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Abstract We examine the effect of viscous forces on the displacement of one fluid by a
second, immiscible fluid along parallel layers of contrasting porosity, absolute permeability
and relative permeability. Flow is characterized using five dimensionless numbers and the
dimensionless storage efficiency, so results are directly applicable, regardless of scale, to
geologic carbon storage. The storage efficiency is numerically equivalent to the recovery
efficiency, applicable to hydrocarbon production. We quantify the shock-front velocities at
the leading edge of the displacing phase using asymptotic flow solutions obtained in the limits
of no crossflow and equilibrium crossflow. The shock-front velocities can be used to identify
a fast layer and a slow layer, although in some cases the shock-front velocities are identical
even though the layers have contrasting properties. Three crossflow regimes are identified
and defined with respect to the fast and slow shock-front mobility ratios, using both theo-
retical predictions and confirmation from numerical flow simulations. Previous studies have
identified only two crossflow regimes. Contrasts in porosity and relative permeability exert
a significant influence on contrasts in the shock-front velocities and on storage efficiency,
in addition to previously examined contrasts in absolute permeability. Previous studies con-
cluded that the maximum storage efficiency is obtained for unit permeability ratio; this is true
only if there are no contrasts in porosity and relative permeability. The impact of crossflow
on storage efficiency depends on the mobility ratio evaluated across the fast shock-front and
on the time at which the efficiency is measured.
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List of symbols

Latin symbols

Es Storage efficiency
fi Fractional flow
H Thickness (L)=
k Absolute permeability (diagonal) tensor (L2)
kx Absolute longitudinal permeability (L2)
kz Absolute transverse permeability (L2)
kr,i Relative permeability of the injected phase
ker,i End-point relative permeability of the injected phase
kr,d Relative permeability of the displaced phase
ker,d End-point relative permeability of the displaced phase
L Length (L)
Me End-point mobility ratio
M f Shock-front mobility ratio
ni Corey exponent for the injected phase relative permeability curve
nd Corey exponent for the displaced phase relative permeability curve
P Pressure (ML−1T−2)
qi Injected-phase volumetric flux per unit area (LT−1)
(q̄in) Average volumetric influx per unit area (LT−1)
qd Displaced-phase volumetric flux per unit area (LT−1)
qT Total volumetric fluid flux per unit area (LT−1)
RL Effective aspect ratio
Rs Storage ratio
s Normalized injected-phase saturation
sav Normalized average saturation behind the shock-front
s f Normalized shock-front saturation
Si,r Residual saturation for the injected phase
Sd,r Residual saturation for the displaced phase
U Interstitial shock-front velocity (LT−1)

Greek symbols

�S Moveable saturation
λT Total mobility of the fluids (LTM−1)
μi Injected-phase viscosity (ML−1T−1)
μd Displaced-phase viscosity (ML−1T−1)
∇ Nabla operator
φ Porosity
σx Absolute longitudinal permeability ratio

1 Introduction

Alternations of parallel, continuous layers of different lithologic and physical properties are a
ubiquitous type of geologic heterogeneity observed at many different length scales, including
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lamination (millimeter-thick layers), bedding (centimeter- tometer-thick layers) and laterally
extensive genetic and stratigraphic units that may correspond to flow zones in groundwater
aquifers and hydrocarbon reservoirs, typically several meters to tens of meters in thickness
(e.g., Campbell 1967; Ringrose et al. 1993a, b; Jones et al. 1994, 1995; Koltermann and
Gorelick 1996; Marsily et al. 1998; White and Barton 1999; Li and White 2003; Jackson
et al. 2003; Deveugle et al. 2011). Understanding multiphase flow in layered porous media is
therefore important for accurate prediction of many subsurface processes; examples include
geologic carbon storage, migration of non-aqueous phase liquids (NAPLs) in contaminated
aquifers and hydrocarbon production.

We examine immiscible, two-phase flow along homogeneous and parallel layers of con-
trasting petrophysical properties such as porosity and permeability. During the displacement
of one phase by another, fluids may crossflow between adjacent layers, due to any combi-
nation of the viscous, capillary and gravitational forces which drive multiphase flow. This
work investigates crossflow caused by viscous forces, which is commonly termed viscous
crossflow (see Fig. 1a). We do not attempt to predict exactly the behavior of a given geologic
reservoir or multiphase flow system; rather, our objectives are to predict where and how
viscous crossflow affects the displacement of one fluid phase by another, as a function of a
small number of key dimensionless numbers, in order to support mechanistic interpretations
of more complex numerical model predictions, regardless of length scale (e.g., King and
Mansfield 1999).

Previous laboratory experiments which examined the displacement of one fluid phase by
another along parallel layers of contrasting grain size (e.g., Bertin et al. 1990; Dawe et al.
1992; Cinar et al. 2006; Alhamdan et al. 2012; Datta and Weitz 2013) include capillary
effects, making the results inapplicable at larger scales at which viscous forces may be
more important than capillary forces. Theoretical models and numerical simulations of flow
that omit the contribution of capillary and buoyancy effects are thus required to examine the
individual effect of viscous forces. Previous studies using theoreticalmodels have investigated
only flow along layers of contrasting absolute permeability, assuming layer properties are
otherwise identical (Zapata and Lake 1981; Yortsos 1995), and piston-like displacements,
in which the entire saturation change occurs at the shock-front (Zapata and Lake 1981 see
Fig. 1b). However, in many geologic systems, layers are associated with contrasting porosity
and relative permeability, in addition to the permeability contrasts investigated previously.
Moreover, many displacement processes are not piston-like. Here we report a more general
treatment that includes (i) non-piston-like displacements, in which some of the saturation
change occurs over the shock-front, and some occurs over a rarefaction wave following the
shock-front (see Fig. 1c), and (ii) layers of contrasting porosity and relative permeability, in
addition to contrasting absolute permeability.

After first presenting the mathematical model (Sect. 2), we then present in Sect. 3 a
comprehensive set of five dimensionless numbers characterizing immiscible, two-phase flow
along layered porous media. We show in Sect. 4.1 that contrasts in porosity and relative
permeability affect the shock-front propagation rates, in addition to previously examined
contrasts in absolute permeability, and we identify flow regimes in which a fast shock-front
and a slow shock-front can be defined. We rationalize crossflow behaviors for displacements
which are not piston-like in Sect. 4.2, using amobility ratio evaluated across the shock-front in
each layer and find an additional crossflow regime, which has not been reported previously.
We also present, in Sect. 4.3, complex crossflow patterns that have not been observed in
previous studies. We report in Sect. 4.4 the sensitivity of storage efficiency, defined as the
fraction of themoveable pore volume (MPV) occupied by the injected phase, on the governing
dimensionless groups. These results directly support the interpretation of complex numerical
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Fig. 1 a Schematic distribution of regions contacted by the displacing phase (represented in gray) during
injection along a two-layered porous medium without significant capillary and buoyancy effects. As discussed
later in this paper, the contrasting petrophysical properties of the layers may cause the shock-fronts in each
layer to move with different velocities U1 and U2, and crossflow driven by viscous forces to occur between
layers (represented as transverse arrows between the layers on the figure). Typical injected-phase saturation
profiles along each layer (in the absence of crossflow) are reported for b piston-like displacements, in which
the entire saturation change occurs at the shock-front, and c non-piston-like displacements, in which some
of the saturation change occurs over the shock-front, and some occurs over a rarefaction wave following the
shock-front

subsurface models used to predict the amount of CO2 that can be stored in the subsurface
(e.g., Cavanagh and Ringrose 2011). The storage efficiency is numerically equivalent to the
recovery efficiency, defined as the fraction of the MPV of the displaced phase that leaves the
outflow face of the model, so the results are also applicable to hydrocarbon production (e.g.,
Christie and Blunt 2001).

