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Abstract In this study, we present a mesh-free semi-analytical technique for modeling pres-
sure transient behavior of continuously and discretely hydraulically and naturally fractured
reservoirs for a single-phase fluid. In our model, we consider a 3D reservoir, where each
fracture is explicitly modeled without any upscaling or homogenization as required for dual-
porosity media. Fractures can have finite or infinite conductivities, and the formation (matrix)
is assumed to have a finite permeability. Our approach is based on the boundary element
method. The method has advantages such as the absence of grids and reduced dimension-
ality. It provides continuous rather than discrete solutions. The uniform-pressure boundary
condition over the wellbore is used in our mathematical model. This is the true physical
boundary condition for any type of well, whether fractured or not, provided that the friction
pressure drop in the wellbore is small and the fluid is Newtonian. The method is sufficiently
general to be applied to many different well geometries and reservoir geological settings,
where the spatial domain may include arbitrary fracture and/or fault distribution, a num-
ber of horizontal wells with and without hydraulic fractures, and different types of outer
boundaries. The model also applies to multistage hydraulically fractured horizontal wells in
homogenous reservoirs. More specifically, it is applied to investigate the pressure transient
behavior of horizontal wells in continuously and discretely naturally fractured reservoirs,
including multistage hydraulically fractured horizontal wells. A number of solutions have
been published in the literature for horizontal wells in naturally fractured reservoirs using
the conventional dual-porosity models that are not applicable to many of these reservoirs
that contain horizontal wells with multiple fractures. Most published solutions for fractured
horizontal wells in homogenous and naturally fractured reservoirs ignore the presence of
the wellbore and the contribution to flow from the formation directly into the unfractured
horizontal sections of the wellbore. Therefore, some of the flow regimes from these solutions
are incorrect or do not exist, such as fracture-radial flow regime. In our solutions, all or some
of multistage hydraulic fractures may intersect the natural fractures, which is very important
for shale gas and oil reservoir production. The number and type of fractures (hydraulic or
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natural) intersecting the wellbore and with each other are not limited in both homogeneous
and naturally fractured reservoirs. Our solutions are compared with a number of existing
solutions published in the literature. Example diagnostic derivative plots are presented for
a variety of horizontal wells with multiple fractures in homogenous and naturally fractured
reservoirs.

Keywords Naturally fractured reservoirs · Pressure transient well testing · Pressure
transient behavior of horizontal wells · Multistage hydraulic fractures · Boundary element
method

List of Symbols

b Fracture aperture
C Wellbore storage constant
ct Compressibility
P Pressure change
F Fracture conductivity
h Formation thickness
k Permeability
l Length, characteristic length, or fracture half-length
M Number of grid cells
m Slope
N Number of grid cells
n Normal
p Pressure
q Flow rate
r Radius or radial coordinate
S Skin factor
t Time
v Volume
x Coordinate
x Spatial vector
y Coordinate
z Vertical coordinate
α Characteristic parameter of the geometry
η Diffusivity for pressure
λ Mobility or interporosity flow coefficient
μ Viscosity
ω Storativity ratio
φ Porosity
ρ Density
τ Dummy variable
Υ Flow rate⋂

Intersection of sets⋃
Union of sets

⊗ Convolution w.r.t time
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Subscripts

D Dimensionless
f Fracture
f i Quantity related to the i th fracture
h Horizontal
hi Quantity related to the i th horizontal well section
m Matrix or matrix block
ma Matrix or matrix block
o Initial or original
u Uniform
t Total
V Volume
v Vertical or volume
w Wellbore

1 Introduction

Shale gas developments, particularly in the USA, have increased applications of horizontal
wells with multistage hydraulic fracturing. Drilling horizontal wells to accelerate produc-
tion and increase recovery efficiency of oil and gas are now common. With the increasing
number of wells, pressure transient well tests have been conducted in different geological
settings, particularly in carbonate and shale reservoirs. Natural fractures are common fea-
tures of these reservoirs. In many naturally fractured carbonate reservoirs, faults often have
high-permeability zones and are connected to many fractures with varying conductivities. In
these naturally fractured reservoirs, faults and fractures can be discrete (i.e., not a connected
fracture network system). In this paper, we present a number of solutions for horizontal wells
with multiple fractures in naturally fractured and homogenous nonfractured (do not contain
fractures) reservoirs. These solutions are applicable to finite- and infinite-conductivity trans-
verse and longitudinal fractures in hydraulically and naturally fractured reservoirs, where
the horizontal wellbore can intersect multiple hydraulic and natural fractures. In this paper,
fractures denote both fractures and faults, unless differentiation is necessary.

Most of the published solutions on horizontal wells with multiple fractures in both
fractured and nonfractured homogeneous reservoirs do not include the wellbore in the math-
ematical model. For transverse fractures, the effect of the horizontal wellbore cannot be
ignored if the fracture conductivity is finite because the wellbore is perforated in single or
multiple locations for the fracture initiation, as well as providing access for the fluid flow
into the wellbore. In other words, perforation channels provide hydraulic communication
between the wellbore, fractures, and formation if the well is not completed barefoot.

In this paper, the formation (matrix) is assumed to be transversely isotropic (kmh =
kmx = kmy) and vertically anisotropic with horizontal and vertical permeabilities, kmh and
kmv , respectively, whereas fractures are assumed to be isotropic. Each fracture may have a
different permeability (k f ), length (l), and aperture (b). A nominal dimensionless fracture

conductivity is defined as FD = k f b
kmhlc

, where lc is a nominal fracture half-length that is
considered to be used as a reference or characteristic length, provided it is not much smaller
or bigger than the mean fracture length. The dimensionless fracture conductivity for each
fracture will be FDi .
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Al-Kobaisi et al. (2006) provided an extensive list of references anddiscussions concerning
the pressure transient behavior of a single horizontal well intersectingmultiple transverse ver-
tical hydraulic fractures. They also discussed a number of flow regimes that can be observed
during pressure transient tests. In general, the pressure transient behavior of a single horizon-
tal well intersecting multiple transverse vertical hydraulic or natural fractures lies between
two limits. First, for high fracture conductivities (FD), the horizontal wellbore effect is neg-
ligible at early times, and the fractures dominate the behavior of the system in homogenous
reservoirs. But at late times, there will be a significant contribution to flow from the forma-
tion directly into the horizontal sections of the wellbore. Second, as FD becomes smaller
(FD � ∞), the unfractured horizontal sections of the wellbore start to contribute to flow. For
FD < 1, the flow contributions frommultiple fractures become negligible, and the horizontal
well dominates the behavior of the system; it is therefore extremely important to include the
wellbore and the unfractured horizontal sections of the well. As we stated previously, most
of the published solutions did not include the wellbore and the unfractured horizontal sec-
tions; consequently, some of the flow regimes observed from these solutions are incorrect,
or simply they do not exist.

The inner boundary condition for a horizontal well with multiple transverse fractures
is considered to be of the mixed type. In a mixed boundary value problem (MBVP), we
have both the Neumann and Dirichlet boundary conditions imposed on the inner boundary
wellbore surface. Furthermore, as stated above, except for openhole completions, hydraulic
or natural fractures communicate with the wellbore through perforation tunnels, some of
which may not be 100% efficient (i.e., they are not cleaned up properly and totally debris
free).

The majority of the published solutions do not specify where the wellbore pressure, which
is uniform over the inner wall of the wellbore (sandface), is evaluated. This inner bound-
ary condition over the wellbore is called the uniform-pressure condition. In addition to the
uniform-pressure condition, the wellbore pressure is approximated at the middle point of the
fracture–well intersection in the literature. In general, the middle point wellbore pressure
approximation is crude and often incorrect when the pressure diffusion reaches any bound-
aries (i.e., top, bottom, faults, fractures, etc.); see Tables 2 and 3 of Biryukov and Kuchuk
(2012b). For most single-fractured wellbore, the wellbore pressure is also approximated at
an appropriate equivalent-pressure point (Gringarten and Ramey 1975). For some cases,
particularly, horizontal wells and fractures, the wellbore pressure is also approximated by
averaging over the flowing surface (Biryukov and Kuchuk 2012b; Kuchuk 1994; Kuchuk
and Wilkinson 1991; Ozkan and Raghavan 1991; Streltsova 1979; Wilkinson and Hammond
1990; Yildiz and Bassiouni 1990).

The published solutions for the pressure transient behavior of a single horizontal well
intersecting multiple transverse vertical hydraulic or natural fractures can be divided into
four categories as follows:

1. The first category solutions for multiple transverse fractures are generated using the
superposition theorem in space and the pressure distribution solution for a single vertical
fracture. Chen and Raghavan (1997), Guo et al. (1994), Horne and Temeng (1995),
Raghavan et al. (1994), Zhou et al. (2013) used this approach to derive their solutions,
in which the same flowing wellbore pressure is used for all fractures without a wellbore,
and it is assumed that the uniform-flux or infinite-conductivity rectangular fractures fully
penetrate the formation. For example, the dimensionless wellbore solution (pwD) for a
reservoir with three vertical fractures (Horne and Temeng 1995) can be written as
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where (pD)11 is the dimensionless pressure due to the first fracture, (pD)12 is the dimen-
sionless pressure due to the interference between the first and second fractures, and so
on, pwD is the dimensionless flowing wellbore pressure, the normalized flow rates are
(qD)i = qi/qt , qi is the flow rate of the i th fracture, qt is the total flow rate, and i=1,
2, and 3. The definition of the dimensionless pressures are given below. Except for very
high FD values, a few flow regimes are spurious due to these types of solutions. If a hor-
izontal well intersects transverse finite-conductivity fractures, the first flow regime will
be a fracture-radial or distorted fracture-radial flow regime. It will not be a fracture-linear
or formation-linear flow regime. The first flow regime will be a formation-linear flow for
an infinite-conductivity fracture transversely intersecting a horizontal well. In this for-
mulation, there is no horizontal well contribution and the fractures do not intersect with
a wellbore. An imaginary wellbore, in which pwD is the same, connects the fractures.

2. The second category solutions are similar to those described in the first category, but they
include the contributions of the unfractured horizontal sections of the wellbore (Kuchuk
and Habashy 1994; Raghavan et al. 1994). Raghavan et al. (1994) stated that their model
also allows for multiple perforations along the horizontal well (in between fractures).
The solution given in Eq. (1) is also applicable for this case with a slight modification.
As in the first category, except for very high FD values, a few flow regimes at early times
will be incorrect and are artifacts of these types of solutions because multiple transverse
fractures do not intersect the actual wellbore.

3. The third category solutions are hybrid ones, in which piecemeal (Larsen and Hegre
1991, 1994) or numerical/analytical (Al-Kobaisi et al. 2006) solution approaches are
used. In these solutions, the wellbore is included. The flow in the fractures converges
toward the wellbore, exhibiting a fracture-radial or distorted fracture-radial flow regime;
see Al-Kobaisi et al. (2006). However, these solution do not include the contributions of
the unfractured horizontal sections of the wellbore. As FD becomes smaller, the solutions
do not change gradually into a horizontal well solution. This condition will be discussed
in detail later.

4. The first numerical solution for the pressure transient behavior of a single horizontal
well intersecting multiple transverse vertical hydraulic or natural fractures in the petro-
leum literature was presented by van Kruijsdijk and Dullaert (1989). After this paper, a
number of numerical solutions were presented for horizontal wells intersecting multiple
transverse vertical hydraulic or natural fractures or faults, including Akresh et al. (2004),
Al-Thawad et al. (2001, 2004).

