
Transp Porous Med (2018) 123:125–146
https://doi.org/10.1007/s11242-018-1028-z

Monte Carlo Assessment of the Impact of Oscillatory
and Pulsating Boundary Conditions on the Flow Through
Porous Media

Menel Rahrah1 · Fred Vermolen1

Received: 8 November 2017 / Accepted: 28 February 2018 / Published online: 9 March 2018
© The Author(s) 2018. This article is an open access publication

Abstract Stress and water injection induce deformations and changes in pore pressure in
the soil. The interaction between the mechanical deformations and the flow of water induces
a change in porosity and permeability, which results in nonlinearity. To investigate this
interaction and the impact of mechanical vibrations and pressure pulses on the flow rate
through the pores of a porous medium under a pressure gradient, a poroelastic model is
proposed. In this paper, aGalerkin finite elementmethod is applied for solving the quasi-static
Biot’s consolidation problem for poroelasticity, considering nonlinear permeability. Space
discretisation using Taylor–Hood elements is considered, and the implicit Euler scheme for
time stepping is used. Furthermore, Monte Carlo simulations are performed to quantify the
impact of variation in the parameters on the model output. Numerical results show that
pressure pulses and soil vibrations in the direction of the flow increase the amount of water
that can be injected into a deformable fluid-saturated porous medium.

Keywords Biot’s consolidation model · Galerkin finite element method · Uncertainty
quantification · Travelling waves · Pressure pulses

1 Introduction

Worldwide, management of freshwater resources has become critical. Climate scenarios
predict extreme periods of drought and rainfall. Traditionally, during periods of heavy rainfall,
the approach is to transport water quickly to surface waters and the sea in order to prevent
flooding. However, a new approach is emerging: storing water in wet periods for use in dry
periods. In particular, the storing of water underground has large benefits. A prerequisite
for effective storing of rainwater in periods of extreme precipitation is that the water can
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be stored quickly. A new method to quickly infiltrate high volumes of fresh water has been
discovered recently. We refer to this method as fast, high-volume infiltration (FHVI).

Another field in which FHVI constitutes a significant breakthrough is in construction,
where this method was originally discovered. Building sites have to be pumped dry to enable
construction. In the past, extracted water was often released into surface water. However,
since the potential impact on the ecology is negative, new regulations prescribe that water
should be returned to the ground. Conventionally, infiltration has to be applied at a certain
distance from the pit, thereby affecting groundwater levels in a relatively large area. FHVI
can be much closer to the pit, as the infiltrated water is rapidly transported away from
the infiltration points. This means that the effect on groundwater levels is much smaller.
However, according to preliminary research and findings, this infiltration method does not
obey the classical Dupuit’s law that is commonly used in hydrogeology, and it is currently
impossible to predict its applicability.

In petroleum reservoirs, observations from the last 50 years suggest that seismic waves
generated from earthquakes and passing trains may alter water and oil production. It has
also been observed in some laboratory measurements and field applications that imposing
harmonic signals into cores or reservoirs sometimes may induce higher fluid flow rates (Pan
and Horne 2000). Further the fact that the pore pressure may undergo variations under the
influence of seismic waves is well known to geotechnical engineers (Beresnev and Johnson
1994). In addition, laboratory experiments have shown that ultrasonic radiation can consid-
erably increase the rate of flow of a liquid through a porous medium (Aarts and Ooms 1998).
Furthermore, Davidson et al. (1999) performed experiments in a wide range of configura-
tions, grain sizes, viscosities and flow factors, showing that high-amplitude pressure pulsing
or mechanical excitation of a saturated porous medium under a pressure gradient increases
the flow rate of the liquid along the direction of the flow gradient. Based on the experimental
results, they concluded that flow rate enhancement occurred for all liquids, and for all the
grain sizes that were tested.

Our aim is to investigate whether during FHVI, large injection rates induce an oscillatory
or a pulsating force near the injection point and whether induced vibrations increase the
amount of water that can be injected into the aquifer. In this publication, we tackle the
second question by investigating the impact of soil vibrations and pressure pulses on the
effective transmigration of water through the pores of the soil. For this purpose, a tube filled
with a deformable fluid-saturated porous medium is simulated, into which water is injected.
In the current paper, Biot’s consolidation model for poroelasticity (Biot 1941, 1955) is used
to determine the local deformation of the porous medium as a result of the injection of water.
Biot’s model is widely used in geomechanics, hydrogeology, petroleum engineering and
biomechanics. Darcy’s law (Hubbert 1957) is used in Biot’s model to describe the fluid flow,
while elasticity and poroelasticity of the porous medium determine the local deformations
as a result of the vibrations. More precisely, we use in this paper a simplistic Hookean
representation of the deformation of the soil.

The poroelasticity equations have been solved by Luo et al. (2015) using the finite volume
method combined with a nonlinear multigrid method. In addition, stabilised finite difference
methods using central differences on staggered grids are used by Gaspar et al. (2003, 2006)
to solve Biot’s model. However, the numerical solution of the two-dimensional poroelasticity
equations is usually approached using finite element methods (Bause et al. 2017; Lewis and
Schrefler 1978; Phillips and Wheeler 2007). In this study, a finite element method based
on Taylor–Hood elements, with linear and quadratic basis functions, has been developed for
solving the systemof incompressible poroelasticity equations. Thismethod is commonly used
for flow problems modelled by (Navier–)Stokes equations. Furthermore, the fully coupled
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scheme was employed which involves solving the coupled governing equations of flow and
geomechanics simultaneously at every time step. Another approach that is widely used in
coupling the flow and the mechanics in porous media is the fixed stress split method (Both
et al. 2017; Kim et al. 2009; Mikelić and Wheeler 2013). In this manuscript, we consider a
nonlinear relation between the permeability and the dilatation. Subsequently, to quantify the
impact of variation of model parameters such as Young’s modulus, the oscillatory modes and
the injection pressure pulses, we further present results from an uncertainty quantification.
This uncertainty quantification is used to quantify the propagation of uncertainty in the input
data. Such uncertainty quantifications have been applied in geomechanics (Luo 2017), where
an uncertainty quantification is carried out by modelling the permeability as a stochastic field
parameter.

