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Abstract
Charged porous media are pervasive, and modeling such systems is mathematically and
computationally challenging due to the highly coupled hydrodynamic and electrochemical
interactions caused by the presence of charged solid surfaces, ions in the fluid, and chemical
reactions between the ions in the fluid and the solid surface. In addition to the microscopic
physics, applied external potentials, such as hydrodynamic, electrical, and chemical potential
gradients, control the macroscopic dynamics of the system. This paper aims to give fresh
overview of modeling pore-scale and Darcy-scale coupled processes for different applica-
tions. At the microscale, fundamental microscopic concepts and corresponding mass and
momentum balance equations for charged porous media are presented. Given the highly
coupled nonlinear physiochemical processes in charged porous media as well as the huge
discrepancy in length scales of these physiochemical phenomena versus the application,
numerical simulation of these processes at the Darcy scale is even more challenging than
the direct pore-scale simulation of multiphase flow in porous media. Thus, upscaling the
microscopic processes up to the Darcy scale is essential and highly required for large-scale
applications. Hence, we provide and discuss Darcy-scale porous medium theories obtained
using the hybrid mixture theory and homogenization along with their corresponding assump-
tions. Then, application of these theoretical developments in clays, batteries, enhanced oil
recovery, and biological systems is discussed.
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1 Introduction

Fluid flow, chemical transport, and deformation in charged porousmedia are important topics
studied in many engineering applications and natural phenomena, where the electrostatic or
electrokinetic forces due to the charged solid surfaces become important. Because electrical
forces (due to the charged particle surfaces) are considerable at very small length scales
(nanometer), these forces are dominant in porous media that have large surface-to-volume
ratios or very small pore sizes. All fundamental phenomena in porous media such as single-
phase and two-phase flow hydrodynamics, solute transport, and deformation can be highly
influenced by charged surfaces, which are not included in the classical Darcy-scale flow and
deformation theory.

Clayey soils are a notable example of porous media, where flow, transport, and defor-
mation are strongly influenced by the charged surfaces due to a small pore size distribution
and large surface area-to-volume ratio. Examples of the many different applications that take
advantage of the charged porousmedia include remediation of clay-rich soils using electroos-
mosis (Kirby 2010), and slope mechanical stabilization using electroosmosis. In other fields,
charged porous media are used to deliver drugs into a body using electrophoresis, enhance
oil recovery by tuning the ionic composition of brine in an oil reservoir (Joekar-Niasar and
Mahani 2016; Aziz et al. 2018), mix and separate in lab-on-chip applications (Guijt et al.
2001), and stabilize liquid foam (Bergeron 1999; Karraker and Radke 2002). Also surface
charged properties of soils and colloids determine the transport and retention of colloids in
porous media (Norde and Lyklema 1978; Naidu et al. 1994). In all these applications, the
charged surface of biological, rock, sand, clay, or chemical engineering system is utilized
to meet the objectives of the specific applications. Although these geological, biological,
or industrial systems are very different, they share fundamentals associated with flow and
transport in charged porous media.

The main purpose of this paper is to present how the surface charged properties and ionic
solutions should be incorporated into themodeling of fundamental processes in porousmedia
(e.g., flow hydrodynamics, solute transport, and deformation) at the micro- and macroscale.
To our understanding, in the field of porous media there is no comprehensive overview that
provides the basics of charged porous media and their incorporation in the Darcy-scale mod-
els. This paper aims to develop a bridge between the pore-scale and continuum-scale physics
and upscaling the complex nonlinear physics in the Darcy-scale models. After introducing
the theoretical framework for modeling pore-scale and continuum-scale phenomena, some
notable examples of applications of charged porousmedia such as diffusion in clays, batteries,
and biological systems, and enhanced oil recovery are presented to illustrate the importance
of these fundamentals in different industrial, biological, and geology applications. We con-
clude the paper with a brief description of notable challenges at micro- and macroscale from
theoretical and application perspectives.

2 Microscale Description of Physical and Chemical Processes in
Charged Porous Media

The interaction between charged interfaces (such as what occurs in colloid–colloid interac-
tion, thin films, and lamella stability) is mainly caused by van der Waals and electrostatic
forces. The classical understanding of forces due to charged surfaces is commonly based on
the DLVO theory, named after Boris Derjaguin and Lev Landau, Evert Verwey, and Theodor
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Overbeek (Ohshima 2012; Trefalt et al. 2016; Mikelonis et al. 2016). This theory enables the
calculation of the net interaction forces (and alternatively pressures) due to the van derWaals
forces and Coulombic (entropic) forces at a thermodynamically equilibrium state. Although
there are extensions to the DLVO theory (van Oss et al. 1990; Grasso et al. 2002), the DLVO
theory is still the dominant theory in practice, and we restrict ourselves to presenting this
theory.

2.1 Electrical Double Layer

Many natural and syntheticmaterials have charged surfaces (e.g., clay, charged nanoparticles,
polymers) due to the electron imbalance of their molecular structures. The charged surface
produces an electric field, which attracts counterions (dissolved ions from a salt compound,
e.g., NaCl, in water, that have the opposite charge of the surface) in an ionic solution or
electrolyte. The layer comprising surface charges and counterions is called an “electric double
layer.”

The simplest model for an electrical double layer was conceptualized as a layer of coun-
terions bound directly to the surface, neutralizing the surface charges. The layer was referred
to as the Helmholtz layer. If this layer fully neutralized the surface charge, the electric field
at a distance of a molecular layer (in angstrom size) from the surface would be zero, which
is not the case. Later, Gouy and Chapman included the thermal motion of ions and proposed
the diffuse layer. In 1924 Stern suggested that by combining the Helmholtz model and the
Gouy–Chapman model, the electrical capacity of charged systems in low and high charged
conditions was explained. In Stern’s model, some ions adhere to the electrode as suggested
by Helmholtz (hydrodynamically not movable), giving an internal Stern layer, while some
other ions would form a Gouy–Chapman diffuse layer, as shown in Fig. 1. The electrical
potential measured at the shear plane (also called the slipping plane), roughly at the interface
between the Stern layer and diffuse layer, is referred to as the zeta potential (ζ ). The zeta
potential is one of the key measurable quantities that characterizes the electrical potential of
an interface at a given pH and ionic strength (Hunter 1988; Kirby and Hasselbrink 2004).

The distribution of ions in the vicinity of the surface is theoretically defined using the
Boltzmann distribution normal to the surface. The Boltzmann distribution can be derived
using statistical thermodynamics (Hill 1960), and it determines the probability ofmicroscopic
states, P(W ), given the energy (W ), as follows:

P(W ) ∝ exp

(
− W

kBT

)
, (1)

where T is the absolute temperature, kB denotes the Boltzmann constant defined as R/Na ,
where R is the universal gas constant and Na is Avogadro’s number. See Nomenclature
“Appendix” for definitions of all variables and their units.

The work required to displace an ion from a zero electric potential to a given potential at
a specific position is equal to zi eψ , where zi is the valence for species i , positive for cations
such as Na+ and negative for anions such as Cl−, e is the elementary charge, and ψ is the
electric potential. Thus, the probability of finding an ion at position x can be written as

P(ψ) ∝ exp

(
− zi eψ

kBT

)
, (2)

and this is called the Boltzmann distribution.
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The Boltzmann distribution provides an equilibrium ionic concentration as a function
of the electric potential. For a bulk solution, where the electric potential ψ is equal to zero,
P(0) = 1. The ratio of P(ψ)/P(0) is well approximated by the ratio of molar concentrations
of species i to that for the species in a bulk solution where the electric potential is zero, ci/cbi .
Thus, we can write

ci = cbi exp

(
− zi eψ

kBT

)
. (3)

Note that the anions and cations will appear together in the bulk phase because, by definition,
it has zero electric potential and zero net charge density (

∑
zi cbi = 0). Thus, the anion and

cation concentrations are the same for a homovalent electrolyte.
In Eq. (3), the sign of ψ is controlled by the sign of the boundary condition while the

zi sign is ion-dependent. Thus, the concentrations of the co-ions (with respect to the sign
of the surface charge) in the diffuse layer will always be smaller than (or equal to) the bulk
concentration (cbi ) and the concentration of the counterions in the diffuse layer will be larger
than cbi .

The distributions of cations and anions of a symmetric z-valent electrolyte (e.g., NaCl or
CaSO4) in the vicinity of a negatively charged surface are schematically shown in Fig. 1,
which shows the accumulation of positive ions closer to the surface compared to the negative
ions. The length scale of the electric potential decay from the solid surface is described by
what is called the Debye length, λD , which is inversely proportional to the square root of the
ionic strength, Γ , written as (Lyklema 1995)

λD =
(

εkBT

2e2Γ

)0.5

(4)

Γ = 0.5
∑

i

cbi Naz2i , (5)

where ε is permittivity (Farad m−1 or CV−1 m−1), a property of a material representing its
ability to store electrical energy.

2.2 Electric Field in the Diffuse Layer

For a solid surface with the negative charge density of σ , more positive ions (cations) accu-
mulate next to the surface to balance the solid surface charge (electroneutrality law). The
net charge concentration at the position of x is introduced as ρe(x) = eNa(

∑
z+

i c+
i (x) −∑

z−
i c−

i (x)).
Considering the surface charge density of σ and to guarantee electroneutrality within the

diffuse layer, we write σ + ∫ ∞
0 ρe(x)dx = 0, x is the coordinate normal to the surface. Note

that for an isolated surface, the surface charge density can be neutralized at a small distance
(few Debye length). Within this distance, an electric field is created which strongly varies at
the pore scale with the surface charge density as well as the electrolyte concentration.