The published solutions for horizontal wells in naturally fractured reservoirs have been
based on the outdated Barenblatt et al. (1960) and Warren and Root (1963) dual-porosity
models. In these solutions, a naturally fractured reservoirs is transformed into an equiva-
lent (fictitious) homogeneous medium for fractures and an equivalent homogeneous matrix
medium by use of the s → s f (s) transformation, where f (s) = ω(1−ω)s+λ

(1−ω)s+λ
, s is the Laplace

transform variable, λ is the interporosity flow coefficient, and ω is the storativity ratio. As
Braester (2005) stated, naturally fractured reservoirs are heterogeneous. It is therefore unreal-
istic to model naturally fractured reservoirs with only twoω and λ parameters, although there
may be a few reservoirs that can be modeled using the s → s f (s) transformation. In the first
paper published on this subject, de Carvalho and Rosa (1988) used the pseudosteady-state

123



374 D. Biryukov, F. J. Kuchuk

flow conditions in matrix blocks with the s → s f (s) transformation to derive the pressure
transient solution for a horizontal well in a naturally fractured reservoir. After the de Car-
valho and Rosa (1988) solution, many more solutions have been published in the petroleum
literature using the→ s f (s) transformation, while varying thematrix block shape andmatrix
block flow condition, and adding the interporosity skin factor for the matrix (Aguilera and
Ng 1991; Du and Stewart 1992; Williams and Kikani 1990), in addition to the more recent
papers by Abdulal et al. (2011), Brohi et al. (2011), Guo et al. (2012), Ketineni and Ertekin
(2012), Lu et al. (2009), Medeiros et al. (2007, 2008, 2010), Nie et al. (2012a, b), Torcuk
et al. (2013).

As reported by Kuchuk et al. (2014), if the permeabilities of the fracture segments are
a few orders of magnitude larger than those of the matrix blocks, but not km � k f , then a
macroscopic representative elementary volume can be constructed (i.e., dual-porositymodels
can therefore be used for continuously fractured reservoirs). If km � k f , then a macroscopic
representative elementary volume (REV) cannot be constructed. Thus, analytical or numeri-
cal techniques should be used to model the pressure transient behavior of fractured reservoirs
without fracture-segment homogenization or upscaling (i.e., fractures have to be modeled
explicitly). In general, dual-porosity models should not be used for discretely fractured reser-
voirs (Kuchuk et al. 2014).

Kuchuk et al. (2014) also showed that the resistance interface condition used byBarenblatt
et al. (1960) and Warren and Root (1963) to specify fluid transport between the equivalent
matrix and fractured media, dominates the dual-porosity model pressure transient behavior,
irrespective of whether it is a vertical or horizontal well. The pseudosteady-state flow in
the equivalent matrix medium that we observe in the Warren and Root (1963) model is a
consequence of the resistance interface condition. This is not the actual pseudosteady-state
flow that takes place after the transient flow in the equivalent matrix medium. The resistance
interface condition for pseudosteady-state flow and the interporosity skin with transient flow
in the matrix are of a nonphysical nature. The inclusion of these two nonphysical phenomena
in the dual-porosity models introduces serious nonuniqueness problems for interpretation,
significantly distorts flow regimes, and creates a naturally fractured reservoir look-alike
pressure behavior but without any physical meaning of the parameters.

In a naturally fractured reservoir, a horizontalwell usually intersects hundreds or thousands
of fractures and several conductive and/or nonconductive faults [see Fig. 1.10 of the Nurmi
et al. (1995) and Fig. 1 of the Kuchuk and Biryukov (2015) papers], particularly in carbonate
formations (Al-Thawad et al. 2001, 2004). It was reported by Kuchuk and Biryukov (2015)
and Kuchuk et al. (2014) that wellbore-intersecting fractures dominate the pressure transient
behavior of both continuously and discretely naturally fractured reservoirs.

Next, we present the mesh-free semi-analytical technique for modeling the pressure tran-
sient behavior of hydraulically and naturally fractured horizontal wells in continuously and
discretely 3D fractured and nonfractured reservoirs.

2 Mathematical Model

In this section, we present new semi-analytical solutions in the real-time domain for horizon-
tal wells in reservoirs bounded at the top and bottom by the no-flow horizontal boundaries.
Let us consider a single-phase slightly compressible fluid flow in an infinite reservoir with
a no-flow condition on the top and bottom boundaries. The reservoir is naturally fractured
and consists of fractures and the formation (matrix). In this model, the formation between
the fractures becomes the matrix without predetermined shapes, and it can easily deal with
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fracture properties that exhibit power-law distributions or other type distributions, such as
log-normal. The formation thickness h, porosity φm , total isothermal compressibility (ct )m ,
horizontal and vertical permeabilities kmh and kmv , and fluid viscosity μ are assumed to be
constant, and time and pressure invariant. The fluid is assumed to be Newtonian. The fracture
porosity φ f , total isothermal compressibility (ct ) f , and permeability k f are also assumed to
be constant, and time and pressure invariant. The model also applies to multistage hydrauli-
cally fractured horizontal wells in homogenous (unconventional oil and gas) reservoirs.

The origin of the global Cartesian coordinates {x = 0, y = 0, z = 0} is in the center of
the reservoir, and the top and bottom boundary planes are at z = ± h

2 , respectively. For this
system, the pressure diffusion equation can be written as

kmh

μ

∂2P
∂x2

+ kmh

μ

∂2P
∂y2

+ kmv

μ

∂2P
∂z2

= φm(ct )m
∂P
∂t

, (2)

P(x, y, z, 0) = 0, (3)

∂P
∂z

(

x, y,±h

2
, t

)

= 0, (4)

where P(x, y, z, t) = p0 − p(x, y, z, t) is reservoir pressure change, and po and p denote
the initial and reservoir pressures, respectively.

Let us consider that the reservoir is producing from a horizontal well with multiple pro-
duction zones having radii rwhi and lengths 2lwhi , with their centers positioned at zchi from
the bottom no-flow boundary (Fig. 1), where the subscripts c, w, h, and i denote center,
wellbore, horizontal, and i th well (production section) respectively, i = 1, . . . , Nh and Nh

denotes the number of producing horizontal well sections. Modeling horizontal wells is a
complicated problem due to vertical anisotropy that implies the use of Mathieu functions,
which are computationally expensive, the problem is therefore simplified by assuming that
the well has a square cross section rather than circular one, while keeping the total produc-
tion area and the length of the well the same. The effect of this assumption is negligible in
the pressure response compared with a circular cross-sectional horizontal well. The assump-

bottom

top

h

zchi

xhi0hi

zhi

yhi

rwhi

2lwhi

formation

open section

well

Fig. 1 Schematic of a horizontal well in the local coordinate system
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tion of a square cross-sectional wellbore is considered to be a fair trade-off in exchange for
simplifying derivations. For a square cross-sectional horizontal well, the governing partial
differential equation given by Eq. (2), and the initial condition given by Eq. (3) should be
completed with the following conditions; see Fig. 1:

P(xhi , yhi , zhi , t) = Pwbhi (t), if |xhi | < lwhi and max(|yhi | , |zhi |) = rwhi , (5)

Υwbhi (t) ≡ kmh

μ

(∫ rwhi

−rwhi

∫ lwhi

−lwhi

∂P
∂yhi

(xhi , rwhi , zhi , t)

− ∂P
∂yhi

(xhi ,−rwhi , zhi , t)dxhidzhi

)

+ kmv

μ

(∫ rwhi

−rwhi

∫ lwhi

−lwhi

∂P
∂zhi

(xhi , yhi , rwhi , t)

− ∂P
∂zhi

(xhi , yhi ,−rwhi , t)dxhidyhi

)

= −qhi (t), (6)

where Υwbhi is the flow rate entering the horizontal well from the reservoir.
Becausewe are going to use different coordinate systems, it is assumed for the simplicity of

notations that all functions are being expressed in the coordinate systems corresponding to the
subscripts of their arguments (i.e., we omit the transformation signs from a local coordinate
system xi , yi , zi to a global system of x, y, z: f (xi , yi , zi ) ≡ f [x(xi , yi , zi ), y(xi , yi , zi ),

z(xi , yi , zi )]).
Let us also consider a number of discrete fractures in the reservoir. For the sake of simpli-

fying derivations, we assume that the fractures are vertical and have a rectangular shape with
a half-length l f i and a half height h f i . Fluid flow in such a fracture, in its own coordinate
system (x f i and z f i lie in a fracture plane and y f i is an outer normal; the origin lies in the
center of the fracture at the distance zc f i from the bottom of the reservoir, see Fig. 2) can be
described by the following set of equations (see Fig. 2):

xfi

zfi

o

rw

y fi

well

fracture

formation

bottom

top

2h fi

zcfi

xfi

2lfi

h

Fig. 2 Schematic of a vertical fracture intersecting a horizontal well in the local coordinate system
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∂2P
∂x2f i

+ ∂2P
∂z2f i

= − 1

Fi

[
∂P
∂y f i

]

, −l f i ≤ x f i ≤ l f i and − h f i ≤ z f i ≤ h f i , (7)

∂P
∂x f i

(±l f i , 0, z f i , t) = 0, −h f i ≤ z f i ≤ h f i , (8)

∂P
∂z f i

(x f i , 0,±h f i , t) = 0, −l f i ≤ x f i ≤ l f i , (9)

Υ f i (t) = −kmh

μ

∫ l f i

−l f i

∫ h f i

−h f i

[
∂P
∂y f i

]

(x f i , 0, z f i , t)dz f idx f i = 0, (10)

where, i = 1, 2, 3, . . . , N f , and N f is the total number of fractures in the reservoir, Fi = k f i bi
kmh

is the i th fracture conductivity, bi is i th fracture aperture, k f i is i th fracture permeability,[
∂P
∂y f i

]
= ∂P

∂y f i

∣
∣
∣
y f i →+0

− ∂P
∂y f i

∣
∣
∣
y f i →−0

is the pressure derivative jump across the fracture,

and Υ f i is the flow rate entering the fracture from the reservoir. Note that in Eq. (10), we
assume an incompressible fluid flow in fractures (i.e., we do not consider any effects of
fluid compressibility in the fracture). Biryukov and Kuchuk (2012a) showed (see Fig. 10 of
their paper) that a compressible fluid flow in the fractures has almost no impact on wellbore
pressure response.

Equations (7)–(10) are only valid for an isolated fracture that is not intersecting anything
else.When the i th fracture intersects a number of ik fractures, where k = 1, . . . , Ki along the
lines x f i = x f iik , z1 f i ik ≤ z f i ≤ z2 f i ik , we should replace Eqs. (7)–(10) with the following:

∂2P
∂x2f i

+ ∂2P
∂z2f i

= − 1

Fi

⎛

⎝
[

∂P
∂y f i

]

+
Ki∑

k=1

q f iik (z f i , t)

kmh/μ
δ(x f i − x f iik )

⎞

⎠ ,

∣
∣x f i

∣
∣ ≤ l f i ,

∣
∣z f i

∣
∣ ≤ h f i , (11)

∂P
∂x f i

(±l f i , 0, z f i , t) = 0, −h f i ≤ z f i ≤ h f i , (12)

∂P
∂z f i

(x f i , 0,±h f i , t) = 0, −l f i ≤ x f i ≤ l f i , (13)

Υ f i (t) +
Ki∑

k=1

∫ z2 f i ik

z1 f i ik

qiik (z f i , t)dz f i = 0, (14)

P(x f iik , 0, z f i , t) = P(x f ik i , 0, z f ik (z f i ), t) if z1 f i ik ≤ z f i ≤ z2 f i ik , (15)

q f iik (z f i , t) = −q f ik i (z f ik (z f i ), t) if z1 f i ik ≤ z f i ≤ z2 f i ik , (16)

where Eqs. (15) and (16) correspond respectively to pressure and the flux density continuity
conditions at the intersection line, while Eq. (14) indicates the total flux conservation in the
system of intersecting fractures. The term q f iik corresponds to the flux density exchange
between the i th and ik th fractures. Note that if the intersection line lies on the edge of the
fracture, then the corresponding portion of the boundary condition in Eq. (12) is “overwritten”
by Eqs. (15) and (16).

