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Abstract Transitions between liquid and gaseous phases of a fluid material are characterised
by a jump in density and the coexistence of both phases during the phase change process.
The jump occurs at the interface between the fluid phases and can be handled numerically
by the introduction of a singular surface. This allows for a thermodynamically consistent
description of mass transfer across the interface and the transition of the interfacial term
towards the mass production term included in the mass balance equations. In the present
article, a multicomponent and multiphasic porous aggregate is treated in a non-isothermal
environment, while accounting for the thermodynamics of the fluid-phase transitions. Based
on the Theory of Porous Media, this approach provides a well-founded continuum mechanical
basis for the description of deformable, fluid-saturated porous solid aggregates. In particular, a
bicomponent, triphasic model is proposed consisting of a thermoelastic porous solid, which is
percolated by compressible gaseous and liquid fluid phases. The thermodynamical behaviour,
i.e. the dependency of the fluid densities on temperature and pressure, is governed by the van
der Waals equation of state and the Antoine equation for the vaporisation–condensation line.
Moreover, the interface between the fluid phases is represented by a singular surface and
results in jump conditions included in the balance relations of the components of the overall
aggregate. The evaluation of the jump conditions leads to a formulation of the interfacial mass
transfer, which basically relates the energy added to the system to the latent heat needed for
the phase change in a certain amount of a substance. The mass transfer itself or the mass
production, respectively, furthermore depends on interfacial areas introduced as a function of
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porosity and saturation. Thus, geometrical and fluid-flow-dependent parameters are included
into the phase change process. Finally, this allows for the numerical simulation of evaporation
or condensation of, for example, CO2 in a deformable porous solid with heat transfer.

Keywords Phase transition · Thermoelasticity · Theory of Porous Media · Singular surface ·
Interfacial areas

1 Introduction

Transitions between gas, liquid, and solid phases of a certain substance are important physical
processes. Such processes, for example drying or freezing, do not occur only in well-
investigated “open systems” but also in porous media. However, phase changes in the latter
are only scarcely investigated but of great importance, for example in geomechanics (CO2

sequestration, steam injection for enhanced oil recovery, or soil remediation), in food indus-
tries (drying and baking processes), or in other areas. In the present contribution, the focus
is laid on “gas-into-liquid” or “liquid-into-gas” transitions of a single substance. This has to
be clearly distinguished from phase changes between mixtures of different substances such
as water evaporating into air, which are not part of this work.

The treatment of phase change processes in a continuum description by introducing a
singular front (interface) has already been tackled by different groups, compare, for example,
the work by Jamet (2014), Juric and Tryggvason (1998), Morland and Gray (1995), Morland
and Sellers (2001), Tanguy et al. (2007), and Wang and Oberlack (2011). Most of these
contributions use the level-set method to describe the moving interface inside the continuum.

Regarding phase transitions in the pore space of a porous aggregate, the earliest work to
the authors’ knowledge goes back to Lykov (1974). Further articles in this direction have been
presented by the group around Bénet (Lozano et al. 2009; Ruiz and Bénet 2001; Chammari
et al. 2005; Lozano et al. 2008), by Hassanizadeh and Gray (Gray 1983; Hassanizadeh
and Gray 1990; Niessner and Hassanizadeh 2009a, b), or by Bedeaux and Kjelstrup (1999).
Examples of applying these models to actual physical problems are the simulation of drying
processes by Kowalski (2000) or the bread-baking problem by Huang et al. (2006).

The previously mentioned articles consider phase-change processes in porous media,
where the solid matrix is usually idealised as a rigid body. Including solid deformations
into the model, we proceed from the well-founded concept of the Theory of Porous Media
(TPM). This approach provides an ideal framework for multiphasic and multicomponent
continua including arbitrary solid deformations based on elasticity, viscoelasticity, or elasto-
plasticity, as well as an arbitrary pore content of either miscible or immiscible fluids, liquids
and gases. The reader who is interested in the basics of the TPM is referred, for example, to
the publications of de Boer (2000), de Boer and Ehlers (1986), Bowen (1980, 1982), Ehlers
(1991, 1989, 2002), Ehlers et al. (2004), Wieners et al. (2005), Ehlers and Graf (2007), Ehlers
(2009) or Schrefler and Zhan (1993), Schrefler and Scotta (2001), and citations therein.

The development of a thermodynamically consistent description of phase-change
processes in porous media based on the necessity of satisfying the requirements of the
entropy inequality1 of the TPM starts with contributions by de Boer (1995), de Boer and
Bluhm (1999), de Boer and Kowalski (1995) and continues with an article by Ehlers and

1 The notion thermodynamically consistent expresses that the model is carefully elaborated with respect to the
exploitation of the entropy inequality of the overall aggregate and that it only includes constitutive relations
fulfiling the necessary requirements given by Truesdell’s principle of dissipation.
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Fig. 1 Sketch of a porous microstructure filled with gaseous and liquid phases of a certain substance. Mass
can be transferred from liquid to gas or vice versa across the interface Γ , locally denoted by daΓ REV

Graf (2007). These articles have in common that they provide a derivation of the mass pro-
duction term, which describes the mass transfer from one phase to another, but do not present
any numerical example exhibiting the impact of this term during the phase-transition process.
Furthermore, no comments are made on how to determine the mass-transition coefficients.

The model considered in this contribution is a partially saturated solid as was discussed
as a triphasic material by Ehlers (2009). In the present article, the model consists of a mate-
rially incompressible, thermoelastic porous solid together with liquid and gaseous phases
of a certain fluid, such as water (H2O) or carbon dioxide (CO2). The fluid phases are con-
sidered compressible and are described by an appropriate equation of state, where, in the
present article, use is made of the van der Waals equation (1873) together with the Antoine
equation (1888) for the vaporisation–condensation line. Extensions of this model towards the
simultaneous existence of two pore fluids, such as H2O and CO2, including mixing processes
are possible and are planned for a follow-up publication.

Phase changes introduce a discontinuity in the density and mass transfer between the
two coexisting phases. This induces so-called production terms in the mass, momentum,
and energy balance relations. To determine these terms, the interface between the gaseous
and the liquid phases is described by a separating, immaterial, smooth surface together with
certain jump conditions for the description of the phase transition as a discontinuity in the
fluid density. Therewith, the phase transition is considered on the microscale by a jump over
the immaterial discontinuous surface, which is then averaged over the volume element to
find a constitutive relation for the mass production term in the mass balance equations. This
procedure includes the concept of interfacial areas, compare, for example, Joekar-Niasar
et al. (2008) and Sahimi (2011) and others.

2 Basic Setting and Governing Equations

It is the goal of the present contribution to describe the transition between the gaseous and
the liquid phases of a single substance in the pore space of a deformable porous solid,
demonstrated by the condensation/evaporation problem of a pore fluid component due to
cooling/heating, cf. Fig. 1. At the microstructure of the pore scale, locally taken as Repre-
sentative Elementary Volume (REV), this process is characterised by a mass transfer over
local interfaces Γ separating the gas from the liquid, while the solid remains continuous over
Γ , since it is not affected by the fluid mass exchange. For the description of this process,
the article concerns a bicomponent, triphasic aggregate of a thermoelastic porous solid and
a fluid component such as CO2, where the three phases are given by the porous solid ϕS

together with the liquid phase ϕL and the gaseous phase ϕG of the overall fluid matter ϕFM.
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Fig. 2 Local microstructural interface Γ dividing the gas-saturated and the liquid-saturated parts into the
partitions B+ and B−

Consider a triphasic aggregate B = ⋃
α Bα with boundary surface S, where α =

{S, L, G}. By introducing a separating and immaterial smooth and local surface indicat-
ing the interface Γ , a body B can locally be separated into two parts given by B+ and B−,
which represent the porous solid saturated by either the pore gas (B+) or by the pore liquid
(B−), respectively, cf. Fig. 2. Locally, the body itself and its total surface are then given by
B = B+ ∪ B− and S = S+ ∪ S−, whereas S± ∪ Γ yields the entire surface of the body
parts B±. Mass can be transferred across Γ by �̂G

Γ from B+ to B− or, vice versa, by �̂L
Γ from

B− to B+.
Consider a scalar-valued function Ψ (x, t), which is continuous in B+ and B−, and where

the jump of Ψ over the interface Γ is defined as the difference between its values in B+ and
B−, viz.,

�Ψ � := Ψ + − Ψ −. (1)

The orientation of Γ at B+ and B− is given by the outward-oriented surface normals n+
Γ and

n−
Γ yielding

n+
Γ = −n−

Γ , where n+
Γ =: nΓ , n−

Γ = −nΓ . (2)

