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Abstract We apply steady-state capillary-controlled upscaling in heterogeneous environ-
ments. A phase may fail to form a connected path across a given domain at capillary
equilibrium. Moreover, even if a continuous saturation path exists, some regions of the
domain may produce disconnected clusters that do not contribute to the overall connectivity
of the system. In such cases, conventional upscaling processes might not be accurate since
identification and removal of these isolated clusters are extremely important to the global
connectivity of the system and the stability of the numerical solvers. In this study, we address
the impact of percolation during capillary-controlled displacements in heterogeneous porous
media and present a comprehensive investigation using random absolute permeability fields,
for water-wet, oil-wet and mixed-wet systems, where J-function scaling is used to relate cap-
illary pressure, porosity and absolute permeabilities in each grid cell. Important information
is revealed about the average connectivity of the phases and trapping at the Darcy scale due
to capillary forces. We show that in oil-wet and mixed-wet media, large-scale trapping of
oil controlled by variations in local capillary pressure may be more significant than the local
trapping, controlled by pore-scale displacement.

Keywords Immiscible displacements · Capillary-driven flow · Large-scale percolation ·
Steady-state upscaling

List of symbols

Ap Symmetric matrix used in percolation solver for a given phase
Ai j Cross-sectional area between two nodes (m2)
B Adjacent matrix of a simulation model
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Bi j Element in row i and column j in matrix B takes only a binary number
I Identity matrix
J Leverett J-function (dimensionless)
k̃drp Average phase relative permeability in a given flow direction (fraction)
kcrf Threshold value imposed at relative permeability to a fluid (fraction)
kmax
ro Maximum relative permeability to oil (fraction)
kmax
rw Maximum relative permeability to water (fraction)
kb Base permeability used in J-function calculations (m2)
ki j Rock absolute permeability between two nodes (m2)
kro Relative permeability to oil (fraction)
krp Relative permeability to a given phase (fraction)
krw Relative permeability to water (fraction)
Li j Length between two nodes (m)
md Total number of cross sections in averaged volume in direction d
N Total number of grid cells
n+
c Capillary pressure exponent for pc(Sw) > 0 (dimensionless)

n−
c Capillary pressure exponent for pc(Sw) < 0 (dimensionless)

ndrc Capillary pressure exponent for drainage (dimensionless)
no Oil relative permeability exponent (dimensionless)
nw Water relative permeability exponent (dimensionless)
plevelc Array of capillary pressure levels, or equilibrium states (Pa)
pmax
c Array of maximum capillary pressure values (Pa)
pmin
c Array of minimum capillary pressure values (Pa)

pdrc Capillary pressure for drainage (Pa)
plevelc Capillary pressure level, or equilibrium state (Pa)
pmax
c Maximum capillary pressure (Pa)

pmin
c Minimum capillary pressure (Pa)

pc Capillary pressure for waterflooding and imbibition (Pa)
pe Entry capillary pressure level (Pa)
Pp Phase pressure (Pa)
Ps Single-phase pressure (Pa)
Q̃d Average volumetric flux within a given volume in direction d (m3/s)
Qp�

Volumetric flux across a link � between two neighbouring nodes (m3/s)
S̃orw Average residual oil saturation (fraction)
S̃wir Average irreducible water saturation (fraction)
S̃w Average water saturation (fraction)
S∗ Water saturation at pc(Sw) = 0 (fraction)
Strapo Trapped oil saturation (fraction)
Strapw Trapped water saturation (fraction)
Sw Water saturation (fraction)
Sorw Residual oil saturation (fraction)
Swir Irreducible water saturation (fraction)
Vb Bulk volume (m3)

Acronyms

MW Mixed-wet
OW Oil-wet
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SWW Strongly water-wet
WWW Weakly water-wet

Greek Symbols

ηp Fraction of invaded cells for a given phase
γp Element of the phase mobility index takes only a binary number
Γp Diagonal matrix with γp in its diagonal
γp Phase mobility index array takes only a binary number
λp Phase mobility (Pa−1.s−1)
λs Single-phase mobility (Pa−1.s−1)
μk Mean of permeability distribution in normal domain (m2)
μp Phase viscosity (Pa.s)
μs Single-phase viscosity (Pa.s)
μln k Mean of permeability distribution in logarithmic domain (m2)
Ωj Set of links, or connections, intersecting the j -th cross-sectional area
φ Rock porosity
φb Base porosity used in J-function calculations
ψ∞
p Element of stationary distribution of invaded cells for a given phase

ψp Element of the phase connectivity index takes only a binary number
ψ∞
p Stationary distribution of invaded cells for a given phase

ψ0
p Initial state of invaded cells for a given phase

ψk+1
p State of invaded cells at a new timestep

ψp Phase connectivity index takes only a binary number
σln k Standard deviation of permeability distribution in logarithmic domain

(m2)
σwo Oil–water interfacial tension (N/m)
θwo Oil–water contact angle (radians)
ξc Percolation threshold
ξp Fraction of open cells for a given phase

Subscripts

b Bulk, or base depending on the context
c Capillary
e Entry
f Fluid
i Cell index
j Index for cross-sectional area
� Link between two connected nodes
m Trapped cell index
n Last-cell index, equivalent to the number of cells in a simulation model
o Oil
p Phase
r Relative
s Single-phase
w Water
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Superscripts

d Flow direction in one of the three main principal directions
dr Drainage
k Old timestep level in percolation algorithm
k + 1 New timestep level in percolation algorithm
level Indicate the equilibrium level of variable
max Indicate the maximum value of a variable
min Indicate the minimum value of a variable
T Transpose of an array
trap Include trapping

1 Introduction

The flow of one or more fluids in porous rocks at the field scale is modelled using Darcy’s
law. Multiphase flow is represented by two functions of saturation: relative permeability and
capillary pressure. Relative permeability is a dimensionless quantity, which indicates the
average connectivity of a rock for a given phase when it partially saturates that rock (Muskat
1937). The capillary pressure, on the other hand, is the difference in pressure between two
fluid phases at equilibrium (Leverett 1941). Although this definition of capillary pressure is
precise at the pore scale at fluid–fluid interfaces, it becomes less accurate for large scaleswhere
the capillary pressure may be undefined once a phase loses its connectivity across a given
domain. The capillary pressure will still be defined though at the pore scale at the interface
of some disconnected fluid regions. For such cases, the corresponding relative permeability
value for the disconnected phase is precisely zero, and only one phase is flowing inside that
domain.