When the horizontal well intersects a number of fractures, Eq. (6) is no longer valid, and
then the following equation should be used instead:

Υwbhi (t) +
jk=i∑

j

Υhj jk (t) = −qhi , (17)
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which accounts for additional influx terms Υhiik due to flow from fractures into the wellbore.
Fracture flow equations Eqs. (7)–(10) for the i th fracture intersecting with the horizontal well
section j should be changed accordingly as

∂2P
∂x2f i

+ ∂2P
∂z2f i

= − 1

Fi

{[
∂P
∂y f i

]

+
Ki∑

k=1

q f iik (z f i , t)

kmh/μ
δ(x f i − x f iik )

}

,

if
{∣
∣x f i

∣
∣ ≤ l f i ,

∣
∣z f i

∣
∣ ≤ h f i

}⋂{
max(

∣
∣x f i − ξi j

∣
∣ sin αi j ,

∣
∣z f i − ζi j

∣
∣) > rw

}
, (18)

∂P
∂x f i

(±l f i , 0, z f i , t) = 0, −h f i ≤ z f i ≤ h f i , (19)

∂P
∂z f i

(x f i , 0,±h f i , t) = 0, −l f i ≤ x f i ≤ l f i , (20)

P(x f i , 0, z f i , t) = Pwbhj (t) if max(
∣
∣x f i − ξi j

∣
∣ sin αi j ,

∣
∣z f i − ζi j

∣
∣) = rw, (21)

∫ ξi j + rwhj
sin αi j

ξi j − rwhj
sin αi j

∂P
∂z f i

(x f i , 0, ζi j + rwhj , t) − ∂P
∂z f i

(x f i , 0, ζi j − rwhj , t)dx f i

+
∫ ζi j +rwhj

ζi j −rwhj

∂P
∂x f i

(

ξi j + rwhj

sin αi j
, 0, z f i , t

)

− ∂P
∂x f i

(

ξi j − rwhj

sin αi j
, 0, z f i , t

)

dz f i = −Υhi j (t)
μ

k f i bi
(22)

Υ f i (t) − Υhi j (t) +
Ki∑

k=1

∫ z2 f i ik

z1 f i ik

q f iik (z f i , t)dz f i = 0, (23)

P(x f iik , 0, z f i , t) = P(x f ik i , 0, z f ik (z f i ), t) if z1 f i ik ≤ z f i ≤ z2 f i ik , (24)

q f iik (x f iik , z f i , t) = −q f ik i (z f ik (z f i ), t) if z1 f i ik ≤ z f i ≤ z2i ik , (25)

where αi j is the angle between the horizontal well axis and the i th fracture plane, and
x f i = ξi j and z f i = ζi j are the coordinates of the point of intersection of the well axis and
the fracture plane in the i th fracture coordinate system. For simplicity, we assume that one
fracture can intersect one horizontal well section only. If that is not the case, the fracture can
be split into several fractures, each intersecting with only one horizontal well section.

To simplify Eqs. (2) through (25), the following dimensionless variables in the global
coordinate system are defined as

pD = 2πkmh h
μq P, tD = kmh t

φmμ(ct )ml2c
, xD = x

lc
, yD = y

lc
,

zD = z
lc

, lD f i = l f i
lc

, qDhi = qhi
q

h
2lc

, h D f i = h f i
lc

,

h D = h
lc

, lDwhi = lwhi
lc

, ν2 = kmv

kmh
, rDwhi = rwhi

lc

(26)

and the dimensionless variables in the local coordinate system are defined as

xD f i = x f i
li

, yD f i = y f i
li

, zD f i = z f i
hi

, xDhi = xhi
lwhi

,

yDhi = yhi
rwhi

, zDhi = zhi
rwhi

, zDc f i = zc f i
h f i

, FDi = k f i bi
kmhl f i

,
(27)

where k f and lc denote the fracture permeability and the characteristic half-length or a
reference length, respectively; li denotes the half-length of the i th fracture; kmh, φm , and
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(ct )m denote the horizontal permeability, porosity, and total compressibility of the for-
mation (matrix); h denotes the reservoir thickness; qhi denotes the flow rate into the i th
horizontal section; q denotes a reference flow rate; μ denotes fluid viscosity; and t denotes
time. As discussed previously, in fractured reservoirs, since there are many fractures of
different lengths; we therefore choose a nominal half-length to be a reference or a charac-
teristic length. In our solutions, we assume that the formation matrix can be anisotropic
with the horizontal and vertical permeabilities, kmh and kmv , respectively, whereas the
fracture media are assumed to be isotropic and each fracture may have a different per-
meability. For simplicity, we will omit the subscript D in the following sections because
all derivations below will be done using the dimensionless variables given in Eqs. (26) and
(27).

Themathematical statement of the problem can now bewritten for the reservoir producing
from horizontal well sections as

∂2 p

∂x2
+ ∂2 p

∂y2
+ ν2

∂2 p

∂z2
= ∂p

∂t
, (28)

p(x, y, z, 0) = 0, (29)

∂p

∂z

(

x, y, ±h

2
, t

)

= 0, (30)

p(xhi , yhi , zhi , t) = pwbhi (t), if |xhi | < 1 and max(|yhi | , |zhi |) = 1, (31)

∂2 p

∂x2f i

+
l2f i

h2f i

∂2 p

∂z2f i

= − 1

Fi

⎛

⎝
[

∂p

∂y f i

]

+
Ki∑

k=1

q f iik (z f i , t)δ(x f i − x f iik )

⎞

⎠ ,

{∣
∣x f i

∣
∣ ≤ 1,

∣
∣z f i

∣
∣ ≤ 1

}⋂{
max(

∣
∣x f i − ξi j

∣
∣ l f i sin αi ,

∣
∣z f i − ζi j

∣
∣ h f i ) > rwhi

}
, (32)

∂p

∂x f i
(±l f i , 0, z f i , t) = 0, −1 ≤ z f i ≤ 1, (33)

∂p

∂z f i
(x f i , 0, ±h f i , t) = 0, −1 ≤ x f i ≤ 1, (34)

p(x f i , 0, z f i , t) = pwbhi (t), max(
∣
∣x f i − ξi j

∣
∣ l f i sin αi j ,

∣
∣z f i − ζi j

∣
∣ h f i ) = rwhi , (35)

Υhi j (t)

Fi
=

∫ ξi j − rwhi / l f i
sin αi j

ξi j+rwhi / l f i
sin αi j

∂p

∂z f i

[(

x f i , 0, ζi j + rwhi

h f i
, t

)

− ∂p

∂z f i

(

x f i , 0, ζi j − rwhi

h f i
, t

)]

dx f i

+
h2f i

l2f i

∫ ζi j − rwhi
h f i

ζi j + rwhi
h f i

[
∂p

∂x f i

(

ξi j + rwhi / l f i

sin αi j
, 0, z f i , t

)

− ∂p

∂x f i

(

ξi j − rwhi / l f i

sin αi j
, 0, z f i , t

)]

dz f i , (36)

Υ f i (t) − Υhi j (t) +
Ki∑

k=1

∫ z2 f i ik

z1 f i ik

q f iik (z f i , t)dz f i = 0, (37)

123



380 D. Biryukov, F. J. Kuchuk

rwhi Υwbhi (t) +
lk=i∑

l

h f lΥhllk (t) = 4πqhi , (38)

p(x f iik , 0, z f i , t) = p(x f ik i , 0, z f ik (z f i ), t) if z1 f i ik ≤ z f i ≤ z2 f i ik , (39)

q f iik (z f i , t) = −q f ik i (z f ik (z f i ), t) if z1 f i ik ≤ z f i ≤ z2 f i ik , (40)

Υwbhi (t) =
∫ 1

−1

∫ 1

−1

∂p

∂yhi
(xhi , 1, zhi , t) − ∂p

∂yhi
(xhi , −1, zhi , t)dxhidzhi

+ ν2
l2
whi

r2
whi

∫ 1

−1

∫ 1

−1

∂p

∂zhi
(xhi , yhi , 1, t) − ∂p

∂zhi
(xhi , yhi ,−1, t)dxhidyhi . (41)

Finally, the system should be completed by imposing conditions at each horizontal wellbore
section on the flow rates qhj and pressure change pwbhj that are not independent. For example,
if we assume that all horizontal production zones are part of one well and are hydraulically
connected and produce with a constant flow rate q , we should add the following closure
equations:

pwbhi (t) = pwb(t), i = 1, . . . , Nh, (42)

Nh∑

j=1

qhj = h/2. (43)

3 Transient Solution

In this section, we will describe a solution technique that is used for solving Eqs. (28)–(43).
Let us first build an expansion for a flux density distribution on fractures. We consider a grid
in the form−1 = x1f i < x2f i < · · · < xm

f i < · · · < x Mi +1
f i = 1 and−1 = z1f i < z2f i < · · · <

zn
f i < · · · < zNi +1

f i = 1, and we also define �xm
f i = xm+1

f i − xm
f i and �zn

f i = zn+1
f i − zn

f i ,
where Mi and Ni are the number of grid cells in the x and z directions, respectively.

Now, let us assume that the flux density can be approximated as

q f i (x f i , z f i , t) ≡ 1

2

[
∂p

∂y f i

]

≈
Mi∑

m=1

Ni∑

n=1

4πcmn
f i (t)

h2
f i l f i

ω
(

x f i , xm
f i , xm+1

f i

)
ω

(
z f i , zn

f i , zn+1
f i

)
,

(44)
where ω denotes the boundary element in the form

ω(x, xn, xn+1) =
{

1
xn+1−xn if xn ≤ x ≤ xn+1

0, otherwise.
(45)

Although we could use Chebyshev polynomials as we did in the 2D case (Biryukov and
Kuchuk 2012a), we did not find them to be efficient for approximating the flux density
distribution near the point of intersection with the horizontal well. On the other hand, with
boundary elements ω, we can easily vary the local grid size in order to achieve the desired
precision. Therefore, we decided to increase the grid density near the edges of the fracture
and near the horizontal wellbore intersection (if there is one). The question of gridding will
be discussed in detail in “Appendix 1.”
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The flux density distribution defined by Eq. (44) will induce the following pressure change
in the reservoir:

p f i (x f i , y f i , z f i , t) =
Mi∑

m=1

Ni∑

n=1

c f i
mn(t) ⊗ Gmn

f i (x f i , y f i , z f i , t), (46)

where ⊗ denotes the time convolution operation, and

Gmn
f i (x f i , y f i , z f i , t) = e− y2f i

4t

Ξ
(

x f i , t/ l2f i , u
)∣
∣
∣
xm+1

f i

xm
f i

�xm
f i l f i

Λ
(

z f i ,
ν2t
h f i

,
zc f i
h f i

, h
h f i

, u
)∣
∣
∣
zn+1

f i

zn
f i

th2
f i�zn

f i

,

(47)

Ξ(x, t, u) =
√

π

2
erf

(
u − x

2
√

t

)

, (48)

Λ(z, t, z0, h, u) =
∞∑

j=−∞

{

erf

(
z − u + 2 jh

2
√

t

)

+ erf

(
z + u + 2z0 + 2 jh

2
√

t

)}

. (49)

The evaluation of Λ and the time integrals given in Eq. (46) are discussed in detail in
“Appendix 1.” We also consider a grid along the fracture intersection lines in the form

z1 f i ik = z1f i ik
< z2f i ik

< . . . < zn
f iik

< . . . < z
N f iik +1

f i ik
= z2 f i ik , and assume that the

interfracture flow exchange terms can be expressed as

q f iik (z f i , t) = 4π

N f iik∑

n=1

qn
f iik

h2
f i

ω
(

z f i , zn
f iik

, zn+1
f i ik

)
, (50)

where it is assumed that z f i (zn
f ik i ) = zn

f iik
.