The rest of this paper is organised as follows: Section 2 describes Biot’s consolidation
model. In Sect. 3, we formulate the numerical method. Here we derive the weak form of
the partial differential equations and describe the Galerkin finite element approximations.
Section 4 presents some of our numerical experiments and results. Lastly, in Sect. 5 we give
our conclusions and make some suggestions for further work.

2 Model Equations

Sand and gravel layers (aquifers) are not rigid, but constitute an elastic matrix, if the defor-
mations are very small. To be able to determine the local displacement of the skeleton of
the porous medium, as well as the fluid flow through the pores, after injection of water, the
model provided by Biot’s theory of linear poroelasticity with single-phase flow is used (Biot
1941, 1955). In this model, flow in porous media is combined with mechanical deformations
of the aquifer into which water is injected. Furthermore, Darcy’s Law (Hubbert 1957) and
infinitesimal strain theory (Bower 2010) are used to describe the fluid flow and the local
displacements, respectively. Note that this is an approximation if the displacements and the
strains are large.

2.1 Biot’s Partial Differential Equations

The quasi-static Biot model for soil consolidation describes the time-dependent interaction
between the displacement of the solid matrix and the pressure of the fluid. We assume the
porous medium to be linearly elastic, homogeneous, isotropic and saturated by an incom-
pressible Newtonian fluid. According to Biot’s theory, the consolidation process satisfies the
following system of equations (Aguilar et al. 2008; Wang 2000):

Mechanical balance: ∇ · σ ′ − (∇ p + ρgez) = 0; (1)

Constitutive equation: σ ′ = λtr(ε)I + μ(∇u + ∇uT ); (2)

Darcy’s law: v = −κ

η
(∇ p + ρgez); (3)

Continuity equation:
∂

∂t
(∇ · u) + ∇ · v = 0, (4)

where σ ′ is the effective stress tensor for the porous medium, p is the pore pressure, ρ is
the density of water, g is the gravitational acceleration, λ and μ are the Lamé coefficients, u
is the displacement vector of the porous medium, v is the percolation fluid velocity relative

123



128 M. Rahrah, F. Vermolen

to the porous medium, κ is the permeability of the porous medium and η is the dynamic
viscosity of the fluid.

2.2 Permeability and Porosity Relations

In the physical problem presented here, we will focus on the interaction between the mechan-
ical deformations and the flow of water. Therefore, we consider the spatial dependency of the
porosity and the permeability. We calculate the porosity using a procedure outlined by Tsai
et al. (2006). Their derivation is based on the mass balance of solids in saturated porous
media:

∂[(1 − θ)ρs]
∂t

+ ∇ ·
[
(1 − θ)ρs

∂u
∂t

]
= 0, (5)

where θ is the porosity and ρs is the density of the solid skeleton. Assuming that ρs is constant
and that u is sufficiently smooth to interchange the order of differentiation with respect to
time and space, we get

∂θ

∂t
+ ∇θ · ∂u

∂t
= (1 − θ)

∂

∂t
(∇ · u). (6)

By Tsai et al. (2006), it is assumed that | ∂θ
∂t | � |∇θ · ∂u

∂t |; herewith, they arrive at

∂θ

∂t
= (1 − θ)

∂

∂t
(∇ · u). (7)

From this equation, we get

θ(x, t) = 1 − 1 − θ0

exp(∇ · u)
, (8)

with θ0 the initial porosity. Note that the above relation differs from the one of Tsai et al.
(2006), where in Eq. (7) they used a linearisation. By not applying this linearisation, we
think that our approach is slightly more accurate. The permeability κ is determined using the
Kozeny–Carman equation (Wang and Hsu 2009)

κ(x, t) = d2s
180

θ3

(1 − θ)2
, (9)

where ds is the mean grain size of the soil. As a result of the dependency of the permeability
on the mechanical deformations, problem (1)–(4) becomes nonlinear.

2.3 The Set-up of the Model

In this section,wewill useEqs. (1)–(4) to describe the flowpattern ofwater in a tubefilledwith
a poroelastic material, after the injection of water into the left end of the tube. The situation is
as shown in Fig. 1a. We assume that the gravity-induced contribution to the flow of water is
much smaller than the other contributions, which yields that the flow is axisymmetric, hence
∂

∂θ̂
(.) = 0 in which θ̂ is the azimuthal coordinate. Therefore, it is sufficient to determine the

solution for a fixed azimuth (for example, the grey region in Fig. 1a). The computational
domain Ω is thus a rectangular two-dimensional surface with cylindrical coordinates (x, r),
as depicted in Fig. 1b.
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Fig. 1 Sketch of the set-up for the tube problem: (left) physical problem and (right) numerical discretisation.
Taking advantage of the symmetry of geometry and boundary conditions, only the grey region is discretised

In order to solve this problem, Biot’s consolidation model is applied on the computational
domain Ω , with two spatial dimensions x = (x, r) and with t denoting time:

−μ	̃u − (λ + μ)∇(∇ · u) + ∇ p = 0 for x ∈ Ω, t > 0;
∂

∂t
(∇ · u) − ∇ ·

(
κ

η
∇ p

)
= 0 for x ∈ Ω, t > 0,

(10)

where 	̃ is the vector Laplacian. To complete the formulation of a well-posed problem,
appropriate boundary and initial conditions are specified in Sects. 2.3.1 and 2.3.2.

2.3.1 Water Flow in a Vibrating Tube

To investigate the effect of vibrations on the water flow in the tube, we present two numerical
experiments in this section. In these experiments, several ways of imposing vibrations are
described, whereafter the effect on the volume flow rate at the right end of the tube is
determined. In all problems, a tube of length L and initial radius R is considered. Furthermore,
we assume that the casing of the tube is deformable, so that R = R(x, t)holds. Theporoelastic
material in the tube is assumed to be isotropic and homogeneous.