The electric field within the diffuse layer ψ(V) is described by the Poisson equation,

∇2ψ = −ρe

ε
. (6)
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(a)

(b)

Fig. 1 a Schematic presentation of electrical double layer. For a negatively charged surface, there will be a
fixed layer of positive ions referred to as the Stern layer neighboring the diffuse layer, where the distribution of
ions will follow the Boltzmann distribution. The length scale for the decay of the electrical potential is referred
to as the Debye length λd . The distribution of cations (blue), anions (red), and electrical potential (black) is
shown in Fig. 1a. The electrical potential has been scaled to the zeta potential, b the electrical diffuse layer
and its components at the clay basal surface in the case of a binary monovalent electrolyte, M+ represents the
cations (e.g., Na+) and A− the anions (e.g., Cl−). OHP represents the outer Helmholtz plane or shear plane
(Adopted from Leroy and Revil 2004); SEM picture of sodium bentonite (Barclay and Thompson 1969)

Using the definition of net charge density and the Boltzmann distribution of ions at the
equilibrium state (Eq. (3)), the Poisson–Boltzmann equation can be written as follows

∇2ψ = −
N∑

i=1

zi ecbi Na

ε
exp

(
− zi eψ

kBT

)
(7)

Assuming only two charged species in the fluid (a cation and an anion), and a symmetric
z-valent solution, the simpler Poisson–Boltzmann equation with the sinh term is obtained:

∇2ψ = 2
zecb Na

ε
sinh

(
zeψ

kBT

)
(8)
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The Poisson–Boltzmann equation describes the electric field under equilibrium conditions
and is not valid for non-equilibrium conditions. This is a nonlinear equation, which can be
linearized if | zeψ

kBT | � 1. Given that the maximum potential in the diffuse layer occurs at

the slip plane, referred to as the zeta potential, we can write | zeζ
kBT | � 1. Thus, we can

approximately estimate that for the zeta potential smaller than 20mV the linearization is
valid.

By replacing the sinh( zeψ
kBT )with zeψ

kBT , Eq. (8) gives∇2ψ = 2z2e2cb Na
εkBT ψ . This linearization

is also calledDebye–Hückel approximation. For an isolated single charged plane, the solution

of the linear Poisson–Boltzmann equation is ψ = ψ0 exp(− z2e2cb Na
εkBT x2) where x is the

coordinate normal to the plane. Note that the scaling factor in the exponent is the reciprocal

of the squared Debye length; λ2D =
(

z2e2cb Na
εkBT

)−1
.

2.3 Boundary Conditions for Charged Surfaces

To solve for either the equilibrium or non-equilibrium electrical field using either Eq. (7)
or Eq. (6), boundary conditions for the potential should be defined. Three commonly used
boundary conditions are: (i) constant potential, (ii) constant charge, and (iii) surface com-
plexion models.

The constant potential boundary condition is defined as the potential measured at the slip
plane and is referred to as the zeta potential ζ . The slip plane is shown in Fig. 1b, and the
ions positioned between the slip plane and the solid surface are assumed to be immobile.
The zeta potential at the slip plane can be measured indirectly using electrophoresis and
light scattering techniques, where the hydrodynamic flow is linked to the potential measured
on the slip plane using some inherited hydrodynamic assumptions (Kirby and Hasselbrink
2004). It is known that the zeta potential is a strong function of pH and ionic strength and
is not constant for all chemical conditions. Thus, a constant charge density may represent
the solid interface better than the constant potential condition. The constant charge boundary
condition relates the surface charge density (σ ) to the potential using σ = ∇ψ · n.

However, none of the previous boundary conditions considers sorption or interaction
between ions in the solution and species on the solid surface. Surface complexion models
are designed to incorporate the coupling between the surface chemistry, chemical reactions
for sorption and the surface charge using the stoichiometry of surface ionization reactions as
well as ionization constants (Davis et al. 1978; Goldberg 1992, 2014). The most common
approaches for surface complexation models are the one pK value model, the triple-layer
model, and charge distribution model.

In the triple-layer model, as the name suggests, three layers are assumed: the diffuse layer,
sorption layer, and protonation/deprotonation layer as shown in Fig. 1b. At the interface
between each of the two neighboring layers, the potential and surface charge density are
defined. As originally developed by Davis et al. (1978), the protonation/deprotonation of
surface sites is restricted to an innermost plane (left interface in Fig. 1b) and specifically
adsorbed ions are assigned to the middle plane in Fig. 1b. The last outermost plane describes
the boundary for the diffuse layer (counterions extending into the bulk solution). Since the
chemical reactions for sorption and stoichiometry (pK values, the equilibrium constants for
chemical reactions) are incorporated in this model, it can accommodate the impact of pH
and reactions on the surface charge density and the zeta potential (Davis et al. 1978). The
charge distribution model which was developed by Hiemstra and Riemsdijk (1996) does
not consider surface complexation as points, and the spatial distribution of them is also
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considered. In this model, pK values of different types of surface groups are estimated based
on valence of cations of (hydr)oxides and electron configurations as well as the distance
between the reacting surface groups.

2.4 Microscopic Description of Fluid Flow in Charged Systems

In cases where the fluid velocity is considerable, such as fluid flow in lamellas (related to
foam instability) or thin film hydrodynamics, the fluid velocity, v, should be calculated. The
linear momentum balance equation governing liquid flowwith a viscosity of η is given by the
Navier–Stokes equation supplemented with appropriate electric body forces (Hunter 1989;
Revil and Linde 2006):

ρ
Du
Dt

= −∇ p + η∇2v + ∇ · t
m
, (9)

where t
m
denotes the Maxwell Stress Tensor (MST), which accounts for the stress generated

by electrical and magnetic fields. However, in this work, magnetic effects are considered
negligible. Please note that ∇ · t

m
can be also replaced by ρeE, which is the body force

applied to the ions (Israelachvili and Pashley 1982).
Assuming the electrical origin of force is due to an electric field, E, that satisfies the

Poisson (Eq. 6) or Poisson–Boltzmann (Eq. 8) equations, the MST including the osmotic
pressure can be written as follows (Gilson et al. 1993):

t
m

= Π I + 1

2
ε|E |2 I − εE ⊗ E, (10)

whereΠ is the osmotic pressure, representing the change in the chemical potential of the fluid
due to the presence of ions in the liquid. Because, e.g., water is polarized (positive on one end,
negative on the other), its affinity for being in one location over another is highly influenced
by the presence of ions and this is captured by the electrochemical osmotic pressure.

The osmotic pressure at equilibrium due to the ions in the fluid phase only is given by
Π = 2NakBT cb. Given this definition, the differential osmotic pressure,Πd , representing the
difference between the osmotic pressure in the pore and that in the fluid’s reservoir connected
to the porous medium, can be defined as (Butt et al. 2013):

Πd = NakBT (c+ + c− − 2cb). (11)

The differential osmotic pressure is a measure of the affinity of the liquid to be in the porous
medium as opposed to the bulk phase, and this differential osmotic pressure shows the amount
of the pressure required to stop movement of water molecules from the low concentration
zone to the high concentration zone.

Equation (11) does not hold under non-equilibrium conditions as the distribution of
ions under non-equilibrium conditions does not follow the Boltzmann distribution; c± �=
c±

b exp(∓ψ) (Joekar-Niasar and Mahani 2016.) However, under non-equilibrium conditions
the (electrokinetic) osmotic pressure can be defined by substituting cb = c± exp(±ψ) in
Eq. (11) (Revil and Linde 2006; Joekar-Niasar and Mahani 2016). This leads to the gener-
alized form of the differential osmotic pressure which is valid under non-equilibrium and
equilibrium conditions:

Πd = NakBT Σc± (1 − exp(±ψ)) (12)

Note that since Eq. (11) deals with the differential pressure compared to the bulk fluid osmotic
pressure, Eq. (12) would also indicate the electrokinetic osmotic pressure compared to the
bulk fluid osmotic pressure.
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By solving Eqs. (9), (10), and (12), coupled with the mass conservation law for an incom-
pressible fluid ∇ · v = 0, the fluid pressure, p, can be calculated. The same sets of equations
can be used for thin films to calculate pressure inside the film which is referred to as the
disjoining pressure. By definition, the disjoining pressure is the pressure difference between
the pressure inside the thin film and the pressure in the bulk solution. The disjoining pressure
is made of two major components as delineated by the Maxwell stress tensor: electroosmotic
pressure (due to local concentrations) and electrokinetic-induced pressure (due to the electric
field). Of course in very small length scales (smaller than nanometer), other surface forces
such as the hydration and van der Waals forces contribute to the disjoining pressure. Since
Eq. (12) already includes the differential electroosmotic pressure (which converges to the
chemical osmotic pressure at equilibrium) the resulting pressure, p, in Eq. (9) would only
show the differential pressure induced purely by the electric field.

More detailed analysis of the disjoining at non-equilibrium conditions can be found in the
reference (Joekar-Niasar and Mahani 2016).

2.5 Microscopic Ionic Transport in Charged Systems

To investigate the dynamics electrical double layer and the ionic transport, the coupling
between electric field (Poisson equation, which is valid under equilibrium and non-
equilibrium conditions) and transport of the ions are combined. The transport of ions within
the diffuse layer is governed by the Nernst–Planck equation, derived from the Smoluchowski
diffusion equation (Israelachvili and Pashley 1982). It is a combination of the conservation of
mass for component i and a generalized Fick’s equation where the concentration is replaced
by the electrochemical potential, μi . The electrochemical potential of the ion i is the sum-
mation of the electrical and chemical potentials:

μi = eziψ + kBT ln ai . (13)

ai denotes the chemical activity (dimensionless), which can be written as ai = γi ci/c∗. γi is
the activity coefficient (dimensionless), c∗ is the standard concentration of a dilute solution
equal to 1 mol/lit and γi is assumed to be 1. Therefore, Eq. (13) can be written as

μi = eziψ + kBT ln ci . (14)

The total molar flux of ion, i , denoted as ji , and the conservation of ions in a medium can
be written as,

ji = civ − Di

kBT
ci∇μi (15)

∂t ci + (∇ · ji + Ri ) = 0, (16)

where v is the velocity of the fluid, Ri is the rate of desorption or adsorption of the species i
per unit volume, and Di denotes the binary diffusion coefficient for ion i . Note that in some
charged porous media applications (e.g., batteries, compacted clays) the advective part is
negligible (v = 0). By ignoring the electrical potential, the classical convective–diffusion
equation is obtained in terms of concentration. Also, the stoichiometry forces the zero net
charge in chemical reactions:

∑
(zi Ri ) = 0.