For the horizontal well, we define a grid in the form −1 = x1hi < x2hi < · · · < xn
hi <

· · · < x Nhi +1
hi = 1 along the well and −1 = y1hi < y2hi < · · · < ym

hi < · · · < yMhi /4+1
hi = 1

at zhi = ±1 and −1 = z1hi < z2hi < · · · < zm
hi < · · · < zMhi /4+1

hi = 1 at yhi = ±1 in the
transverse direction, where Nhi and Mhi are the number of grid cells in the x and z directions,
respectively

Let us also consider the following point source distribution on the wellbore:

qwhi (xhi , yhi , 1, t) =
Mhi /4∑

m=1

Nhi∑

n=1

4πcmn
hi (t)

r2whi lwhi
ω

(
yhi , ym

hi , ym+1
hi

)
ω

(
xhi , xn

hi , xn+1
hi

)
, (51)

qwhi (xhi , yhi ,−1, t) =
Mhi /2∑

m=Mhi /4+1

Nhi∑

n=1

4πcmn
hi (t)

r2whi lwhi
ω

(
yhi , ym−Mhi /4

hi , ym−Mhi /4+1
hi

)

× ω
(

xhi , xn
hi , xn+1

hi

)
, (52)

qwhi (xhi , 1, zhi , t) =
3Mhi /4∑

m=Mhi /2+1

Nhi∑

n=1

4πcmn
hi (t)

r2whi lwhi
ω

(
zhi , zm−Mhi /2

hi , zm−Mhi /2+1
hi

)

× ω
(

xhi , xn
hi , xn+1

hi

)
, (53)
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qwhi (xhi ,−1, zhi , t) =
Mhi∑

m=3Mhi /4+1

Nhi∑

n=1

4πcmn
hi (t)

r2whi lwhi
ω

(
zhi , zm−3Mhi /4

hi , zm−3Mhi /4+1
hi

)

× ω
(

xhi , xn
hi , xn+1

hi

)
. (54)

The pressure change in the reservoir induced by this source distribution can be expressed by
the following equation as

phi (xhi , yhi , zhi , t) =
Mhi∑

m=1

Nhi∑

n=1

cmn
hi (t) ⊗ Gmn

hi (xhi , yhi , zhi , t), (55)

where

Gmn
hi (xhi , yhi , zhi , t) =

Ωm
(

yhi , zhi ,
t

r2whi
,

zchi
rwhi

, h
rwhi

)

r2whi

Ξ
(
xhi , t/ l2whi , u

)∣
∣xn+1

hi
xn

hi

t�xm
hi lwhi

(56)

Ωm(yhi , zhi , zchi , h, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z(zhi ,zchi ,h,ν2t,1)
ν

Ξ(yhi ,t,u)|ym+1
hi

ym
hi

�y
m−Mhi /4
hi

, 1 ≤ m ≤ Mhi
4 ,

Z(zhi ,zchi ,h,ν2t,−1)
ν

Ξ(yhi ,t,u)|y
m−Mhi /4+1
hi

y
m−Mhi /4
hi

�y
m−Mhi /4
hi

, 1 + Mhi
4 ≤ m ≤ Mhi

2 ,

e− (1−yhi )
2

4t

Λ(zhi ,ν
2t,zchi ,h,u)

∣
∣
z
m−Mhi /2+1
hi

z
m−Mhi /2
hi

�z
m−Mhi /2
hi

, 1 + Mhi
2 ≤ m ≤ 3Mhi

4 ,

e− (1+yhi )
2

4t

Λ(zhi ,ν
2t,zchi ,h,u)

∣
∣
z
m−3Mhi /4+1
hi

z
m−3Mhi /4
hi

�z
m−3Mhi /4
hi

, 1 + 3Mhi
4 ≤ m ≤ Mhi ,

(57)

with Ξ being defined by Eq. (48), and

Z(zhi , zchi , h, t, u) =
∞∑

j=−∞

(

e− (u−zhi +2 jh)2

4t + e− (u+zhi +2zchi +2 jh)2

4t

)

. (58)

The total flow rate over the i th producing horizontal section due to the pressure change is
obtained by substituting phi from Eq. (55) into Eq. (41) as

Υwbhi (t) = 2π

rwhi

⎡

⎣2
Mhi∑

m=1

Nhi∑

n=1

cmn
hi (t) ⊗ Υ mn

whi (t) +
Mhi∑

m=1

Nhi∑

n=1

cmn
hi (t)

⎤

⎦ , (59)

where

Υ mn
whi (t) =

√
tπ

2
W m

s

(
t/r2whi

) W (t/ l2whi , u)
∣
∣xn+1

hi
xn

hi

�xm
hi

, (60)

W (t, u) = (1 − u)erf

(
1 − u

2
√

t

)

− (1 + u)erf

(
1 + u

2
√

t

)

+ 2

√
t

π

(

e− (1−u)2
4t − e− (1+u)2

4t

)

, (61)
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W m
s (t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
�ym

hi

{

R(t, u)erf
(

1
ν
√

t

)
+ W (t, u) e

− 1
4tν2

νt

}∣
∣
∣
∣
∣

ym+1
hi

ym
hi

, 1 ≤ m ≤ Mhi
4 ,

1

�y
m− Mhi

4
hi

{

R(t, u)erf
(

1
ν
√

t

)
+ W (t, u) e

− 1
4tν2

νt

}∣
∣
∣
∣
∣

y
m+1− Mhi

4
hi

y
m− Mhi

4
hi

, 1 + Mhi
4 ≤ m ≤ Mhi

2 ,

ν

�z
m− Mhi

2
hi

{

R(ν2t, u)erf
(

1
ν
√

t

)
+ W (ν2t, u) e

− 1
4tν2

νt

}∣
∣
∣
∣
∣

z
m+1− Mhi

2
hi

z
m− Mhi

2
hi

, 1 + Mhi
2 ≤ m ≤ 3Mhi

4 ,

ν

�z
m− 3Mhi

4
hi

{

R(ν2t, u)erf
(

1
ν
√

t

)
+ W (ν2t, u) e

− 1
4tν2

νt

}∣
∣
∣
∣
∣

z
m+1− 3Mhi

4
hi

z
m− 3Mhi

4
hi

, 1 + 3Mhi
4 ≤ m ≤ Mhi ,

(62)

and

R(t, u) = e− (1+u)2
4t − e− (1−u)2

4t . (63)

Next, we seek the solution of Eqs. (28)–(43) in the following form:

p(x, y, z, t) =
Kh∑

i=1

phi (x, y, z, t) +
N f∑

i=1

p f i (x, y, z, t). (64)

It can be observed that Eqs. (28)–(30) are satisfied automatically. The remaining equations
cannot be satisfied everywhere because we have restricted ourselves to a limited number of
expansion functions in phi and p f i . We therefore choose a number of collocation points on
every fracture and well segment (must correspond to the number of expansion functions) and
consider these equations only on this set. We suggest taking a point in the middle of every
grid cell to construct our expansion functions as

x̃m
f i = xm

f i + xm+1
f i

2
, m = 1, . . . , M f i , z̃n

f i = zn
f i + zn+1

f i

2
,

n = 1, . . . , N f i , on fracture i, (65)

ũm
hi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ym

hi +ym+1
hi

2 , 1

)

, m = 1, . . . , Mhi
4 ,

⎛

⎝ y
m− Mhi

4
hi +y

m− Mhi
4 +1

hi
2 ,−1

⎞

⎠ , m = Mhi
4 + 1, . . . , Mhi

2 ,

⎛

⎝1,
z

m− Mhi
2

hi +z
m− Mhi

2 +1
hi

2

⎞

⎠ , m = Mhi
2 + 1, . . . , 3Mhi

4 ,

⎛

⎝−1,
z

m− 3Mhi
4

hi +z
m− 3Mhi

4
hi

2

⎞

⎠ , m = 3Mhi
4 + 1, . . . , Mhi ,

(66)

x̃n
hi = xn

hi + xn+1
hi

2
, n = 1, . . . , Nhi , on the i th horizontal wellbore section.
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The quantities M f i , Mhi , N f i , and Nhi are the numbers of collocation points and/or grid
cells in corresponding directions for fractures and horizontal wells, respectively. N f iik is the
number of collocation points and grid cells along the intersection line of i th and ik fractures.
Their values should be chosen based upon the desired accuracy and the computational time
preferences. This procedure is discussed in “Appendix 1.” In the samemanner, the collocation
points on the fracture intersection lines can be defined as

z̃n
f i ik

= zn
f iik

+ zn+1
f i ik

2
, n = 1, . . . , N f iik , on the intersection of the

i th and the ik th fractures. (67)

Considering Eqs. (30)–(43) only on these collocation points, we can obtain the following
system of equations for the unknown variable coefficients cmn

f i (t) and cmn
hi (t):

No∑

[i]

M[i]∑

m=1

N[i]∑

n=1

cmn
[i] (t) ⊗ Gmn

[i]
(

x̃ p
h j , ũ

q
hj , t

)
= pwbhj (t), (68)

No∑

[i]

M[i]∑

m=1

N[i]∑

n=1

cmn
[i] (t)⊗Gmn

[i]
(

x̃ p
f j , 0, z̃q

f j , t
)

= p̃ f j (t) − 1

Fj

⎛

⎝
M f j∑

m

N f j∑

n

cmn
f j (t)Ψ mn

j

(
x̃ p

f j , z̃q
f j

)

+
K j∑

k=1

N f j jk∑

n=1

q f j jk (t)ψ
n
j jk

(
x̃ p

f j , z̃q
f j

)
⎞

⎠ , j = 1, . . . , N f , (69)

1

2

Mhj∑

m=1

Nhj∑

n=1

cmn
hj (t) +

Mhj∑

m=1

Nhj∑

n=1

cmn
hj (t) ⊗ Υ mn

whj (t) +
∑

lk= j

Υhllk (t) = qhj , 1 ≤ j ≤ Nh, (70)

M f j∑

m=1

N f j∑

n=1

cmn
f j (t) +

K j∑

k=1

N f j jk∑

n=1

q f j jk (t) −
K jh∑

k=1

Υhj jk (t) = 0, 1 ≤ j ≤ N f , (71)

p f j (t) = pwbhk(t), if the j th fracture intersects the kth horizontall well, (72)

p̃ f j (t) − 1

Fj

⎛

⎝
M f j∑

m

N f j∑

n

cmn
f j (t)Ψ mn

j

(
x̃ f j jl , z̃q

f j jl

)
+

K j∑

k=1

N f j jk∑

n=1

qn
f j jk (t)ψ

n
j jk

(
x̃ f j jl , z̃q

f j jl

)
⎞

⎠

= p̃ f jl (t) − 1

Fjl

⎛

⎝

M f jl∑

m

N f jl∑

n

cmn
f jl (t)Ψ

mn
jl

(
x̃ f jl j , z̃q

f jl j

)

+
K jl∑

k=1

N f jl jk∑

n=1

qn
f jl jlk (t)ψ

n
jl jlk

(
x̃ f jl j , z̃q

f jl j

)
⎞

⎠ , (73)

qn
j jk (t) = qn

jk j (t), if the j th fracture intersects the jk th, (74)

pwbhi (t) = pwb(t), i = 1, . . . , Nh, (75)

Nh∑

i=1

qhi (t) = h/2. (76)

Equations (68) and (69) correspond to the pressure conditions that are prescribed on the
well segments and fractures, i.e., to Eqs. (31) and (32), respectively. Equations (70) and (71)
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correspond to the flow rate conditions imposed on the horizontal well sections and fractures,
i.e., to Eqs. (37) and (38), respectively. Equations (72) and (73) correspond to the pressure
continuity condition on the fractured horizontal well section and the fracture-fracture inter-
section lines, i.e., to Eqs. (35) and (39), respectively. Finally, Eq. (74) indicates the flux
continuity along the intersection line of two fractures (see Eq. 40), while Eqs. (75) and (76)
correspond to the closer conditions imposed on the wellbore pressure and flow rates. Note
that the equations corresponding to the fracture collocations points situated in the horizontal
well cross section, as well as the coefficients cmn

f i corresponding to the same grid cells should
be removed. Also, for simplicity of notation, we used a superindex [i] = { f i, hi}, where
No = Nh + N f is the total number of “objects” in the reservoir and

Ψ mn
j (x, z)