2 Mathematical Model

We investigate two-phase, immiscible and isothermal flow through a two-layered porous
medium in which the layers have contrasting petrophysical properties (Fig. 2). The model
is a two-dimensional (2-D) symmetry element of an n-layered system in which alternating
layers have the same contrasting properties. Assuming that the fluids and pore space are
incompressible and that the pore space is completely filled with both fluids, and neglecting
gravity and capillary forces, flow is described by the continuity equations

φ�S
∂s

∂t
+ ∇ · qi = 0, (1)

∇ · qT = ∇ · [
qi + qd

] = 0, (2)

and the multiphase Darcy’s law
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Fig. 2 Schematic diagram of the two-layer model used in this work

qi = −kr,i (s)

μi

=
k ·∇P (3)

qd = −kr,d (s)

μd

=
k ·∇P (4)

where

s = Si − Si,r
1 − Si,r − Sd,r

(5)

is the normalized injected phase saturation, which varies between 0 and 1, Si is the injected
phase saturation, Si,r and Sd,r are the injected and displaced phase residual saturations,
�S = 1− Si,r − Sd,r is the moveable saturation, φ is the porosity, qi and qd are the injected
and displaced phase volumetric fluxes per unit area, qT = qi + qd is the total volumetric
fluid flux per unit area, kr,i (s) and kr,d (s) are the relative permeabilities of the injected and

displaced phases, μi and μd are the viscosities of the injected and displaced phase,
=
k the

absolute permeability tensor (assumed diagonal here) and P the fluid pressure. We further
define the total fluid mobility λT as

λT = kr,i
μi

+ kr,d
μd

. (6)

The relative permeability curves are represented as functions of the normalized saturation s
by the parametric forms

kr,i (s) = ker,i s
ni , (7)

kr,d (s) = ker,d (1 − s)nd , (8)

where ker,i and k
e
r,d are the end-point relative permeabilities, andni andnd theCorey exponents

of the injected and displaced phases, respectively. Each layer is internally homogeneous
with identical length L and thickness H/2 but, in contrast to previous studies, may differ
in longitudinal absolute permeability kx , porosity φ, moveable saturation �S, end-point
relative permeabilities ker,i and ker,d , and Corey exponents ni and nd . We assume the layers

have identical transverse permeability kz such that k1z = k2z ≤ min
(
k1x , k

2
x

)
, where k1z and k

2
z

are the transverse permeabilities of layers 1 and 2, respectively. Numerical experiments, not
reported here, show that relaxing this constraint, to allow k1z �= k2z , but enforcing kz ≤ kx
in each layer as typically observed in geologic systems, has negligible impact on the results
because crossflow is dominantly controlled by the lowest transverse permeability of the two
layers.
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Initially (t = 0), the pressure is uniform (P = P0) and the normalized saturation is
zero throughout the domain (s = 0). At the inlet face, the boundary conditions are a constant
average volumetric influx per unit area q̄in , distributed tomaintain a uniform but time-varying
pressure (P = Pin (t)). The other boundary conditions are a fixed pressure, equal to the initial
pressure P0, on the outlet (opposing) face, and no flow across the other faces. This choice
of boundary conditions is consistent with conventional and physically reasonable borehole
boundary conditions used in groundwater and oil reservoir models (Aziz and Settari 1979;
Wu 2000).

3 Scaling Analysis

We report here a comprehensive set of five dimensionless numbers characterizing immiscible,
two-phase flow along two-layered media. In the following treatment, we use the dimension-
less distances x̂ and ẑ, the dimensionless time t̂ (which is equivalent to the number ofmoveable
pore volumes of displacing phase injected), the dimensionless longitudinal and transverse
volumetric fluid fluxes per unit area q̂x and q̂z , the dimensionless shock-front velocity in
the longitudinal direction Û , the normalized total mobility λ̂

j
T in layer j = 1, 2, and the

dimensionless pressure P̂ , which are defined as

x̂ = x

L
(9)

ẑ = z

H
(10)

t̂ = t
q̄in

φ�SL
(11)

q̂x = qx
q̄in

(12)

q̂z = qz
q̄in

L

H

kzker,d

kxker,d
(13)

Û = U
φ�S

q̄in
(14)

λ̂
j
T = λ

j
T

ke, jr,d /μd

, j = 1, 2 (15)

P̂ = kxker,d
Lq̄inμd

(P − P0) (16)

where the barred quantities correspond to arithmetic averages, or the harmonic average in
the case of transverse permeability. Note we apply the same scaling for the volumetric fluid
fluxes per unit area to the total fluid flux qT and the injected phase fluid flux qi .

We obtain a comprehensive set of five dimensionless numbers characterizing and pro-
viding rapid insights on flow by (i) identifying the required numbers from a dimensionless
form of the flow equations and (ii) modifying the numbers obtained into an equivalent,
more informative set of numbers directly applicable to characterize flow features such as
the shock-front velocity ratio and crossflow behavior. The methodology used to derive the
dimensionless numbers is reported in more detail in Appendix 1. The dimensionless numbers
are summarized in Table 1 and briefly introduced below.
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The effective aspect ratio is given by

RL = L

H

√√
√√ kzker,d

kxker,d
(17)

and quantifies the amount of crossflowbetween layers.When the effective aspect ratio is small
(RL � 1), for example if the layers are separated by an impermeable barrier, then the layers
are non-communicating (Lake 1989). Conversely, in the limit of large effective aspect ratios
(RL � 1), the layers are perfectly communicating and crossflow occurs instantaneously
such that transverse pressure gradients are negligible compared with longitudinal pressure
gradients (Yortsos 1995). We refer to this limit as equilibrium crossflow; flow may be then
treated as layer parallel (Zapata andLake 1981; Lake 1989;Yortsos 1995). The ratio presented
in Eq. (17) is similar to that presented previously by Zapata and Lake (1981), but here we
account for contrasts in the relative permeability end-points between layers. The average of
the longitudinal permeability to the injected phase is arithmetic while it is harmonic in the
transverse direction.

The longitudinal permeability ratio is given by

σx =
[
kxker,d

]

1[
kxker,d

]

2

, (18)

where the subscripts 1 and 2 denote the two layers, and scales the ratio of the influxes into each
layer. Equation (18) is similar to the expression suggested by Goddin et al. (1966) except that
we again account here for contrasts in the relative permeability end-points between layers.
The storage ratio is given by

Rs = [φ�Ssav]1
[φ�Ssav]2

(19)

and scales the ratio of moveable fluid volumes (accounting for the contribution of two-phase
flow effects to the reduction of the moveable pore volume) in each layer. The storage ratio is
new to this study as we include, for the first time, contrasts in porosity between layers, and
also contrasts in the relative permeability curves which dictate the mobile saturation �S and
the average normalized saturation behind the shock-front sav that would be obtained without
layer property contrasts (defined in Appendix 1).