When there is no external electric field, electroneutrality is an important condition that
should be met in charged porous media. There are two interpretations of electroneutrality
proposed by Ben-Yaakov (1972) and Lasaga (1079) as discussed by Boudreau et al. (2004b).
The first interpretation is based on bulk solution charge neutrality (

∑
zi cbi = 0), and the
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second interpretation is based on
∑

zi Ji = 0. Ji represents the macroscopic flux of ions
flowing through a porous medium. The difference is due to the interpretation of the scale
of electroneutrality, as within the electrical double layer, charge neutrality does not hold∑

zi ci �= 0. Therefore, the question is: at what scale can charge neutrality be enforced?
Within the double layer, the electrical potential is nonzero (σ = eNa

∫
(zi cbi )dx), but outside

the double layer
∑

zi ci = 0. Typically, in tight porous media, where the double-layer length
scale is comparable to the pore size, electroneutrality is enforced by including not only the
ions in the liquid phase, but also the surface charge density.

Based on the assumption of zero total ionic transport (Boudreau et al. 2004b) (which is
only acceptable if the pore size distribution is much larger than the double-layer length scale),
the cross-coupling diffusion coefficient, Di j , can be written as

Di j = δi j Di − zi z j Di D j cbi∑
k z2k Dkcbk

(17)

which can be used as a general diffusion coefficient. δi j is the Dirac delta function equal to
1 for i = j , otherwise 0 for i �= j . However, this means that if the pore size distribution is
on the same size or smaller than the double-layer length scale, this cross-coupling diffusion
relation Di j would not hold.

To summarize, the electrical potential at equilibrium can be solved using Eq. (8). However,
the non-equilibrium case can be solved by combining Eqs. (6) and (16) along with Eqs. (13)
and (15).

3 Macroscopic Modeling

Just as with non-charged porous media, equations may be upscaled using any of the same
techniques, for example, volume averaging or homogenization, see, e.g., Cushman et al.
(2002). By microscale we mean the scale at which one can distinguish between phases, and
by macroscale we mean the scale at which one cannot distinguish between phases. We first
present sample upscaled field equations, equations that are independent of the material being
modeled such as the conservation of mass and momentum. We then discuss how upscaled
constitutive equations can be obtained using a mixture theoretic approach, presenting macro-
scopic flow and diffusion equations. We then compare these results with results obtained
from homogenization.

3.1 Sample of Volume-Averaged Field Equations

We first present a few examples of macroscopic field equations obtained using volume aver-
aging. Within this framework, the macroscopic equations are viewed as overlaying continua,
e.g., at each point in space and time there is a density of the liquid phase and the solid phase,
just as in a beaker of a multicomponent fluid at each time and at each point in space there is
a concentration of multiple species.

We note that since no constitutive assumptions are made, these equations are valid for all
porous materials. For simplicity let us assume there are two phases, α = l for liquid and
α = s for solid, and that each phase has multiple constituents, j = 1, . . . , n, some of which
may be charged. Further, we assume that the interfaces are massless, chargeless, and no linear
momentum is lost when transferred from one phase to the other. For a detailed description
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of the derivation and the complete list of all equations (in species form) see Bennethum and
Cushman (2002a). A few examples are provided below:

Conservation of Mass
The macroscopic mass balance for constituent j in phase α is

Dα j (εαρα j )

Dt
+ εαρα j (∇ · vα j ) = εαρα j ê

α j
β + εαρα j r̂α j (18)

where Dα j

Dt is the material time derivative given by

Dα j

Dt
= ∂

∂t
+ vα j · ∇, (19)

εα is the volume fraction of phase α, and ê
α j
β represents the net rate of mass gained by

constituent j in phase α from phase β:

ê
α j
β = 1

ρα j |δVα|
∫

δAαβ

ρ j (w
j
αβ − v j ) · nα da, (20)

where δVα is the portion of the Representative Elementary Volume (REV) that is phase α,
δAαβ is the liquid–solid interfacial areawithin the REV, ρ j is themicroscopicmass density of

component j in phase α, n j is the unit normal pointing out of phase α, andw j
αβ is the velocity

of species j at interface αβ. We refer readers to the Nomenclature, provided in “Appendix”
at the end of this paper, for definitions of the numerous variables and dimensions.

To obtain the bulk-phase counterpart, Eq. (19) is summed over all species, giving

Dα(εαρα)

Dt
+ εαρα(∇ · vα) = εαρα êα

β . (21)

The net gain of mass of the bulk phase due to chemical reactions occurring in that phase must
be zero, implying that:

N∑
j=1

ρα j r̂α j = 0 ∀ α. (22)

Further, since the interface is assumed to be massless, no mass is lost in transferring between
phases, and so we have the restrictions:

εαρα j ê
α j
β + εβρβ j ê

β j
α = 0, j = 1, . . . , N . (23)

Using Eq. (21), we can rewrite Eq. (18) as

εαρα Dαcα j

Dt
+ ∇ · (εαρα j vα j ,α) =

∑
β �=α

εαρα j (̂e
α j
β − êα

β) + εαρα j r̂α j . (24)

Usually, ρα j is considered a primary unknown and constitutive equations are needed for the
rate of exchange terms ê

α j
β and r̂α j . See the next section for examples.

Conservation of Charge
This equation can be derived by taking the divergence ofAmpère’s law and the time derivative
of Gauss’ Law and summing the two results. Of all Maxwell’s equations, this equation
is the most accepted in mixture form since each component has a well defined physical
interpretation. The conservation of electric charge for species j is
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∂

∂t
(εαq

α j
e ) + ∇ · (εαJ α j + εαq

α j
e vα j ) = εα q̂α j + εαρα j zα j r̂α j + εαρα j (Ẑ

α j
β + zα j ê

α j
β )

(25)

where q
α j
e is the charge density averaged over the α-phase, J α j is the upscaled free current

density of constituent j measured relative to species α j , and zα j is the averaged charge per
unit mass (usually fixed except for in plasma). Here we have four rate of exchange terms, two
within phase α and two between phases: q̂α j is the rate of gain of charge density due to the
presence of other constituents in phase α but not due to chemical reactions (often assumed to
be zero except for in plasma), εαρα j zα j r̂α j is the rate of gain of charge density due to mass
transfer (chemical reactions), Ẑ

α j
β is the rate of exchange of charge of constituent j from

phase β to phase α induced by the normal component of the free current density averaged
over the liquid–solid interface and a moving interface (see Bennethum and Cushman (2002a)
for details), and zα j ê

α j
β is the rate of gain of charge density due to the rate of mass transfer

between phases. The free current density, denoted by J α j , is related to the free current
density relative to a fixed (Eulerian) frame of reference, Jα j , by

J α j = Jα j − q
α j
e vα j . (26)

Another form of this equation is obtained by subtracting out the conservation of mass to
reduce redundancy, and this yields

εαρα j
Dα j zα j

Dt
+ ∇ · (

εαJ α j
) = εα q̂α j + εαρα j Ẑ

α j
β , (27)

indicating that if the upscaled charge density of each component only changes due to chemical
reactions, then the divergence of the free current density is (unlike for a single phase) not
zero.

Summing over constituents yields

∂(εαqα
e )

∂t
+ ∇ · (εαJ α + qα

e v
α) = εαρα

(
Ẑα

β + zα êα
β

)
, (28)

where Jα = ∑N
j=1 Jα j ,J α = ∑N

j=1 J α j +q
α j
e vα j ,α , and where the following restrictions

apply

N∑
j=1

[
q̂α j + ρα j zα j r̂α j

] = 0 ∀ α (29)

εαρα j (Ẑ
α j
β + zα j ê

α j
β ) + εβρβ j (Ẑ

β j
α + zβ j ê

β j
α ) = 0 j = 1, . . . , N . (30)

Equation (29) states that no net charge is lost due to ion transfer or chemical reactions, and
Eq. (30) states that no net charge is lost through the interface. Relating the exchange terms
to their microscopic counterparts (Bennethum and Cushman 2002a), we see that

εαρα j (Ẑ
α j
β + zα j ê

α j
β ) = 1

|δV |
∫

δAαβ

[
q j

e (w
j
αβ − v j ) − J j

]
· nα da

so that we see Eq. (30) corresponds precisely with the classical jump condition across a
discontinuous interface (Eringen and Maugin 1990):

n · [[J + qe(v − w)]] = 0. (31)
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Conservation of Momenta
The conservation of linear momentum for bulk phase α, assuming that the electric field
is dominant (the magnitude of the magnetic field is small relative to the magnitude of
the electric field), includes the effects of the electric field and the polarization density of
material α:

εαρα Dαvα

Dt
− ∇ · (εα tα) − εαρα(g + gα

I ) − εαqα
e ET − εα Pα · ∇ET

+1

2
ε0ET · Eα∇εα =

∑
β �=α

εαρα T̂
α
β, (32)

where g is the external supply of momentum due to gravity, gα
I is the pseudo-external supply

of momentum due to the difference between the product of the averages and the average of
the products of ∇E · E j and ∇E j · E (Bennethum and Cushman 2002a), ET is the (total)
electric field intensity generated by ions within the porous medium and externally applied,
Eα is the electric field generated by ions within phase α, Pα is the polarization density, and
ε0 is a universal constant representing the permittivity in a vacuum.