=

⎧
⎪⎨

⎪⎩

2πΦ
(

x, z, xm
f j , xm+1

f j , zn
f j , zn+1

f j ,
l f j
h f j

)
, if the j th fracture does not intersect hor. well,

2π E
(

x, z, xm
f j , xm+1

f j , zn
f j , zn+1

f j ,
l f j
h f j

, ξ jk , ζ jk ,
rwhk

l f j sin α jk
,

rwhk
h f j

)
, otherwise,

(77)

ψn
j jk (x, z)

=
⎧
⎨

⎩

2πϕ
(

x, z, x j jk , zn
j jk

, zn+1
j jk

,
l f j
h f j

)
, if the j th fracture does not intersect hor. well,

2πε
(

x, z, x j jk , zn
j jk

, zn+1
j jk

,
l f j
h f j

, ξ jk , ζ jk ,
rwhk

l f j sin α jk
,

rwhk
h f j

)
, otherwise,

(78)

where Φ(x, z, x1, x2, z1, z2, ν) is defined as the solution of the following problem:

∂2Φ

∂x2
+ ν2

∂2Φ

∂z2
= ω(x, x1, x2)ω(z, z1, z2) − 1, |x | < 1, |z| < 1, (79)

∂Φ

∂x
(±1, z) = 0, −1 ≤ z ≤ 1, (80)

∂Φ

∂z
(x,±1) = 0, −1 ≤ x ≤ 1. (81)

E(x, z, x1, x2, z1, z2, ν, ξ, ζ, α, β) is defined as the solution of the following problem:

∂2E

∂x2
+ ν2

∂2E

∂z2
= ω(x, x1, x2)ω(z, z1, z2),

{|x | < 1, |z| < 1}
⋂

{max(|x − ξ |/α, |z − ζ |/β) > 1}, (82)

∂ E

∂x
(±1, z) = 0, −1 ≤ z ≤ 1, (83)

∂ E

∂z
(x,±1) = 0, −1 ≤ x ≤ 1, (84)

E(x, z) = 0, if max(|x − ξ |/α, |z − ζ |/β) = 1, (85)

ϕ(x, z, x0, z1, z2, ν) is defined as the solution of the following problem:

∂2ϕ

∂x2
+ ν2

∂2ϕ

∂z2
= ω(z, z1, z2)δ(x − x0) − 1, |x | < 1, |z| < 1, (86)

∂ϕ

∂x
(±1, z) = 0, −1 ≤ z ≤ 1, (87)
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∂ϕ

∂z
(x,±1) = 0, −1 ≤ x ≤ 1. (88)

ε(x, z, x0, z1, z2, ν, ξ, ζ, α, β) is defined as the solution of the following problem:

∂2ε

∂x2
+ ν2

∂2ε

∂z2
= ω(z, z1, z2)δ(x − x0),

{|x | < 1, |z| < 1}
⋂{

max

( |x − ξ |
α

,
|z − ζ |

β

)

> 1

}

, (89)

∂ε

∂x
(±1, z) = 0, −1 ≤ z ≤ 1, (90)

∂ε

∂z
(x,±1) = 0, −1 ≤ x ≤ 1, (91)

ε(x, z) = 0, if max(|x − ξ |/α, |z − ζ |/β) = 1. (92)

These mixed boundary value problems are time independent and relatively simple; therefore,
they can be solved by a variety of methods. In “Appendix 2,” we describe one possible
approach based on the analytical elements method. Now, let us return to the system defined
byEqs. (68)–(76). To solve this system,we need to discretize it over time. The systemcontains
the convolution operation, which is only convenient for discretizing on a fixed-step-size grid.
At the same time, we would like to be able to increase the step size as time grows (due to
the logarithmic behavior of pressure response). So, we suggest considering the following
time grid: t s

l = l × 2s, l = 0, 1, 2, 3, 4 and s = s1, . . . , s2, which effectively consists of
overlapping fixed-step subgrids (with steps of 2s). In our computations, we use s1 = −35 and
s2 = 8, which covers the dimensionless time range from 2−35 ≈ 2 × 10−11 to 210 ≈ 1000,
which is sufficient for the most cases. Let us also define a discrete convolution operation ⊗̃
on this time grid as

G(t)⊗̃c(t)
∣
∣
t
s1
l

=
l∑

v=0

Ĝs1
v c

(
t s1
l−v

)
, l = 1, . . . , 4, (93)

c
(

t s1+1
1

)
= c

(
t s1
1

) + c
(
t s1
2

)

2
, c

(
t s1+1
2

)
= c

(
t s1
3

) + c(t s1
4 )

2
, (94)

Ĝs1+1
1 = Ĝs1

1 + Ĝs1
2 , Ĝs1+1

2 = Ĝs1
3 + Ĝs1

4 , (95)

G(t)⊗̃c(t)
∣
∣
t s
l

=
l∑

v=0

Ĝs
vc

(
t s
l−v

)
, l = 3, 4, s > s1, (96)

c
(

t s+1
1

)
= c

(
t s
1

) + c
(
t s
2

)

2
, c

(
t s+1
2

)
= c

(
t s
3

) + c
(
t s
4

)

2
, s > s1, (97)

Ĝs+1
1 = Ĝs

1 + Ĝs
2, Ĝs+1

2 = Ĝs
3 + Ĝs

4, s > s1, (98)

where Ĝs
v = ∫ t s

v+1
t s
v

G(τ )dτ . Now, the discretized version of the system defined by Eqs. (68)–
(76) can be obtained by simply replacing the continuous convolution with one that is discrete,
and the continuous time with discrete time values from the time grid. The values for the time
points that are not in the grid can be obtained by interpolation.
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The dimensionless wellbore pressure (pwD) with the wellbore storage (CD) and skin (S)
effects can be obtained using the superposition theorem that is given as an integro-differential
equation of a convolution type, namely:

pwD(tD) =
∫ tD

0

[

1 − CD
dpwD(τ )

dτ

]
dpD(tD − τ)

dtD
dτ + S

[

1 − CD
dpwD(tD)

dtD

]

, (99)

where pD is the dimensionless constant-rate wellbore pressure (solutions are given above)
and the dimensionless wellbore storage, which is defined as

CD = C

2πφm(ct )mhl2c
. (100)

The above integro-differential equation can be easily solved numerically using a variety of
methods. The most straightforward method consists of replacing the integral with its sum
representation and derivatives with finite differences, which reduces the problem to a set of
linear equations (Kucuk 1986).

4 Comparison of the Results

In these examples, we investigate the pressure transient behavior of a single horizontal well
intersecting a number of vertical hydraulic and natural fractures in fractured and nonfractured
reservoirs.

The pressure solutions given previously will be compared with some well-known ana-
lytical solutions in the literature. We compare the pressure solution for a single horizontal
well given by Kuchuk et al. (1991) with our solution. Figure 3 shows a comparison of the
derivative of the two solutions for a single horizontal well. As shown in Fig. 3, our results
(this study) compare very well with those of the Kuchuk et al. (1991) results.

The pressure transient behavior of a single finite-conductivity fracture has been well
studied, and accurate solutions are presented both in graphical and tabular forms; see Cinco-
Ley et al. (1978), Lee and Brockenbrough (1986). Figure 4 shows a comparison of our
solution for a single vertical finite-conductivity fracture without a horizontal well with the
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Fig. 3 Comparison of dimensionless pressure derivative for a horizontal well from Kuchuk et al. (1991) and
this work
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Fig. 4 Comparison of dimensionless pressure for a single finite-conductivity vertical fracture with varying
conductivities from Cinco-Ley et al. (1978) and this work

Table 1 Formation, fluid, and fracture properties for a single fracture example

φm Fraction 0.1 (ct )m psi−1 3×10−6 μ cp 0.6 kmh = kmv mD 0.1

qo STB/D 25 B0 RB/STB 1.273 po psi 4200 h ft 50

lw ft 500 FD 10,000 l f (x f ) ft 210 rw ft 0.354

po initial reservoir pressure
l f (x f ) fracture half-length
FD dimensionless fracture conductivity

Cinco-Ley andSamaniego (1981) solution for various FD values. Riley et al. (2007) presented
one of the most accurate solutions available in the petroleum literature. Riley et al. (2007)
obtained the dimensionless pressure for a vertical fracture with finite conductivity, where
the fracture is assumed to have an elliptical cross section, the flow within the fracture to be
incompressible, and the reservoir to be infinite. Their solution is a line-source solution, from
which they computed the wellbore pressure by using an equivalent wellbore radius. This is
a reasonable approximation for the uniform-wellbore-pressure condition if the time is not
very small. The Riley et al. (2007) results, as can be observed from Table 1 of Biryukov
and Kuchuk (2012a), are approximately 1% higher than the Biryukov and Kuchuk (2012a)
results. This difference might be due to the use of an equivalent wellbore radius with a line-
source solution by Riley et al. (2007), whereas Biryukov and Kuchuk (2012a) used a finite
(actual) wellbore radius (in the dimensionless form rDw = 10−3) with the uniform-pressure
boundary condition, which is the true boundary condition at the wellbore.

For transverse fractures, the effect of the horizontal wellbore cannot be ignored if the
well is either entirely completed barefoot (openhole) or cased and perforated over the entire
wellbore. The flow contribution from the formation directly into the unfractured horizon-
tal sections of the wellbore is negligible for high-conductivity fractures if the wellbore is
cased and perforated in clusters over small sections, and hydraulically fractured. This is a
common practice in horizontal wells in shale formations. The next example will illustrate
the importance of inclusion of the wellbore in the solutions. As we stated previously, most
published solutions on horizontal wells with multiple fractures in fractured and nonfractured
(homogenous) reservoirs do not include the wellbore effect in the solution.

For this case, we will use the example given in one of the most recent articles published
by Zhou et al. (2013). For this single-rectangular-fracture case, fracture, formation, and fluid
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Fig. 5 Comparison of dimensionless pressure derivatives of a single vertical fracture with and without a
wellbore and a horizontal well

properties are given in Table 1 of Zhou et al. (2013) and in Table 1 of this paper with a few
additions: a horizontal well and FD = 10,000 instead of 20. The reservoir is homogenous
and infinite, the center of the well is located at {0, 0, 0} (in the middle of the formation from
the top and bottom), and the transverse vertical fracture intersects the 1000-ft horizontal at
{0, 0, 0} and penetrates the entire formation. We will investigate the behavior of three cases:
(1) a single vertical fracture (denoted without well in Fig. 5), (2) a single vertical fracture
with the horizontal wellbore (denoted with wellbore) without the flow contribution from the
formation into the horizontal section of the wellbore, and (3) a single vertical fracture with
the wellbore and the flow contribution from the formation into the horizontal section of the
wellbore (denoted with horizontal well).

As shown in Fig. 5, the single vertical fracture derivatives with and without wellbore are
exactly the same because as discussed previously for high fracture conductivities (FD), the
horizontal wellbore effect without the noncontributing horizontal section is negligible at early
times, and the fractures dominate the behavior of the system in homogenous reservoirs. As
expected, the derivatives exhibit a formation-linear flow regime (m = 1/2) until about tD of
30, after which an infinite-acting pseudoradial flow regime is observed. The same figure also
presents the derivative of the horizontal well without the fracture in a homogenous reservoir
as a bench mark. The horizontal well derivative exhibits a first radial flow regime around
the well and then an intermediate horizontal well linear flow regime from tD of 0.02 to 0.4
before a horizontal well infinite-acting pseudoradial flow regime. The derivative (denoted
with horizontal well in Fig. 5) of the single vertical fracture with the contributing horizontal
well section over its entire length also exhibits a formation-linear flow regime (m = 1/2)
until about tD of 3 × 10−5, after which it deviates from the formation-linear flow regime
until about tD of 0.02, after which the horizontal well dominates the derivative behavior, as
shown by the “only horizontal well’ derivative in Fig. 5.