Effect of an Oscillating Casing of the Tube on the Flow In this problem, a tube is considered
with a frictionless, impermeable casing on which transverse waves are imposed. Water is
injected at a constant pressure into the soil through the left side surface (x = 0), while the
right side surface (x = L) is kept at an ambient pressure at all times. Furthermore, filters
are placed along the side surfaces to prevent that the grains exit the tube. More precisely, the
boundary conditions for this problem are given as follows:

κ

η
∇ p · n = 0 on x ∈ Γ1 ∪ Γ3; (11a)

p = 0 on x ∈ Γ2; (11b)

p = ppump on x ∈ Γ4; (11c)

(σ ′n) · t = 0 on x ∈ Γ ; (11d)

u · n = uvib on x ∈ Γ1; (11e)

u · n = 0 on x ∈ Γ2 ∪ Γ3; (11f)

u · n ≤ 0 on x ∈ Γ4, (11g)

where Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, t is the unit tangent vector at the boundary, n is the outer
normal vector, uvib is a prescribed boundary displacement due to the vibrations and ppump

is a prescribed boundary pore pressure due to the injection of water. Figure 1b shows the
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definition of the boundary segments. Note that the boundary conditions on boundary segment
Γ3 are required by the definition of symmetry. The variational inequality in condition (11g)
accounts for the fact that the grains cannot exit the tube through boundary segment Γ4. More
specifically, condition (11g) states: u·n ≤ 0 and (σ ′n)·n = 0 or u·n = 0. This boundary
condition could also be used on boundary segment Γ2. However, in this case it is possible that
(σ ′n) · n = 0 on both boundary segments Γ2 and Γ4. Then, there is no Dirichlet boundary
condition for the horizontal displacement (in the x-direction). This leads to a degenerate
elliptic operator for the displacement u, which could make the problem ill-posed. Initially,
the following condition is fulfilled:

u(x, 0) = 0 for x ∈ Ω. (12)

As mentioned earlier, transverse waves are imposed for the boundary displacement uvib,
represented by

uvib(x, t) = γ sin

(
2π

λw
(x − vt)

)
, (13)

with γ the amplitude of the wave, λw the wavelength and v the phase velocity. Note that for
v < 0 the wave is travelling to the left, while for v > 0 the wave is travelling to the right.

Effect of a Vibrating Imposed Load on the Flow While in the previous section the vibrations
were imposed as an oscillating casing of the tube, in this section the effect of an oscillating load
applied on the casing is analysed. Accordingly, the boundary condition for the mechanical
deformation on Γ1 becomes

(σ ′n) · n = σ ′
vib on x ∈ Γ1, (14)

with σ ′
vib is an oscillating vertical load. Similar to the previous section, transverse waves are

used for the oscillating load

σ ′
vib(x, t) = γσ sin

(
2π

λw,σ

(x − vσ t)

)
. (15)

On t = 0, the initial condition (12) is fulfilled.

2.3.2 Pulsed Injection

Instead of applying mechanical vibrations on the displacement, we can also investigate the
effect of a pulsed injection of water into the left end of the tube. In this case, the prescribed
boundary pore pressure ppump caused by the injection ofwaterwill have a pulsating behaviour
rather thanbeing constant.Hence, for the boundary conditions for themechanical deformation
on Γ1 and for the water pressure on Γ4 holds

p = ppump(t) on x ∈ Γ4; u · n = 0 on x ∈ Γ1, (16)

with ppump(t) represented by the Heaviside step function

H (t) =

⎧⎪⎨
⎪⎩
0 t < 0

1/2 t = 0

1 t > 0

. (17)
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A rectangular pulse wave with period Tp and pulse time τ can now be defined as

ppump(t) = pmax

Np∑
k=0

(H (t − kTp) − H (t − kTp − τ)), (18)

where pmax is themaximum injection pressure and Np is the number of periods. Furthermore,
the initial condition (12) is fulfilled.

3 Numerical Method

3.1 Weak Formulation

To present the variational formulation of these problems, we first introduce the appropriate
function spaces. Let L2(Ω)be theHilbert space of square integrable scalar-valued functions f
onΩ defined in cylinder coordinates (x, r) as L2(Ω) = { f : Ω → R : ∫

Ω
| f |2r dΩ < ∞},

with inner product ( f, g) = ∫
Ω

f gr dΩ . Let H1(Ω) denote the subspace of L2(Ω) of
functions with first derivatives in L2(Ω). We further introduce the function space Q =
{q ∈ H1(Ω) : q = 0 on Γ2 and q = ppump on Γ4} for all the problems that we consider.
Subsequently,we use the function spacesW = {w ∈ (H1(Ω))2 : w·n = uvib on Γ1 and w·
n = 0 on Γ2} and W0 = {w ∈ (H1(Ω))2 : w · n = 0 on Γ1 ∪ Γ2} for the problems with
boundary conditions as stated in Eqs. (11) and (16), respectively. For the problem with
boundary conditions (14), we introduce W = {w ∈ (H1(Ω))2 : w · n = 0 on Γ2}.
Furthermore, we consider the bilinear forms (Prokharau and Vermolen 2009)

a(u,w) = λ(∇ · u,∇ · w) + 2μ
2∑

i, j=1

(εi j (u), εi j (w)); (19)

b(p, q) =
2∑

i=1

(
κ

η

∂p

∂xi
,

∂q

∂xi

)
. (20)

The variational formulation in cylinder coordinates (x, r) for problem (10) with boundary
and initial conditions (11)–(12) and also for problem (10) with initial and boundary condi-
tions (12) and (16) consists of the following, using the notation u̇ = ∂u

∂t : For each t > 0, find
(u(t), p(t)) ∈ (W × Q) and (u(t), p(t)) ∈ (W0 × Q) such that

a(u(t),w) − (p(t),∇ · w) = h(w) ∀ w ∈ W0; (21)

