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Abstract Aqueous solutions with polymer additives often used to improve the macro-
scopic sweep efficiency in oil recovery typically exhibit non-Newtonian rheology. In order to
predict theDarcy-scale effective viscosityμeff required for practical applications often, semi-
empirical correlations such as theCannella or Blake–Kozeny correlation are employed. These
correlations employ an empirical constant (“C-factor”) that varies over three orders ofmagni-
tude with explicit dependency on porosity, permeability, fluid rheology and other parameters.
The exact reasons for this dependency are not very well understood. The semi-empirical cor-
relations are derived under the assumption that the porous media can be approximated by a
capillary bundle forwhich exact analytical solutions exist. The effective viscosityμeff (vDarcy)

as a function of flow velocity is then approximated by a cross-sectional average of the local
flow field resulting in a linear relationship between shear rate γ and flow velocity. Only with
such a linear relationship, the effective viscosity can be expressed as a function of an average
flow rate instead of an average shear rate. The local flow field, however, does in general not
exhibit such a linear relationship. Particularly for capillary tubes, the velocity is maximum at
the center, while the shear rate is maximum at the tube wall indicating that shear rate and flow
velocity are rather anti-correlated. The local flow field for a sphere pack is somewhat more
compatible with a linear relationship. However, as hydrodynamic flow simulations (using
Newtonian fluids for simplicity) performed directly on pore-scale resolved digital images
suggest, flow fields for sandstone rock fall between the two limiting cases of capillary tubes
and sphere packs and do in general not exhibit a linear relationship between shear rate and
flow velocity. This indicates that some of the shortcomings of the semi-empirical correla-
tions originate from the approximation of the shear rate by a linear relationship with the
flow velocity which is not very well compatible with flow fields from direct hydrodynamic
calculations. The study also indicates that flow fields in 3D rock are not very well represented
by capillary tubes.

Keywords Pore scale · Flow field · Shear rate · Effective viscosity

B Steffen Berg
steffen.berg@shell.com

1 Shell Global Solutions International B.V, Kesslerpark 1, 2288 GS Rijswijk, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11242-017-0830-3&domain=pdf
http://orcid.org/0000-0003-2441-7719


230 S. Berg, J. van Wunnik

1 Introduction

Conventional water floods have an overall recovery efficiency up to 35–40%. Significant
amount of oil is left behind in the reservoir partially as residual oil is trapped in the pore space
because of capillarity, but also because of bypassing caused bywell placement, heterogeneity
or viscous fingering instabilities. Improved oil recovery (IOR) and enhanced oil recovery
(EOR) approaches aim at improving the overall recovery efficiency (Lake 1989). Many
different approaches exist. To give an example, surfactant flooding targets the residual oil
by enhancing the microscopic displacement efficiency. Polymer flooding on the other hand
mainly targets the bypassed oil by improving the macroscopic sweep efficiency (Reuvers and
Golombok 2009; van der Plas andGolombok 2015). There is also an effect on themicroscopic
displacement efficiency which can have also significant economic benefit. However, the main
purpose of the polymer is reduce themobility of the displacing phase. That is achievedmainly
by increasing the viscosity of the aqueous phase, which improves both the mobility ratio but
also the sweep because of changed pressure gradients and viscous cross-flow. Furthermore,
it suppresses the viscous fingering instability (Saffman and Taylor 1958) which is largely
controlled by the shock front mobility ratio (Berg and Ott 2012).

In order to increase the mobility of the displacing aqueous phase, a variety of different
additives are considered where hydrosoluble polymer is the most prominent class. More
specifically, hydrolyzed polyacrylamide (HPAM) is one of the most suitable polymers con-
sidered, and substantial amount of work on that matter has been conducted over the past
years. However, there are also biopolymers like Xanthan (Cannella et al. 1988) and other
polysaccharides considered. In the framework of Darcy-scale description of multiphase flow
in porous media which is typically used for reservoir engineering, the mobility of the aque-
ous phase is the ratio of the permeability/viscosity. The predominant effect of the polymer to
mobility reduction in the aqueous phase is the increase in viscosity, but there is also a reduc-
tion in permeability through polymer adsorption and entrapment and a polymer depletion
layer causing a slip boundary condition.

The permeability of the porous medium can be significantly reduced by adsorption
(Aghabozorgi and Rostami 2016) and entrapment of polymer in the pore space which can
lead to plugging of smaller pores and a diversion of the pore-scale flow pattern (Sorbie 1991).
A polymer-depleted layer close to the pore wall (Chauvetau 1982; Rodriguez et al. 2014) can
cause a slip boundary condition (Berg et al. 2008) which in a Darcy-scale formulation would
diminish an effective viscosity. It can also lead to hydrodynamic acceleration of the polymer
component. Depending on the polymer formulation, these effects sometimes play a signifi-
cant role in controlling themobility reduction factor (Sorbie 1991; Rodriguez et al. 2014). The
increase in in situ viscosity is a combination of rheological effects such as shear-dependent
fluid viscosity, extensional viscosity (Koroteev et al. 2013; van der Plas and Golombok 2015)
and visco-elasticity (Wang et al. 2010). Polymer in general and more specifically aqueous
solutions of hydrosoluble polymer including HPAM exhibit a shear rate-dependent bulk vis-
cosity (Delshad et al. 2008). The exact dependency of the shear viscosity μ on the shear
rate γ , i.e., μ = μ(γ ) depends on various parameters such as polymer type, concentration,
salinity, molecular weight and predominantly the molecular weight distribution, degree of
hydrolysis and cross-linking state. For practical applications, where reservoir simulation is
performed in order to model the chemical EOR floods in advance, these dependencies need
to be implemented into the respective simulator (Delshad et al. 2008).