The final two dimensionless numbers are the shock-front mobility ratio in each of the
two layers 1 and 2. The shock-front mobility ratio describes the ratio of the total mobility
across the shock-front (i.e., the total mobility calculated at the saturation values that bound
the discontinuity that defines the shock) and is given by

M1
f =

λ1T

(
s1f

)

λ1T

(
s1∞

) (20a)

M2
f =

λ2T

(
s2f

)

λ2T

(
s2∞

) (20b)

in layers 1 and 2, respectively. Here, s f denotes the upper bound of saturation across the
shock-front, and s∞ denotes the lower bound. We show later in Sect. 4 that the shock-front
mobility ratios in each layer control the viscous crossflow behavior. Previous studies have
used a single mobility ratio to characterize immiscible flow in layered porous media (e.g.,
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Table 1 Governing dimensionless numbers and range of values explored

Effective aspect ratio RL = L
H

√
kzker,d
kx ker,d

0.01–100

Longitudinal permeability ratio σx =
[
kx ker,d

]

1[
kx ker,d

]

2

1–10,000

Storage ratio Rs = [φ�Ssav]1
[φ�Ssav]2

0.01–100

Shock-front mobility ratio in layer j = 1, 2 M j
f = λ

j
T

(
s jf

)

λ
j
T

(
s j∞

) 0.6–1.4

Zapata and Lake 1981); here, we define a mobility ratio for each layer to account for relative
permeability contrasts between layers.

In the immiscible two-phase flow studied here, the dimensionless numbers allow extrapo-
lation of results from one system to another if the systems have relative permeability curves
with identical shapes (Rapoport 1955), here expressed by the Corey exponents. In the case
of piston-like displacements, which were studied previously (e.g., Zapata and Lake 1981),
the relative permeability curves only influence the displacement via their end-point values
because the end-point and shock-front mobility ratios are identical, so it is only required that
the two systems have identical end-point mobility ratios. In this work, we consider displace-
ments which are not piston-like, so the relative permeabilities of the two phases vary behind
the shock-front, making exact scaling with two dimensionless numbers inaccessible. How-
ever, we show later, via asymptotic flow solutions, that the dimensionless numbers presented
above (and summarized in Table 1) are sufficient to achieve an approximate scaling of flow
suitable for our purpose.

The effective aspect ratio RL typically varies over the range 0.1–100 in layered sedimen-
tary systems (L/H is typically large, of order 10–100, while kz/kx is typically small, of order
10−4 – 1; see Table 1). The longitudinal permeability and storage ratio can vary over several
orders of magnitude, due to variations in grain size (σx and Rs � 1) or sorting (σx � 1 and
Rs � 1). Several studies have explored correlations between porosity, absolute permeabil-
ity, and relative permeability, which could be used to restrict the possible combinations of
permeability ratio and storage ratio (e.g., Nelson 1994). However, measured data often show
a poor correlation (e.g., Thompson et al. 1987) and here, for the sake of generality, we do
not restrict the combinations of permeability ratio and storage ratio investigated, varying the
permeability ratio over the range 1–10,000 and the storage ratio over the range 0.01–100. A
suite of core-plug measurements taken along a single well from a North Sea field (Tjølsen
et al. 1991) shows that plausible combinations of the permeability and storage ratios span
one or two orders of magnitude (Fig. 3a). As we show later, there is a consistent change in
crossflow behavior at a shock-front mobility ratio M f = 1, and we investigate values that
span this threshold, ranging from 0.6 to 1.4. Plausible combinations of the fast and slow
shock-front mobility ratios are shown in Fig. 3b.

We quantify the impact of the dimensionless numbers on flow characterized in terms of a
dimensionless storage efficiency, defined as

Es =
∫∫

sφ�Sdxdz
∫∫

φ�Sdxdz
. (21)
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Fig. 3 Possible combinations of a permeability/storage ratios and b shock-front mobility ratios calculated
from core-plug measurements taken along a single well from a North Sea field (data from Tjølsen et al.
1991). Combinations of the shock-front mobility ratios are calculated using the relative permeability data
from Tjølsen et al. (1991), assuming viscosity ratios μd /μi = 1, 10 and 100

The storage efficiency measures how effectively the injected phase is retained within the
model and is relevant when characterizing the geologic storage of carbon in subsurface
reservoirs and the location of NAPLs in contaminated aquifers. The storage efficiency is
also numerically equivalent to the recovery efficiency, which is a measure of how effectively
the displaced phase is removed from the model and is relevant to hydrocarbon production.
Quantifying the effect of the dimensionless numbers in terms of the storage/recovery effi-
ciency (henceforth termed the storage efficiency) therefore yields results of broad interest.
To further analyze the controls on storage efficiency, we also decompose storage efficiency
following Lake (1989) into the product of sweep efficiency, defined as

Esw =
∫∫

φ�S1s>0dxdz∫∫
φ�Sdxdz

, (22)

which measures the fraction of the moveable pore volume contacted by the injectant, and
displacement efficiency, defined as

Ed =
∫∫

sφ�S dxdz
∫∫

φ�S1s>0 dxdz
, (23)

which quantifies the fraction of the contactedmoveable pore volumewhich has been displaced
by the injected phase.

4 Results

4.1 Impact of Layer Property Contrasts on the Shock-Front Velocity

Material property contrasts in layered systems cause the shock-front to propagate with a dif-
ferent velocity in each layer. This is important, because contrasts in the shock-front velocity
impact on viscous crossflow and also on the storage efficiency. For layers that only differ
in their longitudinal permeabilities, it is well known that the shock-front propagates faster
through the high permeability layers (Dykstra and Parsons 1950; Zapata and Lake 1981).
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Fig. 4 Ratio of shock-front velocities in layer 1 and 2 as function of the dimensionless groups in the limits
of a no crossflow (RL = 0) and b equilibrium crossflow (RL � 1). In the no-crossflow limit (a), fast and
slow shock-fronts cannot be defined without ambiguity in the region between the two dashed lines. In this part
of the parameter space, the relative shock-front velocities are sensitive to the specific shapes of the relative
permeability curves

However, the behavior is more complex when the layers also differ in their porosities and
relative permeabilities. We analyze the impact of these material property contrasts by quan-
tifying the shock-front velocities in the limits of no crossflow (RL � 1; see Appendix 2)
and equilibrium crossflow (RL � 1; see Appendix 3). Figure 4a, b summarizes the flow
regions in which a fast shock-front and a slow shock-front can be defined as a function of the
permeability ratio (σx ) and the storage ratio (Rs). When the ratio σx/Rs is sufficiently larger
or smaller than one, it is possible to define without ambiguity a fast shock-front and a slow
shock-front. When the ratio σx/Rs is close to one, it is not necessarily possible to define a
fast shock-front and a slow shock-front. In the equilibrium crossflow limit, the two shock-
fronts move at equal velocities. In the no-crossflow limit, an initially slower shock-front
may become faster than the initially faster shock-front because the total mobility changes
differently in each layer (see Appendix 2 for further details).