(∇ · u̇(t), q) + b(p(t), q) = 0 ∀ q ∈ Q0, (22)

with the initial condition u(0) = 0, and where

h(w) = −ppump

∫
Γ4

w · n r rmdΓ ; (23)

Q0 = {q ∈ H1(Ω) : q = 0 on Γ2 ∪ Γ4}. (24)

The variational formulation for problem (10) in cylinder coordinates (x, r) with initial and
boundary conditions (12) and (14) consists of the following:

For each t > 0, find (u(t), p(t)) ∈ (W × Q) such that

a(u(t),w) − (p(t),∇ · w) + c(p(t),w) = h(w) + g(w) ∀ w ∈ W ; (25)

(∇ · u̇(t), q) + b(p(t), q) = 0 ∀ q ∈ Q0, (26)
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with the initial condition u(0) = 0, and where

c(p,w) =
∫

Γ1

p w · n r dΓ, g(w) =
∫

Γ1

σ ′
vib w · n r dΓ. (27)

3.2 Finite Element Discretisation

Problems (21)–(24) and (25)–(27) are solved by applying the finite element method, with
triangular Taylor–Hood elements (Braess 2001; Van Kan et al. 2008; Segal 2012). LetPk

h ⊂
H1(Ω) be a function space of piecewise polynomials on Ω of degree k. Hence, we define
finite element approximations for W and Q as W k

h = W ∩ (Pk
h × Pk

h ) with basis {φφφi =
(φi , φi ) ∈ (W k

h × W k
h ) : i = 1, . . . , nu} and Qk′

h = Q ∩ Pk′
h with basis {ψ j ∈ Qk′

h : j =
1, . . . , np}, respectively (Aguilar et al. 2008; Prokharau and Vermolen 2009). Subsequently,
we approximate the functions u(t) and p(t) with functions uh(t) ∈ W k

h and ph(t) ∈ Qk′
h ,

defined as

uh(t) =
nu∑
i=1

ui (t)φφφi , ph(t) =
np∑
j=1

p j (t)ψ j , (28)

in which the Dirichlet boundary conditions are imposed. Then, the semi-discrete Galerkin
approximation of problem (21)–(24) is defined as follows: for each t > 0, find functions
(uh(t), ph(t)) ∈ (W k

h × Qk′
h ) such that

a(uh(t),wh) − (ph(t),∇ · wh) = h(wh) ∀wh ∈ W k
0h; (29)

(∇ · u̇h(t), qh) + b(ph(t), qh) = 0 ∀qh ∈ Qk′
0h, (30)

and for t = 0: uh(0) = 0.
Simultaneously, discretisation in time is applied using the backward Euler method. Let	t

be the time step size and define a time grid {tm = m	t : m ∈ N}, then the discrete Galerkin
scheme of (29)–(30) is formulated as follows: Form ≥ 1, find (umh , pmh ) ∈ (W k

h ×Qk′
h ) such

that

a(umh ,wh) − (pmh ,∇ · wh) = h(wh) ∀wh ∈ W k
0h; (31)

(∇ · umh , qh) + 	t b(pmh , qh) = (∇ · um−1
h , qh) ∀qh ∈ Qk′

0h, (32)

while for m = 0: u0h = 0.
The discrete Galerkin scheme for problem (25)–(27) is derived similarly. These discrete

Galerkin schemes are solved using triangular Taylor–Hood elements. The displacements are
spatially approximated by quadratic basis functions, whereas continuous piecewise linear
approximation is used for the pressure field. We remark that the Taylor–Hood elements are
suitable as a stable approach for this problem. However, spurious oscillations are diminished
but not completely removed for small time steps. To fully remove the non-physical oscilla-
tions, one may use the stabilisation techniques as considered by Aguilar et al. (2008). The
numerical investigations are carried out using the matrix-based software package MATLAB
(versionR2011b). At each time step,we solve Eqs. (31)–(32) as a fully coupled system,where
we use the permeability from the previous time step. After having obtained the numerical
approximations for u and p, we update the porosity using Eq. (8). Subsequently, the Kozeny–
Carman relation (9) is used to calculate the permeability. The new value for the permeability
is then used for the next time step. An iterative method is not used in this approach because
of efficiency and since no instability was observed in our results. In order to use Eq. (8), we
determine the dilatation
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∇ · umh = ∂umx,h
∂x

+ 1

r

∂(rumr,h)

∂r
, (33)

using the numerical solution uh = (ux,h, ur,h) at time tm . The spatial derivatives in the
dilatation

ωm
1 = ∂umx,h

∂x
and ωm

2 = 1

r

∂(rumr,h)

∂r
(34)

are then computed by applying the finite element method. Firstly, we introduce the functions
d ∈ L2(Ω) and we define the finite element approximation asDk

h = L2(Ω)∩Pk
h with basis

{ξi ∈ Dk
h : i = 1, . . . , nu}. Secondly, we approximate the function ωm

1 with the function
ωm
1,h ∈ Dk

h , defined as

ωm
1,h =

nu∑
i=1

ωm
1,iξi . (35)

Hence, the discrete Galerkin scheme is given by

For m ≥ 1, find ωm
1,h ∈ Dk

h such that: (ωm
1,h, dh) =

(
∂umx,h
∂x

, dh

)
∀ dh ∈ Dk

h .

The discrete Galerkin scheme for the function ωm
2 is derived similarly. In these finite element

schemes, the spatial derivatives are approximated by quadratic basis functions. For the inte-
grals in the element matrices and the element vectors, exact integration is used. Regarding
accuracy, our numerical experiments showed that this strategy produced sufficiently reliable
results. We note that improvements of the accuracy can be obtained using gradient recovery
techniques which yield superconverging behaviour (Zienkiewicz and Zhu 1992). The aim of
this study is to investigate the impact of oscillatory and pulsating boundary conditions on the
volume flow rate at the right end of the tube. We compute the volume flow rate at the right
boundary segment, using the velocity field as described by Darcy’s law (3). To compute the
velocity field for post-processing issues, the finite element method is applied analogously
to the computation of the derivatives of the displacements, combined with piecewise linear
approximation and exact integration.