Several attempts have been made to model polymer rheology. None are fundamentally
satisfactory. Therefore, in most practical cases, the μ=μ(γ ) relationship is measured in
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Fig. 1 Simplified illustration showing how shear rate (γ̇ )-dependent shear viscosity (μ = μ(γ̇ )) on the pore
scale (left) is upscaled to the effective shear viscosity as a function of Darcy velocity μeff = μeff (vDarcy) on
the Darcy scale (middle) which is used in reservoir simulations in a layered formation (right). Note that most
geologies are more complex and interconnectivity plays an important role which makes the transition from
Darcy to reservoir scale also more complex

laboratory tests by a shear rheometer. In porous media flows which exhibit a complex flow
field on the pore scale, the shear rate has a spatial variation, and therefore, also the shear
rate-dependent bulk viscosity μ=μ(γ ) varies from pore to pore. However, for practical
reservoir engineering purpose, usually only the Darcy-scale effective viscosity is considered.
Since the shear rate is a pore scale property, the effective viscosity (often termed also in situ
rheology or in situ viscosity) is seen as a property depending on the Darcy velocity, i.e.,
μeff = μeff (vDarcy). This is sketched in Fig. 1.

For most practical purpose, i.e., for practical field applications, typically a specific μeff =
μeff (vDarcy) relationship is required for the field of interest. For optimization of the field
application, typically polymer type, concentration and molecular weight are varied which
results in a large number of polymer formulations which have to be tested. For typical
application-relevant polymers including biopolymers such as Xanthan and HPAM, the shear
rheology effects dominate below a critical Deborah number (ratio of the stress relaxation time
of the polymer and the time scale of the flow) showing shear-thinning behavior over a large
range of flow velocities. After initial assessment of the bulk rheology μ = μ(γ ), eventually
core flooding experiments are be conducted where the μeff = μeff (vDarcy) relationship is
measured in laboratory experiments for the most promising formulations by conducting core
floods by varying the flow rate. Since core flooding experiments with hydrosoluble polymer
are usually destructive, i.e., polymer remains inside the rock that cannot be removed (unless
aggressive cleaning procedures are used that likely also alter the rock itself), and rock samples
from the field of interest are often very scarce, the first set of core flooding experiments is
conducted on analog rock samples. These are often taken from outcrop rock which has in
most cases different porosity and permeability than the rock from the field. In order to obtain
the response μeff = μeff (vDarcy) of the respective formulations in the field rock, one would
need to either translate the bulk rheology μ = μ(γ ) directly to μeff = μeff (vDarcy) for the
rock material of interest or at least translate the μeff = μeff (vDarcy) determined from the
analog rock material (which is available in unlimited quantity) to the scarce field cores.

Therefore, the main objective of a large body of research is to establish a relationship
between bulk rheology μ = μ(γ ) and effective viscosity μeff = μeff (vDarcy) to be used in
Darcy-type flow simulators.

A direct link between the bulk viscosity μ = μ(γ ) and Darcy scale μeff = μeff (vDarcy)

can be made by using approximate analytical models (Fayed et al. 2016) or hydrodynamic
simulation of the pore-scale flowfield for the non-Newtonian rheology (Balhoff 2000;Afshar-
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poor et al. 2012; Clemens et al. 2012; Afsharpoor and Balhoff 2013; Tosco et al. 2013).
Even though these approaches become more and more available, the most commonly used
approach are semi-empirical correlations for the Darcy-scale effective shear rate (Delshad
et al. 2008). These semi-empirical correlations are based on the Cannella or Blake–Kozeny
equation (Meter and Bird 1964; Cannella et al. 1988; Sorbie 1991) which was originally
developed for capillary bundles. They are semi-empirical and contain empirical factors such
as the shear rate coefficient, often also termed the “C factor”, which in the framework of
the correlation is a constant. When comparing with experimental measurements, the “C-
factor” depends on parameters like permeability and varies case by case over three orders
of magnitude (Wreath et al. 1990). That is not supposed to be because the Cannella equa-
tion already contains porosity and permeability as explicit parameters such that C should be
independent of permeability. However, the experimental evidence suggests otherwise which
makes it difficult to translate the effective viscosity determined experimentally, for instance,
in a more readily available model or outcrop rock to the reservoir rock of interest for a field
development.