2.1 Basic Assumptions of the Theory of Porous Media

Deformable porous media, such as liquid- and/or gas-saturated porous solid materials, can
be described by the well-founded continuum-mechanical approach of the Theory of Porous
Media (TPM), compare, for example, Ehlers (2002, 2009). The TPM proceeds from a formal
or a virtual homogenisation of the microstructure of the components under consideration
such that one obtains a set of superimposed continua with mutual interactions, which are
introduced by production terms incorporated in the balance equations. In contrast to the
Theory of Mixtures (TM), cf. Bowen (1976), the TPM makes use of the concept of volume
fractions firstly applied by Biot (1941) in order to measure the volumetric portions of the
individual materials composing the overall aggregate. This concept yields

V =
∑

α

V α with V α =
∫

B
dvα =:

∫

B
nα(x, t) dv,

nα = dvα

dv
and

∑

α

nα = 1, (3)

where nα is the volume fraction of ϕα at the actual position x and time t , and dv and dvα are
the bulk and the partial volume element.
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Following this, nS is the solid volume fraction and nF = nL+nG is the overall fluid volume
fraction or the porosity, respectively. In case that the pore space is filled with immiscible
fluids, such as wetting and non-wetting phases, one introduces additional saturations sβ with
β = {L, G}, which are defined as the volume fractions of ϕβ with respect to the pore space.
Thus,

sβ = nβ

nF , where
∑

β

sβ = 1. (4)

Assuming immiscible phases occupying separate volumes within the overall medium, two
different densities can be defined by relating the local mass dmα of ϕα either to its partial
volume dvα or to the bulk volume dv:

ραR = dmα

dvα
, ρα = dmα

dv
, ρα = nα ραR and ρ :=

∑

α

ρα. (5)

Therein, ραR is the effective (or realistic) density representing the real material density of
ϕα at its actual position x, while the partial density ρα relates the local mass to the bulk
volume of the overall porous medium. The so-called mixture density ρ is the sum of the
partial densities taken over all constituents, cf. (5)4.

2.2 Kinematical Relations

Following the concept of the TPM with superimposed and interacting continua, each con-
stituent ϕα is assigned its own unique motion function χα such that

x = χα(Xα, t). (6)

In the setting of superimposed continua, this implies that each spatial pointx is simultaneously
occupied by material points Pα of all constituents. Since χα must not only be unique but
also uniquely invertible, it is concluded that each Pα stems from a unique reference position
Xα at time t0. With (6), one easily finds the velocity and acceleration fields of ϕα as

′
xα = vα = ∂χα(Xα, t)

∂t
,

′′
xα = ∂2χα(Xα, t)

∂t2 . (7)

In a solid–fluid aggregate, the porous solid is described in a Lagrangean framework by its
displacement vector uS, while the pore fluids ϕβ are specified by a modified Eulerian setting
through their seepage velocities wβ , viz.,

uS = x − XS, wβ = vβ − vS. (8)

With (6), one also concludes to the material solid deformation gradient and its inverse

FS = GradS x, F−1
S = gradXS (9)

as well as to the material and the spatial solid velocity gradients:

(FS)′S = GradSvS and LS = (FS)′SF
−1
S = grad vS. (10)

In the above equations, the material and the spatial gradient operators are defined by
GradS( · ) = d( · )/dXS and grad( · ) = d( · )/dx.

In analogy to (10), the fluid velocity gradients read

Lβ = grad vβ . (11)
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Regarding the immaterial character of the singular surface Γ with its outward-oriented unit
surface normal nΓ shown in Fig. 2, Γ is allowed to propagate through B by its own velocity
vΓ . This also leads to the definition of relative velocities wβΓ of the fluid phases ϕβ with
respect to Γ . Thus,

vΓ := ′
xΓ , wβΓ = vβ − vΓ . (12)

Note in passing that the surface normal and the velocity of Γ are jump-free:

�nΓ � = 0, �vΓ � = 0. (13)

2.3 Balance Relations

The general balance relations of the TPM follow the arguments of Truesdell (1984) and are
formulated according to Ehlers (1996, 2002):

dα

dt

∫

B
Ψ α dv =

∫

S
Φα · n da +

∫

B
σα dv +

∫

B
Ψ̂ α dv,

dα

dt

∫

B
�α dv =

∫

S
�α n da +

∫

B
σα dv +

∫

B
�̂

α
dv.

(14)

By use of the Gaussian integral theorem and the transport theorem for dv, (14) is easily
transferred towards

∫

B

[
(Ψ α)′α + Ψ α div vα

]
dv =

∫

B
(divφα + σα + Ψ̂ α) dv,

∫

B

[
(�α)′α + �α div vα

]
dv =

∫

B
(div �α + σ α + �̂α) dv.

(15)

In the above equations, Ψ α and �α are the scalar and vectorial volume-specific densities
of the physical quantities in B that have to be balanced, Φα and �α are the effluxes of the
physical quantities through the external surface S (action at the vicinity), σα and σ α are the
supplies of the physical quantities (action from a distance), and Ψ̂ α and �̂α represent the total
productions of the physical quantities due to the mutual interaction between the constituents
ϕα . Furthermore, dα( · )/dt is the material time derivative of ( · ) with the convective part
following the motion of ϕα . Finally, ( · )′α abbreviates dα( · )/dt , and div( · ) is the divergence
operator corresponding to grad ( · ).

By use of standard arguments, the global balance equations (14) are transferred to local
balance equations reading

(Ψ α)′α + Ψ α div vα = div φα + σα + Ψ̂ α,

(�α)′α + �α div vα = div �α + σα + �̂
α
. (16)

For the generation of the individual forms of the balances for mass, momentum, and energy,
the physical quantities and their fluxes, supplies, and productions can be taken from Table 1.
Therein, Tα are the Cauchy stresses of ϕα,bα the body forces, εα the internal energies,
qα the heat influxes, rα the heat supplies, and ρ̂α, ŝα and êα the total productions of mass,
momentum, and energy.

In case thatB is intersected by a singular surface Γ , one has to derive balance equations for
B+ and B− with external surfaces S(B+) = S+ ∪ Γ and S(B−) = S− ∪ Γ . Summarising
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Table 1 Physical quantities of the individual balances equations

Balance Ψ α, �α φα,�α σα, σα Ψ̂ α, �̂
α

Mass ρα 0 0 ρ̂α

Momentum ρα vα Tα ρα bα ŝα

Energy ρα (εα + 1
2 vα · vα) (Tα)T vα − qα ρα (bα · vα + rα) êα

these equations, one obtains instead of (15), also compare, for example, Alts and Hutter
(1988):

∫

B\Γ

[
(Ψ α)′α + Ψ α div vα

]
dv +

∫

Γ

�Ψ α wαΓ � · nΓ da

=
∫

B\Γ
(div φα + σα + Ψ̂ α) dv +

∫

Γ

�φα� · nΓ da,

∫

B\Γ

[
(�α)′α + �α div vα

]
dv +

∫

Γ

��α ⊗ wαΓ � nΓ da

=
∫

B\Γ
(div �α + σα + �̂α) dv +

∫

Γ

��α� nΓ ) da. (17)

In comparison with (15), the additional terms � · � denote the jump of physical quantities and
their fluxes across Γ . Furthermore, since the local versions of (17) have to hold at the same
time as (15), one obtains

(Ψ α)′α + Ψ α div vα = div φα + σα + Ψ̂ α,

(�α)′α + �α div vα = div �α + σα + �̂
α

}

∀ x ∈ B\Γ, (18)

and

�Ψ α wαΓ − φα� · nΓ = 0,

��α ⊗ wαΓ − �α� nΓ = 0

}

∀ x = xΓ ∈ Γ (19)

substituting (16). Note that the local balances (18) are unchanged in comparison with (16)
but accompanied by jump conditions (19) summarising the jump of the physical quantities
across Γ .

Combining (18) and (19) with the physical quantities of Table 1, one obtains the local
balance equations and jump conditions for mass, momentum, and energy:

• mass:

(ρα)′α + ρα div vα = ρ̂α ∀ x ∈ B\Γ,

�ρα wαΓ � · nΓ = 0 ∀ x = xΓ ∈ Γ, (20)

• momentum:

ρα (vα)′α = divTα + ρα b + p̂α ∀ x ∈ B\Γ,

�ρα vα ⊗ wαΓ − Tα� nΓ = 0 ∀ x = xΓ ∈ Γ, (21)

123



532 W. Ehlers, K. Häberle

• energy:

ρα (εα)′α = Tα · Lα − div qα + ρα rα + ε̂α ∀ x ∈ B\Γ,
�
ρα

(
εα + 1

2 vα · vα

)
wαΓ − (Tα)T vα + qα

�
· nΓ = 0 ∀ x = xΓ ∈ Γ.

(22)

In addition to the total mass production ρ̂α , the above equations also contain the direct momen-
tum and energy productions p̂α and ε̂α . These terms are related to their total counterparts
via

ŝα = p̂α + ρ̂α vα,

êα = ε̂α + p̂α · vα + ρ̂α
(
εα + 1

2 vα · vα

)
.