4 Numerical Simulations

In this section, we discuss the solution results for the discrete Galerkin approximation of the
quasi-two-dimensional problems that are presented in Sect. 2.3. The simulation domain is a
rectangle with length 1.0m and width 10 cm (see Fig. 1b). The domain is discretised using
a 101 by 11 regular triangular grid, which provides sufficient resolution according to a mesh
refinement study. The chosen values for the material properties of the porous medium are
given in Table 1, where λ and μ are related to the Young’s modulus E and the Poisson’s
ratio ν by (Aguilar et al. 2008): λ = νE

(1+ν)(1−2ν)
and μ = E

2(1+ν)
.

The values in Table 1 are chosen based on discussions with experts from engineering and
consultancy company Fugro GeoServices B.V. and on the literature (VanWijngaarden 2015).

4.1 The Impact of an Oscillating Casing of the Tube on the Water Flow

In order to obtain some insight into the impact of an oscillating casing of the tube on the water
flow, we present an overview of the simulation results in Figs. 2 and 3. In this simulation,
water is injected into the soil at a constant pump pressure equal to 0.5 bar. As a consistency
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Table 1 An overview of the
values of the material properties
and the parameters of the model

Property Symbol Value Unit

Young’s modulus E 107 Pa

Poisson’s ratio ν 0.3 –

Fluid viscosity η 1.307 × 10−3 Pa s

Initial porosity θ0 0.375 –

Mean grain size ds 0.2 × 10−3 m

Pump pressure ppump 0.5 × 105 Pa
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Fig. 2 Numerical solutions for the pressure, the fluid velocity, the permeability and the displacement, without
vibrations, at time t = 5 using a constant time step size 	t = 0.1. The values of the remaining parameters
are as depicted in Table 1. a Numerical solution for the pressure. b Numerical solution for the fluid velocity. c
Numerical solution for the permeability. d Positions of the mesh points after subjecting them to the calculated
displacement vector u

check, we start with the simulation results for problem (31)–(32) without any vibrations, i.e.
uvib = 0. The simulated pressure, fluid velocity, permeability and displacement profiles are
provided in Fig. 2.

As shown in Fig. 2, the simulated pressure is almost linear and the behaviour of the fluid
velocity is completely horizontal. This means that the injected water flows in a horizontal
direction through the tube from the left end of the tube to the right end. Mechanically, the
deformations in the porous medium are negligible, other than a small shift of the grains to
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Fig. 3 Numerical solutions for the pressure, the fluid velocity, the permeability and the displacement, at time
t = 5 using a constant time step size 	t = 0.1. For the vibrations a travelling wave to the right is chosen
as prescribed boundary displacement uvib, with γ = 1 cm, λw = 1m and v = 1m/s. The values of the
remaining parameters are as depicted in Table 1. a Numerical solution for the pressure. b Numerical solution
for the fluid velocity. c Numerical solution for the permeability. d Positions of the mesh points after subjecting
them to the calculated displacement vector u

the right, as a result of the force exerted on the grains by the injected water. As a result of this
small shift of the grains and the assumption that the grains cannot exit the tube, we expect a
higher grain density near the right end. Consequently, the permeability will linearly decrease
towards the right end of the tube, as depicted in Fig. 2c. In Fig. 3, the numerical solutions
are shown for a test case of problem (31)–(32) with vibrations. In this test case, a transverse
wave (13) travelling to the right is chosen as prescribed boundary displacement uvib, with
γ = 1 cm, λw = 1m and v = 1m/s.

In contrast to the pressure shown in Fig. 2a, the numerical solution for the pressure in the
problem with vibrations is no longer linear, but shows an oscillatory behaviour, as depicted
in Fig. 3a. The vibrations also provide an oscillatory profile in the permeability, as shown
in Fig. 3c. In this figure, we can see that the permeability decreases when the grains are
pressed together by the vibration, while it increases when the grains are pulled apart. The
simulation results in Figs. 2 and 3 show an impact of the vibrations, imposed on the casing,
on the water flow. However, by only looking at these results, the impact of vibrations on
the amount of water that flows through the tube stays unmeasurable. For this reason, the
impact of the vibrations and pulses on the water flow is defined in this publication as the
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Fig. 4 Volume flow rate at the right end of the tube over time, using a constant time step size 	t = 0.1.
The blue line represents the volume flow rate for the test case without vibrations. The red line represents the
volume flow rate for the test case with vibrations, in which for the vibrations a travelling wave to the right is
chosen, with γ = 1 cm, λw = 1m and v = 1m/s. The values of the remaining parameters are as depicted in
Table 1

impact on the volume flow rate Q at the right end of the tube. In Fig. 4, two graphs are
presented that sketch the behaviour of the volume flow rate over time at the right end of the
tube. In these simulations, the aforementioned test cases are used. For the test case without
vibrations, the time average of the volume flow rate Q over the time interval (0, 5] is equal to
6.86× 10−5 m3/s. For the test case with imposed vibrations, the time average of the volume
flow rate Q over the time interval (0, 5] is equal to 9.69 × 10−4 m3/s. Thus, the percentage
change Q% of the time average of the volume flow rate as result of the imposed vibration is
1311.7%. Based on these test cases, we can conclude that the volume flow rate at the right
end of the tube increases as a result of the imposed vibrations on the casing, as depicted in
Fig. 4. We finally note that the area enclosed by the Q-curve and the t-axis represents the
total amount of water that flows out of the domain over a certain period.

