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Abstract Fractures and faults are common features of many well-known reservoirs. They
create traps, serve as conduits to oil and gas migration, and can behave as barriers or baffles
to fluid flow. Naturally fractured reservoirs consist of fractures in igneous, metamorphic, sed-
imentary rocks (matrix), and formations. In most sedimentary formations both fractures and
matrix contribute to flow and storage, but in igneous and metamorphic rocks only fractures
contribute to flow and storage, and the matrix has almost zero permeability and porosity.
In this study, we present a mesh-free semianalytical solution for pressure transient behav-
ior in a 2D infinite reservoir containing a network of discrete and/or connected finite- and
infinite-conductivity fractures. The proposed solution methodology is based on an analyti-
cal-element method and thus can be easily extended to incorporate other reservoir features
such as sealing or leaky faults, domains with altered petrophysical properties (for example,
fluid permeability or reservoir porosity), and complicated reservoir boundaries. It is shown
that the pressure behavior of discretely fractured reservoirs is considerably different from the
well-known Warren and Root dual-porosity reservoir model behavior. The pressure behavior
of discretely fractured reservoirs shows many different flow regimes depending on fracture
distribution, its intensity and conductivity. In some cases, they also exhibit a dual-porosity
reservoir model behavior.
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List of symbols

Variables
ct Compressibility
C (k)

n Gegenbauer polynomials
E1, E2 Exponential integrals
erf Error function
F Fracture conductivity
h Formation thickness
H Heaviside step function
K Modified Bessel Function of the second kind
k Permeability
l Fracture/fault half-length
p Pressure
q Flow rate or flux density
r Radius or radial coordinate
s Laplace transform variable
T Chebyshev polynomial
t Time
x Coordinate
y Coordinate
z Vertical coordinate
α Transmissibility
δ The Dirac delta functional
η Diffusivity for pressure
μ Viscosity
φ Porosity
τ Dummy variable
ξ Dummy variable

Subscripts
D Dimensionless
f Fracture
o Initial or original
w Wellbore

Superscripts

− Laplace transform

1 Introduction

Naturally fractured or fissured reservoirs can be described as sedimentary formations frac-
tured by tectonic, thermal, and/or chemical processes. They consist of fractures, and igneous,
metamorphic, or sedimentary rocks (matrix). In most sedimentary formations both fractures
and matrix contribute to flow and storage, but in igneous and metamorphic rocks only frac-
tures contribute to flow and storage, and the matrix has almost zero permeability and porosity.
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(a) (b)

Fig. 1 Fault permeabilities: a field characterization of the fault element geometry and b laboratory analysis
for the fault element permeability, after Jourde et al. (2002) reprinted by permission of AAPG

Faulted reservoirs are also created by the similar geological processes. Faults and fractures
create traps, and serve as conduits to gas, oil, and water migration, and can behave as barriers
or baffles to fluid flow.

Faults and fractures occur frequently in reservoirs and profoundly affect the fluid flow.
They can either impede or enhance fluid flow dramatically, thereby playing an important
role in migration, entrapment, production of gas and oil, and in all secondary and tertiary
recovery processes. Complexities arise even further when faults provide conduits for injected
and/or aquifer water that may further enhance or reduce their conductivities. Although in the
well testing literature faults are usually considered to be sealing or leaky, in general, they
can be highly conductive like natural fractures (Aydin 2000; Flodin et al. 2001; Jourde et al.
2002). Fault conductivities or permeabilities can be highly variable and significantly lower
or higher than those of the host rock (Aydin 2000; Flodin et al. 2001; Jourde et al. 2002),
as shown by Figs. 1 and 2. As can be observed in these figures, fault permeabilities can be
a few orders of magnitude higher than the host rock permeabilities: from zero to almost an
open-crack infinite permeability. As stated in these papers, fault permeabilities can be highly
anisotropic. Therefore, like natural fractures, faults can create a continuous or discrete con-
ductive network in the reservoirs, where the pressure transient behavior of the system can
be similar to that of the naturally fractured reservoirs. It should be also stated that faults can
create highly compartmentalized reservoirs, where they become barriers to flow.