4.2 Prediction of Crossflow Regimes

Having identified fast and slow shock-fronts in the previous section, we now consider the
crossflow regimes, predicting these by comparing the pressure profiles obtained in each layer
with negligible crossflow (RL � 1). Displacing-phase crossflow is predicted to occur from
high to low pressure regions, although it is important to note that the displacing phase can
only crossflow out of the invaded part of a layer behind the shock-front. Here we consider
displacements which are not piston-like, so pressure gradients may vary behind the shock-
front due to spatial changes in total fluid mobility. We construct pressure profiles for such
cases by assuming that the total mobility behind the shock-front may be approximated by
the total mobility at the shock-front

λ̂T (s) ≈ λ̂T
(
s f

)
(24)
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Fig. 5 Schematic of pressure profiles obtained in the fast (F) and slow (S) layers without crossflow (RL � 1)
for various shock-front mobility ratios MF

f and MS
f . The pressure profiles are used to predict the displacing-

phase crossflow shown in the adjacent schematics. Arrows indicate the displacing-phase crossflow direction
across the interface separating the two layers; crosses indicate no displacing-phase crossflow

Under this approximation, the pressure profile along a given layer is parameterized by the
shock-front mobility ratio M f : pressure decreases linearly on each side of the shock-front,
and the ratio of pressure gradients ahead of and behind the shock-front is equal to M f (see
Appendix 2). For the sake of simplicity, we assume one of the shock-fronts consistently
propagates faster than the other in the limit RL � 1, and we refer to this shock-front as the
fast (F) shock-front as opposed to the slow (S) shock-front. This is reasonable for σx/Rs ratios
that are sufficiently larger or smaller than one (Fig. 4a). Pressure profiles are expressed with
respect to the fast and slow shock-front mobility ratios, MF

f and MS
f , and are summarized in

Fig. 5. We can interpret these to predict injectant crossflow by comparing the pressure and
the location of the shock-front in each layer. We observe three distinct crossflow regimes.
For MF

f = MS
f < 1 and MF

f > 1 > MS
f (the lower two quadrants in Fig. 5), crossflow of

the injected phase occurs from the fast to the slow layer. For MF
f < 1 < MS

f (the upper
left quadrant in Fig. 5), crossflow occurs in the opposite direction, from the slow to the fast
layer. This crossflow regime, introduced by the contrasts in relative permeability, has not
been reported previously. For MF

f = MS
f > 1 (the upper right quadrant in Fig. 5), significant
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crossflow occurs in both directions: from the slow layer to the fast layer behind the slow
shock-front and from the fast to the slow layer ahead of the slow shock-front. As we show
in the next section, this latter crossflow pattern gives rise to complex changes in saturation
that have not been reported previously. Note that the crossflow regimes shown in Fig. 5 apply
irrespective of the value of the permeability (σx ) and storage (Rs) ratios, which only define
the fast and slow layers (Fig. 4a). For piston-like displacements without relative permeability
contrasts, the fast and slow shock-front mobility ratios are equal to the end-point mobility
ratio Me = kr,iμd/kr,dμi , and we recover the two crossflow regimes identified by Zapata
and Lake (1981) for Me < 1 and Me > 1.

4.3 Impact of Moderate Crossflow on Non-piston-Like Displacements

We now examine crossflow for a moderate effective aspect ratio (RL = 1) to confirm ana-
lytical predictions from the previous section. Solutions of the multiphase flow Eqs. (1)–(4)
were obtained using a commercial code that implements a finite-volume-finite-difference
approach to discretize the governing equations (Eclipse 100). Flow was simulated using
two-dimensional Cartesian grids with resolutions ranging from 200 × 200 up to 800 × 800
cells to demonstrate that the solutions were converged. Time stepping was fully implicit. The
selected Corey exponents are ni = 4, nd = 2 in layer 1 and ni = 2, nd = 3 in layer 2; these
values are typical for geologic porous media and yield non-piston-like displacements (e.g.,
Fig. 1c). The permeability ratio and the storage ratio are chosen as σx = 5 and Rs = 1. The
shock-front travels faster in layer 1 (σx/Rs = 5), so we henceforth refer to layer 1 as the fast
layer and layer 2 as the slow layer. Figure 6 shows the injected phase saturation obtained for
values of the shock-front mobility ratios chosen to be either 0.6 or 1.2. Crossflow directions
are obtained through examination of the transverse fluxes of the injected phase, measured
along the interface between the two layers, and are reported as white arrows on the saturation
maps. These numerical experiments confirm the crossflow directions predicted analytically

1 Mf
F

Mf
S

Mf
F=Mf

S>1

Mf
F=Mf

S<1

Mf
F<1<Mf

S

Mf
F>1>Mf

S

Fig. 6 Injectant crossflow behaviors as function of MF
f and MS

f . The fast and slow shock-front mobility
ratios are alternatively chosen as 0.6 and 1.2, with RL = 1, σx = 5 and Rs = 1. Dashed lines represent the
shock-front positions obtained without crossflow
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Fig. 7 a Injected phase saturation at t = 1 MPVI for MF
f = MS

f = 1.4, RL = 1, σx = 5, Rs = 1, and

b dimensionless transverse displacing phase volumetric flux per unit area q̂i,z across the interface between
the two layers corresponding to (a). Positive fluxes represent fluxes from the slow layer to the fast layer

in Sect. 4.2. We also observe the formation of viscous fingers in the fast layer (see plots on
right of Fig. 6), which is expected when themobility ratio across the shock-front is larger than
one (Riaz and Tchelepi 2006). Viscous fingers in the slow layer were also observed at later
times, when the mobility ratio across the slow shock-front is larger than one. Comparison of
shock-front positions with and without crossflow (see dashed lines in Fig. 6) shows crossflow
also influences the volumes of displacing phase injected into each layer, as crossflow influ-
ences the total fluid mobility in each layer. We find that viscous crossflow only reduces the
distance between the two shock-fronts when MF

f < 1. The impact of crossflow on storage
efficiency will be further explored in Sect. 4.4.

In most cases, crossflow occurs only from the fast layer to the slow layer or vice-versa;
however, for MF

f = MS
f > 1, crossflow occurs from the slow layer to the fast layer behind

the slow shock-front and from the fast to the slow layer ahead of the slow shock-front (Figs. 6,
7). Similar crossflow behaviors were also reported by Zapata and Lake (1981). A point of
zero crossflow can be defined between these two opposing crossflow directions, which travels
along the interface between the two layers toward the outflow face (Fig. 7b). The rotational
nature of the crossflow around this point leads to the development of complex saturation
patterns that have not been observed previously (Fig. 7a). These complex patterns were also
obtained without relative permeability contrasts (Corey exponents were chosen as ni = nd =
2 in both layers), confirming that the crossflow regimes identified here are not specific to
our initial choice of relative permeability curves or to the relative permeability contrast. To
eliminate the possibility of the complex saturation pattern representing a numerical artifact,
a grid sensitivity test was conducted with grid resolution varying from 100 x 100 up to 800
x 800 cells. Numerical solutions were also obtained using the control-volume finite-element
method of Jackson et al. (2015). These sensitivity tests yielded the same crossflow behavior
regardless of grid resolution or numerical method.

4.4 Storage/Recovery Efficiency as Function of the Dimensionless Numbers

We continue our analysis by exploring the storage/recovery efficiency as a function of the
permeability ratio, the storage ratio, the shock-front mobility ratios and the effective aspect
ratio (Table 1). The correlations reported here provide a useful basis for the interpretation of
more complex numerical subsurfacemodels used to quantitatively predict storage or recovery
efficiency.
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Fig. 8 Storage efficiency versus the permeability ratio and the storage ratio for a unit mobility ratio piston-like
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Variations in σx and Rs . To investigate the relationship between σx , Rs and storage effi-
ciency, we initially consider the special case of a piston-like displacement, with the additional
constraint that the injected and displaced phases have equal mobilities, so there are no fluid
mobility contrasts and MF

f = MS
f = 1. This is ensured by choosing suitable values of fluid

viscosity and end-point relative permeability. For this case, the shock-front velocities are
constant in each layer (but vary between layers), the shock-front velocity ratio being equal to

σx/Rs (apply λT
1 (

t̂
) = λT

2 (
t̂
) = 1 in Eq. (37)). Solutions for this type of displacement are

independent of the value of the effective aspect ratio RL as there is no crossflow, and are also
independent of the Corey exponents (i.e., the shape of the relative permeability curves) so
long as these are chosen to yield a piston-like displacement. Given this, and the fixed value
of M f in each layer, flow is described in terms of just two dimensionless parameters (σx and
Rs).