The question is nowwhat causes this explicit dependency of the “C-factor” on porosity and
permeability. In general discrepancies between the correlation and experimental data on the
Darcy scale can be caused bymultiple effects. Polymer-related effects such as adsorption and
mechanical entrapment can cause a permeability reduction of the rock. The in situ rheology
can bemore complex than shear thinning or a shear rheology alone.Also possibly the structure
of the flow field and the relation between flow velocity and shear rate could be different from
what is assumed in the semi-empirical correlation. For polymer systems, it is very difficult
to distinguish the different effects. Therefore, in this work, polymer adsorption and rheology
effects are excluded by considering only Newtonian fluids. Pore-scale simulations of Stokes
flow on pore structures of sandstone rock and model geometries are used to investigate the
relation between flow velocity and shear rate field and assess how that impacts the ability of
the Blake–Kozeny correlation to predict shear rate.

2 The Cannella or Blake–Kozeny Correlation

A central element of this work is to assess the correlation (at same position �x) between
flow velocity �u(�x) and shear rate γ (�x) fields, where velocity is a vector and shear rate is
derived from a tensor. Themainmotivation for looking at shear rates originates from polymer
flooding. Even though all calculations in this work are performed with Newtonian fluids, for
the motivation we have to go back to non-Newtonian fluids as relevant for polymer flooding.
Their rheological behavior is typically parameterized as a function of shear rate.Hydrosoluble
polymer systems considered for polymer flooding often exhibit rheological behavior with
a Newtonian plateau up to a certain shear rate and then a shear-thinning behavior which is
often parameterized using for instance the Carreau model (Delshad et al. 2008; Fayed et al.
2016). The shear viscosity μ as a function of shear rate γ is expressed as

μ − μ∞
μ0 − μ∞

= [
1 + (λγ )α

](n−1)/α (1)

where μ∞ the shear viscosity at infinite shear rate, μ0 the shear viscosity at zero shear share
and λ, α and n are material parameters (Delshad et al. 2008). n is the power law exponent in
the shear-thinning regime, i.e., n ≤ 1.

Equation (1) describes bulk rheology, i.e., continuum mechanics rheology in bulk outside
the porous medium. The effective rheology inside a porous medium μeff on the Darcy scale
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is interpreted via Darcy’s law which relates the Darcy velocity uDarcy (which is essentially
a cross section A averaged flux Q of the aqueous phase, i.e., uDarcy = uw = Q/A) to the
applied pressure gradient ∇ p via

uDarcy = uw = K

μeff
∇ p (2)

where K is the permeability of the porous medium. In this Darcy-scale picture, the effective
shear viscosityμeff is then related to the (Darcy scale) effective shear rate γeff using the same
functional form of the Carreau model from Eq. (1)

μeff − μ∞
μ0 − μ∞

= [
1 + (λγeff )

α
](n−1)/α (3)

but replacing the bulk shear viscosity μ and γ with the effective viscosity μeff and effective
shear rate γeff .

The effective shear rate γeff is then related to the Darcy flow rate by using semi-empirical
correlations (Delshad et al. 2008) based on the Blake–Kozeny or Cannella equation (Sorbie
1991; Cannella et al. 1988) which was originally developed for capillary bundles

γeff = C

[
3n + 1

4n

]n/(n−1)
[

4√
8

uw√
kr,wK Swφ

]

(4)

n is again the power-law exponent of the fluid, uw the Darcy velocity of the water phase, kr,w
the water relative permeability, K the absolute permeability, Sw the water saturation andφ the
porosity. Note that the computation of the effective shear rate in the capillary bundle model
from Eq. (4) assumes a no-slip boundary condition (Berg et al. 2008). For each capillary, the
shear rate is computed analytically from the parabolic (Poiseuille) velocity profile taking the
derivative of the flow velocity perpendicular to the main flow direction [for details see later
Eq. (13)]. Slip effects caused by the polymer depletion layer (Rodriguez et al. 2014) are not
included.

C is an empirical constant which in the original derivation of the capillary-tube-based
model is C =6.0 or “around 6” for Xanthan polymer (Cannella et al. 1988) but can assume
other values for different systems. Taking the larger body of literature into account, C is
reported to vary between 10−1 and 103 (Wreath et al. 1990). Often a major unknown is the
fluid rheology and, contrary to the capillary bundle model, C is not a constant but shows to
depend on permeability K and porosity φ (Delshad et al. 2008) and other parameters. That
raises the question where the dependency on porosity and permeability originates from and
to which extent it is caused by the underlying assumptions in the correlation from Eq. (4).

One potential source is rock heterogeneity. A homogenization approach applied to het-
erogeneous rock on the Darcy scale showed an explicit dependency on tortuosity T , porosity
φ, power law fluid index n, and more general the pore size /permeability distribution and
correlations structure of the heterogeneity (Fadili et al. 2002). However, a large variation of
the C-factor is also observed for relatively homogeneous rock which still raises the question
about its origin.