1.1 Importance of Upscaling

There aremany experimental procedures used routinely in the industry tomeasuremultiphase
flow functions (Braun and Blackwell 1981; Johnson et al. 1959; Richardson et al. 1952;
Osoba et al. 1951; Jones and Roszelle 1978); however, rock samples used are typically a few
cm across, while the flow functions need to be input into reservoir simulation models with
grid-block sizes of 10–100s m to predict flow at the km scale. In such cases, implementing
an upscaling approach is required to capture the effects of sub-scale heterogeneities and the
right balance of fluid forces into Darcy-scale simulations. Therefore, the main purpose of any
upscaling process in porous media is to address two main factors as we increase the scale of
investigation, the change in fluid forces and heterogeneity. The main fluid forces are viscous,
capillary and gravitational forces. The relative importance of these forces varies depending
on many parameters and strict separation between them may not be possible (Stephen et al.
2001; Hilden and Berg 2016). Nevertheless, it is usually observed that at relatively small
scales capillary forces dominate the displacement process, while viscous and gravitational
forces may become more important at larger scales (Odsæter et al. 2015; Kumar and Jerauld
1996; Jonoud and Jackson 2008a).

Numerous upscaling methods are available in the literature for two-phase flow (Guzman
et al. 1999; Jacks et al. 1973; Kyte and Berry 1975; Stone 1991; Pickup and Sorbie 1996;
Lohne et al. 2006; Virnovsky et al. 2004; King 1989; King et al. 1993; Coll et al. 2001;
Wallstrom et al. 2002; Durlofsky 1997) among which flow-based methods are considered the
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most reliable. Under this category, two fundamental approaches are employed: steady-state
anddynamic pseudos. Thesemethods are similar in concept to howmultiphaseflowproperties
are determined experimentally, but here numerical experiments are conducted. They also
share the same strengths and weaknesses with their experimental counterparts (Honarpour
andMahmood 1988). Dynamic pseudo-functions are derived by performing a flow simulation
in some region of a larger domain using a fine mesh and finding the average properties that
reproduce the behaviour using a coarser simulation grid. In general, all dynamic pseudo-
functions, produced at large scales, where viscous forces become important, depend on
boundary conditions and the underlying gridding properties. They are only correct for the
specific grid and flow conditions used to derive them (Barker and Thibeau 1997; Barker and
Dupouy 1999).

1.2 Steady-state Upscaling

The main idea in steady-state upscaling is to estimate the distribution of fluid saturation and
then apply a sequence of single-phase simulations for each phase individually to determine the
effective multiphase flow functions. The process is repeated at different average saturations.
Under specific conditions of flow, the method becomes computationally very efficient since it
removes the need to run dynamic simulations for the fine-gridmodel. This is achieved through
the assumption that only one force dominates the displacement process, while the other forces
can be neglected. The term capillary limit is commonly used to describe capillary-dominated
displacements, and viscous limit for viscous-dominated displacements. Gravitational forces
are commonly neglected, since the method is applied to much smaller scales than those
at which they become important. In general, the steady-state method gives more robust,
stable and physically correct effective functions that do not depend on the details of the
gridding and are less sensitive to the boundary conditions. The method could be in some
cases computationally cheaper than dynamic pseudo-functions depending on flow conditions
(Jonoud and Jackson 2008b, a). It becomes, however, very costly when the main fluid forces
are considered in determining fluid distributions (Odsæter et al. 2015; Kumar and Jerauld
1996; Virnovsky et al. 2004; Stephen and Pickup 1999; Saad et al. 1995).

It is assumed under capillary-controlled displacements that viscous forces are negligible
at the scale under investigation. This assumption only holds for regions that are away from
saturation fronts, or for displacements with a large-scale capillary number that approaches
zero.

Most implementations of capillary-controlled steady-state upscaling in the literature do
not account for large-scale trapping since they do not permit complete disconnection of phases
at the Darcy scale at a finite capillary pressure (Pickup and Stephen 1998; Ekrann and Aasen
2000). A few studies, however, have looked into this problem more carefully. Yortsos et al.
(1991, 1993) considered large-scale percolation but for drainage only. They did include the
effect of large-scale saturation trapping, demonstrating its importance for two-dimensional,
2D, uncorrelated media. Kueper and McWhorter (1992) introduced a macroscopic invasion
percolation theory to upscale capillary pressure functions. They accounted for trapped cells
using a percolation algorithm, but did not consider the impact on average saturation as a
consequence of trapping inside these cells. In addition, the study did not compute average
relative permeabilities and only considered 2D domains.

In this study, we focus on steady-state upscaling for capillary-controlled displacements,
where we allow complete disconnection of phases at the Darcy scale, accounting for large-
scale trapping of fluids. For this, large-scale invasion percolation is used as outlined byKueper
and McWhorter (1992) and Yortsos et al. (1991, 1993), but extended to waterflooding,
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exploring the effects of wettability, while unambiguously accounting for large-scale fluid
trapping inside trapped cells. This is illustrated using random permeability fields in 2D and
3D domains, correlated with local capillary pressure–saturation relationships using Leverett
J-function scaling, assuming that heterogeneity in capillary pressure is connected primarily
to heterogeneity in permeability and porosity. We also use characteristic J-function and local
relative permeability curves that are typical for water-wet, oil-wet and mixed-wet systems.

We refer in this paper to the wetting phase as water and the non-wetting phase as oil,
although the process is applicable to any pairs of immiscible fluids, including CO2-brine
systems where large-scale trapping is extremely important for storage security (Saadatpoor
et al. 2010; Juanes et al. 2006).

2 Darcy-scale Saturation-Dependent Functions

Before going into the detail of large-scale trapping mechanisms, we define unambiguously
large-scale saturation-dependent functions used in Darcy-scale simulations. Figure 1 shows
typical capillary pressures and relative permeabilities for drainage and waterflooding. The
main point here is that we do not allow the capillary pressure to diverge to infinity at end-point
saturations: irreducible water Swir and residual oil saturations Sorw. Instead, the functions are
bounded by a maximum and a minimum value, pmax

c and pmin
c . To identify these points,

the corresponding relative permeability functions are used, for when they are zero at the
end-point saturations, the limits on the capillary pressure functions are well-defined. In this
case, the phases are completely disconnected at the pore level, forming isolated clusters that
are completely immobile.

In other cases, pmax
c and pmin

c may correspond to relative permeability values that are
not zero but extremely small to the point that they can be considered immobile. Upon a
closer look at the pore level, such a phase might be connected in thin layers (Valvatne and
Blunt 2004). At larger scales, this layer flow might be neglected considering the timescale
of the process (Blunt 2017). Here, a threshold value kcrf is imposed, below which layer flow
is ignored. Having said this, there are no clear guidelines on how to find this cut-off value; it
is case dependent. This will be investigated more thoroughly in future studies. In this study,
we use a well-defined limits on capillary pressure functions, corresponding to zero relative
permeabilities at end-point saturations.