These assumptions allow the storage efficiency to be expressed as a function of σx and Rs

(see Appendix 4). They also allow storage efficiency to be described in terms of sweep effi-
ciency (defined in Eq. 22), these being equivalent for piston-like displacements. Figure 8 plots
the storage efficiency contours obtained at 1 MPVI. We find that storage efficiency is maxi-
mumwhen the shock-fronts travel at identical velocities, i.e., σx/Rs = 1, and decreases with
increasing differences in the shock-front velocity, i.e., when σx/Rs increases or decreases
away from one. While shock-front velocity differences indicate a reduced fraction of the
rock volume contacted by the displacing phase, additional knowledge of the storage ratio is
required to quantify their impact on the fraction of themoveable pore volume contacted by the
displacing phase which, for piston-like displacements, corresponds to the sweep and storage
efficiency. This additional dependency on the storage ratio explains the observed, nonlinear
relationship between storage efficiency, the permeability ratio and the storage ratio. Previ-
ous studies concluded that the maximum storage efficiency (often expressed previously as
the equivalent recovery efficiency) is obtained for unit permeability ratio (σx = 1) (Dyk-
stra and Parsons 1950); we see here that this is true only if there are no storage contrasts.
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Fig. 9 Storage efficiency at t=1 MPVI versus a, b the permeability ratio (with Rs = 0.1 and 10, respectively)
and c the storage ratio (with σx = 2 ), for RL = 1, M1

f = M2
f = 0.6

Moreover, the permeability ratio only has a significant impact on storage efficiency for val-
ues less than σx ≈ 10; at higher permeability ratio, the storage efficiency is approximately
constant irrespective of permeability ratio. In contrast, the storage ratio impacts on storage
efficiency over most of the range investigated, and becomes more significant as the perme-
ability ratio increases above 10. These results suggest that is important to consider contrasts
in porosity and relative permeability, in addition to contrasts in permeability, when assess-
ing storage efficiency in layered systems. They provide a benchmark against which we can
compare non-piston-like displacements with varying fluid mobility, which are considered
next.

Wenowconsider non-piston-like displacementswithfixed and indicative values of RL = 1
and MF

f = MS
f = 0.6, so moderate amounts of crossflow occur. Solutions reported below

(Fig. 9) and in the rest of the section are obtained via numerical simulations, as described
in the previous section. Figure 9 shows that storage efficiency follows the trend observed in
Fig. 8, whichwas obtained assuming piston-like displacements without crossflow.Additional
numerical experiments, not reported here, confirm these trends are maintained regardless
of the values of the other dimensionless groups. Without the piston-like assumption, the
displacement efficiency (defined in Eq. 23) can also vary with the dimensionless parameters,
in addition to the sweep efficiency. However, we find here that the displacement efficiency
only weakly depends on the permeability ratio and the storage ratio.
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Fig. 10 a Storage efficiency at t = 1 MPVI versus M1
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f (with RL = 1, σx = 5 and Rs = 1 ), and
b average saturation behind the shock-front assuming unidimensional flow versus the shock-front mobility
ratio for two sets of Corey exponents (ni , nd )

Variations in M1
f and M2

f . We now vary M1
f and M2

f with fixed and indicative values of
RL = 1, σx = 5 and Rs = 1 to yield moderate crossflow and shock-front velocity ratio,
finding that the storage efficiency decreases as both the fast and slow shock-front mobility
ratios increase (Fig. 10a). Additional numerical experiments, not reported here, confirm
these trends are maintained regardless of the values of the other dimensionless groups. The
reduction in storage efficiency is explained by the reduced displacement efficiency (defined
in Eq. 23) with which the phase initially occupying the pore space is displaced by the injected
phase. It is well known that displacement efficiency in 1D flow, quantified by the average
saturation behind the shock-front (see also Appendix 1), decreases with increasing shock-
front mobility ratio (Fig. 10b).

Variations in RL . We finish by varying RL to explore the impact of crossflow on storage
efficiency for the various crossflow regimes presented in Fig. 6.Without loss of generality, we
choose the permeability ratio and the storage ratio (σx = 5 and Rs = 1) such that crossflow
occurs. The layer in which the shock-front travels faster is referred to as the fast layer. We
find that the effect of changing the effective aspect ratio RL on storage efficiency depends
on the dimensionless time (number of moveable pore volumes injected) at which efficiency
is measured, and on the fast shock-front mobility ratio (Fig. 11). Regardless of the mobility
ratios, storage efficiency at breakthrough (defined as the time at which the displacing phase
reaches the outlet face of the model) increases with RL (Fig. 11).

At early times post-breakthrough, increased crossflow (i.e., increased RL) yields increased
storage efficiency for MF

f < 1, but decreased storage efficiency for MF
f > 1 (see, for

example, changes in storage efficiency with RL at t = 1 MPVI in the left quadrants of
Fig. 11, and at t = 3.2 and 8 MPVI in the right quadrants of Fig. 11). At late times, storage
efficiency becomes more weakly dependent on RL (see, for example, the negligible changes
in storage efficiency at t = 20 MPVI in Fig. 11). These results are consistent with earlier
findings obtained by Zapata and Lake (1981) for piston-like displacements. However, Zapata
and Lake (1981) found the influence of RL on storage efficiency at breakthrough time (note
that they did not report their results in terms of storage efficiency, but they can be expressed
in this way) to be more significant than reported here. This may be explained by their use of a
unidimensional flow model to calculate storage efficiency in the equilibrium crossflow limit,
which overestimates the impact of crossflow. Numerical solutions reported in Appendix 3
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Fig. 11 Change in storage efficiency compared to efficiency obtained without crossflow (RL = 0.01) for
various shock-front mobility ratios. Results are shown at breakthrough, at early times post-breakthrough
(t = 1, 3.2 or 8MPVI) and late time (t = 20MPVI). In all cases, σx = 5 and Rs = 1

(Fig. 15) show the injected phase flowing ahead of the slow shock-front position predicted
using an equilibrium crossflow model similar to the one used by Zapata and Lake (1981).
This results in numerical solutions yielding earlier breakthrough than unidimensional flow
models for large effective aspect ratios RL , thereby predicting smaller changes in storage
efficiency with RL than previously observed.

5 Discussion

The results reported here are applicable to immiscible, incompressible flow in layered porous
media irrespective of material property contrasts, fluid property contrasts and length scale,
so long as capillary and buoyancy effects are negligible. Previous scaling analysis has shown
that the viscous limit explored here is typically observed at high flow rates, large length
scales, low permeabilities, and with fluids having similar densities (e.g., Shook et al. 1992).
Example applications for ourmodel include plug-scale experiments in the laboratory (10’s cm
scale), water flooding of hydrocarbon reservoirs (100’sm scale) and CO2 storage in regional
aquifers (km scale). The five dimensionless numbers (the two shock-front mobility ratios,
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ments at reservoir conditions from Bennion and Bachu (2005, 2006)

the effective aspect ratio, the permeability ratio and the storage ratio) allow possible flow
regimes to be assessed in the context of data-poor scenarios of geologic heterogeneity and
the associated uncertainty in storage or recovery efficiency to be explored.

Our results show that crossflow is inevitable unless the effective aspect ratio is very small
(i.e., for RL < 0.1). In most geologic settings, the effective aspect ratio is large; layers tend to
be long and thin (so L/H is large) and, although kv/kh tends to be small, the effective aspect
ratio depends on the square root of this property. Thus, taking L/H ∼ 10 and kv/kh ∼ 10−4

as typical minimum values yields a minimum RL of ∼0.1. Viscous crossflow in layered
geologic systems is therefore likely unless there is a continuous barrier to flow (such as a
mudstone or cemented horizon) between layers.