In order to exclude potential polymer-specific effects such as permeability reduction by
polymer adsorption, and more complex rheology on the pore scale such as extensional vis-
cosity (Koroteev et al. 2013), in the following only Newtonian fluids are considered, i.e., the
power law index n = 1. The situation is further simplified to single-phase flow, i.e., Sw = 1,
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kr,w = 1. As a consequence, the term

lim
n→1

[
3n + 1

4n

]n/(n−1)

≈ 0.78 (5)

Combining the factor of 4/
√
8 = √

2 = 1.41 and the factor of 0.78 from Eq. (5), we arrive
at a total pre-factor around 1.41× 0.78 ≈ 1.1 which given the range of C-factors from 10−1

to 103 sufficiently close to one (given that C can range over four orders of magnitude). That
simplifies Eq. (4) to

γeff = C
uw√
Kφ

(6)

Estimating uw from Darcy’s law, for typical field velocities of 1 ft/day, we obtain for Berea
sandstone in the next section effective shear rates γeff between 2 and 6 s−1. This effective
shear rate is compared with the mean shear rate �mean computed from the flow field as
explained in the next section.

3 Pore-Scale Flow Simulation

Single-phase pore-scale Stokes flow simulations are performed using OpenFOAM (Raeini
et al. 2014) and the SimpleFFT solver of the GeoDICT package (version 2014; Fraunhofer
ITWM, Math2Market GmbH, Kaiserslautern, Germany) (Becker et al. 2008; Berg et al.
2016). In both cases, the simulations were performed for water using a constant viscosity
μ = 1mPas as a Newtonian fluid in order to exclude uncertainties originating from rheology
effects.

While the specific solvers and details of the numerical approaches differ, both simulation
packages effectively simulate steady-state (fully developed) Stokes flow directly on the pore
space of the porous medium, i.e., solve the flow field �u for an applied pressure drop �p over
the porous domain for Newtonian incompressible fluids which can be expressed (neglecting
gravity) as

μ∇2 �u − ∇ p = 0

∇ · �u = 0
(7)

where the first equation represents the momentum balance and the second equation incom-
pressibility.

In the momentum balance, the term μ∇2 �u is already a simplification of the divergence of
the viscous stress tensor ∇ · τ

∇ · τ = μ∇2 �u (8)

The viscous stress tensor τ is a symmetric, second rank tensor which can be expressed for an
incompressible Newtonian fluid as product of the shear viscosity μ (which for a Newtonian
fluid is constant) and the rate of strain tensor � as (Deen 1998)

τ = μ
[ �∇�v + ( �∇�v)t

]
= 2μ� (9)

The scalar shear rate γ is represented by the magnitude of the rate of strain tensor �

γ = � =
√
1

2
(� : �) (10)
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which is the key parameter for simple non-Newtonian rheology models such as the Carreau
model for non-Newtonian fluids from Eq. (1). The computation of � has been performed in
Avizo (FEI) computing first the rate of strain tensor � using the gradient functionality on
each velocity vector component and then its magnitude �.

3.1 Pore-Scale Flow and Shear Rate Fields Sandstone Rock

In the following, pore-scale flow fields are computed for two different sandstone rocks. The
first rock is a Berea sandstone with a porosity of 19.6% and a permeability of 1193mD in z-
direction. The digital image with a domain size of (400)3 voxels and a resolution of 5.345µm
was taken from the Imperial College website (Raeini et al. 2014). Flow simulations have been
performed with OpenFOAM applying a pressure drop of 1Pa in the z-direction (Raeini et al.
2014).

In order to check how representative the examples from the Berea sandstone are, a second
rock sample “RS1”was usedwhich is a sandstone reservoir rockwith a porosity of 14.8% and
a permeability of 50–200mD. The digital image has been obtained from X-ray computed
micro-tomography at 2.05µm resolution. The image has been first filtered with a nonlo-
cal means filter and then segmented using a watershed segmentation method using Avizo
(Leu et al. 2014). The image was then down sampled by factor of 2 (obtaining an effec-
tive resolution of 4.1µm), and the flow simulations were performed on a 600×600×950
subdomain with the SimpleFFT solver of GeoDICT by applying a pressure drop of 1Pa in
z-direction.

The properties of the rock and resulting quantities are listed in Table 1. The results of
the Berea sandstone and the reservoir rock are qualitatively very similar with very minor
quantitative differences originating from the differences in porosity and permeability.

The results of the pore-scale Stokes flow calculations for a (200)3 voxel subdomain of
the Berea sample are displayed in Fig. 2. Panel (A) shows the flow field (i.e., the magnitude
u = |�u|) and panel (B) the pressure field which has been obtained by numerically solving Eq.
(7). The pressure field shows (when averaged over the pore space in the x–y plane) an overall
linear decrease from inlet to outlet in z-direction (not shown). Panel (C) shows the shear rate
or magnitude of rate of strain tensor � computed from the flow field by using Eq. (10). Flow
field and shear rate field show a much larger variation with the largest flow velocities and
shear rates encountered in pore throats.