If instead we only allowed the relative permeability to be zero at an infinite capillary
pressure, then we would never disconnect phases in a steady-state simulation, since—for any
finite imposed capillary pressure—the flow of both phases would be finite. We would then
be unable to capture large-scale trapping; the residual saturation, regardless of heterogeneity,
would be the residual saturation in the input relative permeability.

3 Theory of Large-scale Trapping of Fluids

There are twomain trappingmechanisms thatmust be accounted forwhen calculating average
fluid volumes and connectivities. These occur at the large scale and are distinct from the local
trapping at the pore scale that is accounted for by end-point saturations in the local capillary
pressures and relative permeabilities, mentioned above. The first mechanism is the trapping
of water by oil during drainage. As oil invades the system at a given position of capillary
equilibrium, referred to as plevelc , some regions of the domain may trap some movable water
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Fig. 1 A schematic of saturation-dependent functions defined at large scales. a Typical capillary pressures
for drainage (green) and waterflooding (blue). b Typical relative permeabilities for drainage (green) and
waterflooding (blue). Capillary pressures are bounded by pmax

c and pmin
c , corresponding to krf = 0, or

krf ≤ kcrf , for f = {o,w}

as movable water as movable oil fills completely neighbouring regions in which the relative
permeability to water krw drops to zero. The trappedwater volumes in these regions cannot be
estimated from the local capillary pressure–saturation relationship pc(Sw) at a given plevelc , as
in conventional approaches, but rather a special treatment is required. Figure 2 demonstrates
this trapping mechanism graphically in 2D systems, where the relevant cells are labelled
from 1 to 5. Corresponding drainage capillary pressures are also shown in Fig. 2b. As fluids
are brought to equilibrium at discrete, but elevated levels, water is trapped, locally, once
plevelc reaches pmax

c in a given cell. From the local capillary pressures in Fig. 2b, this local
trapping of water takes place in the following order: cells 1,2,3 and 4. Large-scale trapping
only happenswhen plevelc reaches pmax

c of cell 4, at which themovablewater in cell 5 becomes
disconnected from the rest of the water in the system. As plevelc increases above pmax

c of cell
4, Sw in cell 5 will remain fixed at Strapw , as indicated in Fig. 2b, and will not follow the local
capillary pressure defined for that cell.

The second trapping mechanism is illustrated in Fig. 3. Here, oil is trapped by only-
water-movable regions. The process occurs during waterflooding, in mixed-wet and oil-wet
systems. As plevelc decreases, the water saturation increases until, in some regions, the relative
permeability to oil kro drops to zero, trappingmovable oil in surrounded regions. This is shown
in Fig. 3b where as plevelc drops below pmin

c of cell 4, oil is trapped in cell 5 and stays fixed at
Strapw as plevelc continues to decline. The water saturation does not change in cell 5, since there
cannot be any displacement of the trapped oil. In Fig. 3a, the arrangement of cells is shown
in the 2D system, where blue indicates cells with local trapping of oil, while red indicates
cells with large-scale trapping.

4 Steady-State Upscaling: Revised Procedure

In this section, we give a detailed description of the revised two-phase capillary-controlled
steady-sate upscaling method. In the capillary limit, it is assumed that fluids are distributed
inside a region of interest in such a way that minimizes capillary pressure gradients. In
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Fig. 2 An illustration of capillary trapping during drainage at the Darcy scale in 2D systems. a The arrange-
ment of cells in the 2D system, showing their labels. Green indicates cells with local-scale trapping of water,
while red indicates cells with large-scale trapping. b Corresponding local capillary pressure functions demon-

strating the trapped water saturation S
trap
w in cell 5

Fig. 3 An illustration of capillary trapping during waterflooding at the Darcy scale in 2D systems. a The
arrangement of cells in the 2D system, showing their labels. Blue indicates cells with local-scale trapping
of oil, while red indicates cells with large-scale trapping. b Corresponding local capillary pressure functions

demonstrating the trapped water saturation S
trap
w in cell 5

the complete absence of other forces, capillary equilibrium is achieved when the gradient of
capillary pressure approaches zero, resulting in a stationary distribution of fluids that is unique
for the given set of initial and boundary conditions. At the Darcy scale, capillary equilibrium
can be achieved by running a dynamic simulation for a given set of initial and boundary
conditions until reaching a stationary fluid distribution. This is, however, a computationally
very expensive procedure. A much more efficient and simpler way is to estimate the fluid
distribution without running a dynamic simulation.
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Fig. 4 Computations of Sw from
waterflood pc(Sw) at three values
of plevelc in a system with three
local capillary pressures labelled
i , j and k. When plevelc = 6 kPa,
cell j does not allow water to
move across it as the relative
permeability to water is zero;
only oil is mobile. At plevelc = 0
kPa, both phases are mobile
through all cells, whereas when
plevelc = −6 kPa, cell j becomes
disconnected to oil as only water
is allowed to move across it. In
this last case, the relative
permeability to oil is zero

The key idea is to use the local capillary pressure–saturation relationships that are
already known at the grid-block scale and use them to estimate directly the saturation
distributions. The main problem with this approach, which can be avoided by using
dynamic simulations, is that fluid volumes required to achieve a certain capillary equi-
librium state at a given local region might not be reached since there is no connected
path for that fluid to flow to that region. In other words, a phase must make a connected
path from inlet boundaries to the region of interest. From local relative permeability–
saturation relationships, it is possible to identify these regions that do not allow a given
phase to flow through them. This concept is illustrated graphically in Fig. 4, in which
the water saturation distribution is estimated at three positions of plevelc . The presented
capillary pressures are typical for a waterflooding process in a mixed-wet system. When
plevelc = 6 kPa, cell j does not allow water to move across it as the relative perme-
ability to water is zero; only oil is mobile. At plevelc = 0 kPa, both phases are mobile
through all cells, whereas when plevelc = −6 kPa, cell j becomes disconnected to oil as
only water is allowed to move across it. In this last case, the relative permeability to oil is
zero.