Figure 6 presents the dimensional derivatives to give an idea about the observability of
these flow regimes. The formation-linear flow regime of the derivatives with and without
wellbore last about 3h before the start of an infinite-acting pseudoradial flow regime. The
formation-linear flow regime of the derivative of the single vertical fracture with the con-
tributing horizontal well lasts about 0.008h (less than 1min). Even without skin and wellbore
storage effects, this flow regime would not be observable. Note that the derivative for this
case exhibits a trilinear flow regime from 0.1 to 10h, perhaps a look-alike one. It exhibits an
intermediate horizontal well linear flow regime from 10 to 20h. The infinite-acting pseudo-
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Fig. 6 Comparison of dimensional pressure derivatives of a single vertical fracturewith andwithout awellbore
and a horizontal well
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Fig. 7 Comparison of pressure changes in a single vertical fracture with and without a wellbore and a
horizontal well

radial flow regime starts for all derivatives about 5000h, which is unlikely to be achieved for
a reasonable well test duration.

Figure 7 presents the pressure changes for the three fracture cases and a single horizontal
well. A very large pressure change difference is observed between the fracture with and
without wellbore cases and the fracture with the horizontal well contribution case. Figure 8
presents the percentage differences for pressure changes and derivatives for the fracture with-
out wellbore cases and the fracture with the horizontal well contribution case. As shown in
these plots, more than one hundred percent difference in pressure changes and derivatives
are observed. Note also that the difference in derivatives goes down after 10h, and eventually
will be small when all derivatives reach the infinite-acting pseudoradial flow regime at about
5000h.

As shown here, the solutions (discussed above) without wellbore or the horizontal well
contribution may have serious consequences for model identification and history matching,
whichmay lead to serious inaccuracies in estimatingwell, fracture, and formation parameters
from transientwell test data. This large difference in the pressure changes particularly for long
times, as shown in Fig. 8, will have a very large impact on the rate behavior of the reservoir.

We compare our solution with the one given by Al-Kobaisi et al. (2006) shown in Fig. 9.
This horizontal well example is given in Fig. 16 of the (Ozkan 2014) paper. As we discussed
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Fig. 8 Differences (%) in pressure changes and derivatives for a single vertical fracture without wellbore and
with a horizontal well
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Fig. 9 Comparison of dimensionless pressure derivatives obtained from Al-Kobaisi et al. (2006) and our
solution without the unfractured horizontal (the well length = 200 ft) sections of the wellbore

above, the Al-Kobaisi et al. (2006) solution does not include the contributions of the unfrac-
tured horizontal sections of the wellbore, but, unlike most other solutions, it does include the
wellbore in the fracture plane. Therefore, as can be observed in Fig. 9, the derivative curves
first exhibit a fracture-radial flow regime (m = 0) and then a formation-linear flow regime
(m = 1/2). Our results compare remarkably well with those of Al-Kobaisi et al. (2006) if we
exclude the flow contributions from the unfractured horizontal sections of the wellbore. A
slight difference can be observed between the derivatives of the two solutions due to our exact
treatment of the uniform-wellbore-pressure condition. For low-finite-conductivity fractures,
the duration of the fracture-radial flow regime becomes longer, and the formation-linear flow
regime becomes shorter. The derivatives for FD = 1 do not exhibit a formation-linear flow
regime. The derivatives for FD = 100 exhibit a very short fracture-radial flow regime, which
cannot be observed in real pressure transient well tests. As we said above, our solutions nor-
mally include the flow contributions from the unfractured horizontal sections of the wellbore,
but for this case we did not include them.

Figure 10 compares our solution that includes the flow contributions from the unfractured
horizontal sections of the wellbore with the Al-Kobaisi et al. (2006) solution given in Fig. 16
of their paper.We assume that the horizontalwell length in this case is 200 ft,which is the same
as the fracture length (see Table 1 of Al-Kobaisi et al. 2006) and is a very short well. As can
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Fig. 10 Comparison of dimensionless pressure derivatives obtained from Al-Kobaisi et al. (2006) without
the horizontal wellbore and our solution with contribution from the unfractured horizontal (the well length
= 200 ft) sections of the wellbore

be observed in this figure, the derivatives from the Al-Kobaisi et al. (2006) and our solutions
diverge very rapidly for small FD values because the derivative behavior is dominated by the
horizontal section of the wellbore. As we stated above, for large FD values, the derivatives
compare with each other perfectly because the wellbore-intersecting fracture(s) dominate(s)
the transient behavior of the system due to a very short well length. In other words, it
is very clear from Fig. 10 that the unfractured horizontal sections dominate the transient
behavior of the well for FD values less than 100. For FD = 1, we observe a horizontal well
radial flow regime around the wellbore, but do not observe a formation-linear flow regime
(m = 1/2). As can also observed from the figure, the difference between the derivatives
with and without contributions from the unfractured horizontal sections of the wellbore for
FD = 10, 100, and 1000 after tD of 0.01 are almost the same because of a very short well.
As shown in Fig. 11, when the horizontal well length is increased from 200 to 1000 ft, the
difference between the derivatives are clearly observable as in the example given in Fig. 5.

This example was also presented by Zhou et al. (2013) (see Fig. 14 of their paper) for
the transient behavior of a horizontal wells intersected by six multiple hydraulic fractures.
The fracture, formation, and fluid properties are given in Table 2 of Zhou et al. (2013) as:
φm = 0.1, (ct )m = 3 × 10−6psi−1, μ = 0.6 cp, kmh = kmv = 0.1 mD, h = 50 ft, rw =
0.354 ft, q = 63.65 RB/D, l f (x f ) = 300 ft, and FD = 30. Zhou et al. (2013) stated: “A
case of a horizontal well with six stages of uniform fractures is simulated, as shown in
Fig. 13. The thick red line represents the horizontal wellbore, and the blue diamond is the
heel of the horizontal section.” The horizontal well length obtained from Fig. 13 of their
paper is 500 ft. They have not specified whether the wellbore is cased and perforated in
clusters over the fractured sections, the entire horizontal wellbore is cased and perforated,
or completed barefoot. We will investigate the behavior of two cases: (1) the wellbore is
cased and perforated in clusters over the fractured sections and (2) the wellbore is cased and
perforated over the entire horizontal well.

Figure 12 shows a comparison of derivatives of six fractures that transversely inter-
sect a horizontal well in an infinite reservoir for both cases: perforated in clusters over
the fractured sections case is denoted “cluster” and the cased and perforated over the
entire horizontal well case is denoted “entire wellbore.” As expected, the derivatives of
FD = 30, 100, 1000, and 10,000 exhibit a formation-linear (m = 1/2) flow regimes, after
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Fig. 11 Comparison of dimensionless pressure derivatives obtained from Al-Kobaisi et al. (2006) without
the horizontal wellbore and our solution with contribution from the unfractured horizontal (the well length
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Fig. 14 Comparison of pressure derivatives of 6-fracture solutions from Zhou et al. (2013) and this work for
FD = 1, 10, and 30

which the distorted formation pseudosteady-state flow (m ≈ 1) is observed because the for-
mation volume between the fractures reaches a pseudosteady-state flow regime, which occurs
after the formation-linear flow. In this case, we have included the derivative of FD = 30
because this was used by Zhou et al. (2013) for the six hydraulic fracture case. Finally, all
derivatives approach the formation infinite-acting pseudoradial flow regime. The derivatives
of FD = 1, and 10 exhibit a fracture-radial flow regime at early times, whereas the derivative
of FD = 10 exhibit also a bilinear flow regime.As can be seen from this figure, the differences
in the derivatives are not large because the fracture length (600 ft) is longer than the horizontal
well length (500 ft). On the other hand, as shown in Fig. 13, which presents the percentage
differences in pressure changes between two cases, the differences are large for small FD

values; it is about 70% for FD = 1 and more than 1% for FD = 100. As we stated previ-
ously, the large differences have serious consequences for model identification and history
matching.

Figure 14 compares derivatives of six fracture solutions from Zhou et al. (2013) and
this work for FD = 1, 10, and 30. The cases are shown in this figure: (1) the pressure and
derivative data provided byZhou (2014) (an imaginarywellbore, inwhich a commonwellbore
pressure is assumed to connect the fractures) are denoted “without—SPE 157367”; (2) the
data from this work without wellbore are denoted “without—this study”; and (3) the wellbore
is cased and perforated over the entire horizontal well is denoted “entire wellbore.” As can
be seen in Fig. 14, as in the single fracture case given above, the Zhou (2014) derivatives
do not compare well with the derivates from this study. We observe a bilinear flow regime
(m = 1/4) for FD = 1 instead of a fracture-radial flow regime. The differences in the
derivates for FD = 10 is small but considerable for FD = 30, and the formation-linear flow
regime is quite distorted. As in the single fracture case (Fig. 8) and in Fig. 13, the differences
in pressure changes (not shown here) are considerably large.

5 Example: Multistage Hydraulically Fractured Horizontal Well in a
Homogenous or Discretely Fractured Reservoir

Here, we have simulated the pressure transient behavior of a reservoir configuration contain-
ing 40 discrete fractures, as shown in Fig. 15. In this system, the fractures are predominately
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Fig. 15 Distributions of fractures in a discretely fractured reservoir, and a horizontal well intersected by 40
vertical hydraulic fractures, where the well is located at {0, 0, 0}

Fig. 16 Schematic of a horizontal well intersected by vertical hydraulic fractures

in the northeast direction, fully penetrate the formation, and are vertical and disjointed.
Let us consider a 1000-ft horizontal well in the x direction completed in the reservoir,
where the center of the well is located at {0, 0, 0}, and the well is hydraulically frac-
tured, as shown in Figs. 15 and 16. We will investigate the behavior of these three
cases: (1) a horizontal well with only hydraulic fractures in a homogenous (nonfractured)
reservoir; (2) a horizontal well in a naturally fractured reservoir without any hydraulic
fractures; and (3) a horizontal well in a naturally fractured reservoir with 40 hydraulic
fractures (Fig. 15) for FD = 0.01, 0.1, 1, 10, 100, 1000, and 10,0000. For the example
of the horizontal well in a naturally fractured reservoir with hydraulic fracture, forma-
tion, and fluid properties are given in Table 2. In this system, each transverse hydraulic
fracture intersects the horizontal well every 20 ft and extends 400 ft (the half fracture
length l f ) in the y direction. The total number of hydraulic fractures in the x direction
is 40.

For each run, the dimensionless conductivity of 40 fractures remains the same, but is varied
from 10−2 to 10,0000 to compute dimensionless pressures and derivatives. For the first case,
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Table 2 Formation, fluid, and fracture properties for a horizontal well in a homogenous or discretely fractured
reservoirs with hydraulic fractures

φm Fraction 0.2 (ct )m psi−1 1.5×10−5 μ cp 1.0 q B/D 5000

kmh = kmv mD 1 k f mD 106 h ft 100 rw ft 0.354

lw ft 500 l f ft 400 b mm 2 (0.0066 ft) zw ft 50

b fracture aperture
zw distance from the wellbore to the bottom boundary
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Fig. 17 Dimensionless pressure derivatives of a horizontal well that intersects 40 hydraulic fractures in a
homogenous reservoir for various FD values

the reservoir model is a horizontal well only, with hydraulic fractures in a homogenous
(nonfractured) reservoir (Fig. 16). Figure 17 presents the dimensionless pressure derivatives
for the first case for FD = 0.01, 0.1, 1, 10, 100, 1000 and 10,000. As can be seen from this
figure, only FD = 1000 and 10,000 derivatives exhibit a short formation-linear (m = 1/2)
flow regimes. The formation pseudosteady-state flow (m = 1) then proceeds. The formation
pseudosteady-state flow regime takes place if the ratio of d/(2l f ) is small. The ratio for this
case is 0.02. As shown in Fig. 17, the formation pseudosteady-state flow regime takes place
after the formation-linear flow before the infinite-acting pseudoradial flow regime due to the
whole formation.