From the flow velocity and shear rate fields, respective histograms are computed using
the histogram functionality of Avizo. The results are shown in Fig. 3 where on the left hand

Table 1 Average flow velocity uw , effective shear rates γeff computed from the Blake Kozeny equation and
the mean shear rate �mean computed from the flow field, for Berea sandstone and a reservoir rock sandstone
“RS1”

Sample Flow solver K φ Lz �P μw av. uw γeff �mean C’
(mD) (m) (Pa) (Pa s) (m/s) (s−1) (s−1)

Berea OpenFOAM 1193 0.196 0.002 1 0.001 5.6 × 10−7 6.9 4.5 × 10−1 0.4

RS1 GeoDICT 146.3 0.149 0.002 1 0.001 7.1 × 10−8 2.9 9.1 × 10−2 0.2

Capillaries GeoDICT 6742 0.55 0.0005 1 0.001 1.4 × 10−5 44 2.82 0.4

Spheres GeoDICT 1037 0.52 0.0005 1 0.001 2.1 × 10−6 18 0.97 0.4
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236 S. Berg, J. van Wunnik

Fig. 2 a Pore-scale flow field u = |�u|, b pressure p and c shear rate magnitude � for a (200)3 subdomain
for the Berea sandstone sample. For the flow velocity and shear rate, the magnitude increases from blue (low)
over green to red (high). For the pressure field red represents high pressure (1Pa) and blue low pressure (0Pa)

side the histogram of the flow velocity magnitude u = |�u| is displayed and on the right hand
side the histogram of the shear rate magnitude � =

√
1
2 (� : �).

In the velocity magnitude histogram in Fig. 3a, the average velocity is close to (the
interstitial velocity corresponding to aDarcy velocity of) 1 ft/day indicating that the simulated
flow field is relevant for field conditions. In the shear rate histogram in Fig. 3b, the estimate
from the Blake–Kozeny correlation from Eq. (6) for C = 6 (Delshad et al. 2008) is at the
upper end of the range of shear rates and about a factor of 15 larger than the average shear rate.

The results of the reservoir rock sandstone sample “RS1” are qualitatively very similar to
Berea and therefore not displayed. All results are summarized in Table 1. The mean share
rates �mean are typically a factor 15–32 smaller than the estimates from the Blake–Kozeny
correlation in Eq. (6) for C = 6. That in itself is not really surprising because it is well
understood from the literature that the “C-factor” can vary by three orders of magnitude
(Wreath et al. 1990). By adjusting the “C-factor” from Eq. (6), these can be brought to a
matchwithin the range of values reported in the literature. The respectivemodifiedC-factor is
then termed C‘ and is listed in the last column of Table 1. The magnitude is close to the value
of C = 0.69 as reported by Hirasaki and Pope (1974). For all considered structures, i.e., the
two sandstone rocks, capillary bundle and sphere pack, C‘ is actually very similar, ranging
between 0.2 and 0.4. It does not exhibit the large variation over several orders of magnitude
as observed in experiments with polymer (Wreath et al. 1990). Possible reasons are that in
this study polymer-related and rheology-specific effects and uncertainties are excludedwhich
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Fig. 3 Histograms of the velocity field u = |�u| (a) and shear rate � =
√

1
2 (� : �) (b) of the Berea sandstone.

In the velocity histogram, the vertical red line represents the interstitial velocity for a 1 ft/day Darcy velocity
indicating that the simulated flow field is in the same range of field-relevant flow rates. The vertical gray line
represents the average velocity of the flow field. In the shear rate histogram, the gray line represents the average
from the histogram, and the vertical red line the estimate from the Blake–Kozeny (or Cannella) correlation
from Eq. (6) using C = 6

are present in the experimental studies (Wreath et al. 1990). Another possible reason is that
for the considered structures the permeability varies within one order of magnitude, while in
natural rock usually several orders of magnitude are encountered. Nevertheless, the data in
Table 1 show the smallest C’ for the smallest permeability indicating a possible trend of C’
with permeability compatible with reports in the literature (Wreath et al. 1990).

3.2 Relationship Between Flow Velocity and Shear Rate in Model Geometries

The fundamental question is why the C-factor adjustment is required and whether there
is a more fundamental mismatch between the correlation and its underlying assumptions.
This is a long standing question that has been articulated already in Wreath et al. (1990).
Teeuw and Hesselink (1980) argued that C depends on the ratios of the radii and lengths
of the contractions and dilations in the underlying porous media which would in practice
have a direct impact on the pore-scale flow field. Therefore, in the following, we inspect
the pore-scale flow fields in more detail in particular with respect to the relation between
shear rate and flow velocity. For that purpose, 2D correlation histograms between the flow

velocity magnitude u = |�u| from the flow simulation and the shear rate � =
√

1
2 (� : �)

are computed using the 2D histogram functionality of Avizo. We begin with considering
the model geometries of sphere packs and capillary bundles which are often used as model
systems for porous media. The flow fields have been computed in a similar way as the
flow fields for the sandstone rocks. The respective flow and shear rate fields and the shear
rate histograms are displayed in Fig. 4. Effective shear rates and the comparison with the
correlation are listed in Table 1. The respective 2D shear rate versus flow velocity correlation
histograms are displayed in Fig. 5.

The shear rate histogram of the capillary tubes case shown in Fig. 4e extends over a much
narrower range and is overall very different from the sandstone case in Fig. 3. Therefore, for
comparison, also the model structure of a sphere pack was considered. The respective flow
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Fig. 4 a Pore-scale flow field u = |�u| and c shear rate γ for a pack of capillary tubes with radius R = 10µm
and for a sphere pack with sphere radius R = 10µm (b) and (d), respectively. Flow simulations have been
performed with the SimpleFFT solver of GeoDICT under similar conditions as the reservoir sandstone RS1
from Table 1. e and f show the respective histograms of the shear rate γ

field, shear rate field and shear rate histogram are displayed in Fig. 4b, d, f. For the sphere
pack, the shear rate histogram from Fig. 4f is somewhat closer to the sandstone case from
Fig. 3. The respective 2D correlation histogram is displayed in Fig. 5b.