In this article, the term Naturally fractured reservoirs should be applied to both faulted
and fractured reservoirs. However, we provide more coverage to fractured systems because
in a broader sense, faults are also fractures with displacements. Nelson (1985) in his book
classified naturally fractured reservoirs as follows:
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Fig. 2 Fault permeability versus slip, after Flodin et al. (2001) reprinted by permission of SPE

• Type I: Only fractures contribute to reservoir storage capacity (porosity) and conductivity
(permeability).

• Type II: Fractures provide overall conductivity (permeability) of the reservoir, and the
matrix overall storage capacity (porosity), but the matrix is permeable enough (low
permeability) to provide the conductivity for flow from the matrix into fractures.

• Type III: Both fractures and matrix provide conductivity (permeability) of the reservoir
but overall storage capacity (porosity) primarily is in the matrix.

• Type IV: Fractures are non-conductive (sealed, filled with minerals, or zero fracture
band permeability). Both conductivity (permeability) and storage capacity are provided
by the matrix. Such fractures create compartmental reservoirs.

In reality, fractures and faults may occur in many different manners in a given reservoir.
When oil-bearing zones with different rock properties are folded together, it is possible that
some of the zones may be fractured, faulted, or both, and other zones may not, see Fig. 3.
It is also possible that injection and/or migration of warmer or cooler fluids into a stratified
formation may create fractures in some zones, or enhance or reduce conductivities of exist-
ing ones. These and other geophysical processes may, thus, form reservoirs that consist of
both fractured and non-fractured layers commingled together. For instance, many carbonate
reservoirs in the Middle East are stratified (layered), and fractures usually occur in tight dolo-
mitic zones. Hence, many of these layered-reservoirs may have some fractured zones with or
without crossflow among the layers, depending on stylolitic zones vertical permeabilities and
their extent. One of the common reservoir types is a commingled (without crossflow) system
with fractured and non-fractured layers due to non-permeable shale or anhydrite zones in
between.

Aydin (2000) presented a classification of fractured and faulted reservoirs based on
structural discontinuities and geological, geomechanical, and hydraulic characteristics.
He also provided a methodology for estimating fracture and fault conductivities and other
hydraulic characteristics useful for understanding the transient pressure behavior of frac-
tured and faulted reservoirs. The Aydin (2000) classification for fractured systems is as
follows: (1) dilatant-mode fractures/joints, veins, dikes; (2) contraction/compaction-mode
fractures/pressure solution seams and compaction bands; (3) shear-mode fractures/faults.
Structural and hydraulic characteristics of fundamental elements constituting each of
these classes are given in detail in the article. Aydin (2000) further categorized faults as
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(a) (b)

Fig. 3 Schematics of two discretely fractured reservoirs

transmitting faults, sealing faults, vertically transmitting and laterally sealing faults, and
partially communicating faults.

Based on the above classifications and overall reservoir point of view (simulations, perfor-
mance, pressure transient interpretation), the Nelson (1985) classification does not provide
any advantages in terms of information about flow in faults, fractures, and the matrix, and
particularly, about their conductivities. We therefore divide faulted and fractured reservoirs
into four categories as follows:

1. Faults and/or fractures create a network, communicate hydraulically with each other
globally, and provide overall conductivity (permeability) of the reservoir, and the matrix
provides overall storage capacity (porosity), but they should be permeable enough to
provide the conductivity for flow from the matrix into faults and/or fractures. If the
matrix permeability is high or similar to the fault and/or fracture permeabilities, or ultra
low, the pressure transient behavior of fracture or faulted reservoirs will be similar to the
behavior of homogeneous reservoirs. Reservoirs with continuous conductive fracture
networks were first modeled as dual-porosity models, as shown in Fig. 4, by Barenblatt
et al. (1960) and shortly after by Warren and Root (1963).

2. Faults and/or fractures do not form a continuous conductive network; only a limited num-
ber of faults and/or fractures may communicate hydraulically with each other. Faults
and/or fractures, and matrix provide conductivity, but overall storage capacity (poros-
ity) is in the matrix. These are usually called discretely fractured reservoirs as shown in
Fig. 3. Open and partially sealing faults also create discrete conductive systems. Strati-
fied reservoirs that consist of both fractured and non-fractured layers stocked vertically,
as shown in Fig. 3b, should also be called discretely fractured reservoirs. In reservoirs
with continuous network of faults and/or fractures, if some faults and/or fractures are
mineralized and/or closed, this process also creates discretely fractured reservoirs.