Our results also show that knowledge of the end-point mobility ratio is not sufficient to
evaluate crossflow. The shape of the relative permeability curves is also important, as these
strongly influence the shock-front mobility ratio in each layer, and therefore the crossflow
regime. For example, the end-pointmobility ratio forCO2 injection into deep saline aquifers is
typically large: the CO2-brine viscosity ratio is low at the pressure and temperature conditions
relevant to geologic carbon storage (between 0.02 and 0.2), while the end-point relative
permeability is larger for the (wetting) brine phase than for the (non-wetting) CO2 phase.
However, depending on the shape of the relative permeability curves, the shock-frontmobility
ratio may be smaller or larger than one (Fig. 12). Likewise, knowledge of the permeability
ratio is not sufficient to predict crossflow. Both the permeability ratio, which captures the
impact of longitudinal permeability contrasts, and the storage ratio, which captures the impact
of porosity and end-point saturation contrasts, are important to assess storage efficiency.

6 Conclusions

This work examined the effect of viscous forces on the displacement of one fluid by a sec-
ond, immiscible fluid along parallel, continuous layers of contrasting porosity, permeability
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and relative permeability. The two-phase flow was characterized using five dimensionless
numbers that are new to this study:

1. The permeability ratio σx , which captures contrasts in longitudinal (layer-parallel) per-
meability and relative permeability.

2. The storage ratio Rs , which captures contrasts in porosity and the end-point saturations
of the relative permeability curves.

3. The effective aspect ratio RL , which rescales the aspect ratio to account for anisotropic
permeability and relative permeability.

4. Two shock-front mobility ratios defined in each layer, M1
f , and M2

f , which capture the
fluid mobility contrast across the shock-front at the leading edge of the displacement in
each layer.

The impact of the dimensionless numbers on flow was quantified in terms of a dimensionless
storage efficiency, so results are directly applicable, regardless of scale, to geologic carbon
storage. The storage efficiency is also numerically equivalent to the recovery efficiency,
relevant to hydrocarbon production.

In addition to contrasts in longitudinal permeability, characterized by the permeability
ratio (σx ), we show that contrasts in porosity and relative permeability, characterized by the
storage ratio (Rs), affect the velocity with which the shock-fronts move through each layer
and the storage efficiency. The difference in shock-front velocities increases, and the storage
efficiency decreases, as the ratio σx/Rs deviates from one. When this ratio is one, the storage
efficiency is maximal. Previous studies have concluded that the maximum storage efficiency
(usually expressed as the equivalent recovery efficiency) in layered systems is obtained for
unit permeability ratio (σx = 1); we show that this is true only if there are no storage
contrasts (Rs = 1). Moreover, the permeability ratio only has a significant impact on storage
efficiency when it is less than approximately 10; at higher permeability ratio, the storage
efficiency is approximately constant irrespective of permeability ratio. In contrast, the storage
ratio impacts on storage efficiency over most of the range investigated and becomes more
significant as the permeability ratio increases above 10. It is therefore important to consider
contrasts in porosity and relative permeability, in addition to contrasts in permeability, when
assessing storage efficiency in layered systems.

When crossflow occurs, it is possible to use the shock-front velocity to identify a fast layer
and a slow layer; the shock-front velocity is higher in the fast layer than the slow layer. In
some cases, the shock-front velocities are identical in each layer even though the layers have
contrasting porosity, absolute permeability and relative permeability. Crossflow can allow
the displacing phase to move with a uniform shock-front through a heterogeneous, layered
system; this is a highly counterintuitive result. Three crossflow regimes can be identified
based on the shock-front mobility ratios in the fast (MF

f ) and slow (MS
f ) layers. When

MF
f = MS

f < 1 and MF
f > 1 > MS

f , then displacing-phase crossflow only occurs from

the fast layer to the slow layer; conversely, when MF
f < 1 < MS

f , then displacing-phase

crossflow only occurs from the slow layer to the fast layer. When MF
f = MS

f > 1, we
observe complex crossflow patterns that have not been reported previously, with displacing-
phase crossflow from the slow layer to the fast layer behind the slow shock-front and from
the fast layer to the slow layer ahead of the slow shock-front.

Regardless of the values of the other dimensionless numbers, storage efficiency decreases
with increasing shock-frontmobility ratio. The impact of crossflow, quantified by the effective
aspect ratio (RL ), on storage efficiency depends on the time at which the storage efficiency
is measured. Regardless of the values of the other dimensionless numbers, storage efficiency
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at breakthrough increases with the effective aspect ratio. This increase is maintained at late
times when MF

f < 1, but only until some finite post-breakthrough time when MF
f > 1.
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Appendix 1: Derivation of Governing Dimensionless Numbers

The set of dimensionless groups presented in Table 1, which is used to describe immiscible,
two-phase flow along a two-layered porous medium, is obtained in two steps. A first set
of dimensionless numbers required to comprehensively characterize flow is obtained from
a dimensionless form of the flow equations, following the commonly termed ‘inspectional
analysis’, which has been previously applied to homogeneous (Shook et al. 1992) and simple
layered porous media (Zhou et al. 1997). Guided by asymptotic flow solutions discussed in
this work, we replace some of the obtained numbers by equivalent numbers to provide deeper
insight into key flow features such as the shock-front velocity ratio or the crossflow behavior.

Inspectional analysis of the flow equations. Before non-dimensionalizing the flow equa-
tions, we first express the governing flow Eqs. (1)–(4) within the so-called fractional flow
formulation. This requires the injected phase volumetric flux per unit area to be expressed as
a function of the total flux,

qi = −kr,i
μi

=
k ·∇P =

kr,i
μi

λT
·
[
−λT

=
k ·∇P

]
= fi qT , (25)

where the dimensionless ratio of the injected to the total fluidmobility ( fi , which is commonly
called ‘fractional flow’) controls the efficiency with which the injected phase displaces the
phase initially in place (see a typical fractional flow curve and its impact on a two-phase
displacement in Fig. 13).

Re-injecting the latter expression into the continuity equation (1), yields the ‘fractional
flow’ (dimensional) formulation of the governing flow equations

φ�S
∂s

∂t
+ qT · ∇ f i = 0, (26)

∇ · qT = ∇ ·
[
−λT

=
k · ∇P

]
= 0. (27)

Normalizing flow Eqs. (26), (27) using the dimensionless quantities defined in Eqs. (9)–
(15) and the following dimensionless quantities, k̂x,d = kxker,d/kxk

e
r,d , k̂z,d = kzker,d/kzk

e
r,d

and Ĉs = φ�S/φ�S, we obtain the following dimensionless form governing flow equations

Ĉs
∂s

∂ t̂
+ q̂T,x

∂ fi
∂ x̂

+ R2
L q̂T,z

∂ fi
∂ ẑ

= 0, (28)
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Fig. 13 a Typical fractional flow curve as a function of saturation, and b corresponding saturation profile
(commonly called ‘Buckley–Leverett profile’) during a displacement along a homogeneous porous medium.
The shock-front saturation s f and average saturation behind the shock-front sav obtained in a homogeneous
porous medium can be determined graphically as shown on the figure from the construction of the Welge
tangent (represented by the dashed line tangent to the fractional flow curve) (Welge 1952). The average
saturation behind the shock-front also corresponds to the reciprocal of

[
d fi /ds

] (
s f

)
, which quantifies the

shock-front velocity increase related to the bypassing of the displaced phase by the displacing phase