The revised upscaling process then starts by assigning a capillary pressure level, plevelc ,
at which capillary equilibrium is imposed for the connected phases in the domain. From
local capillary pressure curves, the saturation distribution is estimated. The correspond-
ing relative permeability values are also computed from local relative permeability curves,
krp(Sw) for p = {o,w}, and used to indicate whether a cell, or a node, can percolate
a given phase across it or not. Once local non-percolating cells are identified, a solver
that fills cells and determines whether a phase forms a connected cluster that spans
the whole domain, is called; we refer to them as invaded cells. Such a condition con-
firms the presence of a global connectivity of the system. The solver is also used to
identify cells that can percolate a given phase but could not be reached as a result of
being locked in by neighbouring non-percolating cells. These are termed trapped cells,
and they do not contribute to the overall connectivity of the system. In addition, special
treatment is required to account for the trapping of fluids inside these trapped cells, as
described previously in Sect. 3. Algorithms developed to tackle such problems are described
next.
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5 Filling Cells at a Given Capillary Pressure

In this section, we describe the algorithm used to determine invaded cells in a system. We
simply describe how to invade cells for a given, specified capillary pressure. In the following
section (Sect. 6), we describe how we account for trapping of fluids as the imposed capillary
pressure is varied during a displacement. We here start by defining two main index functions,
the phase mobility and the phase connectivity indices as detailed below, where subsequent
calculations depend on both of them. We introduce a simple and efficient algorithm that
works for structured and unstructured simulation grids.

5.1 Phase Mobility Index γp

The mobility index, γp, for a given phase, p, is an array defined as:

γp = [γp1 , γp2 , . . . , γpn ]T , (1)

where p refers to either oil, denoted as o, or water, denoted as w. The array has n elements
equivalent to the number of cells in a simulation grid. The elements of γp are defined as
follows:

γwi =
{
0, pmax

ci ≤ plevelc ,

1, otherwise,
(2)

and,

γoi =
{
0, pmin

ci ≥ plevelc ,

1, otherwise.
(3)

Equations 2 and 3 state that a cell i takes a value of 0 if a phase is immobile, otherwise the cell
takes a value of 1. If the oil phase, for instance, is immobile for a given cell i , then γoi = 0
for that cell, otherwise γoi = 1. The index γp, therefore, is used to identify cells that have
the ability to transmit a given phase and hence is termed the phase mobility index.

The process here represents a single step in a classic invasion percolation algorithmwhere
γp indicates whether a phase can potentially flow across a given cell at a specified plevelc or
not (Kueper and McWhorter 1992; Yortsos et al. 1991, 1993; Hunt et al. 2014). The next
step then is to use this mobility index to determine whether a given phase forms a connected
path across a system or not. This is described below.

5.2 Phase Connectivity Index ψp

The phase connectivity index, ψp, for a given phase, p, is a vector defined as:

ψp = [ψp1 , ψp2 , . . . , ψpn ]T , p ∈ {o,w}, (4)

where the subscript p refers to either oil, denoted as o, or water, denoted as w. The vector has
n elements equivalent to the number of cells in the simulation model. The elements ofψp are
either 0 or 1, where 1 indicates that a cell is invaded, otherwise it is not. The index function
ψp, therefore, is used to indicate cells that are connected to the main cluster of a phase. The
evolution of ψp with time is governed by

ψ k+1
p = Ap ψ k

p , p ∈ {o,w}, (5)

where the superscript k refers to the timestep number and Ap is a symmetric n-by-n matrix,
given by

Ap = Γp (B + I) Γp, p ∈ {o,w}, (6)
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where Γp is an n-by-n diagonal matrix having the vector γp in its diagonal, B is the adjacency
matrix and I is the identity matrix. The adjacency matrix B is a square matrix in which the
number of rows and columns is equal to the number of cells in a simulation model. The
elements of this matrix are either 0 or 1, where 1 indicates that there is a connection, or a
link, between a pair of cells (West 2001). More formally, the matrix can be constructed for
any simulation model as follows:

Bi j =
{
1, if cell i is connected to cell j,
0, otherwise,

(7)

where Bi j refers to the element in row i and column j of the matrix B.
The matrix Γp has the following structure:

Γp =

⎛
⎜⎜⎜⎝

γp1
γp2

. . .

γpn

⎞
⎟⎟⎟⎠ , p ∈ {o,w}. (8)

Equation 5 is a first-order difference equation that describes the evolution of invaded cells
through amodel. The process usually starts from one of the boundaries by providing an initial
state of invaded cells, ψ0

p , where, as previously mentioned, the integer 1 indicates that a cell
is invaded, while 0 indicates it is not. The invaded cells are then updated using Eq. 5. Because
of the way the matrix Ap is defined in Eq. 6, at each iteration, ψk+1

p stores positive integer
numbers which might be larger than one, indicating the number of possible visits to a given
cell. For the purpose of our algorithm, all nonzero elements are reset to 1 at the end of each
update. Iterations are then performed until the number of invaded cells does not change over
time, at which the loop is terminated. This stationary distribution of invaded cells is referred
to as ψ∞

p and is used in all subsequent calculations. In practice, the state of the cells at the
far boundary from where the process has started are checked. If at least one of the cells has
been invaded, ψ∞

pi = 1, then a given phase is said to have established a global connectivity

across the system at the specified plevelc . Calculations can then be performed to determine
average relative permeabilities, where only invaded cells are taken into consideration. The
overall algorithm for this filling process is shown in Fig. 5.

From the elements of γp and ψ∞
p , we calculate two important average quantities of the

system. The first one is ξp, which describes the fraction of open cells, or cells that are
accessible to a given phase. This parameter is particularly important in basic percolation
theory, from which a critical fraction ξc is identified and used to indicate precisely when
a global connectivity develops; it is universal for randomly disordered and infinitely large
systems (Hunt et al. 2014; Grimmett 1999). ξp can be calculated as

ξp = 1

N

n∑
i=1

γpi , p ∈ {o,w}, (9)

where N is the total number of cells and γpi is the phase mobility index defined previously
in Eqs. 1, 2 and 3.

The second quantity is ηp, which is defined as the fraction of invaded cells; it is given by

ηp = 1

N

n∑
i=1

ψ∞
pi , p ∈ {o,w}, (10)
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Fig. 5 A flowchart showing the algorithm for filling cells at a fixed plevelc for both oil and water

where ψ∞
pi is the elements of the stationary distribution of invaded cells defined previously

in Sect 5.2. These parameters will be used in Sect. 8 to validate the percolation solver for 2D
and 3D systems.

6 Large-scale Invasion Percolation with Trapping

We now describe our large-scale invasion percolation algorithm that accounts for large-
scale saturation trapping. In the previous section, we showed how to fill cells—finding
invaded cells—at a given plevelc , but here we allow plevelc to vary between different equi-
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librium positions. We also show how we determine the saturation distribution at each plevelc ,
while accounting for fluid trapping.

A flowchart that illustrates this is shown in Fig. 6. We start first by determining the plevelc
distribution in which the events of trapping are represented by its elements, plevelc j . This

distribution can be estimated either from pmax
c for drainage, or from pmin

c for waterflooding,
corresponding formaximumandminimumcapillary pressure distributions, respectively. This
will be explained more in Sect. 9 when we show our examples.