There are two forces commonly referred to that appear in the conservation of linear
momentum. The Lorentz force is the force acting on a point charge due to the presence of an
electric field, and in this case is denoted by εαqα

e ET, and the force resulting from the dipole
moment is called the Kelvin force (Eringen and Maugin 1990). Restrictions resulting from
assuming no loss of net momenta across an interface are

εαρα j (T̂
α j
β + ê

α j
β vα j ) + εβρβ j (T̂

β j
α + ê

β j
α vβ j ) = 0 j = 1, . . . , N , (33)

which, if written in terms of its microscale counterparts, corresponds directly with the jump
condition across a discontinuous interface and is (Eringen and Maugin 1990):

n · [[ρv(v − w) − t − t
E
]] = 0 (34)

where w is the velocity of the discontinuity. An alternate way of writing Eq. (32) for a
single-phase fluid is in terms of the Maxwell stress tensor, t

E
, as defined by Eq. (10) where

qeE + P · ∇E = ∇ · t
E

= ∇ · (DE − 1

2
ε0E · EI). (35)

We note that theMaxwell stress tensor is symmetric if the polarization density, P , is zero, and
is typically used because it represents the interaction forces due to electric charges and fields,
just as the mechanical stress tensor represents the interactions due to mechanical bonds.

Unfortunately, developing a corresponding Maxwell stress tensor for a multicomponent
phase is not simple because in the derivation of Eq. (35), Faraday’s law and Gauss’ law are
used, which in this formulation incorporates sources due to the presence of other phases,
and also because symmetry is lost due to the two electric fields, the total electric field and
the electric field generated by the species in phase α. One could begin with the conservation
of linear momentum in terms of Maxwell’s stress tensor and upscale to get a corresponding
Maxwell stress tensor with different upscaled definitions, but it is thought by some, e.g.,
Eringen and Maugin (1990), that the balance of linear momentum in terms of the Lorentz
and Kelvin forces is more fundamental.

At this point, we have a full set of field equations (balance laws, Maxwell’s equations) that
hold at the macroscale. The material is viewed as overlaying continua with each component
of each phase defined at each point in space and time.We next consider obtaining constitutive
relations using hybrid mixture theory.
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3.2 Constitutive Relations via Hybrid Mixture Theory

To develop a full set of coupled equations using hybrid mixture theory, we use the second law
of thermodynamics (Bennethum and Cushman 2002b), to develop macroscopic constitutive
equations. The key assumption involves assuming a set of independent variables upon which
all constitutive variables depend upon, and then using that assumption the entropy inequality
is exploited in the sense of Coleman and Noll (1963).

Restricting ourselves to the conservation of mass and linear momentum, we have the
following unknowns:

εα, ρα, vα j , Eα, qα
e , êl

s, tα, Pα, T̂
α
β. (36)

The first four variables listed in (36) are primary unknowns. The last four variables are consti-
tutive variables for which constitutive equations are needed in order to have the same number
of equations as unknowns. For brevity, we assume a simple set of independent variables upon
which all constitutive variables (not just the ones listed above, but also the variables appearing
in the upscaled Maxwell equations and conservation of energy and entropy equation) must
depend upon:

εl , ρα j , vl,s, vα j ,α, ET, ∇εl ,∇ρα j , dl , ∇vl j ,l , ∇ET, (37)

where α = l, s for the liquid or solid phase, respectively, j = 1, . . . , N denotes the com-
ponents within each phase (some of which are charged), a comma in the superscript denotes
difference (e.g., vl,s = vl −vs), and dl = 1

2 (∇vl +(∇vl)T ) is the rate of deformation tensor.
Herewe have assumed a porousmaterial consisting of two phases, that is only deformable due
to volumetric changes (not shear). If the porous media were to shear, it would be necessary
to include strain in the list of independent variables.

Exploiting the entropy inequality to obtain constitutive equations for êl
s , t

α , Pα , T̂
α
β ,

substituting the results into the conservation of mass and conservation of linear momentum,
neglecting the inertial terms and viscosity, and enforcing charge neutrality using a Lagrange
multiplier, Λ yields the generalized form of Darcy’s law and Fick’s law.

The generalized form of Darcy’s law that results is (Bennethum and Cushman 2002b):

R · vl,s = −εl∇ pl + εlρl(g + gl
I ) − π l∇εl + εlql

eET + εlql
e∇Λ

+ εl P l ET −
N∑

j=1

rl j · vl j ,l . (38)

The coefficient R is the inverse of the conductivity matrix (up to porosity) and results from

linearizing the constitutive expression for the exchange rate of momentum term, T̂
l
s . The

coefficient, R, may be a function of all independent variables that are not necessarily zero
at equilibrium (e.g., density, temperature, porosity, concentrations, etc). The first two terms
on the right-hand side give the traditional Darcy’s law, with the porosity typically absorbed
into the conductivity matrix. The term involving gl

I implies that the effective “gravitational”
term may include fluctuations in the electric field and its gradient (see the definition of gl

I ).
The next term, π l∇εl , occurs when there is a strong interaction between the liquid and solid
phase. The term π l (defined using the sign convention of Bennethum and Weinstein (2004))
measures the change in the energy of the liquid energy due to its proximity to the solid and
is non-negligible in, e.g., swelling clays, swelling polymers, etc., and is a macroscopic term
measuring what is typically called the disjoining pressure or osmotic pressure and indicates
that the fluid will move from high porosity to low porosity with no other driving forces,
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such as a gradient in liquid pressure, present. See Bennethum andWeinstein (2004) for more
details. The fourth term on the right-hand side is the upscaled Lorentz force. The following
term, εlql

e∇Λ, states that the fluid will move so that charge neutrality (of the system) is
enforced. If one does not assume charge neutrality exists in a system (for example, when an
external electric field is applied), this term should be neglected. The next term is the upscaled
Kelvin force, and the last term involving summation over species is a cross-effect term that
captures the hydrating effect of ions. Because water has a polar moment, it naturally absorbs
to ions (e.g., the hydrogen molecule to anions), causing a net bulk water movement in the
direction of ions/cations. If species l j is not charged, then the corresponding rl j is zero, as
there is (usually) no strong adsorption of water to non-charged species. It should be noted
that one usually incorporates an electric field, ET, or charge neutrality, but not both.

Of course, all of the terms on the right-hand side of Eq. (38) interplay—one could have
a situation where the force due to the pressure potential is exactly counterbalanced by the
Lorentz force resulting in no flow. As a specific example of this coupling, there is what is
called the streaming potential (Newman andThomas-Alyea 2004),which is usually described
as an electric potential that arises in a charge-neutral system with a charged solid phase that
undergoes deformation. The deformation of the solid phase causes electroneutrality to be
violated, resulting in the movement of the charged particles in accordance with the resulting
electric field. To observe this effect in Eq. (38), let us consider charge neutrality (keep the
Lagrange multiplier), with negligible electric field (neglect gl

I and the Kelvin and Lorentz
forces), polarization, and swelling potential. Apply a pressure gradient. The liquid would
move in bulk, causing the solid phase to deform, and the charge neutrality enforced between
the liquid and solid phases would be violated, causing a new potential, Λ, that produces an
electric field. See, e.g., Newman and Thomas-Alyea (2004) for an explicit example of such
a calculation for charged particles in a fluid filled capillary tube at the microscale.

The generalized Fick’s law provides the equation governing diffusion. With the assump-
tions incorporated here, we have

N∑
k=1

rl jk · vlk ,l = −εlρl j ∇μl j + εlρl j (g − g
l j
I ) + εlq

l j
e ∇Λ

+ εlρl j zl ET − (rl j )T · vl,s, (39)

where μl j is the chemical potential (change in energy with respect to quantity). The first
term on the right-hand side is a generalization of the gradient of concentration, which leads
us back to the traditional Fick’s law. However, here we have additional terms. The tensors
rl jk are material parameters that account for the coupling between the flow of one species
and another. The tensor rl j is a material tensor that appears also in the generalized Darcy’s
law and accounts for the interaction between species j in the liquid phase and the bulk liquid
phase. Again the macroscopic body force incorporates not just gravity but also fluctuations in

the electric field and its gradient (see the definition of g
l j
I ). The term εlρl j zl ET is a pseudo-

Lorentz force, as the term in front of ET is not quite the charge of species l j , and is negligible
if the bulk porous medium is charge neutral.

To obtain the equivalent convection–diffusion equation, we make the following assump-
tions: (1) the effect of other species on the diffusion of species j is negligible, so that the
material coefficient tensor, rl jk , is the identity tensor, I , (2) there is no external electric field,
so that we only enforce electric neutrality and that Λ = −Ψ , the electric potential, (3) the
gravitational effects are negligible, and (4) the coupling with the bulk-phase fluid is neg-
ligible: rl j = 0. Finally, let rl j j (no sum on j) be rewritten as (εl)2ρl j (D j )−1 (note that
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from linearization, rl j j is a function of all independent variables that are not necessarily 0 at
equilibrium), where D j is the diffusion tensor. This yields

εlρl j vl j ,l = −D j ·
[
ρl j ∇μl j + q

l j
e ∇Ψ

]
, (40)

which is a generalizedFick’s law.The term,q
l j
e ∇Ψ , is sometimes combinedwith the chemical

potential to produce the electrochemical potential and represents the energy it takes to insert a
charged particle into a charged system from infinitely far away (Newman and Thomas-Alyea
2004). For single-phase systems, there are explicit expressions for this potential, just as there
are for chemical potentials in systems with no charges (Newman and Thomas-Alyea 2004).