As FD becomes smaller, the effect of fractures on the derivatives becomes negligible, and
the derivatives basically exhibit a horizontal well behavior without fractures. As shown in
Fig. 17, the derivative for FD = 0.01 exhibits horizontal well flow regimes. If the entire
horizontal wellbore is cased and perforated or completed barefoot, the very low-conductivity
fracture derivatives will not exhibit fracture-radial flow regimes, but will exhibit horizontal
well flow regimes. For instance, as shown in Fig. 17, we observe the first horizontal well
radial flow regime (Kuchuk et al. 1991). If the horizontal wellbore is cased and perforated
in clusters over the fractured sections, the low- and moderate-conductivity fracture deriv-
atives will exhibit fracture-radial flow regimes, but it will not exhibit horizontal well flow
regimes.

Figure 18 presents the dimensionless pressure derivatives for the second case (a hor-
izontal well in a naturally fractured reservoir without hydraulic fractures) for FD =
0.01, 0.1, 1, 10, 100, 1000, and 10,000. As can be seen from this figure, FD = 10, 100,
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Fig. 18 Dimensionless pressure derivatives of a horizontal well in a naturally fractured reservoir for various
FD values
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Fig. 19 Dimensionless pressure derivatives of a horizontal well that intersects 40 hydraulic fractures in a
naturally fractured reservoir for various FD values

1000, and 10,000 derivatives exhibit a very long formation-linear (m = 1/2) flow regime
compared to the linear flow regime observed in Fig. 17. For this case, eight natural fractures
with different lengths intersect the horizontal well and extend from the well center into the
formation that is 4.5 times thewell length. Therefore, the formation-linear flow regime is very
long. The derivative FD = 10 exhibits a 1/4-slope bilinear flow regime at early times most
likely after a fracture-radial flow regime. This radial flow regime cannot be the formation-
radial flow regime around the horizontal well because the derivative value (slope) is small. As
with the first case, the effect of natural fractures on the derivatives becomes negligible, and the
derivatives basically exhibit a horizontal well behavior without fractures for small FD values.
It should be noted that a formation pseudosteady-state flow regime is absent for this case.

Figure 19 presents the dimensionless pressure derivatives for the third case (a horizon-
tal well in a naturally fractured reservoir with hydraulic fractures, as shown in Fig. 15) for
FD = 0.01, 0.1, 1, 10, 100, 1000, and 10,000.As can be seen from this figure, the behavior
in this case is very similar to that of the first case as shown in Fig. 17 because the wellbore-
intersecting 40 hydraulic fractures and eight natural fractures dominate the behavior of the
system.
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6 Conclusions

In this paper, we have presented solutions for the pressure transient behavior of horizontal
wells intersected by multiple hydraulic and/or natural fractures in homogenous (nonfrac-
tured) and naturally fractured reservoirs. A mesh-free semi-analytical technique was used
for obtaining pressure transient solutions to multistage fractured horizontal wells in continu-
ously and discretely naturally fractured and homogenous reservoirs. Our solution technique
is based on the boundary element method, which has advantages such as the absence of
grids, reduced dimensionality, and the ability to obtain continuous rather than discrete solu-
tions. This technique is sufficiently general and can be applied to many different reservoir
geological settings and well geometries.

In our solutions, naturally fractured reservoirs can contain periodically or arbitrarily dis-
tributed finite- and/or infinite-conductivity fractures with different lengths and orientations.
There are many factors, including fracture conductivities, lengths, and distributions as well as
whether or not fractures intersect the wellbore, that dominate the pressure transient behavior
of horizontal wells intersected by multiple hydraulic fractures in naturally fractured reser-
voirs.

Our solutions are compared with a number of existing solutions published in the literature.
It has been shown that most of the published solutions ignore the contribution to flow from
the formation directly into the unfractured horizontal sections of the wellbore. With one
exception, the published solutions did not include the wellbore in the fracture plane. Some of
the flow regimes from these solutions are therefore incorrect and superfluous. Our solution
includes the effects of the wellbore in the fracture plane and the unfractured horizontal
sections of the wellbore. In addition, our solutions are also given for horizontal wells with
multistage hydraulic fractures in continuously and discretely naturally fractured reservoirs
without using the no-fracture containing Warren and Root dual-porosity type models. In our
solutions, all or some of the multistage hydraulic fractures may intersect the natural fractures,
which is very important for shale gas and oil reservoir production.

It is shown that the solutions without the wellbore and the unfractured sections cannot
capture the true early-time response, such as fracture-radial flow.More than one hundred per-
cent difference in pressure changes and derivatives are observed among these solutions with
and without the unfractured sections. This large difference will have serious consequences
for model identification and history matching, which may lead to serious inaccuracies in
estimating well, fracture, and formation parameters from transient well test data.

The exact treatment of the uniform-wellbore-pressure condition and the inclusion of the
wellbore and the unfractured sections of the horizontal well result in the identification of new
flow regimes that were not apparent from most of the published solutions.

Diagnostic derivative plots have been presented for a variety of horizontal wells with
multiple fractures in homogenous and naturally fractured reservoirs. It has been shown that
these reservoirs exhibit many different flow regimes.
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Appendices

Appendix 1: Evaluating Functions Λ and Z: Computing Time Integrals—Grid
Generation

In this appendix, we will present some aspects of evaluating the functions Λ(z, t, z0, h, u)

defined by Eq. (49) and Z(z, t, z0, h, u) defined by Eq. (58). The computations might present
some difficulties because they are expressed in terms of an infinite series. For large and
moderate h2/t values, these series converge very fast; thus, the only problem that may arise
is for small h2/t . Using the Poisson summation formula, these series can be rewritten as

Λ(z, t, z0, h, u) = 2u

h
+

∞∑

j=1

2

π j
e− π2 j2 t

h2

{

sin

(

(u − z)
jπ

h

)

+ sin

(

(u + z + 2z0 − h)
jπ

h

)}

, (101)

Z(z, t, z0, h, u) = 2
√

π t

h
+

√
π t

h

∞∑

j=1

2

π j
e− π2 j2 t

h2

{

cos

(

(u − z)
jπ

h

)

+ cos

(

(u + z + 2z0 − h)
jπ

h

)}

. (102)

It can be seen that these series converge very fast for small values of h2/t .

Now, let us discuss the evaluation of integrals of the type Ĝmns
[i]v = ∫ t s

v+1
t s
v

Gmn
[i] (. . . , t)dt .

On interval [t s
v , t s

v+1], the function Gmn
[i] can be approximated as

Gmn
[i] (. . . , t) ≈ Ctαe−β/t , (103)

and thus, the integral can be rewritten in the following form:

Ĝmns
[i]v ≈ C(t s

v+1)
α+1

∫ 1

tsv
ts
v+1

uαe
− β

ts
v+1

(
1
u −1

)

du. (104)

Note that t s
v

t s
v+1

can take only a finite number of values on the time grid that we built. On every

interval
[

t s
v

t s
v+1

, 1
]
, we can use the following approximation:

1

u
− 1 ≈ av + bv ln u, (105)

where a and b can be determined in advance by means of an optimization method and then
stored. Finally, we can obtain the following approximate expression for Ĝmns

[i]v :

Ĝmns
[i]v ≈ Ce

− βav
ts
v+1 (t s

v+1)
α+1

∫ 1

tsv
ts
v+1

u
α− βbv

ts
v+1 du

≈

⎧
⎪⎨

⎪⎩

Gmn[i] (...,t s
v+1)t

s
v+1−Gmn[i] (...,t s

v )t s
v

α+1− βbv
ts
v+1

, if α − βbv

t s
v+1

+ 1 
= 0,

Gmn
[i] (. . . , t s

v+1)t
s
v+1 ln

t s
v+1
t s
v

, otherwise.
(106)
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The last point that we will present is the grid construction. For the fractures that do not
intersect any producing horizontal well sections or along the axis of the horizontal well, we
suggest using Chebyshev grids as follows:

xm
f i = − cos

(
π(n − 1)

M f i

)

, m = 1, . . . , M f i + 1, (107)

zn
f i = − cos

(
π(m − 1)

N f i

)

, n = 1, . . . , N f i + 1, (108)

xn
hi = − cos

(
π(n − 1)

Nhi

)

, n = 1, . . . , Nhi + 1 (109)

because they have very good approximation and convergence properties and allows us to
easily account for flux singularities near the edges of the fracture or the producing horizontal
well sections. On the other hand, a simple uniform grid in the normal cross sections of the
horizontal well in the form

zm
hi = ym

hi = −1 + 2m

Mhi/4 + 1
, m = 1, . . . , Mhi/4 + 1, (110)

appears to be sufficient. Particularly, we find that N[i] = M[i] = 16 provides very good
accuracy and computational speed. Also, as the distance from the wellbore to the fractures
increases, the number of grid cells N f i and M f i can be safely reduced without impacting
the accuracy of the production well pressure response. If the fracture intersects the hori-
zontal well, we suggest choosing a grid that consists of Chebyshev nodes near the fracture
edges and becomes logarithmic near the wellbore, which would allow us to account for both
flux singularities (i.e., near the fracture edges and near the wellbore, respectively). In our
computations, we used the following grid:

xm
f i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξi j − (1 + ξi j ) cos
(

π(m−1)
M f i /2+3

)
, m = 1, . . . , M f i/4 + 1,

ξi j − rwxi

(
ξi j −x

M f i /4+1

f i
rwxi

) M f i /2−m
M f i /4−1

, m = M f i/4 + 2, . . . , M f i/2,

ξi j , m = M f i/2 + 1,

ξi j + rwxi

(
x
3M f i /4+1

f i −ξi j

rwxi

)m−M f i /2−2
M f i /4−1

, m = M f i/2 + 2, . . . , 3M f i/4,

ξi j + (1 − ξi j ) cos
(

π(M f i +1−m)

M f i /2+3

)
, m = 3M f i/4 + 1, . . . , M f i + 1,

(111)

zn
f i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζi j − (1 + ζi j ) cos
(

π(n−1)
N f i /2+3

)
, n = 1, . . . , N f i/4 + 1,

ζi j − rwzi

(
ζi j −z

N f i /4+1

f i
rwzi

) N f i /2−n
N f i /4−1

, n = N f i/4 + 2, . . . , N f i/2,

ζi j , N = N f i/2 + 1,

ζi j + rwzi

(
x
3N f i /4+1

f i −ζi j

rwzi

) N−N f i /2−2
N f i /4−1

, N = N f i/2 + 2, . . . , 3N f i/4,

ζi j + (1 − ζi j ) cos
(

π(N f i +1−N )

N f i /2+3

)
, N = 3N f i/4 + 1, . . . , N f i + 1,

(112)
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where rwxi = rwhj
sin αi j l f i

and rwzi = rwhj
h f i

. Four cells contained inside of the well cross section

and the corresponding coefficients cmn
f i should be discarded from the systems in Eqs. (68)–

(76).