Before iterating on plevelc j , plevelc is sorted either in descending or in ascending order,
depending on the displacement process being modelled. In waterflooding, for instance, the
distribution is sorted in descendingorder, resembling the process for steady-state experiments,
in which capillary pressure is brought to equilibrium in discrete levels from a higher to a
lower equilibrium state. On the other hand, the distribution for drainage is sorted in ascending
order as capillary equilibrium rises incrementally. Then, we initialize an array, ptrapc , to store
the capillary pressure levels, or events, at which trapping happens in each cell. The length
of this array is equivalent to the number of cells N in the model. ptrapc is initialized to zero,
indicating that all cells are initially not trapped.

We then start the iterations at a given plevelc j , from which the mobility indices, γw and
γo, are computed as in Eqs. 2 and 3. After that, the solver described in Fig. 5 is called to
determine the stationary distribution of invaded cells, ψ∞

p . At the current position of plevelc j ,
trapped cells m are identified as those that allow a phase to move across them (γpm = 1), but
have not been invaded at the current event (ψ∞

pm = 0), giving that they have not been trapped

from previous events (ptrapcm = 0). This is a crucial step in the process since we need to find
the new trapped cells at the large scale and at the current plevelc j . These conditions represent
the trapping mechanisms as detailed in Sect. 3. We also exclude cells with (γpm = 0) as they
represent cells with local trapping.

The trapped cells m are assigned then to the current plevelc j where this value will stay
constant. This condition is stated in Fig. 6 in set-builder notation. The averagewater saturation
S̃w can then be calculated at the end of each iteration, as follows

S̃w =

n∑
i=1

φi Vbi Swi

n∑
i=1

φi Vbi

, (11)

where φi is the porosity, Vbi is the bulk volume in m3, and Swi is the water saturation of
cell i determined inversely from local pci (Sw), where plevelc j is used for non-trapped cells

(ptrapci = 0), and nonzero elements of ptrapc are used for trapped cells.

7 Average Relative Permeability Algorithm

The computation of average relative permeability is described by a flowchart in Fig. 7. At a
given capillary equilibrium state, ξp is computed and checked. When ξp �= 1, this indicates
that some cells with local trapping are present whichmight produce some large-scale trapping
regions. In this case, a percolation solver is called to confirm global connectivity of a phase.
Once confirmed, a flow solver is called to calculate k̃drp using Eq. 12. The key step here is to
remove the trapped cells at both the local and the large scales from the main matrix, since
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Fig. 6 A flowchart illustrating the algorithm for macroscopic invasion percolation where plevelc is varied.
This also shows the computations of average fluid saturation at each plevelc accounting for fluid trapping for
both oil and water
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Fig. 7 A flowchart demonstrating the computations of average relative permeabilities for oil and water,
considering the impact of invasion percolation with trapping

they do not contribute to the flow, and their inclusion could make the matrix ill-conditioned
or even singular.

The average relative permeabilities are computed from:

k̃drp = μp

μs

Q̃d
p

Q̃d
s

, p ∈ {o,w}, d ∈ {x, y, z}, (12)

where k̃drp is defined as the average relative permeability for a phase p in the direction d parallel
to one of the coordinate axes of the three-dimensional system, μp is the phase viscosity in
Pa.s and μs is the fluid viscosity used in single-phase calculations. The parameter Q̃d is the
average volumetric flux within a volume of interest in a direction d in m3/s. The subscripts p
and s are used to indicate whether the volumetric flux is obtained from two-phase or single-
phase flow calculations, respectively. Both functions, Q̃d

p,s, can be computed from numerical
simulations as follows:

Q̃d
p,s = 1

md

md∑
j=1

∑
�∈Ωj

Q{p,s}� , p ∈ {o,w}, d ∈ {x, y, z}, (13)

where md is the total number of cross-sectional areas in the averaged volume perpendicular
to a flow in direction d, Qp�

is a volumetric flux across a link � between two neighbouring
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nodes in m3/s and Ωj here indicates the set of links, or connections, intersecting the j -th
cross-sectional area. The way to use Eq. 13 to compute average flow rates is, therefore, to
first calculate total flow rates across each cross-sectional area and then to average them out.
If we allow, for instance, a flow along the x-axis in a 3D system with a cubic grid, we first
sum the fluxes from the cells intersecting a single plane in the y–z direction. We record this
value and repeat the process in all other parallel planes. The number of planes in this case is
equivalent to md. We then average these fluxes as shown in Eq. 13.

Similarly for Q̃d
s , average volumetric flux for single-phase flow, the calculations are per-

formed as with Q̃d
p in Eq. 13. The only difference is in the definition of the volumetric flux

Qp,s across any pair of nodes i and j . This is given by the multiphase Darcy equation:

Q{p,s}i j = ki j Ai j

Li j
λ{p,s}i j

(
P{p,s}i − P{p,s} j

)
, p ∈ {o,w}, (14)

where ki j is the absolute permeability of the link in m2, which is calculated as the harmonic

mean of the absolute permeability of the nodes i and j :
(

2ki k j
ki+k j

)
, Ai j is the cross-sectional

area between the two nodes in m2, Li j is the length between them in m, and λpi j is the phase

mobility defined as, for two-phase flow λpi j = krp (Swi j )

μp
, while for single-phase flow it is

given by λsi = μ−1
s . The phase mobility in two-phase flow is calculated from individual

nodes as λpi j = 1
2

(
λpi + λp j

)
, given that the saturation distribution is already known as

previously described in Sect. 4. In Eq. 14, P{p,s} is the phase pressure in Pa for two-phase Pp
or single-phase Ps flow calculations. They are determined by solving a system of equations
constructed by applyingmaterial-balance principles, fromwhichwe obtain:

∑
j Q{p,s}i j = 0.

For the calculation of average relative permeabilities, it is important to apply the same
set of boundary conditions for pressure when solving for Pp and Ps. In our solution, a pres-
sure boundary condition is applied uniformly across inlet and outlet boundaries in one flow
direction while other boundaries are kept closed. We find the average relative permeabili-
ties for the whole computational domain. It should be also noted that μs can be arbitrary
chosen with no impact on the average permeabilities, as long as Eq. 12 is strictly followed;
this is also true for the magnitude of pressure drop applied at the boundaries of the sys-
tem.

8 Validation

We here validate our percolation solver described previously in Sects. 5 and 6, by using a
2D model with a square grid and a 3D model with cubic grid blocks. The process simulated
here is mainly for validation purposes and does not represent either conventional drainage or
waterflooding. The main idea is to compute, using our solver, the site percolation thresholds
and compare them to estimates from the literature of percolation theory. This only involves
identifying trapped cells without accounting for trapped fluids inside them.