To obtain the convective–diffusion equation for charged porous media, we substitute the
expression for diffusion from (40) into the continuity equation for species j (24), neglect
mass transfer between phases and chemical reactions, divide through by ρl , and we obtain
the simplest form:

εl ∂cl j

∂t
+ εlvl · ∇cl j − ∇ ·

{
D j

[
cl j ∇μl j + zl j cl j ∇Ψ

]}
= 0, (41)

which we will use to compare with the homogenization approach.
And finally, we provide the resulting constitutive equation for the rate of exchange of mass

for component j , see Eq. (18), from this framework (Bennethum and Cushman 2002b):

ρl j K l j ê
l j
s = μ̃s j − μ̃l j + ρl j zs j Gl j Ẑ

l j
s , (42)

where K l j and Gl j are linearization coefficients that must be measured, and μ̃l j and μ̃s j are
the electrochemical potentials for component j in the liquid and solid phases, respectively.
For non-charged systems, the electrochemical potentials reduce to the chemical potentials

and the rate of exchange of charge, Ẑ
l j
s , is zero. Thus we see that the larger the difference in

the electrochemical potentials, the faster phase transition occurs.
We note that because these equations are developed at the macroscale by exploiting the

entropy inequality, the resulting equations satisfy theOnsager’s reciprocity relations (Onsager
1931a, b), which, in its simplest terms, states that the matrix relating the forces and fluxes of
any systemnear equilibriummust be symmetric. One can see this relationship in, for example,
the appearance of the coefficient rl j in both Darcy’s equation (38) and Fick’s equation (39),
coupling diffusion with bulk motion. However, this formulation does not take advantage
of any knowledge of constitutive equations that are known at the microscale (such as the
Nernst–Planck equation (15)), nor the microscale geometry, other than what is captured by
the volume fraction. The latter restriction can be somewhat alleviated by including additional
parameters in the set of independent variables, such as the liquid–solid interfacial area density
(area per representative volume of the porous media). See for example (Hassanizadeh and
Gray 1990). One consequence of this formulation is that the system of equations requires
that all coefficients in the constitutive equations are directly formulated at the macroscale,
requiring that they be measured via macroscopic experiments.

3.3 Homogenization

An alternative approach is to upscale both field equations and constitutive equations from
the microscale to the macroscale. Two such approaches are volume averaging in the sense of
Whitaker (e.g., Rio and Whitaker (2000)) and homogenization (Schmuck and Bazant 2015).
Both approaches rely on having sufficient information at the microscale in order to obtain
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macroscopically feasible results as well as physical intuition in order to close the system of
equations (for volume averaging), or for determining powers in the expansion coefficients
(homogenization), but this is common for all upscaling approaches (HMT requires a selec-
tion of independent variables and intuition to determine the coupling and degree of Taylor
series expansion). Here we focus on homogenization and begin with probably the simplest
formulation for charged porous media as given by Schmuck and Bazant (2015).

At the microscale, we begin with the Poisson–Nernst–Planck equations for ion transport
in a fluid, in Eqs. (6) and (15), assume two charged species in the fluid phase, a cation and
an anion, and a periodic structure consisting of spherical solids that have a surface charge
density. A periodic structure consists of spherical solids with a solid phase that has a surface
charge density. Following the classical homogenization procedure (not trivial as once the
solid phase is charged the system is nonlinear), the governing equations at the macroscale
are given as (notation modified to be consistent with that which is used here) (Schmuck and
Bazant 2015):

εl ∂cl j

∂t
= ∇ ·

(
D(v) · ∇c0 + zl j cl j M∇Ψ

)
(43)

−∇(ε0∇Ψ ) = (cl+ − cl−) + ρs (44)

where three charged species are considered, cations and anions, with mass concentration
cl+ and cl− , respectively, and a solid surface, with charge density, ρs . The first equation is
the generalized convection–diffusion equation, and the second is a macroscopic version of
Gauss’ equation, which together could be referred to as macroscopic Poisson–Nernst–Planck
equations. The nonlinearity of the Poisson–Nernst–Planck equations makes it challenging
to upscale, and consequently, the convection–diffusion equation is missing the convection
term explicitly, but is incorporated through a transformation of the dependent variable, e.g.,
c± = c±(x − tv∗

r , t), where v∗ is a “suitably averaged fluid velocity” (Schmuck and Bazant
2015). Note that the diffusion coefficient is now a tensor (unlike at themicroscale) and one can
solve (usually numerically) a problem using the assumedmicroscopic geometry to determine
exactlywhat D is, and determine howmicroscale changeswill affect themacroscale diffusion
tensor.

Although this provides probably the simplest version of a macroscale model obtained
via homogenization, this particular formulation has a few drawbacks. Besides the missing
convective term (again, incorporated in the independent variables), this formulation does not
incorporate the conservation ofmomenta for the solid (and thus does not have an equation that
determines the change in porosity), nor for the fluid (so there is no, e.g., streaming potential).
Consequently, the resulting macroscopic equations do not satisfy the Onsager reciprocity,
which the authors readily admit. Further, the placement of the anions/cations at themicroscale
is not taken into account (via, e.g., the double-layer theory), so that this information is not
accounted for in the macroscopic diffusion tensor.

An example of a homogenization approach that alleviates many of these shortcomings
is that of Moyne and Murad (2006). In this work, the microscale equations include the
Poisson problem (Gauss’ equation), Stokes problem with the Lorentz force, the constitutive
equation for the fluid stress tensor incorporating the Maxwell stress tensor, the Poisson–
Nernst convective–diffusion equation using the electrochemical potential (Poisson–Nernst–
Planck equation), the equilibrium form of the conservation of momentum for the solid phase
assuming the stress tensor is linearly related to the strain tensor, and the continuity equation
for the solid phase charges assuming that the fluxes of the charged particles is due only to
the displacement of the solid. Because Moyne and Murad (2006) is interested in modeling
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montmorillonite clay, the geometry of the periodic structure is taken to be two parallel solid
plates with a fluid consisting of water with two charged species, an anion and a cation. To help
deal with the highly variable-dependent variables liquid pressure, liquid ion concentrations,
and liquid electric potential due to charge distribution (decomposed into that which arises
from the electric double layer and that which arises from the streaming potential), the authors
make a clever change of variables to concentration of the cation or anion, cb, pressure, pb,
and electric potential (due to streaming potential only), Ψb, for a fictitious bulk fluid that is
in equilibrium with the fluid between the charged platelets. Because the fictitious fluid is not
in contact with the charged solid phase, it is electrically neutral so that the concentration of
anions and cations are equal. Assuming a microscale velocity in the x-direction (parallel to
the plates), the first approximation at the macroscale of the generalized Darcy’s (Moyne and
Murad 2006, Equation (4.50)) and convection–diffusion equation (Moyne and Murad 2006,
Equation (4.53)) is:

vl,s = −K P∇x pb − K · ∇x cb − K E · ∇xΨb (45)
∂

∂t
(εl G±cb)

+∇ ·
[
G±cbv± − εl(D± · ∇x cb ± De±cb∇Ψb + D p

± · ∇x pb)
]

= 0 (46)

where subscript b refers to the quantity in the bulk phase that is in equilibrium with the liquid
phase, and G relates the concentration of the bulk component to the electric field generated by
the double-layer theory using the Poisson–Boltzmann equation at the microscale. We again
note that each coefficient can be obtained explicitly by solving a problem at the microscale.
It can be shown that the symmetry of Onsager’s relations holds if it is assumed that the
electrochemical potentials of the ions do not fluctuate in the micropores (Moyne and Murad
2006).

Wenote that even though the hybridmixture theory,HMT, andhomogenization approaches
are quite different approaches, the resulting macroscopic equations have quite a bit in com-
mon. To compare the generalized Darcy’s law of HMT, Eq. (38) with that of homogenization,
Eq. (43), we rewrite Eq. (38) using the following relations

Gl = ψ l + pl

ρl
=

N∑
j=1

cl j μl j Gb = ψb + pb

ρb
=

N∑
j=1

cb j μb j (47)

μl j = ∂(ρlψ l)

∂ρl j
= μb j = (ρbψb)

∂ρb j
(48)

pl =
N∑

j=1

ρlρl j
∂ψ l

∂ρl j
pb =

N∑
j=1

ρbρ
b j

∂ψb

∂ρb j
(49)

π l = εlρl ∂ψ l

∂εl
(50)

ψ l = ψ l(εl , ρl j ) ψb = ψb(ρ
b j , pb), (51)

where G is the Gibbs potential (energy per unit mass), ψ is the Helmholtz potential (energy
per unit mass), ρl j = cl j ρl , and μl j is the chemical potential for the j th component in the
liquid phase. The equality of the chemical potentials between the liquid phase and the bulk
fluids comes from the definition of thermodynamic equilibrium of the pseudo bulk phase.
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Using these relations results in an equivalent form of the HMT form of Darcy’s law

R · vl,s = −εl∇ pl + εlρl(g + gl
I ) − π l∇εl + εlql

eET + · · ·
= −εlρl∇Gl + εlρlμl j ∇cl j + εlql

eET + · · ·
= −εlρl cl j ∇μl j + εlql

eET + · · ·

= −εlρl

⎡
⎣∑

j

cl j
∂μb j

∂ pb

⎤
⎦ ∇ pb − εlρl

∑
j

[
cl j

∂μb j

∂cb j
∇cb j

]

+εlql
eET + · · · (52)

which is the same form as that obtained via homogenization (43).
Comparing the convection–diffusion equations among the three approaches requires doing

a similar manipulation for (41). Assuming that the chemical potential of the liquid- and bulk-
phase fluids is equal, μl j = μb j , and that the Helmholtz potential and hence the liquid
chemical potential of the bulk fluid are functions of the bulk pressure and concentrations,
μb j = μb j (pb, cb j ) yields

εl ∂cl j

∂t
+ εlvl · ∇cl j

−∇ ·
{
D j ·

[∑
i

cl j
∂μb j

∂cbi
∇cbi + cl j

∂μb j

∂ pb
∇ pb + zl j cl j ∇Ψ

]}
(53)

and we readily see the comparison between the three formulations are fairly close, up to the
convective term and time derivative terms.

