 1, with the

difference being proportional to r1, that is

r (1)
2 − r (2)

2

max(R1, R2)
= O

(
r1

max(R1, R2)

)

. (35)

Apparently, in a general case, no analytic solution is expected to the Laplace–Beltrami
problem and a well established surface finite element technique (Dziuk 1988; Pigola et al.
2005; Dziuk and Elliott 2013) is applied after the tessellation of the domains, as is shown
in Fig. 7 for one particulate element with two boundary contours. The numerical method
has been validated against analytical solutions previously demonstrating prescribed order of
accuracy and numerical convergence, see details in Sirimark et al. (2018).

The number of particles in the sample volume element was negotiated between computa-
tional efficiency of the surface finite element method (so that, practically, anymesh resolution
can be used to deal with any details on the boundary contours ∂Γ

(l)
k and on the particle sur-

faces) and fluctuations of the averaged quantities obtained using the sample element, which
are proportional to N−1/2

S ≈ 25%. Moderate increase of the number of particles in the
sample may significantly increase computational time to obtain highly resolved numerical
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Fig. 7 Illustration of the
tessellated flow domain of a
particle for the surface finite
element method

solutions, while at the same time would not substantially reduce the effect of particle number
fluctuations.

As one can see, problems (21)–(26) and hence total flux QT through a particle or a chain
of particles, (15) or (31), are invariant under the transformation of the particle dimension R
provided that the angular size of the bridge θ0 is fixed. In what follows, we change to non-
dimensional description by normalising length scales by the average radius R0 of the particles
in the sample and pressure by the characteristic capillary pressure p0 = 2γ cosφc/R0. The
flux QT will be normalised by the characteristic value

Q0 = p0δR
κm

μ

Ū2 − Ū1

L̄ B
z

inspired by the analytical result (15) and by the non-dimensional sample box surface area
S0 = L̄ B

x L̄
B
y , where non-dimensional quantities L̄ B

x,y,z = LB
x,y,z/R0 and Ū1,2 = U1,2/p0.

The latter normalisation allows to bring simulation results in slightly different geometric
settings, as is detailed in Table 1, into equivalent conditions suitable for comparison, that is
basically providing the non-dimensional permeability K̄ = K

κm

R0
δR
.

Schematically, the simulation domains for the Laplace–Beltrami problem are shown in
Fig. 5. As in the previous case of particles coupled in a chain, there are internal, common
boundaries, contours ∂Γ

(l)
k , k �= l, where the continuity boundary conditions are applied

and external boundaries, contours ∂Γ
(k)
k , where the Dirichlet boundary conditions are set to

generate a flow through the system. The pressure value on the contours facing the bottom
of the simulation box (for example, ∂Γ

(2)
2 , ∂Γ

(3)
3 and ∂Γ

(4)
4 in Fig. 5) is set to U2 and on

the contours facing the top side of the pack (for example, ∂Γ
(0)
0 and ∂Γ

(1)
1 in Fig. 5) is set

to U1. The values of the boundary pressure U1,2 were identical in the simulations involving
different configurations.

Geometrically, the external boundary contours are oriented in the flow direction, as is
illustrated in Fig. 5. While this particular orientation seems to be arbitrary or may even
look artificial, within the statistical approach, the choice of the boundary contour orientation
should not render any excessive (in excess of the statistical errors due to the particle number
fluctuations) influence upon the results, that is the value of the total flux and the ‘macroscopic’
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Fig. 8 Reduced total flux QT/S0Q0, Q0 = p0δR
κm

μ

Ū2 − Ū1

L̄ B
z

and S0 = L̄ B
x L̄ B

y , as a function of

Ψ0(HB/2R0) as is defined in (38). The error bar indicates the statistical error, which is expected due to
the fluctuations of the number of particles in the samples

permeability. A posteriori, one can see that this seemed to be the case, Fig. 8, as in different
configurations, Table 1, the resultant curves are close and parallel to each other.

There are two main questions, we would like to answer in this part of the study. First, how
does permeability of the particle sample depend on the composition? Basically, how strong
are there fluctuations? Secondly, what is the contribution of the tortuosity effects? To obtain
statistically meaningful results, we consider several randomly generated configurations, as
is summarised in Table 1. We would like to stress here, that all configurations have been cut
off from statistically independent particle distributions generated with the help of random
initial distributions of larger number of particles, as we have described.