We use 1000 × 1000 grid cells for the 2D model, while 200 × 200 × 200 grid cells are
used for the 3D case. Figure 8 demonstrates the results, in which the fraction of invaded
cells for an invading phase, ηw is plotted against the fraction of open cells for the invading
phase, ξw. The percolation threshold ξc is estimated at 0.59 and 0.31 in 2D and 3D systems,
respectively. These values are determined here precisely from the steady-state distribution
of invaded cells ψ∞

w at the far boundary, as detailed in Sect. 5. From percolation theory for
site percolation, ξc = 0.5927 in a 2D square lattice (Jacobsen 2015; Newman and Ziff 2000;
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Fig. 8 Fraction of invaded cells,
ηw against fraction of open cells,
ξw for 2D and 3D systems. For
the 2D case, 1000 × 1000 grid
cells have been used to produce
the results, while using
200 × 200 × 200 grid cells for
the 3D case. The percolation
threshold, ξc, is estimated from
this plot at 0.59 and 0.31 for site
percolation on the 2D square
lattice and the 3D simple cubic
lattice, respectively. ξc is
indicated in the plot by the
sudden jump in ηw, which is very
clear in 2D while being less
obvious in 3D

Lee 2007), and ξc = 0.3116 in a 3D simple cubic lattice (Xu et al. 2014; Škvor and Nezbeda
2009; Deng and Blöte 2005), which closely matches results obtained from our simulations.
Higher accuracy can be achieved by increasing the number of grid cells and applying a very
small step size in ξw.

Results, as shown in Fig. 8, indicate a strong correlation between the percolation threshold,
ξc, and the dimensionality of the model. This is usually expressed in terms of the coordi-
nation number; the number of nearest neighbouring grid cells, being 4 in the 2D and 6 in
the 3D models used here. As the coordination number increases, the percolation threshold
decreases, making lattice representation for macroscopic percolations a very critical issue for
2D and 3Dmodels, since they can be represented with different combinations of coordination
numbers. For this, it is not obvious which coordination number should be used for a valid
representation of a heterogeneous system. Nevertheless, it has been shown that these sensi-
tivities to coordination number become less important in spatially correlated media, where
cells with similar properties are clustered together (Ioannidis et al. 1993, 1996). Hence, it is
less likely to have an accessible cell neighbouring a trapped cell. This, however, depends on
the correlation length of the system under investigation (Ioannidis et al. 1996).

Figure 9 shows spatial distributions of γw andψ∞
w for the 2D system at different values of

ξw. The process starts from the left face in the horizontal direction, while boundaries on the
vertical direction are closed. Blue here represents cells in which an invading phase resides
(invaded cells), while other cells are trapped. These trapped regions contain two types of cell:
(1) cells with local trapping of the invading phase (green), and (2) cells that are accessible
by the invading phase but are trapped at the large scale as being locked in by the green cells
(grey).

Figure 9a shows the stationary distribution at ηw = 2.64% and ξw = 57.52%, where
no global connectivity is observed. In Fig. 9b, simulations are shown for just below ξc
at ηw = 19.05% and ξw = 59.32%. Figure 9c indicates invasion percolation just above
ξc at ηw = 41.53% and ξw = 59.42%. Lastly, Fig. 9d shows stationary distributions at
ηw = 50.15% and ξw = 60.51%, above ξc.

Similarly for the simple cubic model, Fig. 10 depicts large-scale invasion percolation in
a 3D system. The invading phase is allowed to enter the system from one end while the
opposite end is left open. The other boundaries are closed. Invaded cells are coloured based
on their distance from the inlet boundary. Other cells are not displayed. Figure 10a shows
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Fig. 9 Site percolation on a square lattice consisting of 1000 × 1000 grid cells. The process starts from the
left face in the horizontal direction, while boundaries on the vertical direction are closed. Blue represents
invaded cells while other cells are trapped. The trapped regions contain two types of cells: (1) green cells
indicating that they do not percolate the invading phase across them (local trapping of the invading phase) and
(2) grey cells representing cells with large-scale trapping; they are accessible by the invading phase but are
surrounded by green cells. a The stationary distribution of invaded cells (blue) at a given capillary equilibrium
state below the percolation threshold where there is no global connectivity (ηw = 2.64%, ξw = 57.52%). b
The fluid distribution just below ξc at ηw = 19.05% and ξw = 59.32%. c Invasion percolation just above ξc
at ηw = 41.53% and ξw = 59.42%. d The distribution for at ηw = 50.15% and ξw = 60.51%

the stationary distribution of invaded cells below ξc at ηw = 1.68%, ξw = 30.70%, whereas
Fig. 10b displays simulation just below ξc at ηw = 2.50% and ξw = 30.89%. In Fig. 10c,
invasion percolation just above ξc at ηw = 4.48% and ξw = 31.13% is demonstrated.
Figure 10d shows stationary distributions at ηw = 6.74% and ξw = 31.36%, well above ξc.

9 Illustrative Examples

We present here an example solution using our large-scale invasion percolation algorithm
coupled with a Darcy-scale solver. We do not consider hysteresis in the capillary pressure
and relative permeability: locally trapped saturations are not allowed to change with initial
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Fig. 10 Invasion percolation on a simple cubic lattice with 200×200×200 grid cells. Two opposite boundary
faces are open, while the other faces are closed. Coloured cells represent the stationary distribution of invaded
cells at a given capillary equilibrium state. The change in colours indicates distance from inlet (blue being close
to the inlet boundary). a The stationary distribution of invaded cells below ξc at ηw = 1.68%, ξw = 30.70%.
b The distribution just below ξc at ηw = 2.50% and ξw = 30.89%. c Invasion percolation just above ξc at
ηw = 4.48% and ξw = 31.13%. d The distributions for ηw = 6.74% and ξw = 31.36%

saturation. This will be a topic for future work. For our simulations, we use two models: a
2D with 1000 × 1000 grid cells, and another a 3D model with 200 × 200 × 200 grid cells.

We use synthetic data representing four different wettability states: strongly water-wet
(SWW), weakly water-wet (WWW), mixed-wet (MW) and oil-wet (OW). For each wetting
state, absolute permeability is randomly distributed from an uncorrelated log-normal distri-
bution with a known mean and standard deviation. The mean is kept fixed in all simulations
at μln k = −29.9336, equivalent to μk = 1 × 10−13 m2, while the standard deviation varies
over two sets of values σln k = {1, 2}. Porosity is kept constant at φ = 0.25.