4.1.1 Monoparametric Variation

In this section, we will investigate the impact of the transverse waves (13) on the flow
of water. Furthermore, the contributions of the variations in the values of the vibration
characteristics to the volume flow rate are quantified by assigning a range of possible
values to the parameters: γ , λw and v. Firstly, a monoparametric variation is applied
whereby the values of the parameters are varied one by one, within ranges of possi-
ble values. In Fig. 5, the volume flow rate at the right end of the tube is depicted over
time after applying a monoparametric variation in the values of the vibration characteris-
tics γ , λw and v. For the variation, the following ranges of possible values are chosen:
γ ∈ [0, 1, 5, 10] × 10−3, λw ∈ [1/4, 1/2, 1], v ∈ [−2.0,−1.0,−0.5, 0.5, 1.0, 2.0]. In
the generations of the simulation results presented in Fig. 5, the time step size 	t is deter-
mined using the formula 	t = 1

8 f , in which f is the frequency computed by: f = |v|
λw

. In
case variation is applied to the values of λw or v, the maximum value of f is used to deter-
mine the time step size. Figure 5a indicates that an increase in the amplitude of the imposed
wave, with fixed wavelength and phase velocity, results in an increase in the volume flow
rate. However, an increase in the wavelength, with fixed amplitude and phase velocity, leads
to a decrease in the volume flow rate, as shown in Fig. 5b. Figure 5c indicates that an increase
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Fig. 5 Volume flow rate profiles at the right end of the tube over time, after applying a monoparametric
variation in the values of the parameters γ , λw and v. For the vibrations, transverse waves (13) are used
as prescribed boundary displacement uvib, with γ ∈ [0, 1, 5, 10]mm, λw ∈ [0.25, 0.50, 1.00]m and v ∈
[− 2.0, − 1.0,− 0.5, 0.5, 1.0, 2.0]m/s. The values of the remaining parameters are as depicted in Table 1. a
Volume flow rate over time, after applying variation in the values of γ . The other vibration characteristics are
constant: λw = 1 and v = 1. b Volume flow rate over time, after applying variation in the values of λw. The
other vibration characteristics are constant: γ = 0.01 and v = 1. c Volume flow rate over time, after applying
variation in the values of v. The other vibration characteristics are constant: γ = 0.01 and λw = 1

in the phase velocity magnitude |v|, with fixed amplitude and wavelength, leads to a larger
impact on the volume flow rate. Furthermore, assigning positive values to the phase velocity
v (corresponding with transverse waves travelling to the right) results in positive volume
flow rate profiles. Assigning negative values to the phase velocity v (corresponding with
transverse waves travelling to the left) produces negative volume flow rates. As expected,
the water flow, which is directed to the right, is stimulated by waves travelling in the same
direction. However, waves travelling in the opposite direction counteract the flow, resulting
in negative volume flow rates. In fact, the negative volume flow rates are a result of the force
applied by the oppositely directed waves that is larger than the pump pressure. At a higher
pump pressure, the effect of these waves on the volume flow rate is smaller, as illustrated in
Fig. 6.

4.1.2 Monte Carlo Method

In the previous section, the contributions of the variations in the values of the vibration char-
acteristics to the volume flow rate were quantified by applying a monoparametric variation
where the values of the parameters are varied one by one, within ranges of possible val-
ues. As we choose to fix a number of parameter values each time, we are not able to draw
any conclusions from this monoparametric variation. In this section, Monte Carlo method is
applied to the values of the vibration characteristics using samples of uniform distributions
with chosen boundaries. In Fig. 7, the time average of the volume flow rate is depicted after
applying Monte Carlo simulations to the values of the vibration characteristics γ , λw and
v. For the simulations, 300 samples from the following uniform distributions are generated:
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Fig. 6 Volume flow rate at the right end of the tube over time for different values of the pump pressure ppump,
using a constant time step size 	t = 0.1. In all test cases, a travelling wave to the left is chosen as prescribed
boundary displacement uvib, with γ = 1 cm, λw = 1m and v = −1m/s. The values of the remaining
parameters are as depicted in Table 1

γ ∼ U (0.001, 0.01), λw ∼ U (1/4, 1), v ∼ U (−2, 2). Figure 7a shows that an increase
in the amplitude of the imposed wave leads to a larger impact on the time average of the
volume flow rate Q. However, an increase in the wavelength results in a smaller impact
on Q, as shown in Fig. 7b. In both figures, we observe a mirroring across a line near the
horizontal axis. Values of Q above the mirror line correspond with positive values of the
phase velocity, while values of Q bellow the mirror line correspond with negative values of
v, as can be concluded from Fig. 7c. Furthermore, Fig. 7c shows that an increasing phase
velocity magnitude |v| leads to a larger impact on Q. In addition, we observe in Fig. 7c that
for v < 0 some of the values of Q are positive, and these values correspond with small
values of the amplitude. In this case, the pump pressure is larger than the force applied by
the oppositely directed waves, which results in positive volume flow rates. Note that these
results are consistent with the results from Sect. 4.1.1. From the formula for the frequency
and Fig. 7, we can conclude that large amplitudes and high frequencies lead to high-volume
flow rates for v > 0. In Table 2, the Pearson correlation coefficients are given together with
the associated p-values. From this table, we can conclude that the vibration characteristics
γ and v have the most impact on the time average of the volume flow rate.

To measure the real impact of the transverse waves (13) on the water flow, the percentage
change Q% of the time average of the volume flow rates as result of the imposed vibrations is

determined by the formula Q% = Q−Q0
Q0

× 100, where Q0 is the time average of the volume

flow rate in the test case without vibrations. The percentage change Q% of the time average
Q that is computed after applying the above-described Monte Carlo method (see Fig. 7), is
depicted as function of γ in Fig. 8.