It should be noted that these works are far from complete and are undergoing evolutions.
For example, in homogenization, work incorporating three scales to, e.g., model montmoril-
lonite clay incorporating ion–ion correlation effects (Le et al. 2015), and even size exclusion
effects are exciting new developments.

4 Charged Porous Media in Real-World Applications

There is a wide range of applications, in which utilization of the charge property controls the
success of the application. For brevity, we introduce only a few examples with physical scales
spanning several orders of magnitude from centimeter to kilometer. The provided examples
cover use of clays to make impermeable layers, utilizing the charged surface of rocks for
enhanced oil recovery, charged media in electrochemical batteries, and drug delivery.

4.1 Clays

The terminology clay refers to soils with particle sizes finer than 2 µm in geo-engineering
applications, and the term clay minerals refer to secondary minerals that are the products
of chemical weathering of primary minerals of metamorphic and sedimentary rocks (Yong
et al. 2010). At the molecular scale, the clay minerals consist of two basic crystal units of
silicon oxygen tetrahedral unit and aluminum/magnesium/iron–oxygen–hydroxyl octahedral
unit as shown in Fig. 2. The crystal units of clay minerals carry an unbalanced electrical
charge on the surfaces and edges. Possible sources of the unbalanced electrical charge are
related to: (i) the positively charged ions that are generally located in the space between
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Fig. 2 Basic microstructure units of clay mineral. Adopted and reproduced from Yong et al. (2012)

the basic unit layers, whereas the oxygen or hydroxyl ions on the surface of the unit layer
are negatively charged, (ii) the partial replacement of Si4+ by Al3+ in the tetrahedral unit
or of Al3+ by Mg2+ in the octahedral unit that results in a net negative charge on the unit
layers (isomorphous substitution, e.g., in montmorillonite), and (iii) the edges of unit layers
where the tetrahedral silica sheets and octahedral sheets are disrupted, and primary bonds
are broken. Charge imbalance resulting from the isomorphous substitution is balanced by the
exchangeable cations that are located between the unit layers and on the surfaces of particles.
The arrangement of unit layers for three common clay minerals including kaolinite, illite,
and smectite is shown in Fig. 2.

4.1.1 Clays in Geo-environmental Barriers

Clays play an important role in developing engineering solutions for geo-environmental
problems. In particular, clays with a large percentage of smectite clay minerals are of great
interest in geo-environmental applications. An example of such engineering utilization of
clays is the widespread application of bentonite clay (which has a high percentage of smec-
tite in its composition) as engineered barriers for waste disposal and containment systems.
Bentonite has a high capacity of water adsorption and swelling characteristics alongside its
highly charged surfaces (average surface area of sodium bentonite is 700–800 m2/g). It has
a high cation exchange capacity, originating mainly from the negatively charged surfaces
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of bentonite. Bentonite is used as part of the composite systems of geosynthetic clay lin-
ers (GCL) at the bottom and top of waste disposal/landfill sites. GCL comprises a layer of
partially hydrated bentonite sandwiched between two layers of geomembranes and/or geo-
textiles. GCL can provide a low permeability hydraulic barrier to minimize the infiltration
of hazardous chemicals into the subsurface soil and groundwater below the landfill (landfill
liner system) or prevent runoff infiltration into the waste deposition (landfill cap system). In
high-level nuclear waste (HLW) disposal sites, compacted bentonite is a component in ver-
tical barriers in order to isolate the contaminated sites and prevent migration of groundwater
through the contaminated sites. Compacted bentonite not only provides amechanically stable
environment and minimizes the percolation of groundwater, but it also has a high swelling
pressure, low diffusion coefficient, and high attenuation capacity, which are mainly related
to the highly charged smectite surfaces.

4.1.2 Diffusion in Clays

The pore system of clays is a distribution of pore sizes in which mass transport is heavily
affected by the surface interactions and charge imbalance. At least three porosity scales can
be identified (Pusch et al. 2007; Sedighi and Thomas 2014) (see Fig. 3): (i) the interlayer or
microporosity that corresponds to the pores associated with interlayer space between the unit
layers (generally<2 nm), (ii) mesoscale pores that corresponds to space existing between the
particles (2–50 nm), and (iii) the macroscopic porosity corresponding to the inter-aggregate
voids (>50 nm). The interlayer pores only contain water and exchangeable ions. Ions form
a diffuse double-layer system around the particles that normally exist to balance the charge
of the clay surface. The diffuse double layer that is formed at the meso- and macroscale
contains both cations and anions as shown in Fig. 1b (Bradbury and Baeyens 2003; Bourg
et al. 2003;Wersin et al. 2004). The vicinal fluid consists of the fluid within the interlayer and
a small portion of water in the micropores that is close to the particle surface and is typically
considered relatively immobile compared to water in the macropores, and some authors treat
this portion of water as part of the solid phase (Pusch 1994; Hueckel 1992). Practically,
the fluid in the interlayer pores contributes very little to fluid migration, whereas the micro-
and macropores are likely to act as major fluid pathways (Pusch 1994; Hueckel 1992). The
diffusion of charged species in compacted bentonites compared to diffusion in free water
is more strongly influenced by geometrical factors caused by the complex microstructure
of the smectite clay (Leroy et al. 2006). In addition, gas transport in smectite is a highly
reactive process that involves interaction between water and clay minerals and chemicals
(Sedighi et al. 2015). Experimental investigations have been conducted to understand the
diffusion of ionic species in smectite, demonstrating that the diffusion rate and the effective
diffusion coefficients of neutral species, anions, and cations vary considerably with the type
of chemical species in water resident in compacted bentonite and the imbalanced charged
nature of particles (Muurinen et al. 2007; Kozaki et al. 2005; García-Gutiérrez et al. 2004;
Van Loon et al. 2007; Glaus et al. 2007). The theoretical understanding of the effective
mechanisms of the diffusion of ions in compacted bentonite has also been advanced by
Lehikoinen et al. (1995) and Leroy et al. (2006). García-Gutiérrez et al. (2004) studied the
diffusion properties of a smectite-rich clay to a chloride tracer compared with the tritiated
water that showed all the meso- and macropores in compacted smectite studied are available
for diffusion of neutral species. On the other hand, the accessible porosity for a chloride tracer
was found to be only 2–3%of the total porosity, demonstrating a significant anionic exclusion.
The increased diffusion of cations has also been observed and explained by the interlayer
diffusion (Bourg et al. 2003; Glaus et al. 2007) or by surface diffusion in the diffuse double
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Fig. 3 A schematic presentation of the multiscale structure of the montmorillonite clay

layer (DDL) (Leroy et al. 2006; Appelo et al. 2010). The above-mentioned findings indicate
that in general larger values for the effective diffusion coefficients of cations and smaller
values for anions than those for water tracers (neutral species) have been found commonly
in compacted clays (Appelo and Wersin 2007). The results of investigations of the diffusion
of anions and cations suggest that accessible porosity and geometrical factor are likely to be
different for various tracers in compacted bentonite that are key to accurate reactive transport
modeling and prediction of processes in swelling clays (Sedighi et al. 2018).

4.2 Role of Charged Surfaces in Low-SalinityWaterflooding

Enhanced oil recovery refers to a group of chemically enhanced technologies to extract oil
from the reservoirs. Electrokinetic effects play the central role in several enhancedoil recovery
methods including foam flooding (Farajzadeh et al. 2012) and low-salinity waterflooding
(Mahani et al. 2015; Joekar-Niasar and Mahani 2016; Aziz et al. 2018).

In low-salinity waterflooding, water with an engineered composition is injected to produce
more oil compared to conventional waterflooding. Several hypotheses have been proposed
to be responsible for the extra oil recovery, among which wettability alteration due to the
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expansion of the electrical double layer in clay-rich sandstones (Ligthelm et al. 2009) and
ion exchange between the fluids and clays/sandstone rock (Lager et al. 2006) are the two
most likely mechanisms. A detailed literature review on low-salinity waterflooding can be
found in Bartels et al. (2019).

The double-layer expansion mechanism deals with the thickness and shape of the water
film (Choi et al. 2010; Basu and Sharma 1996; Dimitrova et al. 2001; Binks et al. 1997;
Manica et al. 2007; Onsager 1949). Recently, in a theoretical study it has been shown that the
pressure induced by the electrokinetic and osmotic effects are highly nonlinear and depend
on the film thickness. In thin films exposed to a lower ionic strength, the electrokinetically
induced pressures lead to the increase in disjoining pressure and consequently change of
contact angle toward the more water-wet state (Churaev and Sobolev 1995; Joekar-Niasar
and Mahani 2016).

The multivalance ion exchange deals with the interfaces between the fluids and rocks.
Several studies have shown that there is a distinct difference between the behavior of mono-
valent and divalent ions, as divalent ions tend to become sorbed (chemically attached to the
substrate) (Nicolini et al. 2017; Sohrabi et al. 2017) and can potentially lead to the inversion of
the surface charge, which changes the surface forces from attractive to repulsive conditions.
In these two mechanisms, the surface electrochemistry and electrokinetic forces are the key
factors that can explain the microscopic phenomena during the low-salinity waterflooding
(Rivet et al. 2010). To simulate wettability alteration in porous materials, a complex multi-
scale sets of equations need to be solved. At the Darcy scale, the two-phase flowwith variable
wettability needs to be solved. However, at the microscale, the wettability alteration can be
triggered as the interaction of several factors (e.g., surface chemical interactions, electroki-
netic effects in the diffuse layer) lumped in the Maxwell stress tensor (Eq. 10). The complete
physical phenomena at the microscale can be simulated by coupled Poisson–Nernst–Planck
and flow equations. Currently, there is no comprehensive multiscale model that integrates
electrokinetic effects, surface chemistry, disjoining pressure, wettability alteration, and two-
phase flow in an integrated model.