∂ q̂T,x

∂ x̂
+ R2

L
∂ q̂T,z

∂ ẑ
= ∂

∂ x̂

[

−k̂x,d λ̂T
∂ P̂

∂ x̂

]

+ R2
L

∂

∂ ẑ

[

−k̂z,d λ̂T
∂ P̂

∂ ẑ

]

= 0. (29)

From these dimensionless flow equations, we identify the governing dimensionless numbers
as constant coefficients appearing in the partial differential equations or constant coefficients
controlling functionals appearing in the differential equations. The effective aspect ratio RL

directly appears as a constant coefficient within the coupled partial differential equations.
The end-point mobility ratios Me = ker,iμd/ker,dμi and the Corey exponents ni and nd ,
defined in each layer j = 1, 2, are identified as a consequence of our relative permeability
parameterization from

f j
i (s) = M j

e sni, j

M j
e sni, j + (1 − s)nd, j

, (30)

and

λ̂
j
T = M j

e s
ni, j + (1 − s)nd, j . (31)

The longitudinal and transverse permeability ratios,
(
kxker,d

)

1

/ (
kxker,d

)

2
and

(
kzker,d

)

1

/

(
kzker,d

)

2
, as well as the ratio of moveable pore volumes in each layer, (φ�S)1 / (φ�S)2,

are identified from the spatially dependent functionals k̂x,d , k̂z,d and Ĉs . Considering these
functionals are constructed so their spatial averages (in the arithmetic sense for k̂x,d and Ĉs ,
but in the harmonic sense for k̂z,d) is equal to one, the latter permeability ratios and storage
ratio are sufficient to parameterize the functionals.

Contribution of asymptotic flow solutions to dimensionless number selection. Having
identified the required numbers to comprehensively characterize flow, we choose to replace
the end-point mobility ratios Me = ker,iμd/ker,dμi in each layer, and the ratio of moveable
fluid volumes (φ�S)1 / (φ�S)2, by the shock-front mobility ratios in each layer defined
in Eq. (20) and the storage ratio defined in Eq. (19). First, the shock-front mobility ratios
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Table 2 Data used for the numerical sensitivity tests to validate the dimensionless numbers

Dimensional parameters Notation
in the text

Case 1 Case 2 Case 3

Model length (m) L 0.5 10 1,000

Model thickness (m) H 0.1 1 20

Absolute longitudinal permeability in
layers 1 and 2 (mD)

kx 2500/100 500/100 50/10

Absolute transverse permeability in
both layers (mD)

kz 90 3 0.012

Porosity in layers 1 and 2 (-) φ 0.2/0.4 0.3/0.3 0.4/0.2

End-point injected-phase relative
permeability in layers 1 and 2 (–)

keri 0.25/0.125 0.5/0.5 1.0/1.0

End-point displaced-phase relative
permeability in layers 1 and 2 (–)

kerd 1.0/0.5 0.5/0.5 0.1/1.0

Injected-phase residual saturation in
layers 1 and 2 (–)

Sir 0.1/0.35 0.25/0.3 0.35/0.1

Displaced-phase residual saturation
in layers 1 and 2 (–)

Sdr 0.1/0.383 0.05/0.233 0.05/0.1

Injected phase viscosity (cP) μi 1.0 5.0 10.0

Displaced phase viscosity (cP) μd 4.0 5.0 1.0

Dimensionless parameters (for the three cases):

RL = 1, σx = 5, σz = 1, Rs = 1.86, M1
f = 0.4612, M2

f = 0.4219

in each layer, rather than the end-point mobility ratios, capture the leading-order crossflow
behavior in layered systems, as discussed in Sect. 4.2. Because the shock-front mobility ratio
is a strictly increasing function of the end-point mobility ratio for fixed Corey exponents,
replacing the end-point mobility ratios by the shock-front mobility ratio does not affect
the consistency of the proposed dimensionless groups, so we prefer to retain the latter as
being more informative of flow behavior. Second, we replace the ratio of the moveable
pore volumes (φ�S)1 / (φ�S)2 by the storage ratio defined in Eq. (19), which includes the
average saturation sav that would be obtained in each layer without layer property contrasts.
This accounts for the contribution of two-phase flow effects to the reduction of the moveable
pore volume and yields a compact mathematical expression of the shock-front velocity ratios
calculated in the limit of no crossflow and equilibrium crossflow (see “Appendices 2 and
3”). Because the average saturation sav defined in each layer is entirely determined by the
end-point mobility ratio and the Corey exponents, this change does not affect the consistency
of the proposed dimensionless groups.

Numerical validation of the dimensionless numbers. To validate the proposed dimension-
less numbers, we present a numerical sensitivity test (using the numerical method described
in Sect. 4.3) that varies several of the dimensional parameters but maintain the values of the
dimensionless numbers constant (see Table 2). Storage efficiency histories and saturation
distributions obtained were identical between the three cases (see storage efficiency his-
tories reported in Table 3; observed differences are less than one-tenth of one percent).
This confirms that the presented dimensionless results are reproducible independent of
scale.
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Table 3 Dimensionless results for three cases described in Table 2

Dimensionless time (MPVI) Storage efficiency

Case 1 Case 2 Case 3

0.1 0.100451291 0.100450157 0.10045168

0.2 0.200952443 0.200948009 0.200952529

0.3 0.301453852 0.301445191 0.301453866

0.4 0.40195527 0.401941828 0.401954966

0.5 0.502456726 0.502437763 0.502456025

0.6 0.602958204 0.602933626 0.602957236

0.7 0.682352899 0.682246397 0.682354668

0.8 0.712955977 0.712817236 0.712943129

0.9 0.739447063 0.739292727 0.739433606

1.0 0.762493487 0.762337419 0.762487131

Table 4 Storage efficiency histories obtained for various transverse permeability ratio σz

Dimensionless parameters
RL = 10, σx = 5, Rs = 1.78, M1

f = 0.3, M2
f = 0.27

Dimensionless time (MPVI) Storage efficiency

σz = 1 σz = 10 σz = 0.1

0.1 0.100448271 0.10044739 0.100420185

0.2 0.200945831 0.200940917 0.200879782

0.3 0.30144345 0.301433492 0.301340467

0.4 0.401940089 0.401924921 0.401802084

0.5 0.50243714 0.502416758 0.502268393

0.6 0.602933138 0.602907135 0.602726237

0.7 0.703430178 0.70339968 0.703182089

0.8 0.803928134 0.803890362 0.803646895

0.9 0.85575224 0.854843894 0.856646801

1.0 0.863330732 0.863682747 0.862505667

While the transverse permeability ratio σz is formally required to scale the displacement,
the ratio has no influence on storage efficiency histories and normalized saturation distribu-
tions (see for instance storage efficiency histories reported in Table 4; observed differences
are less than one-tenth of one percent). We therefore omit the transverse permeability ratio
from further mention in this text.

Appendix 2: Limiting Case of No Crossflow

We calculate herein the limit of no crossflow the ratio of the shock-front velocities in each
layer, then identify flow regions in which we can define a fast and a slow shock-front and
finally predict the shape of the pressure profiles in each layer.Wefirst confirmusing numerical
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Fig. 14 Injected phase saturation at time t = 0.46MPVI for a typical non-piston-like displacement through
non-communicating layers (with RL = 0.01, σx = 5, Rs = 1 and M1

f = M2
f = 0.6 ). The corresponding

saturation as a function of distance along each layer is shown in Fig. 1c. The solution was obtained using
numerical flow simulation, as described in Sect. 4.3

simulation (as described in Sect. 4.3) the occurrence of this zero crossflow regime for RL =
0.01 (e.g., Fig. 14). Saturation varies longitudinally in each layer, and the 1D saturation
profiles along each layer are reported in Fig. 1c.