As before, we are going to find a weak solution to a system of the Laplace–Beltrami
equations

�
Ω

(k)
0
uk = 0

defined on each particle domainΩ
(k)
0 , as in Fig. 5. On the internal boundaries of the domains,

we set up continuity conditions, for example on ∂Γ
(2)
3 and ∂Γ

(3)
2

u2 |
∂Γ

(3)
2

= u3 |
∂Γ

(2)
3

= const, (36)

∮

∂Γ
(3)
2

∇u2 · ns2 |∂Γ
(3)
2

dl = −
∮

∂Γ
(2)
3

∇u3 · ns3 |∂Γ
(2)
3

dl. (37)

while on a few external boundaries, Dirichlet boundary conditions are set.
The numerical solution allows to calculate the total flux through the system by summing

up the fluxes passing through the external contours, where the Dirichlet boundary conditions
are set, either at the top of the pack or at the bottom using (10). The results are summarised
in Fig. 8.

123



652 P. Sirimark et al.

Remarkably, the reduced flux QT/S0Q0 as a function of

Ψ0(HB/2R0) = ln−1

⎛

⎜
⎜
⎝

1 +
√

1 −
(

HB
2R0

)2

1 −
√

1 −
(

HB
2R0

)2

⎞

⎟
⎟
⎠ , (38)

where HB is the bridge size HB = 2R0 sin θ0, behaves linearly in all configurations. This

behaviour mirrors the flux dependence observed in azimuthally symmetric analytical solu-
tions, see (15) or (31). The variations in the dependencies between different configurations
are observed to be well within the statistical error expected in this case, error bar in Fig 8. At
the same time, a comparison with a similar, but a regular arrangement, as in Fig. 3 at R = R0

demonstrates that there is a clear cut contribution from the effects of tortuosity, solid line in
Fig. 8.

Indeed, given identical porosity (φ ≈ 50%) and mean particle size (R/R0 = 1) in the
regular, symmetric and randomly generated configurations, the normalised flux values differ
by a factor of two τs ≈ 2, which can be regarded as the tortuosity of the surface flow. The
value of the surface flow tortuosity τs ≈ 2 is consistent with the tortuosity values obtained
in porous media in different conditions and configurations (Ghanbarian et al. 2013). For
example, both hydraulic τh and diffusive τd tortuosities estimated in unsaturated porous
media using different permeability models [often used in applications, for example Mualem
(1976, 1978)] were found in between 1.5 ≤ τh,d ≤ 2 at φ = 50% (Ghanbarian et al. 2013).

It is important that the result, that is the ratio of the total flux in the random and regular
configurations, does not practically depend on the size of the contour HB , basically the size
of the liquid bridge, and hence the value of saturation in the porous media. This implies that
the observed effect is purely down to the distribution of contacts between the particles, but
not the particular pathway on each single particle surface. That is, fundamentally, tortuosity
in the surface diffusion processes is a geometric factor independent of the particular surface
flow regime. At the same time, the pathways, on average, of course, does depend on the bridge
size value HB leading to smaller permeability as the size of the contact area diminishes. This
trend is expected, but essentially, the correction to the effective coefficient of diffusion

D(s) ∝ K (s)

(s − s0)3/2
, K (s) = τs K1(s) (39)

is only down to a single universal factor of two, τs , representing the tortuosity effects in surface
diffusion in particular porousmedia at low values of saturation, where K1(s) ∝ | ln(s−s0)|−1

defined by (18) is the surface permeability of a single porous matrix element. Note, the value
of τs ≈ 2 is also in agreement with experimental observations and a comparison of the
superfast diffusion model with the data, where the tortuosity effects were estimated to reduce
the effective permeability twofold (Lukyanov et al. 2019).

This is the main result of this study, which can be used in practical applications to cal-
culate permeability in particular porous media. Basically, as the first step, one can calculate
permeability of a single, representative element of the media or several elements to obtain
some mean value and its dispersion. This way, permeability K (s), via (18), and the diffusion
coefficient D(s) for the macroscopic model can be established in the first approximation.
Macroscopic permeability K (s) or the diffusion coefficient D(s) then should be corrected
by the universal factor of two, τs , in the macroscopic diffusion model.
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4 Conclusions

We have demonstrated that the Laplace–Beltrami method can be used to obtain permeabil-
ity of particulate porous media at low saturation levels and to estimate contribution from
the effects of tortuosity. Essentially, analytical results obtained using azimuthally oriented
coupled particles can be used with a universal correcting prefactor τs , as in (39), to estimate
permeability of particle ensembles. That is, from the practical point of view, results obtained
by analysing single representative element of particulate porous media can be translated into
permeability of a particle composition.
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