4.3 Electrochemical Models for Rechargeable Batteries

Lithium-ion andother rechargeable batteries are another important example of chargedporous
media (Newman and Tiedemann 1975). Here, to obtain a higher power density, porous solid
electrodes with a high surface–volume ratio are generally used. Increasing the surface avail-
able for the electrochemical reaction (ion intercalation/de-intercalation) between the solid
electrodes and the liquid electrolyte is, in fact, one of the key design objectives, together with
an efficient transport of ions in the electrolyte, through the porous electrode matrix and the
separator (often porous itself). One of the main challenges is therefore to design the porous
structure, for a given battery chemistry, to optimally balance these two mechanisms. While
the transport models will be discussed at length in the following, it is important to high-
light that the electrochemical reactions are highly nonlinear phenomena, usually described
by the Butler–Volmer equation (Rubi and Kjelstrup 2003). This is an effective macroscopic
description of the ion exchange at the electrode surface, relating the electrical current with
the so-called over-potential, which is computed as the difference between the potential drop
between electrolyte and electrode, and an equilibrium “open-circuit” potential. The latter is
usually measured experimentally as a function of the ion concentration (state of charge) at
equilibrium.
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A widely used model for lithium-ion batteries is the one originally developed in the sem-
inal work of Newman and collaborators (Newman and Tiedemann 1975). This, despite the
several assumptions and subsequent improvements, is still the basis for most of the recent
simulation, optimization, and control studies. The peculiarity of this model is that, due to
the large ratio between the diffusivity of ions in the solid electrodes and the one in the
electrolyte (liquid) that induces a strong coupling between the scales, it is formulated in a
hybrid macro–microapproach, also known as pseudo-two-dimensional (P2D) because orig-
inally developed for a mono-dimensional macroscopic space variable with a one additional
microscopic dimension. This has been subsequently more generally derived by homogeniza-
tion by several authors (Arunachalam et al. 2015; Richardson et al. 2012; Ciucci and Lai
2011).

The basic assumptions include electroneutrality, negligible fluid momentum, non-
deformable pores, and the transport equations of only one species (ion concentration) in
two phases (solid and liquid electrolyte). For the liquid electrolyte phase, we can refer to
Eqs. (40–41),with appropriate chemical potential (see alsoEq. 15), and effectivemacroscopic
diffusivity, together with a macroscopic Poisson equation for the potential (with effective
macroscopic conductivity). The source term in both these equations is proportional to the
nonlinear Butler–Volmer equation that here represents the transfer of charges between the
phases (and depends on ion concentration fields and potential in both phases). Although this
equation is treated as a macroscopic balance (developed as a way to include surface DLVO
effects and electrochemistry) for the local current at the electrode surface, its derivation does
not usually incorporate any correction or upscaling for a porous medium. This assumption
is appropriate, provided a slow reaction timescale compared to the electrolyte diffusion, and
we can therefore approximate the total source term locally with the Butler–Volmer equation,
simply scaled by the specific surface.

Unfortunately, these approximations are not valid for the solid phase in which the ion
diffusivity is typically extremely slow (usually of at least four orders of magnitude). This is
equivalent to the well-known problem of upscaling high-contrast media. Therefore, in prin-
ciple, the full microscale solution would be needed at each point. However, assuming the
solid phase is made of non-connected spherical particles, Newman and Tiedemann (1975)
proposed a hybridmicro–macromodel where, at eachmacroscopic point, a diffusion equation
is solved for the ion concentration in a microscopic radial coordinate only. Here, the phase
exchange term (the Butler–Volmer kinetics) is applied as a flux at the external boundary. Sev-
eral improvements (polydispersed particles) or further approximations (e.g., single-particle
model) have been since proposed. The potential of the solid is instead averaged (or homoge-
nized) over the solid electrode porous structure (partially in contradictionwith the assumption
of non-connected spherical particles) and represented as amacroscopic Poisson equationwith
effective solid conductivity.

While this model has clearly several limitations, it still represents a milestone in under-
standing the dynamic behavior of lithium-ion batteries, as a compromise between more
complex electrochemical molecular models and system-scale equivalent circuit models for
control and real-time applications.

4.4 Drug Delivery

There are multiple means of introducing drugs into the body, e.g., orally, across a membrane
such as a nasal membrane, and adsorption through the skin. One commonly used mechanism
is a hydrogel, which is typically composed of a swelling (hydrophilic) polymer that has the
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morphology of spaghetti (Feng et al. 2010). The hydrogel is carefully laced with the drug
of interest (e.g., Aleve), and as the hydrogel comes into contact with body fluid, it swells,
increasing the pore size, allowing the drug to diffuse out. The polymer can be cross-linked,
which keeps the polymer from dispersing completely, or not. The physical process of the
liquid entering into a hydrogel is due to osmotic pressure and is a consequence of the liquid
having a preference to being next to the solid polymer instead of being in a bulk phase. An
example of a more complicated drug delivery system is an osmotic-controlled release oral
delivery system (Malaterre et al. 2009), which involves encapsulating a hydrogel in a rigid,
semipermeable outer membrane that allows fluid to enter in, building up the osmotic pressure
inside, which then pushes the drug out of the capsule through small laser holes that have been
drilled into the outer membrane. In more recent years, electrical stimulation has been used
to release a drug from an implanted osmotic-controlled release device resulting in a system
that can administer a precise drug amount at a given time and location (Yi et al. 2015). At
the microscale, these mechanisms are a consequence of the solid polymer having a slightly
charged surface, resulting in hydration by water, or in the case of the on-demand release
mechanism, an electric field that affects the deformation of the polymer. There are several
mathematical modeling approaches (see Siepmann and Siepmann 2008 for a nice review),
including hybrid mixture theory (Weinstein et al. 2008a, b).

4.5 Biomechanics

A human body is a structure where the electrical double layers are ubiquitous. While human
tissue is mainly composed of water, the body appears without a doubt as a solid structure.
The high water content is vital as renewal of tissue is constantly going on, and supply and
drainage of material have to happen from capillaries to cells through diffusion. The reason
why, despite the highwater content, human tissues appears solid is becausemost of thewater is
bound in electrical double layers in and outside the living cells. The cytoplasm is understood
as nanoporous network of biological polymers, named cytoskeleton. The cytoskeleton is
charged in many living cells. The extracellular space of cartilage, intervertebral disk, and
bone have fixed charges very much like clay minerals has. One of the most salient features of
the remodeling process of a human tissue is that the tissue itself organizes its renewal so as to
resist existing mechanical load better. The ability of biological tissue to sense its mechanical
load is known as mechanotransduction. There is a suspicion that electrical double layers may
play an important role in this mechanotransduction.

Large deformations usually play an important role in applications of biological porous
media (Huyghe and Janssen 1997). The osmotic pressure in blood is tightly regulated by the
kidneys, indicating that osmotic pressure is a vital aspect of physiology. Small departures
from physiological salt concentrations quickly result in swelling and disease, and it was
known even thousands of years ago (ayurvedic scriptures) that swelling was a key symptom
of disease. The osmotic pressure defined in Eq. (12) is the change in chemical potential of
the water because of the vicinity of ions. The change of chemical potential drives osmosis,
ensuring that the majority of water molecules in the human body are bound to the (ionized)
solid. Differences in charge density between the intracellular and extracellular environment
cause differences between intracellular osmotic pressure and extracellular osmotic pressure.
This difference in osmotic pressure across a permeable cell membrane results in a jump in
mechanical pressure across the membrane. The smooth round shape of cell membranes is a
direct consequence of this pressure jump. Ions are sensitive to the difference in charge density
as well. Intracellular ionic concentrations differ significantly between intracellular space and
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extracellular space (Guyton and Hall 1996). Part of these differences can be explained by the
hybrid mixture theory mentioned in the previous sections. A key feature of cell physiology
is the jump in electric potential across the cell membranes. This jump amounts to several
tens of mV. Equating the electrochemical potential, (Eq. 13), of the intracellular space to the
electrochemical potential of the extracellular space results in quantitative predictions of this
voltage jump. Nevertheless, some caveat should bementioned in the context of a multiple-ion
system like a human cell. In most ionic theories describing electrical double layers, ions are
described as point charges. This implicitly means that sodium ion with charge+ 1 is identical
to a potassium ion with charge + 1, while size of the K+ is 152 picometer and size of Na+ is
116 picometer and thus cannot be treated identically. More advanced theories are needed to
deal with heteroionic systems and the interaction between ions of same charge. Substantial
effort has been invested in the understanding of why potassium concentration inside cells
is higher than outside, and why sodium concentration inside cells is lower than outside.
Such a dichotomy cannot be explained by most existing ionic theories. Once deformations
come into the picture, the electrochemical potential μi in Eq. (13) depends not only on
electric potential and concentration, but also on strain (Huyghe and Janssen 1997; Huyghe
et al. 2009). This dependence is the pivotal property allowing the electrical double layers
to sense strain. As strain changes, electrochemical potential changes and by virtue of Fick’s
law ions are secreted or absorbed, meaning that the mechanical signal of strain is translated
into an electrical one. In endothelial cell physiology, it has been demonstrated that an ionic
species nitric oxide NO− is secreted according to the strain to which the endothelial cell is
submitted (Ignarro 2000). Although it is too simplistic to present the response of a complex
cell such as the endothelial cell as a purely electrochemical response, the very principle of
mechanotransduction through ionic flux is demonstrated by this example.