(23)

Following the basic TPM assumptions, cf. Ehlers (1996, 2002), the total production terms
are constrained by

∑

α

ρ̂α = 0,
∑

α

ŝα = 0,
∑

α

êα = 0. (24)

Considering the individual production terms and their physical meaning, the mass production
ρ̂α can be understood as the mass transferred to ϕα either due to chemical reactions or due
to phase-change processes. The direct momentum production p̂α is interpreted as the local
volume average of the internal contact forces acting on ϕα , while ε̂α represents the local heat
exchange between ϕα and the other constituents in the overall aggregate.

3 Constitutive Relations

The problem under discussion consists of a bicomponent, triphasic aggregate of an inert,
materially incompressible solid ϕS and two immiscible and compressible pore-fluid phases
ϕL and ϕG of the same component in a non-isothermal environment. The problem is governed
by the following balance relations taken from (20)1, (21)1 and (22)1 under the assumption

of quasi-static conditions (
′′
xα = 0) and constant gravitational forces (bα = g):

(ρS)′S + ρS div vS = 0,

(ρβ)′S + ρβ div vS + div (ρβwβ) = ρ̂β , β = {G, L},
0 = divTα + ρα g + p̂α, α = {S, L, G},

ρα (εα)′α = Tα · Lα − div qα + ραrα + ε̂α, α = {S, L, G}.

(25)

The gas and liquid mass balances (25)2 have been rearranged in comparison with (20)1 such
that the material time derivatives of the gas and liquid phases can be expressed by the solid
time derivative and additional terms according to the modified Eulerian setting of the fluid
components. Note in passing that the mass balance of a materially incompressible porous solid
reduces under isothermal conditions to a volume balance of the form (nS)′S + nS divvS = 0
when ρSR = const. Furthermore, if one considers a purely continuum mechanical problem
with prescribed values for the complete motion and temperature states, it is easily concluded
that (25) is insufficient to determine the open fields consisting of the stress tensors, inter-
nal energies, heat fluxes, and production terms. These terms must be found by constitutive
equations solving the so-called closure problem. Obviously, the constitutive equations have to
fulfil the entropy inequality of the whole aggregate in order to represent a thermodynamically
admissible constitutive environment. The complete procedure of generating sound constitu-
tive equations for multiphasic–multicomponent models usually leads to a lengthy formalism,
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which is not included in this article. Note in passing that the assumption of quasi-static con-
ditions is always justified when creeping-flow conditions are concerned. In this case, it is
sufficient to proceed with the assumption of single temperature processes as far as chemical
reactions with sudden temperature variations are excluded, which is the case in the present
article. Based on this and following the line of Ehlers (2002, 2009), the exploitation of the
entropy principle yields (θα = θ ) the following results:

• partial Cauchy continua: Tα = (Tα)T.

• concept of extra stresses:

{
TS = − nS pFR I + TS

E,

Tβ = − nβ pβR I + Tβ
E.

• negligible fluid extra (frictional) stresses: Tβ
E ≈ 0.

• Dalton’s law: pFR = sL pLR + sG pGR, (26)

• direct momentum productions:

{
p̂L = pLRgrad nL+ pC(sGgrad nL−sLgrad nG)+p̂L

E,

p̂G = pGRgrad nG + p̂G
E .

• concept of phase separation: ψS =ψS(FS, θ), ψL =ψL(ρLR, θ, sL), ψG =ψG(ρGR, θ).

In the above setting, TS
E and Tβ

E are the so-called extra-stress tensors, pβR are the effective
pressures of the fluid constituents, pFR is the overall pore-fluid pressure, and I is the second-
order identity tensor. Furthermore, p̂β

E are the extra terms of the direct momentum productions,
and ψα are the Helmholtz free energy functions of the constituents ϕα .

Given the above results, the exploitation of the entropy inequality at equilibrium further-
more yields

• entropy free energy relations: ηα = −∂ψα

∂θ
.

• solid extra (effective) stress: TS
E = ρS ∂ψS

∂FS
(FS)T. (27)

• effective fluid pressures: pβR = (ρβR)2 ∂ψβ

∂ρβR .

• capillary pressure: pC = − sLρLR ∂ψL

∂sL .

3.1 Thermoelastic Porous Solid

The thermomechanical behaviour of the solid constituent basically depends on a multiplica-
tive split of the solid deformation gradient FS into purely mechanical and purely thermal
parts:

FS = FSmFSθ . (28)

While FS only depends on the solid displacement uS through the displacement gradient
HS = GradSuS, the thermal part FSθ is described by a constitutive assumption following Lu
and Pister (1975), viz.,
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FS = I + HS,

FSθ = (det FSθ )
1/3 I with det FSθ = exp (3 αSΔθ), (29)

FSm = FSF
−1
Sθ .

Therein, αS is the coefficient of thermal expansion, and Δθ = θ − θ0 is the temperature
variation compared to the initial temperature θ0.

As in elasto-plasticity, cf., for example, Ehlers (1991), the multiplicative split of the
deformation gradient is associated with the existence of an intermediate configuration and an
additive split of strain tensors in the solid reference, intermediate and actual configuration.
For example, one obtains the following decomposition of the Green–Lagrangean strain in
the solid reference configuration:

ES = 1
2

(
FT

SFS − I
) = ESm + ESθ ,

ESθ = 1
2

(
FT

SθFSθ − I
)
, (30)

ESm = E − ESθ .

If only small strains are expected, a formal linearisation of the above strain measures around
the natural state given by FS and FSθ equal to I yields

εS := linES = 1
2

(
FS + FT

S

) − I = 1
2

(
HS + HT

S

)
,

εSθ := linESθ = 1
2

(
FSθ + FT

Sθ

) − I, (31)

εSm = εS − εSθ .

If the temperature variation is such that det FSθ is approximately equal to lin (det FSθ ), a
formal linearisation of (det FSθ )

1/3 around Δθ = 0 furthermore yields

lin (det FSθ )
1/3 = 1 + αSΔθ. (32)

Given this result, the thermal part of the deformation gradient, cf. (29)2, and the thermal
strain of (31)2 read

lin (FSθ ) = (1 + αSΔθ) I,

εSθ = αSΔθ I. (33)

By integration of the solid mass balance (25)1, one obtains

ρS = ρS
0S(det FS)−1, (34)

where ρS
0S is the partial solid density in the solid reference configuration at t = t0. Splitting

the partial density in effective density and volume fraction yields by use of (28)

nSρSR = nS
0S ρSR

0S (det FSm)−1(det FSθ )
−1 (35)

with nS
0S and ρSR

0S as the solid volume fraction and effective solid density at t = t0.
As was explained before, ρSR = ρSR

0S is constant at constant temperatures for materially
incompressible solids. Consequently, variations in ρSR can only be initiated by temperature
variations. Thus, it is obvious that (35) can be split as follows, where (29)3 is used:

ρSR = ρSR
0S (det FSθ )

−1 = ρS
0S exp (−3 αSΔθ),

nS = nS
0S (det FSm)−1 = nS

0S (det FS)−1 exp (3 αSΔθ).
(36)
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Linearising (det FS)−1, (det FSθ )
−1 and (det FSm)−1 via

lin (det FS)−1 = 1 − DivS uS,

lin (det FSm)−1 = 1 − DivS uS + 3 αSΔθ, (37)

lin (det FSθ )
−1 = 1 − 3 αSΔθ,

where DivS( · ) is the divergence operator corresponding GradS( · ), one obtains the following
relations for the solid densities and volume fractions:

ρS = ρS
0S (1 − DivS uS),

nS = nS
0S (1 − DivS uS + 3 αSΔθ), (38)

ρSR = ρSR
0S (1 − 3 αSΔθ).