We beginwith the calculation of the shock-front velocities. Integrating the total volumetric
fluid flux per unit area along the model, using the incompressibility equation

∂ q̂T,x

∂ x̂
= 0 (32)

obtained with RL = 0, yields the dimensionless pressure drop

�P̂
(
t̂
) = q̂T,x

(
t̂
)

k̂x,dλT
(
t̂
) , (33)

where λT denotes the harmonic average of the dimensionless total mobility λ̂T along the
model. Equating the pressure drops along the two layers yields the ratio of inlet fluxes into
layers 1 and 2,

q̂1T,x

(
t̂
)

q̂2T,x

(
t̂
) = σx

λT
1 (

t̂
)

λT
2 (

t̂
) . (34)

The ratio of influxes is initially weighted by the end-point, displaced phase permeabilities(
kxkerd

)
but varies with time in response to total mobility changes in each layer. This is a

consequenceof the uniformpressure boundary conditions.Thehyperbolic saturation equation
obtained in the no-crossflow limit,

Ĉs
∂s

∂ t̂
+ q̂T,x

(
t̂
) d fi
ds

∂s

∂ x̂
= 0, (35)

shows that the dimensionless shock-front velocity Û j in layer j = 1, 2, is related to the total
flow rate as

Û j = [d fi/ds]
(
s f

)

Ĉs
q̂ j
T,x = 1

Ĉssav
q̂ j
T,x , (36)
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the latter equality making use of the relation sav = 1/ fi ′
(
s f

)
. We obtain the shock-front

velocity ratio as follows,

Û1 (t)

Û2 (t)
= σx

Rs

λT
1
(t)

λT
2
(t)

. (37)

This ratio indicates that shock-front velocities change with time in response to mobil-
ity changes. When σx/Rs > maxsλ̂2T (s) /minsλ̂1T (s), the latter equation indicates that
the shock-front always moves faster through layer 1. The converse is true for σx/Rs <

minsλ̂2T (s) /maxsλ̂1T (s). Between these two cases, it is not necessarily possible to define

without ambiguity a fast and a slow shock-front; for example, when the ratio λT
1
/λT

2
alter-

natively takes values above and below one, and the ratio σx/Rs is sufficiently close to one,
such that an initially slower shock-front becomes faster than the initially faster shock-front.

We now predict the shape of pressure profiles along non-communicating layers. Along
each layer, the longitudinal pressure gradient is calculated from the dimensionless Darcy’s
law

∂ P̂

∂ x̂
= − q̂T,x

k̂x,d λ̂T
. (38)

Ahead of the shock-front, saturation remains uniform (at its initial value), so the total mobil-
ity λ̂T does not vary and pressure decreases linearly. However, this is not necessarily the
case behind the shock-front, where saturation varies if the displacement is not piston-like.
To approximate pressure profiles and predict crossflow regimes for non-piston-like displace-
ments, we assume the total mobility λ̂T behind the shock-front equals total mobility at the
shock-front λ̂T

(
s f

)
, so pressure decreases linearly behind the shock-front. The pressure pro-

file can therefore be described as linear by parts, with the ratio of pressure gradients ahead
and behind the shock-front being equal to the shock-front mobility ratio. Uniform pressure
boundary conditions at the inlet and outlet allow direct comparison of the pressure profiles
obtained in the two layers as shown in Fig. 6. In the limit of piston-like displacements, the
shock-front mobility ratio is equal to the end-point mobility ratio and the result becomes
exact.

Appendix 3: Limiting Case of Equilibrium Crossflow

We calculate herein the limit of equilibrium crossflow the ratio of the shock-front velocities
in the two layers and establish quantitative boundaries between flow regions in which one
shock-front moves faster than the other. For large effective aspect ratios (RL � 1), a regular
asymptotic expansion with respect to RL shows that

∂ P̂

∂ ẑ
= 0 (39)

at leading order (transverse equilibrium;Yortsos 1995).Calculating the total fluidflux through
a transverse cross section of the model,

1∫

0

q̂T,xdẑ = −∂ P̂

∂ x̂

1∫

0

k̂x,d · λ̂T dẑ, (40)
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which is also equal to one by total fluid volume conservation, yields the dimensionless total
flux in the longitudinal direction

q̂T,x = k̂x,d · λ̂T

∫10 k̂x,d · λ̂T dẑ
. (41)

In what follows, we assume there are no transverse variations in saturation within each layer
(1D flow models within layers). We also consider, without loss of generality, that the shock-
front moves faster through layer 1. The longitudinal total flux along this fast shock-front in
layer 1 is given by

q̂1T,x = 2σx M1
f

M1
f σx + 1

, (42)

and, using the incompressibility condition
(
q̂1T,x + q̂2T,x

)
/2 = 1, the longitudinal total flux

along the slow shock-front in layer 2 by

q̂2T,x = 2

M1
f σx + 1

. (43)

The shock-front velocities are obtained by dividing the total fluxes at the shock-front by
Ĉssav. Therefore, we find the ratio of the shock-front velocities to be constant and given by

Û1

Û2
= σx

Rs
M1

f . (44)

Numerical solutions confirm the occurrence of the equilibrium crossflow for RL = 100 (see
Fig. 15). These also indicate that the unidimensional flow model captures accurately the fast
shock-front position but only provides an approximate position for the slow shock-front: The
numerical solution shows injected phase flowing ahead of the slow front position.

In the flow region σx/Rs > 1, the latter formula indicates that the fast shock-front is
located in layer 1 if σx/Rs > max(1, 1/M1

f ). Likewise, repeating the same calculation
assuming that the fast shock-front is located in layer 2, we find in the flow region σx/Rs < 1

Fig. 15 Injected phase saturation at time t = 0.5MPVI for typical displacements through perfectly com-
municating layers (with RL = 100, σx = 5 and Rs = 1 ) for a M1

f = M2
f = 0.6 (where white dashed

lines represent shock-front positions calculated analytically) and b M1
f = 0.4 and M2

f = 1 (where the unidi-
mensional flow model predicts that shock-fronts move at equal velocities). The solutions were obtained using
numerical flow simulation, as described in Sect. 6
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that the fast shock-front is located in layer 2 if σx/Rs < min(1, M2
f ). In the flow region

min
(
1, M2

f

)
< σx/Rs < max(1, 1/M1

f ), the two shock-fronts move at equal velocities.

Appendix 4: Unit Mobility Ratio Piston-Like Displacements

In this limiting case, there are no transverse contrasts in total fluid mobility, so no crossflow
occurs between layers (Me = 1; Zapata and Lake 1981) and flow is described by the no-
crossflow limit outlined in Appendix 2. Here we calculate storage efficiency at 1MPVI as
function of the dimensionless groups σx and Rs . Without loss of generality, we consider the
case σx > Rs so layer 1 is the fast layer. Other cases can be treated in a similar fashion. At
t = 1MPVI, the fast layer 1 is fully swept while only a fraction

(
�x̂

)
2 = Û2 ≤ 1 of the

slow layer 2 is swept. The slow shock-front velocity is given by

Û2 = 2

1 + σx

1
(
Ĉssav

)

2

. (45)

The displacement being piston-like, we have sav = 1, and the storage efficiency at 1 MPVI
can be calculated as follows by

Es =
∫∫

sĈsd x̂d ẑ
∫∫

Ĉsd x̂d ẑ
= 1

2

[(
Ĉs

)

1
+

(
�x̂ · Ĉs

)

2

]
= Rs

Rs + 1
+ 1

σx + 1
. (46)
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