5 Limitations, Challenges, Perspective

In this paper, the fundamental concepts used to model flow and transport in charged porous
media have been introduced. While the microscopic description of physical and chemical
processes in charged porous media have been explained, Darcy-scale models are required to
simulate the behavior of these systems at larger physical scales.

We first note that classical microscale equations (e.g., DLVO theory) are based on electro-
static forces and do not model non-equilibrium conditions, see Sect. 2. This means to solve
the ions transport in electrically charged systems, the electric field needs to be coupled with
the transport equation (referred to as Poisson–Nernst–Planck Eqs. (6), (15), and (16)). As a
result, the expression for the disjoining pressure based on the equilibriumPoisson–Boltzmann
relation is not valid. Similar to the preliminary work of Joekar-Niasar and Mahani (2016),
non-equilibrium disjoining pressure and non-equilibrium osmotic pressure should have con-
stitutive expressions that are valid at non-equilibrium.

It is important to note that there are several underlying assumptions in Poisson–Boltzmann
and Poisson–Nernst–Planck equations that limit their validity under some conditions such as
high concentrations. For example, in the original form of these theories, ions are considered
as point charges (no size assigned) and consequently the concentration can theoretically
increase to infinity. Although this assumption might be valid at low concentrations, at high
concentrations the size of ions is important and leads to significant deviation of observations
from theory. The impact of size of ions on electrokinetics, referred to as Steric effects, has
been incorporated in Poisson–Boltzmann and Poisson–Nernst–Planck by several researchers
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such as Kilic et al. (2007), Gupta and Stone (2018), Kilic et al. (2006) and Kornyshev (2007).
Inclusion of size of ions in themodeling can potentially impact themodeling of electrokinetics
in enhanced oil recovery where the formation brine can have a molar concentration of larger
than 1 (McGuire et al. 2005).

Electroneutrality is another important condition that should be carefully considered in
computational simulation of electrokinetics in porousmedia. The condition applied to enforce
electroneutrality is highly scale dependent. For example, electroneutrality should only be
enforced within the electrical diffuse layer if the surface charge density is incorporated as
well, while in the bulk concentration, where the electrical potential is negligible, the net
charge concentration should be zero. Further, expressions for the cross-coupling diffusion
coefficients are based on the bulk concentration assumption (Boudreau et al. 2004a), implying
that the diffusion of co- and counterions in the electrical diffuse layer has been assumed
negligible.While this assumptionmight be valid for porousmediawith large pores (compared
to the Debye length), in very tight systems such as clays, shale, as well as in thin films the
cross-coupling diffusion coefficient of ions should be derived including the contribution of
the diffuse layer. In very tight systems, the pores can function as selective membranes which
are partially permeable to some ions.

Although numerical simulation of flow and transport in microscopic charged systems
such as microfluidics is feasible, solving the electrokinetics coupled with flow and transport
at macroscopic systems such as soils, batteries, and rocks is very challenging, if not infea-
sible, due to huge discrepancy between the physical scale of diffuse layers versus that of
macroscopic porous media, complex nonlinear physical and chemical phenomena, limited
computational. Therefore, theoretical upscaling of microscopic phenomena is essential to
obtain meaningful macroscopic theories that can be used to model physical problems. How-
ever, due to the very complex and highly nonlinear nature of processes in charged porous
media, the macroscopic systems at the continuum-scale are only partially understood and
our capability to rigorously describe such complex processes is still limited. In Sect. 4,
some results derived using hybrid mixture theory and homogenization are discussed. The
obtained macroscale equations including generalized forms of Darcy’s law and Fick’s law
are presented, and even though the approaches are quite different, the resulting macroscopic
equations are similar.

Upscaling via homogenization is difficult due to the highly varying dependent variables,
the nonlinear nature of themicroscopic equations, and the uncertainty of capturing all the nec-
essarymicroscopic physics, but homogenization approaches are becomingmore sophisticated
and improving. Upscaling via hybrid mixture theory avoids the difficulty of the microscale
nonlinear equations, but looses all the microscopic information such as geometry, and it is
unclear how macroscopic quantities are related to pore structure.

Overall, the difficulty in modeling such complex media is not only in determining what
aspects are crucial, but it is also clear that we do not have a clear understanding of all the
physics. Examples provided here include diffusion in bentonite clay and lithium-ion batteries
and ionic concentration differences in biological cell membranes.
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Appendix: Nomenclature

Superscripts, Subscripts, and Other Notations

·α j j th component of α-phase at macroscale, α = l, s, b
·α α-Phase on macroscale, α = l, s, b
·̃ Fluctuation from averaged quantity
·̂ Exchange from other interface or phase

·k,l Difference of the two quantities, i.e., ·k − ·l
·|α j Microscopic property of constituent j in phase [subscript] (non-averaged)

Latin Symbols

δAαβ Portion of αβ-interface in representative elementary volume (REV)
cα j Mass fraction of j th component [mass of α j per mass α], cα j = ρα j /ρα and∑N

j=1 cα j = 1
cb Molar bulk concentration (where the electric potential is zero) at pore scale (mol

m−3)
ci Molar concentration of species i at pore scale (mol m−3)

Di Binary diffusion coefficient for ion i (m2 s−1)
Di j Cross-coupled diffusion coefficient for ion i in interaction with ion j (m2 s−1)
Dα Electric displacement (C m−2)

e Charge of an electron, 4.355 × 10−19 coulombs (C)
ê
α j
β Rate of mass transfer from phase [subscript] to phase [superscript] per unit mass

density (s−1), êα
β = ∑N

j=1 Cα j ê
α j
β

Eα Electric field intensity generated by the charged particles in phase α (V m−1)
ET Total electric field intensity, incorporating an externally applied electric field and

that due to charged components α j (V m−1)
g External supply of momentum (gravity) (m s−2)
g I Internal supply of momentum due to fluctuations in∇E · E j and∇E j · E (m s−2)
G Gibbs potential (J kg−1) or (m2 s−2)
ji Microscale molar flux of ions (mol m−2s−1)

Jα j , Jα Free current density relative to a fixed (Eulerian) frame of reference (A m−2)
(C m−2 s−1) J α j = Jα j − q

α j
e vα j

J α j , J α Free current density of constituent j in phase α and of phase α, respectively,
measured relative to species α j , α (A m−2) (C m−2 s−1)

kB Boltzmann constant = R/Na (J◦K−1)
n Unit normal vector pointing out of the solid phase at the microscale (−)

nα Microscale unit normal vector pointing out of α-phase within REV (−)
Na Avogadro’s number (mol−1)

p Pressure (Pa) or (kg m−1 s−2)
Pα Polarization density averaged over α-phase (C m−2)

P Probability of a microscopic state
q

α j
e , qα

e Charge density averaged over α-phase (C m−3)
R Universal gas constant (J mol−1 ◦K−1)

Ri Rate of desorption or adsorption of species i (mol m−3 s−1)
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q̂α j Net rate of charge density gain by species j due to interaction with other species
within phase α (does not include that gained to due mass transfer) (C m−3 s−1)

r̂α j Rate of mass gain due to interaction with other species within the same phase per
unit mass density (s−1)

t Time (s)
t
m

Maxwell stress tensor (Pa) or (kg m−1 s−2)

tα Total Cauchy stress tensor for the phase (N m−2)
T Temperature (◦K)

T̂
α
β Rate ofmomentum transfer throughmechanical interactions fromphase [subscript]

to phase [superscript] per unit mass density (N kg−1)
u Microscale velocity (m s−1)

vα j , vα Velocity (m s−1), vα = ∑N
j=1 Cα j vα j

vα j ,α Diffusion of species j in phase α = l, s, [m s−1], vα j ,α = vα j − vα

δV Representative elementary volume (REV)
δVα Portion of α-phase in REV
w

j
αβ Velocity of constituent j at interface between phases α and β (m s−1)
W Energy of microscopic state (J)
x Macroscale spatial variable (m)
zi Valence for species i , positive for cations and negative for anions

zα j Charge per unit mass density of constituent j in phase α (C kg−1), q
α j
e = ρα j zα j

Ẑ
α j
β , Ẑα

β Rate of exchange of charge of constituent j from phase β to phase α per unit mass

(C kg−1 s−1)

Greek Symbols

α Phase, α = l for liquid, s for solid, and b for bulk (not in porous media)
Γ Ionic strength (atomsm−3)
εα Volume fraction of α-phase in mesoscale REV (−)
ε0 Permittivity in a vacuum. In MKS units, the permittivity has the value of 8.854×10−12

Farads per meter (F m−1)
ε Permittivity (F m−1)
ζ Zeta potential, electric potential measured at the shear plane (V) or (J C−1)
η Dynamic viscosity (Pa s) or (kg m−1 s−1)

λD Debye length (m)
Λ Lagrangemultiplier used to enforce charge neutrality (used only if no externally applied

electric field) (V)
μl j Macroscale chemical potential for species j in the liquid phase (J kg−1) or (m2 s−2)
μi Microscale chemical potential for species i in the liquid phase (J) or (kg m2 s−2)
π l Macroscale swelling potential—change in intensive energy of liquid with respect to

porosity while keeping density fixed (Pa) or (kg m−1 s−2)
Π Osmotic pressure at microscale (kg m−1 s−2)

Πd Differential osmotic pressure at microscale, or difference between osmotic pressure and
that at equilibrium (kg m−1 s−2)

ρe Net charge density (C m−3)
ρ j Microscale mass density of j th component [(mass of j)/(volume of phase)]

ρα j Partial mass density of j th component of α-phase (mass/volume) so that εαρα j is the
total mass of j th constituent in phase α divided by the volume of REV

ρα Mass density of α-phase averaged over α-phase [(mass of α)/(volume of α)]
σ Surface charge density (C m−2)
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ψ Electric potential (V)
ψα Macroscale Helmholtz potential of phase α (J kg−1) or (m2 s−2)
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