In the geometrically linearised setting, the solid extra stress and the solid entropy can be
obtained from the solid Helmholtz energy, which, for an isotropic, thermoelastic solid can be
given as the sum of a purely mechanical and a purely thermal part:

ρS
0S ψS (εSm, θ) = ρS

0S ψS
m (εSm) + ρS

0S ψS
θ (θ). (39)

Therein, the mechanical part is given by

ρS
0S ψS

m (εSm) = μS εSm · εSm + 1
2 λS (εSm · I )2, (40)

where μS and λS are the Lamé constants, while the thermal part has to be found from the
condition

cS
V = − θ

∂2ψS
θ

∂θ2 , (41)

where cS
V is the specific heat at constant volume. Substituting εSm by εS −εSθ from (31)3 and

(33)2 and integrating (41) together with the side conditions ψS
θ (θ0) = 0 and ∂ψS

θ /∂θ(θ0) = 0,
one obtains

ρS
0SψS

m = μS(εS · εS) + 1
2 λS(εS · I )2 − 3 kSαSΔθ (εS · I ) + 1

2 kS(3 αSΔθ)2,

ρS
0SψS

θ = − 1
2 kS(3 αSΔθ)2 − ρS

0ScS
V

(
θ ln θ

θ0
− Δθ

)
,

(42)

where kS = 2
3 μS + λS is the compression modulus. Addition of the mechanical and the

thermal parts of (42) yields the free energy of a linear thermoelastic solid skeleton:

ρS
0SψS = μS(εS · εS) + 1

2 λS(εS · I )2 + mSΔθ (εS · I )

− ρS
0ScS

V

(

θ ln
θ

θ0
− Δθ

)

. (43)

Therein, mS = −3 kSαS is the stress–temperature modulus.
Proceeding from the basic constitutive relations, the Cauchy stress TS

E from (27)2 can be
related to the second Piola–Kirchhoff stress SS

E yielding

SS
E = ρS

0S
∂ψS

∂ES
= det FS F

−1
S TS

E FT −1
S . (44)

Under small-strain conditions, where TS
E ≈ SS

E ≈ σ S
E and ES ≈ εS, the first and the second

partial derivatives of ρS
0S ψS with respect to εS yield the solid extra stress and the mechanical
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tangent. Thus,

σ S
E = 2 μS εS + λS (εS · I ) I + mSΔθ I,

4
B0S = 2 μS ( I ⊗ I )

23
T + λS ( I ⊗ I ) ,

(45)

where
4

( · ) indicates a tensor of fourth order and ( · )
23
T denotes its transposition with respect

to its second and third basis vectors. Finally, note in passing that (45) can also be found
directly from (40), when (40) is differentiated with respect to εSm which is then substituted
by εS − εSθ .

Given the above, the solid entropy is obtained on the basis of (27)1 and (42). Thus,

ηS = − 1

ρS
0S

mS(εS · I ) + cS
V ln

θ

θ0
. (46)

The final step of the constitutive setting of the solid constituent is the determination of the
internal energy by use of the Legendre transformation

εS = ψS + θηS. (47)

Considering the initial condition εS(εS = 0, θ0) = 0, the solid internal energy reads:

ρS
0SεS = μS(εS · εS) + 1

2 λS(εS · I )2 + ρS
0ScS

V Δθ. (48)

3.2 Pore Fluids

While the volume fraction of the overall pore fluid can be determined from (3), (36)2, and
(37)2 through

nF = 1 − nS = 1 − nS
0S

(
1 − DivSuS + 3 αSΔθ

)
, (49)

further considerations have to be made for the determination of nL and nG or sL and sG,
respectively. Here, we proceed from the Brooks and Corey law (1964) given by

sL
eff =

( pD

pC

)λ

. (50)

Therein, sL
eff is the effective saturation given by van Genuchten (1980) as

sL
eff = sL − sL

res

1 − sL
res − sG

res
, (51)

where sL
res and sG

res are constants describing the residual saturations remaining in the fully
liquid- or gas-saturated domains. Furthermore,

pC = pGR − pLR (52)

is the capillary pressure defined as the difference between the effective pressures of the non-
wetting and the wetting fluid (Brooks and Corey 1964), pD is the so-called bubbling or
entry pressure, and λ is an adaptation parameter, which Brooks and Corey called pore-size
distribution index.

Inverting (50), one obtains

pC = pD (
sL

eff

)−1/λ
. (53)
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Substituting the entry pressure by pD = ρLRgh D , where g is the value of the local gravita-
tional force g and h D is the macroscopic capillary pressure head, an integration of (53) with
respect to (27)4 yields

ψL = gh Dλ
(
sL

eff

)−1/λ + f (ρLR, θ). (54)

For the determination of the effective fluid and gas pressures, one usually proceeds from a
so-called equation of state (EOS), describing a certain fluid substance in the liquid, gaseous,
and supercritical states. Here, we proceed from the classical van der Waals equation (1873)
given by

pβR = R̄βθ
ρβR

1 − b ρβR − a (ρβR)2, (55)

where R̄β is the specific gas constant of ϕβ , and a and b are constants describing the cohesion
pressure (a) and the co-volume (b) as functions of the critical temperature θ

β
crit and the critical

pressure pβR
crit:

a =
27

(
R̄βθ

β
crit

)2

64 pβR
crit

, b = R̄βθ
β
crit

8 pβR
crit

. (56)

Since (55) provides three possible solutions for the density in the two-phase region for a
given pair of temperature and pressure, an additional criterion is needed to choose the correct
value. To cope with this problem, the saturation pressure psat at the given temperature can
be estimated on the basis of the Antoine equation (1888)

log10(psat) = A − B

θ + C − 273.15
, (57)

where A, B, and C are empirical parameters of the considered fluid material. Comparing the
given pressure pβR with psat, one can distinguish whether the current conditions are gaseous
or liquid.

Given the van der Waals EOS, an integration of (55) with respect to (27)3 yields

ψ
β
vdW = R̄βθ ln

ρβR

1 − b ρβR − a ρβR + k(θ),

k(θ) = − cβR
V θ (ln θ − 1),

(58)

where the determination of k(θ) follows the same procedure as was used for the solid con-
stituent, when the temperature-dependent part of the free energy ψS had to be identified.

Based on (27)2,3, (54), and (58), it is concluded that

ψG
vdW = ψG and ψL

vdW = f (ρLR, θ), such that

ψG = R̄βθ ln
ρGR

1 − b ρGR − a ρGR − cGR
V θ (ln θ − 1),

ψL = R̄βθ ln
ρLR

1 − b ρLR − a ρLR − cLR
V θ (ln θ − 1) + gh Dλ

(
sL

eff

)−1/λ
. (59)

Note in passing that the constants a and b included in ψG and ψG are the same, since both
describe the same matter; however, in different phase states, only cLR

V and cGR
V are different.

123



538 W. Ehlers, K. Häberle

Based on (59), the entropies and internal energies of the fluid constituents can be deter-
mined. As a result, one obtains

ηβ = − R̄β ln
ρβR

1 − b ρβR + cβR
V ln θ,

εG = − a ρGR + cGR
V θ,

εL = − a ρLR + cLR
V θ + gh Dλ

(
sL

eff

)−1/λ
. (60)

where (27)1 and (47) referring to the fluid constituents have been used.
Once the fluid pressures and energies are properly defined, the dissipation inequality as

the non-reversible part of the entropy inequality of the overall aggregate reveals the extra
terms of the direct fluid momentum productions as

p̂β
E = −(nβ)2ρβRg (Kβ

r )−1wβ, (61)

where Kβ
r is the tensor of relative permeabilities. Inserting (61) into the fluid momentum

balances (25)2 yields under the assumption of creeping-flow or quasi-static conditions,
respectively, and negligible fluid extra stresses the following Darcy-like equations for the
filter velocities nβwβ of the fluid phases, cf. Ehlers (2009):

nG wG = − KG
r

ρGRg
[ grad pGR − ρGR g ],

nL wL = − KL
r

ρLRg

[

grad pLR − ρLR g − pC

nL (sGgrad nL − sLgrad nG)

]

.

(62)

Note in passing that the above Darcy-like equations have not been introduced as constitutive
equations but as a result of an exploitation of the dissipative part of the entropy inequality
of the overall aggregate in combination with the assumptions stated above. The tensor of
relative permeabilities can be related to the tensor Kβ of hydraulic conductivities and to the
intrinsic permeability tensor KS of the deformed solid skeleton through

Kβ
r = kβ

r Kβ and Kβ = ρβRg

μβR KS. (63)

While μβR indicates the effective shear viscosity of the pore fluids, kβ
r are the so-called

relative permeability factors, which, following Brooks and Corey (1964), read

kG
r = (

1 − sL
eff

)2
(

1 − (
sL

eff

) 2+λ
λ

)

,

kL
r = (

sL
eff

) 2+3 λ
λ .

(64)

Considering isotropic permeabilities, where the entries of KS reduce to the single value
K S, one obtains after Markert (2007) the following relation for the deformation-dependent
permeability K S with respect to its initial value K S

0S of the solid reference configuration:

K S =
( 1 − nS

1 − nS
0S

det FSm

)π

K S
0S. (65)

Therein, π > 0 is an additional parameter governing the deformation dependency. Further-
more, note that det FSm can be substituted in geometrically linear approaches by

lin (det FSm) = 1 + Div uS − 3 αSΔθ. (66)
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3.3 Heat Transfer

On the basis of the dissipation inequality of the model under consideration, one easily con-
cludes to the applicability of the Fourier’s law for the heat influx vectors qα . Thus,

qα = −Hαgrad θ, where Hα = nαHαR (67)

with HαR as the effective constituent-specific heat-conduction tensor. In case of isotropic
heat conduction, Hα reduces to

Hα = Hα I, where Hα = nα HαR . (68)

According to (22)1, the direct energy production ε̂α is part of the energy balance of the indi-
vidual constituents. In case that all components share the same temperature, as it is assumed
in the present considerations, one has to sum up the energy balances of the components
towards the total energy balance for the computation of the temperature change. In this case,
ε̂α is substituted by êα , where the sum of which vanishes over all constituents according to
(24)3. Thus, one obtains
∑

α

ρα (εα)′α =
∑

α

[
Tα · Lα − div qα + ρα rα − p̂α · vα − ρ̂α

(
εα + 1

2 vα · vα

)]
, (69)

where no constitutive equation is needed for ε̂α , which is usually taken for the description of
the heat exchange between the constituents as a result of different temperatures, cf. Ghadiani
(2005) for details. However, frictional effects induced by p̂α · vα and energetic quantities
induced by phase transitions through ρ̂α also lead to mechanical and non-mechanical energy
exchanges and heat transfers between the constituents.