Figure 8 shows that, for v > 0, the volume flow rate at the right end of the tube increases
as a result of the imposed vibrations on the casing. For vibrations with a large amplitude and
a high frequency, the time average of the volume flow rate can become as large as 42 times
the time average of the volume flow rate in the test case without vibrations. The smallest
percentage change in the volume flow rate as cause of the vibrations is equal to 6.0%. On
the other hand, for v < 0, all vibrations lead to a negative percentage change Q%, even the
vibrationswith small values of the amplitude γ . Given the probability space (Ωp,F , P), with
sample space Ωp (which is the set of all possible outcomes), the set of eventsF (where each
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Fig. 7 Scatter plots of the time average of the volume flow rate over the time interval (0, 70.86], after applying
Monte Carlo simulations to the values of γ , λw and v. For the vibrations, transverse waves (13) are used as
prescribed boundary displacement uvib, with γ ∼ U (1, 10)mm, λw ∼ U (1/4, 1)m and v ∼ U (−2, 2)m/s.
The values of the remaining parameters are as depicted in Table 1. a Time average of the volume flow rate as
function of γ . b Time average of the volume flow rate as function of λw. c Time average of the volume flow
rate as function of v

Table 2 Pearson correlation coefficients together with the associated p values

corr(γ, Q) corr(λw, Q) corr(v, Q)

v > 0 v < 0 v > 0 v < 0 v > 0 v < 0

r 0.82 −0.81 −0.09 0.07 0.40 0.47

p < 0.05 < 0.05 0.27 0.39 < 0.05 < 0.05

A p value less than 0.05 means that the two paired sets of data are most probably related, at the significance
level 0.05
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Fig. 8 Scatter plot of the percentage change Q% over the time interval (0, 70.86] as function of γ , after
applying Monte Carlo method to the values of γ , λw and v
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Fig. 9 Histogram and the cumulative distribution function of the percentage change

event is a set with zero or more outcomes), and the probability P , with P : F → [0, 1], we
can compute the cumulative distribution function. In Fig. 9, the histogram and the cumulative
distribution function of the percentage change Q% are presented. Since 51% of the sampled
values of v are negative, we see in Fig. 9 that P(Q% ≤ 0) ≈ 0.51. Furthermore, using the
probability space we can compute the probabilities that the percentage change is greater than
100%: P(Q% ≥ 100) ≈ 0.43 and P(Q% ≥ 100|v > 0) ≈ 0.89.

4.2 The Impact of a Vibrating Load on the Water Flow

In this section, the impact of a vibrating load, which is applied on the casing of the tube, on
the water flow is investigated. This numerical experiment makes it possible to analyse the
contributions of the variations in the values of the porous medium properties to the volume
flow rate. These contributions are quantified by assigning a range of possible values to the
parameters: E , ν, θ0 and ds. For this purpose, four types of soil are distinguished: clay,
silt, sand and gravel. In the literature, there is a large consensus that the Kozeny–Carman
equation (9) applies to sands but not to clays (Chapuis and Aubertin 2003). Therefore, this
experiment is only applied to sand and gravel.

4.2.1 Monte Carlo Method for Sand and Gravel

Monte Carlo method is applied to the values of the material properties of sand and gravel,
using samples of uniform distributions with boundaries found in the literature (“Geotech-
nical parameters” 2017; “Soil properties” 2017). As the values within these boundaries are
all equally likely to occur, we have chosen to use uniform distributions instead of another
frequently used distributions like the log-normal distribution. In Figs. 10 and 11, the time
average of the volume flow rate at the right end of the tube is depicted after applying Monte
Carlo simulations to the values of the material properties E , ν, θ0 and ds. For sand, 300
samples from the following uniform distributions are generated:

E ∼ U (30 × 106, 50 × 106), ν ∼ U (0.15, 0.40), θ0 ∼ U (0.26, 0.46),
ds ∼ U (0.05 × 10−3, 2.00 × 10−3),

(36)
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Fig. 10 Scatter plots of Q over the time interval (0, 25], after applying Monte Carlo simulations to the values
of the material properties of sand using the ranges (36). For the vibrations transverse waves (15) are used as
prescribed vertical load σ ′

vib, with γσ = 104 Pa, λw,σ = 1/4m and vσ = 1m/s. The values of the remaining
parameters are as depicted in Table 1
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Fig. 11 Scatter plots of Q over the time interval (0, 25], after applying Monte Carlo simulations to the values
of the material properties of gravel using the ranges (37). For the vibrations transverse waves (15) are used as
prescribed vertical load σ ′

vib, with γσ = 104 Pa, λw,σ = 1/4m and vσ = 1m/s. The values of the remaining
parameters are as depicted in Table 1

while for gravel, 300 samples from these uniform distributions are generated:

E ∼ U (80 × 106, 160 × 106), ν ∼ U (0.30, 0.40), θ0 ∼ U (0.23, 0.38),
ds ∼ U (2 × 10−3, 50 × 10−3).

(37)
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Table 3 Pearson correlation coefficients together with the associated p values

corr(E, Q) corr(ν, Q) corr(θ0, Q) corr(ds , Q)

Sand Gravel Sand Gravel Sand Gravel Sand Gravel

r − 0.11 0.05 0.05 − 0.06 0.52 0.52 0.75 0.77

p 0.07 0.43 0.39 0.30 < 0.05 < 0.05 < 0.05 < 0.05

Figures 10 and 11 show that water flows faster through porous media with large mean
grain sizes or high initial porosities, after imposing a vibrating load on the casing. On the
other hand, these figures show that the volume flow rate is invariant under variation in the
values of Young’s modulus and Poisson’s ratio. This can also be concluded from the values
of the Pearson correlation coefficients given in Table 3.