The 2D correlation histograms in Fig. 5 clearly show that there is no unique linear rela-
tionship between flow velocity magnitude and shear rate in particular not for the capillary
bundle model. Strictly speaking, the correlation from Eq. (6) actually does not suggest such a
linear relationship on the basis of the pore-scale flow field but only on the tube cross-sectional
averaged flux and shear rate in a capillary tubes model. Let us therefore revisit the flow field
in a single capillary tube with radius R as displayed in Fig. 6.
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Fig. 5 2D correlation histograms between u (horizontal axis) and γ (vertical axis) for the capillary bundle
(a) and sphere pack (b) from Fig. 4. The blue line in a is a fit with Eq. (16)

For a single capillary of radius R, the velocity in (z-) flow direction is (Berg et al. 2008)

u = uz(r) = − 1

μ

∂p

∂z

R2

4

(
1 − r2

R2

)
(11)

and the flux

q = Q

A
= 1

πR2

πR4

8μ

∂p

∂z
= R2

8μ

∂p

∂z
= K

μ

∂p

∂z
(12)

with the permeability of the tube K = R2/8. The local shear rate [which is equivalent to the
shear rate magnitude �, see Eq. (10)] is then

γ = ∂u(r)

∂r
= 1

μ

∂p

∂z

r

2
(13)

which can be expressed in terms of flux Q from Eq. (12) by eliminating the pressure gradient
∂p/∂z obtaining

γ = 4r

R2 q (14)

which is still a local quantity of position r . The cross-sectional averaged shear rate is then

γ̄ = 1

πR2

R∫

0

2πrγ (r)dr = 1

πR2

R∫

0

2πr
1

μ

∂p

∂z

r

2
dr = 1

3

1

μ

∂p

∂z
R =

√
8

3

1√
K
q (15)

Fig. 6 Geometry of a capillary
tube with radius R and constant
pressure gradient ∂p/∂z

123



240 S. Berg, J. van Wunnik

which is in essence (up to constant pre-factors) the Blake–Kozeny relationship for Newtonian
fluids from Eq. (6). However, this also shows that the linear relationship is only obtained for
capillary tube cross-sectional averaged flux and shear rate (magnitude). For the local flow
field and shear rate field, such a unique linear relationship does not exist. In order to obtain
the relationship between local shear rate γ (r) and local flow velocity uz(r), one can express
γ in terms of uz by eliminating r using Eq. (11) and substitute in Eq. (13), obtaining

γ = ∂uz(r)

∂r
= 1

μ

√
R2

4

(
∂p

∂z

)2

+ μuz
∂p

∂z
(16)

The structure of Eq. (16) is significantly more complicated than the linear relationship
between cross-sectional averaged shear rate and flux from Eq. (15). The 2D correlation
histogram for the capillary bundle model displayed in Fig. 5a follows the functional form of
Eq. (16) which is superimposed as blue line. Note that deviations of the 2D correlation his-
togram from the analytical model (blue line) originate from discretization issues in numerical
computations and when computing derivatives during postprocessing. In the future, perhaps
more robust methods can be developed.

The reason why we do not observe a linear relationship between shear rate and flow
velocity is that Eq. (16) contains two terms where the first is constant and the second varies
with uz(r) which has a square dependency with the radial position r in the tube, but also
contains implicit dependencies on position, viscosity andpermeability.Anorder ofmagnitude
estimate indicates that for the typical range of pore sizes R and flow velocities uz , the ratio
of the two terms under the square root can vary between 10−2 and 102. This means that a
large velocity does not necessarily cause a large shear rate and vice versa. According to Eq.
(16), the maximum flow velocity and minimum shear rate γ are encountered for r = 0, while
according to Eq. (13) themaximum shear rate is obtained for r = R where uz is minimal (i.e.,
zero). That can be also clearly seen in the flow simulation for a pack of capillary tubes (with
radius R = 10µm) displayed in Fig. 4a, c. Note that as Eq. (16) is derived by substituting
Eq. (11) into (13), it leads to the same cross-sectional averaged shear rate as Eq. (15).

The 2D correlation histogram for the sphere pack displayed in Fig. 5b shows clearly a
stronger proportionality between flow velocity u and shear rate γ than for the capillary tubes
case. For the case of capillary tubes, the root cause for the “anti-“correlation between shear
rate and flow field is the no-slip boundary condition at the wall which causes maximum shear
rate ∂uz/∂r at zero velocity uz = 0. For the flow field of the sphere pack, the situation is
different for the regions between the spheres as indicated in Fig. 7.