Appendix 2: Evaluating Functions Φ, ϕ, E and ε

In this appendix, we will describe a possible approach for evaluating functions Φ,ϕ, E , and
ε. First, let us begin by solving a problem specified by Eqs. (79)–(81) to obtain the function
Φ(x, z, x1, x2, z1, z2, ν). Generally, it is possible to solve this problem exactly by using
the standard Fourier series decomposition technique, but we will provide a semi-analytical
approach that is faster and has better convergence properties. Let us assume for simplicity
that x1+x2

2 ≥ 0 and z1+z2
2 ≥ 0; i.e., that the center of the right-hand side source term lies

in the first coordinate quadrant (otherwise, we can rotate the coordinate system in order to
achieve identical configuration). Let us also extend the domain to−1 < x < 3, −1 < z < 3
(see Fig. 20) (to improve convergence properties). In the extended domain, our problem will
be as follows:

∂2Φ

∂x2
+ ν2

∂2Φ

∂z2
=

1∑

i=0

1∑

j=0

ω(x, xi
1, xi

2)ω(z, z j
1, z j

2) − 1, (113)

∂Φ

∂x
(x, z) = 0, |x − 1| = 2, −1 ≤ z ≤ 3, (114)

∂Φ

∂z
(x, z) = 0, −1 ≤ x ≤ 3, |z − 1| = 2, (115)

where xi
k = 2i + (−1)i xk and z j

k = 2 j + (−1) j zk . Now, let us assume that we have a source
distribution along the boundaries of the extended domain in the following form:

(x1, z2)

2β

(x1, z1)

(x2, z2)

(x2, z1)

(1,1)

x

z

0

2α

(ξ, ζ)

(3,1)

(-1,1)

(-1,-1)

(1,-1)

(3,-1)

(3,3)

Fig. 20 Extended domain problem (Eqs. 113–115)
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q1(x) =
N∑

n=1

an
T2n

( x−1
2

)

√
1 − (1 − x)2/4

, |z − 1| = 2, −1 < x < 3, (116)

q2(z) =
N∑

n=1

bn
T2n

( z−1
2

)

√
1 − (1 − z)2/4

, |x − 1| = 2, −1 < z < 3. (117)

Note that we used only even polynomials and the same expansion coefficients on opposite
sides due to the symmetry of the problem. Now, Φ can be written as

Φ(x, z) =
N∑

n=1

an

{

S2n

(

−1 − x

2
, ν

1 + z

2
, 2

)

+ S2n

(

−1 − x

2
, ν

3 − z

2
, 2

)}

+
N∑

n=1

bn

{

S2n

(

−1 − z

2
,
1 + x

2ν
, 2ν

)

+ S2n

(

−1 − z

2
,
3 − x

2ν
, 2ν

)}

+
1∑

l=0

1∑

k=0

(−1)k+l

⎧
⎨

⎩

1∑

i=0

1∑

j=0

F
(

x − xi
k, ν(z − z j

l )
)

ν(x2 − x1)(z2 − z1)

− F
(
x − (−1)k, ν(z − (−1)l)

)

4ν

}

, (118)

where

S2n(x, z, r) = 1

2π

∫ π

0
ln

(
r2(x − cos θ)2 + y2

)
cos(2nθ)dθ, (119)

F(x, y) = 1

2π

∫ ∫

ln((x − ξ)2 + (z − ζ )2)dξdζ

= 1

2π

[
xy(ln(x2 + y2) − 3) + x2atan(y/x) + y2atan(x/y)

]
. (120)

Using the table of integrals from Prudnikov et al. (1981) we can evaluate Sn in closed form:

S0(x, z, r) =
{

(−Re ln(Z2 + √
Z2 − 1) + ln(2r)), if |Z | ≤ 1,

(−Re ln(Z2 − √
Z2 − 1) + ln(2r)), if |Z | > 1,

(121)

Sn(x, z, r) =
{

− 1
2nRe(Z2 + √

Z2 − 1)2n, if |Z | ≤ 1,

− 1
2nRe(Z2 − √

Z2 − 1)2n, if |Z | > 1,
(122)

where Z = |x |+i |z|. The unknown coefficients an and bn can be obtained from the condition
of no-flow on the outer boundaries:

∂Φ

∂z
(x̃m,−1) = 0, m = 1, . . . , N , (123)

∂Φ

∂x
(−1, z̃m) = 0, m = 1, . . . , N , (124)

where z̃m = x̃m = 2 cos
(

π(m−0.5)
2N

)
− 1 is a set of shifted Chebyshev nodes. Due to the

excellent convergence properties of Chebyshev Polynomials, a small number of equations
is sufficient. In particular, we found N = 10 (thus, 20 equations) to provide a sufficient
accuracy. Similarly, we can find the solution for the problem defined by Eqs. (86)–(88).
Again, we assume that x0 > 0, z1+z2

2 > 0, and to improve the convergence properties of the
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solution, we suggest solving it in the extended domain −1 < x < 3,−1 < z < 3 where it
will take the following form:

∂2ϕ

∂x2
+ ν2

∂2ϕ

∂z2
=

1∑

i=0

1∑

j=0

ω(x, z j
1, z j

2)δ(xi
0) − 1, (125)

∂ϕ

∂x
(x, z) = 0, |x − 1| = 2, −1 ≤ z ≤ 3, (126)

∂ϕ

∂z
(x, z) = 0, −1 ≤ x ≤ 3, |z − 1| = 2, (127)

where xi
0 = 2i+(−1)i x0.Again,we assume that the source distribution on the boundaries can

be written in the form given by Eqs. (116)–(117). Thus, we obtain the following expression
for ϕ:

ϕ(x, z) =
N∑

n=1

an

{

S2n

(

−1 − x

2
, ν

1 + z

2
, 2

)

+ S2n

(

−1 − x

2
, ν

3 − z

2
, 2

)}

+
N∑

n=1

bn

{

S2n

(

−1 − z

2
,
1 + x

2ν
, 2ν

)

+ S2n

(

−1 − z

2
,
3 − x

2ν
, 2ν

)}

+
1∑

l=0

(−1)l

⎧
⎨

⎩

1∑

i=0

1∑

j=0

f
(
ν(z − z j

l ), x − xi
0

)

ν(z2 − z1)

−
1∑

k=0

(−1)k F
(
x − (−1)k, ν(z − (−1)l)

)

4ν

}

,

(128)

where

f (x, y) = 1

2π

∫

ln((x − ξ)2 + y2)dξ = 2

π

[
x ln(x2 + y2) − 2x + 2yatan(x/y)

]
. (129)

The unknown coefficients an and bn can be obtained from the condition of no-flow on the
outer boundaries:

∂ϕ

∂z
(x̃m,−1) = 0, m = 1, . . . , N , (130)

∂ϕ

∂x
(−1, z̃m) = 0, m = 1, . . . , N . (131)

Note that due to domain extension, the problem can be solved correctly even if the line source
is situated exactly at the original domain boundary (x0 = 1).

Now, let us solve the problem defined by Eqs. (82)–(85). We assume that the source center
is positioned in the first coordinate quadrant and similarly to the previous cases, we extend
the domain of the problem as follows:

∂2E

∂x2
+ ν2

∂2E

∂z2
=

1∑

i=0

1∑

j=0

ω(x, xi
1, xi

2)ω(z, z j
1, z j

2),

{|x − 1| < 1, |z − 1| < 1} and
2⋂

i=1

2⋂

j=1

{

max(
|x − ξi |

α
,
|z − ζ j |

β
) > 1

}

, (132)
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∂ E

∂x
(x, z) = 0, |x − 1| = 2, −1 ≤ z ≤ 3, (133)

∂ E

∂z
(x, z) = 0, −1 ≤ x ≤ 3, |z − 1| = 2, (134)

E(x, z) = 0, if max(|x − ξi |/α, |z − ζ j |/β) = 1, i = 1, 2, j = 1, 2 (135)
∫ α

−α

∂ E

∂z
(x, ζ j + β) − ∂ E

∂z
(x, ζ j − β)dx +

∫ β

−β

∂ E

∂x
(ξi + α, z) − ∂ E

∂x
(ξi − α, z)dz = 1.

(136)

We assume that the source distribution over the outer boundaries can be represented as it is
in Eqs. (116) and (117), and in the following form:

qw
1 (x) =

Nw
∑

n=1

c1nω
(

x, xn
i , xn+1

i

)
, |x − ξi | < α, z = ζ j + β, (137)

qw
2 (x) =

Nw
∑

n=1

c2nω
(

x, xn
i , xn+1

i

)
, |x − ξi | < α, z = ζ j − β, (138)

qw
3 (z) =

Nw
∑

n=1

c3nω
(

z, zn
j , zn+1

j

)
, x = ξi + α, |z − ζ j | < β, (139)

qw
4 (z) =

Nw
∑

n=1

c4nω
(

z, zn
j , zn+1

j

)
, x = ξi − α, |z − ζ j | < β, (140)

on inner boundaries, where zn
i = ζi + β cos

(
πn
Nw

)
is the Chebyshev grid and xn

i = ξi +
α cos

(
πn
Nw

)
. Note that the source distribution is the same on all inner boundaries due to

symmetry (see Fig. 21).
Now, we obtain the following expression for E(x, z):

E(x, z) =
N∑

n=1

an

{

S2n

(

−1 − x

2
, ν

1 + z

2
, 2

)

+ S2n

(

−1 − x

2
,
3 − z

2
, 2

)}

+
N∑

n=1

bn

{

S2n

(

−1 − z

2
,
1 + x

2ν
, 2ν

)

+ S2n

(

−1 − z

2
,
3 − x

2ν
, 2ν

)}

+
2∑

k=1

Nw∑

n=1

ck
n

1∑

l=0

(−1)l
1∑

i=0

1∑

j=0

f
(

x − xn+l
i , ν(z − ζ j + (−1)kβ)

)

xn+1
i − xn

i

+
4∑

k=3

Nw∑

n=1

ck
n

1∑

l=0

(−1)l
1∑

i=0

1∑

j=0

f
(
ν
(

z − zn+l
j

)
, (x − ξi + (−1)kα)

)

ν
(

zn+1
i − zn

i

)

+
1∑

l=0

1∑

k=0

(−1)k+l
1∑

i=0

1∑

j=0

F
(

x − xi
k, ν

(
z − z j

l

))

ν(x2 − x1)(z2 − z1)
.

(141)
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(x1, z2)

(x1, z1)

(x2, z2)

(x2, z1)

(1,1)

x

z

0

(3,1)

(-1,1)

(-1,-1)

(1,-1)

(3,-1)

(3,3)

Fig. 21 Extended domain problem (Eqs. 132–136)

The unknown coefficients an, bn , and ck
n can be obtained from the conditions imposed on the

outer and inner boundaries:

∂ E

∂z
(x̃m,−1) = 0, m = 1, . . . , N , (142)

∂ E

∂x
(−1, z̃m) = 0, m = 1, . . . , N , (143)

E
(
x̃m
1 , ζ ± β

) = 0, m = 1, . . . , Nw, (144)

E
(
ξ ± α, z̃m

1

) = 0, m = 1, . . . , Nw, (145)

where x̃m
1 = (xm+1

1 + xm
1 )/2 and z̃m

1 = (zm+1
1 + zm

1 )/2 is a set of “quasi-Chebyshev”
collocation nodes. A modest number of Nw = N = 10 (i.e., 60 equations in total) yields
very good accuracy.

Finally, similar technique can be used to find the solution of Eqs. (89)–(92) in the following
form:

ε(x, z) =
N∑

n=1

an

{

S2n

(

−1 − x

2
, ν

1 + z

2
, 2

)

+ S2n

(

−1 − x

2
,
3 − z

2
, 2

)}

+
N∑

n=1

bn

{

S2n

(

−1 − z

2
, ν

1 + x

2ν
, 2ν

)

+ S2n

(

−1 − z

2
,
3 − x

2ν
, 2ν

)}

+
2∑

k=1

Nw∑

n=1

ck
n

1∑

l=0

(−1)l
1∑

i=0

1∑

j=0

f
(

x − xn+l
i , ν(z − ζ j + (−1)kβ)

)

xn+1
i − xn

i
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+
4∑

k=3

Nw∑

n=1

ck
n

1∑

l=0

(−1)l
1∑

i=0

1∑

j=0

f
(
ν
(

z − zn+l
j

)
, (x − ξi + (−1)kα)

)

ν
(

zn+1
i − zn

i

)

+
1∑

l=0

(−1)l
1∑

i=0

1∑

j=0

f
(
ν
(

z − z j
l

)
, x − xi

0

)

ν(z2 − z1)
. (146)

The unknown coefficients are obtained from the following boundary conditions given as

∂ε

∂z
(x̃m,−1) = 0, m = 1, . . . , N , (147)

∂ε

∂x
(−1, z̃m) = 0, m = 1, . . . , N , (148)

ε
(
x̃m
1 , ζ ± β

) = 0, m = 1, . . . , Nw, (149)

ε
(
ξ ± α, z̃m

1

) = 0, m = 1, . . . , Nw. (150)
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