3.4 Mass Transitions

Up to now, the model is completed apart from a proper formulation of the mass transition
terms appearing in the balance relations as macroscopic density productions ρ̂α , cf. (20)1

and (23). In order to find a constitutive relation for these terms, a closer look is taken at
the microscopic behaviour at the interface between the liquid and the gaseous phases of a
substance, which is mathematically represented by a singular surface, cf. Sect. 2.3.

Wherever phase transitions occur at the microscale or the REV scale, respectively, there
are local jumps across singular surfaces, such that the jumps can be described by (20)2. If
we recall that the solid is not affected by the jump across Γ , we only have to consider the
phase jump and its consequences of the fluid matter (component) ϕFM under consideration.
Furthermore, it has been assumed that ϕFM exists in the gaseous phase only in B+ and in the
liquid phase only in B−, cf. Fig. 2. Following this, one has to proceed with jump conditions
for ϕFM.

Applying the mass jump Eq. (20)2 to ϕFM yields
�
ρFMwFMΓ

�
· nΓ = (

ρFM+w+
FMΓ − ρFM−w−

FMΓ

) · nΓ = 0. (70)

With ρFM+w+
FMΓ = ρGwGΓ and ρFM−w−

FMΓ = ρLwLΓ , (70) becomes
(
ρGwGΓ − ρLwLΓ

) · nΓ = 0. (71)

Following the work of Whitaker (1977), we specify the interfacial mass transfer of ϕβ through

�̂
β
Γ := ρβ wβΓ · nβ

Γ , (72)
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such that

�̂G
Γ = ρFM+w+

FMΓ · nFM+
Γ = ρGwGΓ · nΓ ,

�̂L
Γ = ρFM−w−

FMΓ · nFM−
Γ = − ρLwLΓ · nΓ (73)

and �̂G
Γ + �̂L

Γ = 0,

where nFM+
Γ = nΓ and nFM−

Γ = −nΓ have been used. From (73)3, it is clearly seen that, for
example, during evaporation, mass is removed from the liquid phase and added to the gaseous
phase through �̂G

Γ = −�̂L
Γ . Since the interfacial mass production �̂

β
Γ and the continuum mass

production ρ̂β have to be equivalent in the sense that �̂G
Γ leaves B+ and generates the density

production ρ̂L in B− and vice versa, �̂
β
Γ and ρ̂β can be related to each other by

ρ̂G dv =̂ �̂L
Γ daΓ and ρ̂L dv =̂ �̂G

Γ daΓ , (74)

where dv is the unit volume of the REV and daΓ is the unit area at the interface in the REV
given by

daΓ :=
∫

AREV

daΓ REV. (75)

Based on (74) and an idea of Niessner and Hassanizadeh (2008), we introduce the so-called
interfacial area aΓ as the density of internal phase-change surfaces measured with respect to
the unit volume of the REV:

aΓ := daΓ

dv
. (76)

Given this equation, the mass-transition-depending density production ρ̂β and the interfacial
mass transfer �̂

β
Γ are related to each other through

ρ̂G = aΓ �̂L
Γ and ρ̂L = aΓ �̂G

Γ . (77)

The interfacial area aΓ comprises all menisci separating the liquid and the gaseous phases
in the pore space of the REV. In turn, the menisci depend on the surface tensions of the
involved phases and the pore structure, or in other words, on the capillary pressure, which is
given in (53) as a function of the effective saturation. This justifies that aΓ can be assumed as
aΓ = aΓ (sL

eff ) or as aΓ = aΓ (sL), respectively. However, it should be noted that the concept
of interfacial areas as it was introduced by Niessner and Hassanizadeh (2008) concerns the
hysteresis of imbibition and drainage curves. This effect is not included in this study, since
cooling or, alternatively, heating of a pure substance in a deformable porous solid either
yields imbibition or drainage and does not switch between these two effects. Finally, it has
to be mentioned that the influence of the common lines on the phase-change process, ı.e. the
influence of the contact lines of the interface with the solid material, is also neglected.

Niessner and Hassanizadeh (2008) also presented an empirical derivation of the interfacial
area aΓ based on data obtained by Joekar-Niasar et al. (2008) combined with a pore-network
model as it has been introduced by Sahimi (2011) and others. In the present article, use is
made of an approximation by Graf (2008), who described the interfacial area between the
fluid phases as a function of the liquid saturation. The basic idea is to approximate the pore
space by introducing a sphere with the pore-space-equivalent volume V F composed of the
fluid volumes V L and V G given as a function of the filling heights hL and hG, cf. Fig. 3 (left):
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Fig. 3 Left Volume-equivalent sphere of the pore space with the hydraulic/equivalent radius r̄F, the contact
areas between the solid phase and the fluid phases, ASL and ASG, the gas–liquid contact area AGL and the
filling heights hL and hG. Right Interfacial area aΓ (sL) given by (84) and presented for d50 = 0.06 mm and
nS = 0.9

V F = V L + V G = 4
3 π (r̄F)3,

V β = 1
3 π (hβ)2 (3 r̄F − hβ), β = {L, G}. (78)

Furthermore, the surface area between the liquid and gaseous volumes reads

AGL = π hβ (2 r̄F − hβ), (79)

where hβ in (78)2 and (79) has to be taken as the larger value out of hL and hG such that
hβ ≥ r̄F.

Based on (4), the saturation sβ is defined by the local ratio of the V β over V F. Thus,

sβ = nβ

nF = V β

V F = (hβ)2 (3 r̄F − hβ)

4 (r̄F)3 . (80)

Given (80), the filling height hβ can be determined as a function of the saturation sβ and the
equivalent pore-fluid radius r̄F:

hβ =
[36864

8910
(sβ)3 − 18432

2970
(sβ)2 + 12084

2970
sβ

]
r̄F

≈ [4.137 (sβ)3 − 6.206 (sβ)2 + 4.069 sβ ] r̄F.

(81)

Since the distribution, sizes, and forms of the solid particles as well as the tortuosity and
connectivity of the pores are unknown, it is not possible to calculate the exact pore volume
V F, such that an approximation is needed. Comparing a spherical pore with radius r̄F with
a characteristic spherical solid particle with radius r̄S yields

V S = nSV
V F = nFV

}

such that
nF

nS = V F

V S = (r̄F)3

(r̄S)3 and thus, r̄F =
(

nF

nS

)1/3

r̄S. (82)

Proceeding from d50 as the medial grain diameter of a granular soil, one ends up with

r̄F = 1
2

(
nF

nS

)1/3

d50. (83)
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Given the above results, the interfacial area aΓ can be specified. Based on (76), (78)1, and
(79) with AΓ = AGL, aΓ can be obtained as a function of sβ via

aΓ (sβ) = daΓ

dV
= AΓ

V
= nF AΓ

V F

= 3 nF hβ (2 r̄F − hβ)

4 (r̄F)3 .