Figure 7 represents a cross section along the velocity field uz in a plane outside of where
the spheres touch. In a (red) line perpendicular to the main flow direction (i.e., in y-direction)
at the location where the flow field touches the sphere, we encounter a situation where the
flow velocity uz = 0 and the shear rate ∂uz/∂y is maximum in point (1), similar to the
situation in the capillary tube. However, in the regions between spheres (blue lines in Fig. 7),
the flow field is stagnant with the flow velocity uz < 3 · 10−7 m/s ≈ 0 i.e., practically zero,
and for symmetry reasons ∂uz/∂y = 0 in point (2), i.e., velocity and shear rate converge both
to practically zero. In the vicinity, a proportionality between shear rate and flow velocity is
expected. That is reflected in the 2D correlation histogram in Fig. 5b for up to about half to
two thirds of the velocity range. For increasing velocities further away toward point 3 where
velocities initially keep increasing, eventually the velocity reaches a maximum value and the
shear rate decreases again to zero because point (3) is again a symmetry point. That is also
reflected in the 2D correlation histogram in Fig. 5b for the larger velocity range. It appears as
if one could decompose the sphere pack’s flow field into a stagnant part where flow velocity
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Fig. 7 Cross section through the flow field in the sphere pack from Fig. 4b (showing a plane with a detail of
3×3 spheres). Superimposed in yellow are the streamlines. Where the flow field is in contact with the spheres
(red lines) the flow velocity is zero and the shear rate is maximum in point (1), similar to the situation in the
capillary tube. However, in the regions between spheres (blue line) the flow velocity uz ≈ 0 and shear rate
∂uz/∂r = 0 at the symmetry point (2) between spheres. In the vicinity, a proportionality of flow velocity and
shear rate is expected. Following the blue line, eventually the velocity reaches a maximum value and the shear
rate decreases again to zero because point (3) is again a symmetry point

and shear rate are proportional, and a channel-like part where flow velocity and shear rate are
anti-correlated as in Fig. 5a. One can regard the sphere pack as a network of channels with
cross-flow between them (while the capillary bundle has no cross-flow). Depending on the
flow direction, some regions in the connections between channels that allow for the cross-
flow are stagnant. These stagnant regions cause the proportionality between flow velocity
and shear rate.

Note that even though the flow field and shear rate–velocity correlation are different, for
the average shear rate for the sphere pack, a linear relationship with the Darcy velocity is
expected similar as for the capillary tube bundle.

3.3 Relationship Between Flow Velocity and Shear Rate in Sandstone Rock

The 2D shear rate–flow velocity correlation histograms for the Berea and reservoir sandstone
“RS1” case are displayed in Figs. 8 and 9, respectively.

For both cases, the 2D correlation histograms show a wide spread in the relationship
between flow velocity magnitude u = |�u| on the horizontal axis and the shear rate � =√

1
2 (� : �) on the vertical axis, but no unique linear correlation, meaning that for the same
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Fig. 8 2D correlation histogram between velocity magnitude v = |�v| on the horizontal axis and shear rate
magnitude � on the vertical axis for the Berea sandstone case

flow velocity there is a large variation of shear rate, depending on the local geometry (and
hence the local flow field).

Since there is no simple linear relationship between shear rate and flow velocity, this
means that computing an effective viscosity from an average shear rate is not the same as
computing it from an average flow velocity, i.e., μeff (γ (v)) 	= μeff (γ (v)). An empirical
constant can certainly compensate for the mismatch but that constant is porous medium
specific and depends on to which degree the relationship between γ and v is linear. In order
to assess the sensitivity to pore geometry, in the followingwe consider twomodel geometries,
i.e., capillary tubes and a sphere pack.

It appears that on the basis of the 2D correlation histograms, the flow fields of capillary
tubes and sphere packs from Fig. 5 are limiting cases at opposite ends of the spectrum.
On the basis of the 2D correlation histograms from Fig. 5 compared with the flow field in
sandstone rock from Figs. 8 and 9, it becomes clear that in terms of flow field, capillaries
are not a good representation of rock. The flow field of rock seems to lie between that of
the capillary tubes case and the sphere pack, or is a combination thereof. In the discussion
of the sphere pack results at the end of the previous section, we already rationalized that the
flow field of a 3D structure can be decomposed into more channel-like regions with capillary
tube-like flow fields and cross-connections between these channels that are stagnant causing
a proportionality between flow velocity and shear rate. The flow field in any 3D structure is
then a combination of those two contributions but the exact partition depends on properties
like the length of pore throats and the aspect ratio of their diameter compared to pore bodies,
and the coordination number.

Elongated pore throats which resemble capillary tubes are expected to have a more
channel-like flow field which resembles more that of capillary tubes in Fig. 5a. That is ulti-
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Fig. 9 2D correlation histogram between velocity magnitude v = |�v| on the horizontal axis and shear rate
magnitude � on the vertical axis for the reservoir sandstone rock “RS1”

mately the reason why the degree to which μeff (γ (v)) 	= μeff (γ (v)) depends on the actual
pore space morphology, or in other words the “C-factor” varies with the pore structure. In
the Berea sandstone case in Fig. 8, it appears as if the flow field is dominated by stagnant
flow regions because the shear rate converges to zero for decreasing flow velocities. For the
RS1 sandstone, there is a predominant contribution from stagnant flow regions as well but it
has also channel-like elements because we observer a significant shear rate at vanishing flow
velocity. Therefore, the Berea case is somewhat more compatible with a linear relationship
between flow velocity and shear rate than RS1 which is also reflected by the C’ in Table 1
being closer to one for the Berea case compared to RS1.