For the modelling of multiphase flow functions, the following mathematical expressions
are used:

pdrc (Sw) =
⎧⎨
⎩

(
pmax
c − pe

) (
1 − Sw−Swir

1−Swir

)ndrc + pe, Sw ∈ [Swir, 1]

∅, Sw /∈ [Swir, 1]
(15)
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Table 1 Parameters used to generate relative permeability and capillary pressure data in the Illustrative
Examples section

Strongly water-wet Weakly water-wet Mixed-wet Oil-wet

Swir 0.1 0.1 0.1 0.1

Sorw 0.4 0.3 0.15 0.05

kmax
rw 0.1 0.2 0.5 0.95

nw 2 2 8 1.5

kmax
ro 1 1 1 1

no 1 1.5 2.5 4

pmax
c (kPa) 150 150 150 150

n+
c 2 1.7 2 ∅

pmin
c (kPa) 0 −50 −100 −150

n−
c ∅ 1.5 2.5 3

S∗ 0.6 0.55 0.5 0.1

pe (kPa) 1 1 1 1

ndrc 2 2 2 2

Equations 15 and 16 are used for capillary pressures for drainage and waterflooding, respectively, while using
Eqs. 17 and 18 for water and oil relative permeabilities, respectively. (Modified from Blunt (2017))

Table 2 Base parameters used in
the J-function calculations kb, m2 1 × 10−13

φb, fraction 0.25

σwo cos θwo, N/m 3 × 10−2

pc(Sw) =

⎧⎪⎨
⎪⎩

pmax
c

(
1 − Sw−Swir

S∗−Swir

)n+
c

, Sw ∈ [
Swir, S∗]

pmin
c

(
Sw−S∗

1−S∗−Sorw

)n−
c

, Sw ∈ [
S∗, 1 − Sorw

] (16)

krw(Sw) =
{
kmax
rw

(
Sw−Swir

1−Swir−Sorw

)nw
, Sw ∈ [Swir, 1 − Sorw]

∅, Sw /∈ [Swir, 1 − Sorw]
(17)

kro(Sw) =
{
kmax
ro

(
1 − Sw−Swir

1−Swir−Sorw

)no
, Sw ∈ [Swir, 1 − Sorw]

∅, Sw /∈ [Swir, 1 − Sorw]
(18)

where Eqs. 15 and 16 are used for capillary pressures for drainage pdrc (Sw) and waterflooding
pc(Sw), respectively, while Eqs. 17 and 18 are used for water krw(Sw) and oil kro(Sw) rela-
tive permeabilities, respectively; pmax

c is the maximum capillary pressure in Pa, pmin
c is the

minimum capillary pressure in Pa, pe is the entry pressure in Pa, S∗ is the water saturation
specified at zero capillary pressure, ndrc is the exponent used in the drainage capillary pres-
sure, n+

c and n−
c are the exponents used in the positive and negative regions of the capillary

pressure for waterflooding, respectively, nw and no are the exponents used in the relative
permeability functions for water and oil, respectively, kmax

rw is the maximum relative perme-
ability to water, and kmax

ro is the maximum relative permeability to oil. J-function scaling
Leverett (1941) is used to correlate capillary pressures with rock properties, resulting in the
following expression:
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Fig. 11 Upscaled relative permeabilities in 2D for capillary-controlled displacements including the impact
of percolation for different wettability states and permeability distributions with σln k = {1, 2}. a kr data in
strongly water-wet; b weakly water-wet; c mixed-wet; and d oil-wet systems. The original fine-grid kr curves
are also included for comparison purposes. The curves are plotted using average values from five simulations,
while the bars represent their standard deviations

pci (Sw) =
√
kb/φb√
ki/φi

pcb(Sw) (19)

where pci is the capillary pressure at cell i in Pa, pcb is a base capillary pressure measured
in the laboratory in Pa, ki and φi are absolute permeability and porosity in cell i in m2 and
fraction, respectively, and kb and φb are base permeability and porosity, respectively.

All model parameters for multiphase flow calculations are listed in Table 1, while Table 2
lists the base parameters used in the J-function calculations, for both drainage and water-
flooding. The parameters kb and φb are used as a reference for the J-function calculations. In
a normal practice, these values are obtained from the same rock where the capillary pressure
measurements pcb were taken from. The main purpose of the J-function scaling is to extrap-
olate capillary pressure information for systems with known basic properties, e.g. ki and φi ,
for which capillary pressure data are originally unknown. For each wettability state, Eq. 19 is
applied to generate a capillary pressure curve in each and every cell in our simulation model.

We now perform simulations to determine average quantities as previously described. For
each wetting state, five simulations are performed for each σln k . The computations of aver-
age relative permeabilities are performed at 16 capillary equilibrium states. The percolation
simulations, on the other hand, are performed at a much more refined plevelc distribution,
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Fig. 12 Upscaled relative permeabilities in 3D for capillary-controlled displacements including the impact
of percolation for different wettability states and permeability distributions with σln k = {1, 2}. a kr curves
in strongly water-wet; b weakly water-wet; c mixed-wet; and d oil-wet systems. Original kr curves are also
included for comparison purposes. The curves are plotted using average values from five simulations, while
the bars represent their standard deviations

estimated from pmax
c and pmin

c , to identify accurately trapping, from which average water
saturations are determined. The elements of pmax

c and pmin
c distributions can be calculated

from Eq. 19 as follows:

pmax
ci =

√
kb/φb√
ki/φi

pmax
c (20)

pmin
ci =

√
kb/φb√
ki/φi

pmin
c (21)

where pmax
ci and pmin

ci are the maximum and minimum capillary pressures at cell i , pmax
c and

pmin
c are given for all wetting conditions in Table 1. Other parameters are defined previously

in Eq. 19. Repeated elements are removed from the distributions and sorted. The plevelc
distribution is then estimated by computing percentiles at every half a percentage point.

Figures 11 and 12 show the upscaled relative permeabilities for σln k = {1, 2}, for 2D and
3D, respectively. Each curve represents the overall average of the five simulations, while the
bars indicate their standard deviations. We can observe, in general, that as σln k increases, the
deviations of both k̃rw and k̃ro from the fine-grid functions become more apparent. It is also
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Fig. 13 Upscaled capillary pressures in 2D for capillary-controlled displacements for different wettability
states and permeability distributions with σln k = {1, 2}. a pc curves in strongly water-wet; b weakly water-
wet; c mixed-wet; and d oil-wet media. Original pc curves are also included for comparison purposes. The
curves are plotted using average values from five simulations, while the bars represent their standard deviations

shown that the trapping of fluids also increases with σln k , though the trapping in 2D is larger
than in 3D. We also see in Fig. 11 that the maximum value of k̃rw and k̃ro decreases with
more trapping, indicating that the additional trapped fluids preferentially fill some regions of
the domain that have some contribution to the overall permeability; this is only true for 2D.
In 3D, however, this is not observed (Fig. 12), suggesting that the additional trapped fluids
occupy regions that do not contribute to the overall permeability of the sample.