(84)

While r̄F, at a certain state of the solid deformation, is a function of d50, hβ depends on sL,
which is given as a function of the capillary pressure pC. As a result, the aΓ − sL curve,
cf. Fig. 3 (right), is comparable to the curve found by Joekar-Niasar et al. (2008), when their
curve is cut at a certain value of pC. Once aΓ is known, it is still necessary to determine
the interfacial mass production �̂

β
Γ such that ρ̂β can be fixed, cf. (77). For this purpose, we

proceed from the energy jump across the singular surface Γ , cf. (22)2,
�

ρα
(
εα + 1

2 vα · vα

)
wαΓ − Tα vα + qα

�
· nΓ = 0, (85)

where Tα = (Tα)T has been used according to (26)1. Applying (85) to the solid constituent
ϕS, one obtains with the aid of (26)1:

�
ρS (

εS + 1
2 vS · vS

)
wSΓ − (

TS
E − nS pFRI

)
vS + qS

�
· nΓ = 0. (86)

Since the solid material is inert and not involved in the phase-change process, all terms
related to the solid material itself are considered continuous over the singular surface. Thus,
it remains that

nS �pFR� vS · nΓ = 0. (87)

However, since the solid velocity vS is not necessarily perpendicular to the single-surface
normal nΓ , it is obvious that

�pFR� = 0. (88)

In the next step, (85) has to be applied to the fluid component ϕFM. Thus,
�(

εFM + 1
2vFM · vFM

)
ρFMwFMΓ − TFMvFM + qFM

�
· nΓ = 0. (89)

Following the same procedure as to obtain (71) from (70) with the gaseous phase of ϕFM

only in B+ and the liquid phase of ϕFM only in B−, one obtains
(
εG + 1

2vG · vG
)

ρGwGΓ · nΓ − (
TGvG − qG) · nΓ

− (
εL + 1

2vL · vL
)

ρLwLΓ · nΓ + (
TLvL − qL) · nΓ = 0. (90)

Applying (73)1, 2 to (90) yields
(
εG + 1

2vG · vG
)

�̂G
Γ − (TGvG − qG) · nΓ

+ (
εL + 1

2vL · vL
)

�̂L
Γ + (

TLvL − qL) · nΓ = 0. (91)

Finally, this equation can be solved with the aid of (73)3 yielding �̂L
Γ = − �̂G

Γ , such that

�̂L
Γ =

(
nG pGRvG − nL pLRvL + qG − qL

) · nΓ

εG − εL + 1
2vG · vG − 1

2vL · vL
, (92)
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where (26)2, 3 has been used to substitute the partial stresses TG and TL.
In (91), the difference εG − εL in internal energies can be substituted by the Gibbs energy

(enthalpy) difference ζG − ζL, if one applies the Legendre transformation

ζ β = εβ + pβR

ρβR → εβ = ζ β − pβR

ρβR . (93)

Furthermore, since the effective pore pressure pFR has been found to be jump-free, cf. (88),
one can conclude to

�pFR� = pFR+ − pFR− = 0 with

{
pFR+ = sG pGR

pFR− = sL pLR . (94)

Following this, the partial pore pressures sG pGR and sL pLR and, as a result, the partial
pressures nG pGR and nL pLR are equivalent, such that

nG pGRvG − nL pLRvL = nL pLR(vG − vL) = nL pLR(wG − wL). (95)

Inserting (93) and (95) in (91) finally yields

�̂L
Γ =

[
nL pLR(wG − wL) + qG − qL

] · nΓ

Δζvap − pGR

ρGR + pLR

ρLR + 1
2vG · vG − 1

2vL · vL

, (96)

where Δζvap := ζG − ζL is the latent heat or the enthalpy of evaporation.
Equation (92) is often simplified with the argument that differences in mass-specific

pressures pLR

ρLR − pGR

ρGR and in mass-specific kinetic energies 1
2 vG · vG − 1

2 vL · vL are small
in comparison with the latent heat Δζvap, cf. Morland and Gray (1995). Following this
argumentation leads to

�̂L
Γ =

[
nL pLR(wG − wL) + qG − qL

] · nΓ

Δζvap
. (97)

Furthermore, in case that phase transitions are mainly induced by heat, the pressure-dependent
term in the nominator of (97) is negligible compared to the heat conduction and (97) reduces
to

�̂L
Γ = (qG − qL) · nΓ

Δζvap
. (98)

This equation, however, is well known from classical thermodynamics, cf. e.g. Silhavy
(1997).

Finally, the interfacial normal nΓ , cf. Fig. 2, has to be found. For this purpose, use is made
of the fact that the interface is oriented perpendicular to the gradient grad ρβR of the fluid
densities. Thus, similar to the level-set method, grad ρβR is taken and normalised to provide
a simple way for the determination of nΓ .

With the above equations, the set of constitutive relations is completed and can be applied
together with the governing equations for the computation of initial-boundary-value problems
of phase transitions in deformable porous media with heat transfer.

4 Computational Issues

Proceeding from a non-isothermal, single-temperature triphasic formulation of partially sat-
urated soil filled with two fluid phases of a single substance and undergoing phase-change
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processes, any computational procedure is based on a basic set of six primary variables given
by the solid displacement uS, the seepage velocities wG and wL, the effective pore-fluid
pressures pGR and pLR, and the temperature θ . Under quasi-static conditions, one obtains a
coupling between the seepage velocities and the effective liquid and gas pressures resulting
from the individual fluid momentum balances and the constitutive setting yielding Darcy-
like relations, cf. (62). Following this reduces the set of primary variables from six to four:
the solid displacement uS, the effective pressures pGR and pLR, and the temperature θ . The
corresponding set of governing equations is then given by the vector-valued overall momen-
tum balance corresponding to uS, the scalar-valued gas and liquid mass balance equations
corresponding to pGR and pLR, and the scalar-valued overall energy balance corresponding
to θ :

• overall momentum balance: 0 = − grad pFR + divTS
E + ρ g − ρ̂G(wG − wL),

• gas and liquid mass balances: (ρβ)′S + ρβdiv vS + div (ρβwβ) = ρ̂β , β = {G, L},
• overall energy balance:

∑

α

ρα (εα)′α = (
TS

E − pFR I
) · LS − nL pLR divwL − nG pGR divwG

− div q − p̂L · wL − p̂G · wG − ρ̂G [
εG − εL + 1

2 (wG · wG − wL · wL)
]
.

(99)

The overall momentum balance is obtained by summing up the momentum balances (25)3

for ϕS, ϕG and ϕL, where the partial stresses Tα and the solid extra stresses TS
E ≈ σ S

E are
given by (26)2, 3 and (45)1, ρ is given by (5), and

∑
α p̂

α has been computed according to
(23)1 and (24)2. The gas and liquid mass balances have been taken from (25)2, where they
have been derived such that the material time derivatives of the gas and liquid phases have
been expressed by the solid time derivative and additional terms according to the modified
Eulerian setting of the fluid components. Under the assumption of negligible external heat
supplies (rα = 0), the overall energy balance has been taken from (69), where the same
stresses have been included as in the momentum balance. The total heat influx has been
defined by q = ∑

α q
α with qα after (67) and (68), and p̂S and ρ̂β have been substituted

with respect to (23)1 and (24)1, 2. Furthermore, note in passing that the kinetic part of the
phase-change energy, ρ̂G [ 1

2 (wG · wG − wL · wL) ], can be neglected under creeping-flow
conditions. Thus, this term is dropped in the weak form of the governing equations.

Given (99), one obtains the weak form of the governing equations by multiplication of
(99)1−3 with the test functions δuS, δpGR, δpLR and δθ and integration over the volume B
using the Gaussian integral theorem. Thus,

• overall momentum balance:

GuS =
∫

B

(
σ S

E − pFR I
) · δεS dv −

∫

B
ρ g · δuS dv +

∫

B
ρ̂L (wL − wG) · δuS dv

−
∫

S

(
σ S

E − pFR I
)
n · δuS da = 0, (100)
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• gas and liquid mass balances:

GpGR =
∫

B

[
(ρG)′S + ρG div (uS)′S

]
δpGR dv −

∫

B
ρG wG · grad δpGR dv

−
∫

B
ρ̂G δpGR dv +

∫

S
ρG wG · n δpGR da = 0,

GpLR =
∫

B

[
(ρL)′S + ρL div (uS)′S

]
δpLR dv −

∫

B
ρL wL · grad δpLR dv

−
∫

B
ρ̂L δpLRdv +

∫

S
ρL wL · n δpLR da = 0,

(101)

• overall energy balance:

Gθ =
∫

B

{
ρS (εS)′S + ρL (εL)′L + ρG (εG)′G − (σ S

E − pFR I ) · (εS)′S

+ [
p̂L

E − nLgrad pLR + pC (sGgrad nL − sLgrad nG)
] · wL

+ ( p̂G
E − nGgrad pGR) · wG + ρ̂G (εG − εL)

}
δθ dv

−
∫

B
(q + nL pLR wL + nG pGR wG) · grad δθ dv

+
∫

S
(q + nL pLR wL + nG pGR wG) · n δθ da = 0. (102)

In (100)–(102), the mass-transition term ρ̂G is given by (76), (77), and (96), and p̂L
E and

p̂G
E are given by (61). To set an example on how the temperature change comes into play,

consider the terms

ρS
0S(εS)′S − σ S

E · (εS)′S = ρS
0S cS

V θ ′
S − mSΔθ (εS)′S · I, (103)

cf. (45)1 and (48), where, in the framework of small-strain approaches, ρS ≈ ρS
0S has been

used. Further terms yielding θ ′
β = θ ′

S + grad θ · wβ are included in (εβ)′β .
Given the above theoretical framework, the finite-element method (FEM) can be applied

for the description and the illustration of numerical examples.