Note that in this study the observed C-factors range between 0.2 and 0.4 (Table 1). The
data suggest a weak dependency of the C-factor on permeability compatible with reports in
the literature (Wreath et al. 1990). However, in this study the permeability range considered
is only roughly one order of magnitude. In order to draw firmer conclusions on the perme-
ability dependency of the C-factor, a variation of permeability by several orders of magnitude
(Wreath et al. 1990) which is in various aspects beyond the scope of this study.

This work is limited to Newtonian rheology. When non-Newtonian rheology effects are
included in the computation of the flow field, it is expected that the flow field is changing and
that consequently the correlations betweenflowand shear rate are also changing.Compared to
the Newtonian case, for a shear-thinning fluid regions with low shear rates (and consequently
higher viscosity) are expected to have lower flow velocities and regions with high shear rate
(and consequently low viscosity) are expected to have higher flow velocities. Dependent
on the extent of the shear thinning, i.e., the relationship between viscosity and shear rate,
the stagnant regions may become larger and the higher velocity flow paths more localized
compared to the Newtonian case. When including extensional rheology effects, it is expected
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that regions with large variation in pore diameter such as pore throats would be significantly
impacted by higher flow velocities, while the stagnant regions become even more stagnant. It
might be useful to consider the case of the capillary tube bundle and sphere packs as reference
cases for which exact analytical solutions can be computed for certain rheological models
like Carreau fluids using the Weissenberg-Rabinowitsch-Mooney-Schofield integral method
(Sochi 2015). But also a 3D porous rock should be considered as this work clearly showed
that capillary bundles and sphere packs are only limiting cases for flow fields of sandstone
rock. Resulting flow fields can be visualized and categorized by extending the methodology
from this work, i.e., visualizing the flow field, shear rate and strain rate in flow direction
superimposed over a representative volume of the porous rock, and in addition use the 2D
correlation histograms (shear rate vs. flow velocity and strain rate in flow direction vs. flow
velocity).

3.4 Summary and Conclusions

For practical applications in improved oil recovery, often semi-empirical correlations based
on the Cannella or Blake–Kozeny correlation are used. They relate the in situ viscosity
(interpreted from the pressure drop at given flow rate from Darcy’s law) to the fluid’s shear
viscosity of, for instance, a hydrosoluble polymer solution through the use of an effective
shear rate. This semi-empirical correlation, which is based on a capillary tubes model, is
known to require tuning of the phenomenological “C-factor”which is explicitly dependent on
porosity, permeability and polymer-specific properties and effects. The explicit dependency
of the “C factor” on permeability means that a correlation established for a specific polymer
formulation is valid only for one rock type and cannot be generally applied to another rock
type which is a major limitation for practical applications. In order to shed more light on the
underlying cause, the connection between effective viscosity, shear rate and flow velocity
was studied systematically on the basis of pore-scale flow fields from which all quantities
of interest can be computed. In order to exclude rheology and polymer-specific effects, only
Newtonian fluids were considered.

Pore-scale resolved shear rates directly computed from the flow field ranged from 10−2

to 101 s−1 for a 1 ft/day flow velocity typically used in field applications. The Blake–Kozeny
/ Cannella correlation predicted a shear rate that can be brought to an agreement with the
average obtained from pore-scale flow simulation by adjusting the “C-factor” within the 3–4
orders of magnitude range reported in the literature. That is unsatisfactory when trying to
make predictions for an unknown rock type without prior tuning.

The underlying reason is that the relationship between shear rate and velocity is generally
more complicated than the linear relationship employed in the Blake–Kozeny relationship.
In terms of the characteristics of the flow field, capillary tubes and sphere packs represent
limiting cases at opposite ends of the spectrum. For sphere packs, there is a moderate linear
correlation between flow velocity and shear rate but for capillary tubes the correlation is
particularly weak. In capillary tubes where the flow field can be computed analytically, a
linear relationship between flux and shear rate exists only on the basis of cross-sectional
averages but not on the basis of the local flow field. In addition, the shear rate is related
not only to the flow velocity but also the position and hence parameters like the local pore
geometry. That implies that an effective viscosity computed from an average flow velocity
(as used in the Cannella equation) is not the same as the average the viscosity computed on
the basis of the local shear rate. Sandstone rock which lies between two limiting cases also
does not exhibit a particularly strong correlation between local flow velocity and shear rate.
As a consequence, an effective viscosity estimated from an average flow velocity is not the
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same as from an average shear rate. The degree of the discrepancy depends directly on the
extent to which the relationship between shear rate and flow velocity is linear. Pore-scale
flow simulations conducted on sandstone rock, a sphere pack and a bundle of capillary tubes
showed that the relationship between shear rate and flow velocity strongly depends on the
morphology of the pore space. That is ultimately the reason why the “C-factor” varies from
rock to rock and requires individual tuning.
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