The averaged water relative permeabilities are only finite once the water percolates across
the system, which occurs at a finite occupancy. We see an increase in the minimum water
saturation at which water flows across the domain. At the end of primary drainage, water is
trapped at the large scale in isolated clusters distributed across the whole domain. As water
is injected into the system, these clusters reconnect increasing the averaged water relative
permeabilities more rapidly.

It is demonstrated that k̃ro generally increases over a wide range of S̃w as σln k increases,
especially for SWW, WWW and MWmedia. This indicates that water preferentially resides
in the lower permeability rock at a given S̃w. Similarly for k̃rw in MW and OW systems,
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Fig. 14 Upscaled capillary pressures in 3D for capillary-controlled displacements for different wettability
states and permeability distributions with σln k = {1, 2}. a pc curves in strongly water-wet; b weakly water-
wet; c mixed-wet; and d oil-wet media. Original pc curves are also included for comparison purposes. The
curves are plotted using average values from five simulations, while the bars represent their standard deviations

where it generally increases for the late values of S̃w as σln k increases, suggesting that the
remaining oil now tends to occupy the lower permeability portions of the system.

Average capillary pressures are shown in Figs. 13 and 14 for 2D and 3D models, respec-
tively. In general, little sensitivity is observed on the trends of the curves for all the wetting
states and permeability distributions, except near the end-point saturations. What is observed
is the trapping of fluids as shown in the figures and listed in Tables 3 and 4, for 2D and 3D
systems, respectively. These values reported in the table are derived from the distributions
generated from the five simulation runs. The symbols S̃wir and S̃orw are used to refer to
the upscaled irreducible water and residual oil saturations, respectively, while |ΔSwir| and
|ΔSorw| show the absolute difference between the upscaled quantities and the fine-grid inputs.
As can be seen that more fluids are trapped at the Darcy scale as σln k increases.

We observe also that the trapping of water S̃wir does not vary between the different wetting
states, but with σln k and the dimensionality of the system. This is because the capillary
pressure function defined for drainage being the same for all the wetting states. On average,
about 10% of the water is trapped at the large scale in 2D for σln k = 1, and 18% for σln k = 2,
while about half of that is seen in 3D.
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Table 3 Upscaled end-point saturations for the 2D model (1 million grid cells)

S̃wir S̃orw |ΔSwir | |ΔSorw|
SWW

σln k = 1 0.2036 ± 0.0013 0.4000 ± 0.0000 0.1036 ± 0.0013 0.0000 ± 0.0000

σln k = 2 0.2797 ± 0.0004 0.3928 ± 0.0001 0.1797 ± 0.0004 0.0072 ± 0.0001

WWW

σln k = 1 0.2036 ± 0.0004 0.3221 ± 0.0005 0.1036 ± 0.0004 0.0221 ± 0.0005

σln k = 2 0.2798 ± 0.0008 0.3368 ± 0.0006 0.1798 ± 0.0008 0.0368 ± 0.0006

MW

σln k = 1 0.2036 ± 0.0013 0.1835 ± 0.0006 0.1036 ± 0.0013 0.0335 ± 0.0006

σln k = 2 0.2796 ± 0.0016 0.2094 ± 0.0007 0.1796 ± 0.0016 0.0594 ± 0.0007

OW

σln k = 1 0.2036 ± 0.0011 0.1191 ± 0.0014 0.1036 ± 0.0011 0.0691 ± 0.0014

σln k = 2 0.2785 ± 0.0021 0.1741 ± 0.0029 0.1785 ± 0.0021 0.1241 ± 0.0029

|ΔSwir | and |ΔSorw| refer to the absolute difference between the upscaled quantities and the fine-grid inputs

Table 4 Upscaled end-point saturations for the 3D model (8 million grid cells)

S̃wir S̃orw |ΔSwir | |ΔSorw|
SWW

σln k = 1 0.1454 ± 0.0002 0.4000 ± 0.0000 0.0454 ± 0.0002 0.0000 ± 0.0000

σln k = 2 0.1808 ± 0.0003 0.3984 ± 0.0000 0.0808 ± 0.0003 0.0016 ± 0.0000

WWW

σln k = 1 0.1454 ± 0.0001 0.3097 ± 0.0000 0.0454 ± 0.0001 0.0097 ± 0.0000

σln k = 2 0.1808 ± 0.0001 0.3167 ± 0.0000 0.0808 ± 0.0001 0.0167 ± 0.0000

MW

σln k = 1 0.1454 ± 0.0001 0.1645 ± 0.0000 0.0454 ± 0.0001 0.0145 ± 0.0000

σln k = 2 0.1807 ± 0.0003 0.1763 ± 0.0003 0.0807 ± 0.0003 0.0263 ± 0.0003

OW

σln k = 1 0.1454 ± 0.0001 0.0798 ± 0.0003 0.0454 ± 0.0001 0.0298 ± 0.0003

σln k = 2 0.1805 ± 0.0002 0.1049 ± 0.0004 0.0805 ± 0.0002 0.0549 ± 0.0004

|ΔSwir | and |ΔSorw| are the absolute difference between the upscaled quantities and the fine-grid inputs

For the large-scale trapping of oil, we observe different behaviours than water between the
wetting conditions, influenced by the capillary pressure functions for waterflooding. Here,
the highest trapping happens in oil-wet media at 12% and 5% in 2D and 3D, respectively, at
σln k = 2. This trapping is in addition to the pore-scale trapping, given by Sorw in Table 1.

10 Conclusions

A modified upscaling procedure for steady-state capillary-controlled immiscible displace-
ments is proposed,which accounts for the large-scale connectivity inDarcy-scale simulations.
The key idea is that at a given capillary equilibrium state, some regions in the system may
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form disconnected clusters preventing global connectivity. To tackle such displacements, a
revised steady-state upscaling algorithm is introduced accounting for the trapping of fluids in
a large-scale invasion percolation displacement. The process is explained through illustrative
examples, in which four different wettability states are studied—strongly water-wet, weakly
water-wet, mixed-wet and oil-wet. It is observed that, at Darcy scale, the capillary trapping
for water increases in heterogeneous media and is influenced mainly by the capillary pres-
sure function defined for drainage. For the large-scale trapping of oil, we observe different
behaviours between the wetting conditions, controlled by the capillary pressure functions for
waterflooding, in which the highest trapping is observed in oil-wet systems.

The analysis of this paper could be extended in future studies to explore the impact of
viscous forces, using realistic geology, and including the effects of hysteresis in themultiphase
flow functions.
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