4.3 The Impact of a Pulsed Injection on the Water Flow

Based on over 160 laboratory tests, Dusseault (1999) demonstrated the beneficial effects of
pressure pulsing on the water flow in porous media. To theoretically examine his findings,
we investigated the impact of a pulsed injection of water, into the left end of the tube, on
the water flow. The results of this research are presented in this section. In addition, the
contributions of the variations in the values of the pulse wave characteristics to the volume
flow rate are analysed. These contributions are examined by applying Monte Carlo method
to the pulse wave period Tp and the relative pulse time τ̃ , defined as τ̃ = τ

Tp
, with τ the

pulse time (see Formula (18)). Subsequently, in order to be able to draw reliable conclusions
about the impact of pressure pulsing on the volume flow rate, we compare the volume flow
rate caused by the pulsed injection with the volume flow rate by a constant pump pressure
ppump. In this comparison, the percentage change Q% of the time average of the volume flow

rate Q is used, determined by Q% = Q−QC

QC
× 100, where QC is the time average of the

volume flow rate caused by a constant pump pressure. In each simulation, the constant pump
pressure is chosen equal to the total pump pressure over time by pulsed injection. Hence, for a
particular relative pulse time τ̃ , the constant pump pressure is computed by ppump = τ̃ pmax.
In Fig. 12, the percentage change in the time average of the volume flow rate at the right
end of the tube is depicted after applying Monte Carlo simulations to the values of the pulse
wave characteristics Tp and τ̃ . For the simulation, 300 samples from the following uniform
distributions are generated:

Tp ∼ U (0.5, 4), τ̃ ∼ U (0.1, 0.9). (38)

In the generations of the simulation results presented in Fig. 12, the time step size 	t is
determined by 	t = Tp

20 . As variation is applied to the values of Tp, the minimum value
of 	t is used as time step size. Figure 12 shows that pressure pulsing with small relative
pulse times τ̃ leads to a major increase in the volume flow rate, while it increases slightly
by increasing the pulse period Tp. This can also be confirmed by the Pearson correlation
coefficients and the p-values given in Table 4. In Fig. 13, the histogram and the cumulative
distribution function of the percentage change Q% are depicted. Since P(Q% ≤ 0) = 0, we
can conclude from Figs. 12 and 13 that pulsed injection has a beneficial effect on the water
flow in porous media.
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Fig. 12 Scatter plots of the percentage change Q% of the time average of the volume flow rate over the time
interval (0, 20], after applying Monte Carlo method to the values of Tp and τ̃ using the distributions (38).

For the pump pressure, pulse waves (18) are used with pmax = 0.5 × 105 Pa. The values of the remaining
parameters are as depicted in Table 1. a Q% as function of Tp. b Q% as function of τ̃

Table 4 Pearson correlation
coefficients together with the
associated p values

corr(Tp, Q) corr(τ̃ , Q)

r 0.38 −0.83

p < 0.05 < 0.05
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Fig. 13 Histogram and the cumulative distribution function of the percentage change

5 Conclusions and Discussion

In this study, the poroelasticity system with nonlinear permeability is solved using the
Galerkin finite element method based on Taylor–Hood elements, combined with a back-
ward Euler time integration. The study contains simulations with oscillatory force boundary
conditions as well as pressure pulses. Furthermore, to quantify the impact of variation of
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model parameters such as Young’s modulus, the oscillatory modes and the injection pressure
pulses, a probabilistic approach is carried out.

To beginwith, soil vibrations are applied on the casing of a tube as oscillatory displacement
boundary condition. Numerical results showed that large amplitudes and high frequencies of
the imposed mechanical vibrations lead to high-volume flow rates for positive values of the
phase velocity, corresponding with transverse waves travelling to the right. Therefore, the
volume flow rate at the right end of the tube increased as a result of the imposed mechanical
vibrations. On the other hand, for negative values of the phase velocity, corresponding with
waves travelling to the left, the vibrations lead to a decrease in the volume flow rate at the
right end of the tube. As expected, the water flow, which is directed to the right, is stimulated
by waves travelling in the same direction, while waves travelling in the opposite direction
counteract the flow, resulting in negative volume flow rates in case the force applied by the
oppositely directed waves is larger than the pump pressure.

Subsequently, applying an oscillating load on the casing of the tube showed that water
flows faster through porous media with large grain sizes and/or high initial porosities. On
the other hand, variation in the values of Young’s modulus and Poisson’s ratio indicated that
these parameters do not have a large impact on the volume flow rate.

Numerical simulations of pressure pulsing pointed out that injection pulses with small
relative pulse times lead to a major increase in the volume flow rate, while an increas-
ing pulse period results in a slight increase in the flow rate. Most importantly, we
can conclude that pulsed injection has a beneficial effect on the water flow in porous
media.

In the current paper, we use a “brute-force” Monte Carlo simulation procedure. Doing
simulations with thousands of samples can reduce the Monte Carlo error. However, as in our
case each sample simulation takes about two hours, we instead adopted 300 samples. In recent
studies (Cliffe et al. 2011), multilevel Monte Carlo methods (MLMC) have been applied to
various systems, such as groundwater flow. These MLMC methods are characterised by
the advantage that relatively few simulations are needed at high mesh resolutions, whereas
one performs large numbers of simulations at lower resolutions. The MLMC methods are
therefore thought to be a suitable candidate for future applications.

In conclusion, pressure pulses and soil vibrations in the direction of the flow increase
the amount of water that can be injected into a tube filled with a deformable fluid-saturated
porous medium. However, to elucidate the underlying mechanisms of FHVI, the injection of
water into the aquifer should be simulated. In addition, further research should be carried out
to examine the validity and applicability of the Kozeny–Carman equation especially for the
problems in which vibrations can lead to very large gradients of the porosity and permeability
in the soil. Furthermore, it is important to note that the model we are currently using is
based on the assumption that the displacements and the strains are small. For this reason,
we used Hooke’s law and the assumption that the strain tensor is only determined by the
deformation gradient (and its transpose), while higher-order terms are neglected. However,
as the mechanical vibrations can lead to large strains and displacements, it is probably more
realistic to use a morphoelastic model or another plasticity model for soil. The treatment of
large deformations would imply nonlinear terms. For the morphoelastic model, for example,
an additional nonlinear time-dependent equation would have to be solved, which would
increase the computational complexity. Since the purpose of this study is to investigate
how vibrations can influence the fluid flow using uncertainty quantification, these nonlinear
terms are neglected and the model is kept simple and cheap from a computational point of
view.
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