4.1 Condensation of CO2 in a Deformable Porous Rock

In order to present the potential of the derived model, a two-dimensional example of a
condensation process of CO2 in a porous rock is simulated. Choosing this example, we are
aware that considering the pure substance is somehow academic, since in real processes, such
as CO2 sequestration, the dissolution of CO2 in saline water or brine, respectively, comes
into play. Thus, our example might be considered as a state, where the injected CO2 has
completely displaced the saline water. Furthermore, the choice of CO2 as the fluid under
consideration results from the good knowledge of its thermodynamical behaviour and its
low-temperature condensation point. Nevertheless, substituting CO2 by water would also
have been an option.

The initial state of the simulation domain of 10 m × 10 m is composed of a thermoelastic
porous solid filled with gaseous CO2, which is guaranteed by an initial pore pressure of pFR =
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Fig. 4 Simulation setup with
constant pressure
pFR = 4.0 MPa at the top
boundary and cooling from
320 K to 200 K at the blue part of
the bottom boundary

4.0 MPa. This value is also applied as Dirichlet boundary condition at the upper boundary
in order to simulate an open boundary with connection to a surrounding environment also
containing gaseous CO2. Note in passing that sL = 0 at the upper boundary yields pFR =
pGR. The initial temperature in the whole system is set to 320 K, while the domain is
horizontally confined at the left and right boundaries and vertically confined at the bottom,
cf. Fig. 4. Then, the blue-coloured part of 2 m at the bottom is subjected to a temperature
decrease from 320 K to 200 K over 500 s and held constant thereafter.

For a realistic simulation, the solid parameters are resembling sandstone, which are
included in Table 2. The thermodynamic parameters of CO2 in Table 2 have been taken
from Abbott and Ness (1989), and fluid and solid parameters from Graf (2008) and Rutqvist
et al. (2010). The effective fluid shear viscosities are determined as a function of temperature
and effective density given by Fenghour et al. (1998) via

μβR(θ, ρβR) =
[
μ

βR
0 (θ) + ΔμβR(θ, ρβR)

]
10−6,

μ
βR
0 (θ) = 1.00697

√
θ

eσ ∗(θ)
with σ ∗(θ) =

m∑

i=1

ai

(

ln
θ

251.196 K

)i

,

ΔμβR(θ, ρβR) =
n∑

i=0

bi (θ) (ρβR)i with bi (θ) =
m∑

j=1

di j

(
θ

251.196 K

)1− j

,

(104)

where the divergence of the viscosity around the critical point has been omitted, since we do
not particularly describe the critical region here. However, for the formulation with respect
to the critical region, the reader is referred to Vesovic et al. (1990).

In contrast to the original publication, (104)1 has been multiplied by 10−6. This is due to
the fact that Fenghour et al. have based their shear viscosity formulation on µPa s instead of
Pa s, what is required in this publication. The coefficients ai and di j included in (104)2, 3 can
be taken from Table 3, where all not listed di j are vanishing. Finally, note that m = 4 and
n = 8.
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Table 2 Parameters used for the 2D simulation

Initial solid volume fraction nS
0S = 0.9

Effective densities ρSR
0S = 2650 kg/m3

Intrinsic permeability, permeability parameter K S
0S = 1.3 × 10−10m2, π = 1

Lamé parameters μS = 2.5 × 109 Pa, λS = 1.67 × 109 Pa

Thermal expansion coefficient αS = 1.2 × 10−51/K

Medial grain diameter d50 = 6 × 10−5m

Initial temperature θ0 = 320 K

Brooks and Corey parameters pD = 2000 Pa, l = 1.3

Residual saturations sL
res = 0.01, sG

res = 0.01

Thermodynamic parameters for CO2 R̄CO2 = 188.91 mJ/K, θ
CO2
crit = 304.21 K

p
CO2R
crit = 7.38 × 106 Pa

Antoine parameters for CO2 A = 7.8101, B = 987.44, C = 290.9

Specific heat capacities cS
V = 700 J/(kg K), cLR

V = 933.6 J/(kg K)

cGR
V = 790.65 J/(kg K)

Thermal conductivities HS = 2000 W/(m K), HCO2R = 0.26 W/(m K)

Table 3 Parameters for the
calculation of the shear
viscosities. Left Coefficients ai
for the formulation of the
zero-density viscosity. Right
Coefficients di j for the
formulation of the excess
viscosity. Both for CO2,
cf. Fenghour et al. (1998)

i ai

0 0.235156

1 −0.491566

2 5.211155 × 10−2

3 5.347906 × 10−2

4 −1.537105 × 10−2

i j di j

11 0.4071119 × 10−2

21 0.7198037 × 10−4

64 0.2411697 × 10−16

81 0.2971072 × 10−22

82 −0.1627888 × 10−22

After discretisation, the strongly coupled system of partial differential equations given by
(100)–(102) is solved monolithically with an unconditionally stable implicit time-integration
scheme by use of the finite-element solver PANDAS.2

The results of the simulation are depicted in Figs. 5, 6, 7, 8, 9, 10, and 11 and visu-
alise the condensation of gaseous CO2 due to cooling. For each parameter, ten snapshots
are presented, taken during the simulation at times at 0 h, 6.6 h, 12.2 h, 17.5 h, 22.5 h,

2 Porous media Adaptive Nonlinear finite-element solver based on Differential Algebraic Systems.
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Fig. 5 Temperature θ

Fig. 6 Liquid mass production ρ̂L

35.0 h, 47.0 h, 59.7 h, 72.2 h, and 82.8 h. The first set of pictures in Fig. 5 depicts the
change in temperature due to the applied cooling condition. Figure 6 shows the liquid mass
production ρ̂L, indicating the mass fraction of gaseous CO2 transferred to liquid CO2. It
can be clearly observed that the mass transfer only appears in the transition zone, where
both phases coexist. Note that this zone is indicated by the intermediate gas saturations
sG given in Fig. 7. Thus, after complete transition of gaseous CO2 to liquid CO2, the
mass production vanishes. The saturation plots, Figs. 7 and 8, also contain the gaseous
and liquid seepage velocity vectors, respectively. It can be seen that gaseous CO2 is replen-
ished from the open boundary and liquid CO2 is fanning-out along the transition zone.
Finally, Figs. 9 and 10 show the partial pore densities ρ

β
F := sβρβR of the fluids depict-

ing the transition from gaseous CO2 with a density of about 110 kg/m3 to liquid CO2

with a maximum density of 1200 kg/m3. Consequently, this increase in density causes
a drop in pore pressure pFR that again affects the field of solid displacement vectors,
represented in Fig. 11 by black arrows exhibiting a settlement zone around the cooling
region.
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Fig. 7 Gas saturation sG and gaseous seepage-velocity vectors (black arrows)

Fig. 8 Liquid saturation sL and liquid seepage-velocity vectors (black arrows)

Fig. 9 Partial pore density ρG
F = sGρGR of the gaseous phase
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Fig. 10 Partial pore density ρL
F = sLρLR of the liquid phase

Fig. 11 Pore pressure pFR together with the solid displacement vectors (black arrows)

5 Conclusion

In this article, the phase-transition process between liquid and gaseous phases of the same
fluid substance has been simulated by the mass transfer over a phase-change interface. Apart
from the direct momentum productions p̂β , the mass transfer couples the mass balance rela-
tions of the two fluid phases and influences the momentum and energy balances. To derive a
thermodynamically consistent constitutive relation for the mass transfer, an immaterial, sin-
gular surface has been introduced representing the interface, across which jump conditions
for the fluid constituents could be identified. Since the phase change did not affect the solid
material, it has been assumed that the solid is continuous over the interface. The evaluation of
the jump conditions of the balance equations led to a relation between the induced mechan-
ical and non-mechanical power and the latent heat of vaporisation, thus describing the mass
transfer over the interface. After averaging the mass-transfer term over the REV by intro-
ducing a so-called interfacial area, the averaged mass-transfer ρ̂L = −ρ̂G has been included
in the global weak balance relations and, consequently, has been used for the simulation of
gas–liquid phase transitions. Within a numerical example, the simulation of a condensation
process of CO2 in a thermoelastic porous rock was carried out showing reasonable results of
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the interaction between fluid thermodynamics, phase-change processes, fluid flow, and solid
deformations with heat transfer.

The potential of the present model, which distinguishes from other more or less simple
models, lies in the inclusion of solid deformations, compressible fluid phases based on the van
der Waals equation, and an explicit constitutive relation of the interfacial mass production
derived from the evaluation of balance relations at the interface, and not from additional
assumptions.

6 Nomenclature

The notation in this article follows the conventions commonly used in modern tensor calculus,
compare, for example, Ehlers (2015), while the symbols used in the porous-media context
follow the established nomenclature by de Boer (2000) and Ehlers (2002, 2009, 1989).

6.1 Conventions

Kernel conventions
( · ) Place holder for arbitrary quantities
s, t, . . .or σ, τ, . . . Scalars (tensors of order 0)
s, t, . . . or σ , τ , . . . Vectors (tensors of order 1)
S,T, . . .or �, �, . . .Tensors (tensors of order 2)
n
S,

n
T . . . Higher-order tensors (tensors of order n)

Index and suffix conventions
i, j, m, n Indices as super- or subscripts range from 1 to N , where N = 3 indicates quantities of

the usual three-dimensional (3D) space of our physical experience
( · )α Subscripts indicate kinematical quantities of a constituent within porous-media or

mixture theories
( · )α Superscripts indicate the belonging of non-kinematical quantities to a constituent

within mixture theories
( · )′α Material time derivative following the motion of a constituent α with the solid and

fluid constituents α = {S, L, G}
( · )0α Initial value of a non-kinematical quantity with respect to the referential configuration

of a constituent
( · )FM, ( · )FM Subscripts and superscripts “FM” indicate quantities of the fluid matter under

consideration
( · )m, ( · )θ Subscripts “m” and “θ” indicate purely mechanical and purely thermal parts

associated with thermoelastic solid kinematics
( · )crit Subscript “crit” indicates values at the critical point
d( · ) Differential operator
∂( · ) Partial derivative operator
δ( · ) Test functions of the respective degrees of freedom
�( · )� Jump-related value on the discontinuity surface Γ

( · )+, ( · )− Quantity belonging to the pore gas (B+ = BG) or pore liquid (B− = BL)
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6.2 Symbols

Symbol Unit Description

α Constituent identifier in super- and subscript, ı.e. α = {S, L, G}
αS [ 1/K ] Coefficient of thermal expansion of ϕS

β Fluid constituent identifier (here: β = {L, G})
Γ Interface between the fluid phases
εα [ J/kg ] Mass-specific internal energy of ϕα

ε̂α [ J/m3 s ] Volume-specific direct energy production of ϕα

ζα [ J/K m3 s ] Mass-specific Gibbs energy (enthalpy) of ϕα

Δζvap [ J/K m3 s ] Mass-specific latent heat or enthalpy of evaporation
ηα [ J/K kg ] Mass-specific entropy of ϕα

θ, θα [ K ] Absolute temperature of ϕ and ϕα

θ0, Δθ [ K ] Initial temperature and temperature variation
κ [ – ] Exponent governing the deformation dependency of K S

λ [ – ] Pore-size distribution index for Brooks & Corey law
λS [ N/m2 ] 1st Lamé constant of ϕS

μβR [ Pa s ] Effective dynamic fluid viscosity of ϕβ

μ
βR
0 , ΔμβR [µPa s ] Effective dynamic fluid viscosity of ϕβ at zero density and excess part

μS [ N/m2 ] 2nd Lamé constant of ϕS

π [ – ] Circle constant
ρ [ kg/m3 ] Density of the overall aggregate ϕ

ρα, ραR , ρ
β
F [ kg/m3 ] Partial and effective (realistic) density of ϕα and partial pore density of ϕβ

ρ̂α [kg/m3 s] Volume-specific mass production of ϕα

�̂
β
Γ [ kg/m2 s ] Area-specific interfacial mass transfer of ϕβ

σα Scalar-valued supply terms of mechanical quantities
σ∗ [ – ] Auxiliary term in the derivation of the shear viscosity
ϕ, ϕα Overall aggregate and constituent α

ψ, ψα [ J/kg ] Mass-specific Helmholtz free energy of ϕα

Ψ α [ ·/m3 ] Volume-specific densities of scalar mechanical quantities
Ψ̂ α [ ·/m3 ] Volume-specific productions of scalar mechanical quantities
σα Vector-valued supply terms of mechanical quantities
φα General vector-valued mechanical quantities
�α [ ·/m3 ] Volume-specific densities of vectorial mechanical quantities
�̂

α
[ ·/m3 ] Volume-specific productions of vectorial mechanical quantities

χα, χ−1
α Motion and inverse motion function of constituent ϕα

εS [ – ] Linearised Green–Lagrangean solid strain tensor
�, �α General tensor-valued mechanical quantities
σS

E [ N/m2 ] Linearised 2nd Piola–Kirchhoff extra stress tensor of ϕS

a [ m5/kg s2 ] Cohesion pressure, constant of the van der Waals equation
aΓ [1/m] Volume-averaged interfacial area
b [ m3/kg ] Co-volume, constant of the van der Waals equation
A, B, C [ – ] Empirical parameters of the Antoine equation
AGL, AΓ [ m2 ] Gas–liquid contact area in the volume-equivalent sphere, where AGL = AΓ

ASG, ASL [ m2 ] Solid–gas and solid–liquid contact areas of the volume-equivalent sphere
AREV [ m2 ] Area of the REV
ai , bi , di j [ – ] Coefficients for the calculation of the shear viscosity
B,Bα Body of the overall aggregate and partial body of constituent ϕα

G Weak formulation of a governing equation related to a primary variable

cS
V, cβR

V [ J/kg K ] Solid and effective fluid-specific heat capacities at constant volume
d50 [ m ] Medial grain diameter of granular soil
daΓ , daΓ REV [ m2 ] Actual area element of the interface Γ and specific in the REV
dmα [ kg ] Local mass element of ϕα

dvα [ m3 ] Local volume element of ϕα
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dv [ m3 ] Actual volume element of ϕ

êα [ J/m3 s ] Volume-specific total energy production of ϕα

f, k Integration constants
h D [ m ] Macroscopic capillary pressure head
hβ [ m ] Filling height of volume-equivalent sphere of ϕβ

Hα , HαR [ W/K m ] Isotropic partial and effective heat conduction of ϕα

kS [ N/m2 ] Solid compression modulus

kβ
r [ – ] Relative permeability factor of ϕβ

K S [ m2 ] Intrinsic (deformation-dependent) permeability of ϕS

mS [ N/K m2 ] Solid compression modulus
nα [ – ] Volume fraction of ϕα

pαR , psat [ N/m2 ] Effective pore pressure of ϕα and saturation pressure
pC, pD, pFR [ N/m2 ] Capillary pressure, bubbling or entry pressure and overall pore pressure
Pα Material point of ϕα

rα [ J/kg s ] Mass-specific external heat supply of ϕα

r̄F [ m ] Radius of the volume-equivalent sphere
r̄S [ m ] Radius of a characteristic spherical solid particle
R̄α [ J/K ] Specific gas constant of ϕα

sα, sL
eff , sβ

res [ – ] Saturation of ϕβ , effective liquid saturation, and residual saturations of ϕβ

S,Sα Surface of the overall aggregate and constituent ϕα

t, t0 [ s ] Actual time and reference time
V, V α [ m3 ] Overall volume of B and partial volume of Bα

b, bα [ m/s2 ] Mass-specific body force vector
dx [ m ] Actual line element
dXS [ m ] Reference line element of the solid
g, g [ m/s2 ] Constant gravitation vector and scalar with | g | = g = 9.81 m/s2

n [ – ] Outward-oriented unit surface normal vector

nΓ ,nβ
Γ [ – ] Outward-oriented unit surface normal vector of the interface Γ

p̂α, p̂α
E [ N/m3 ] Volume-specific direct and extra momentum production of ϕα

q, qα [ J/m2 s ] Heat influx vector of ϕα

ŝα [ N/m3 ] Volume-specific total momentum production of ϕα

uS [ m ] Solid displacement vector

vα, vΓ [ m/s ] Velocity vector of ϕα, vα = ′
xα and velocity vector of the interface Γ

wβ [ m/s ] Fluid seepage-velocity vector of ϕβ

wβΓ [ m/s ] Relative velocity vector of the fluid phases ϕβ with respect to Γ

x [ m ] Actual position vector of ϕ
′
xα,

′
xΓ [ m/s ] Velocity vector of ϕα and velocity vector of the interface Γ

′′
xα [ m/s2 ] Acceleration vector of ϕα

Xα [ m ] Reference position vector at time t0
4
B0S [ N/m2 ] Fourth-order elasticity tensor (elastic tangent) at the solid reference configuration
ES [ – ] Green-Lagrangean solid strain tensor
FS [ – ] Solid deformation gradient
HS [ – ] Solid displacement gradient
Hα ,HαR [ W/K m ] Partial and effective heat conduction tensor of ϕα

I [ – ] Identity tensor (fundamental tensor of second order)
Kβ [ m/s ] Tensor of hydraulic conductivity of ϕβ

Kβ
r [ m/s ] Tensor of relative permeability of ϕβ

KS [ m2 ] Intrinsic (deformation-dependent) permeability tensor of ϕS

Lα [ 1/s ] Spatial velocity gradient of ϕα

SS
E [ N/m2 ] 2nd Piola–Kirchhoff extra stress tensor of ϕS

Tα,Tα
E [ N/m2 ] Cauchy or true stress tensor and extra stress tensor of ϕα
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