3. The fractures are non-conductive (sealed, filled with minerals, or zero fault or fracture
band permeability). Both conductivity (permeability) and storage capacity are provided
by the matrix. These reservoirs are referred to as being compartmentalized.
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Fig. 4 Warren and Root (1963) dual-porosity reservoir model

4. Only the fractures and/or faults are conductive; the matrix has no permeability and/or
porosity. Reservoirs with these fractures are called unconventional fractured basement
reservoirs.

The first three types may occur in the same reservoir in different locations depending on
the tectonic past of the formation, and other mechanical and chemical processes. More-
over, faults in the fracture reservoirs further complicate the above classification. Therefore,
we infrequently observe only one of the Nelson (1985) fractured reservoir types; we usually
observe a combination of four types depending on the location of the reservoir structure:
crest, flank, etc., layer properties and its geological makeup.

In general, transient pressure behavior of fractured and faulted reservoirs is well stud-
ied: a few papers on faulted reservoirs are Horner (1951), Prasad (1975), Cinco-Ley et al.
(1976), Yaxley (1978), Tiab and Kumar (1980), Matthai et al. (1998), and Abbaszadeh et al.
(2000). Since the study of Barenblatt et al. (1960) more than a few hundred papers have been
presented and published on naturally fractured reservoirs using dual-porosity models in the
petroleum and groundwater literature [see an extensive list of the literature in Samaniego and
Cinco-Ley (2009)].

On the other hand, a very few papers have been published on pressure transient behav-
ior of discretely faulted and fractured systems. Most of these studies focus on the pressure
behavior of only one single fracture or fault with finite or infinite conductivity. Most likely,
the article by Kuchuk and Habashy (1997) was the first one to be published on the pressure
transient behavior of discretely faulted and fractured systems, where multiple faults and frac-
tures with finite and infinite conductivities were considered. These models are applicable
to vertical wells completed in an n-zone anisotropic medium that contains discrete faults
and/or fractures in the y direction. Discrete faults and fractures are bounded above and below
by impermeable planes in the z direction and can be finite and/or infinite in the x and y
directions. It is shown in this article that discrete faults or fractures dominate the pressure
transient behavior of a reservoir for a long time.
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Fig. 5 The fault system in the Cormorant field in North Sea after Ruijtenberg et al. (1990)

The Kuchuk and Habashy (1997) model has captured some of the behavior of pressure
transient flow regimes (signatures) of discretely faulted and fractured systems. However,
it missed some important flow regimes for discretely faulted and fractured systems, partic-
ularly, sparsely and irregularly distributed fractures and/or fault in different directions, like
in the Cormorant field in North Sea, as shown in Fig. 5, that is extensively faulted as dis-
cussed by Ruijtenberg et al. (1990). As can be seen from this figure, the discrete faults are
distributed in x and y directions, and some of them cross each other. Another limitation of the
Kuchuk and Habashy (1997) model in a discretely faulted and fractured system is that it does
not included those fractures intersecting the wellbore. The conductive wellbore-intersecting
fractures normally denominate the pressure behavior of the system during early and middle
time periods.

The article by Bogdanov et al. (2003) is also significant to be mentioned here. They have
used a three-dimensional single-phase numerical model based on a discrete fracture repre-
sentation to simulate pressure transient tests in discretely and randomly fractured reservoirs.
Their model accurately identified some of the well-know flow regimes of fractured reservoirs.

2 Mathematical Models for Reservoirs with Discrete Fractures and Faults

As stated previously, faults and fractures frequently occur in many well-known reservoirs.
Since 1960s a considerable amount of work, as referenced above, has been done on faulted
and fractured reservoirs, including analytical, semianalytical, and numerical solutions for
both finite and infinite fault and fracture conductivities. On the other hand, there are very few
pressure transient solutions available for discretely faulted and fractured reservoirs with an
arbitrary number and position of conductive faults and/or fractures (Bogdanov et al. 2003).
For simplicity, we call reservoirs containing an arbitrary distribution of finite- and/or infi-
nite-conductivity faults and/or fractures discretely fractured network (DFN) or discretely
fractured reservoirs. It should be understood that these reservoirs may contain conductive or
non-conductive faults and/or fractures, where some of them may intersect each other and/or
the wellbore. Characterization of reservoirs with fractures is very important for many areas
of reservoir engineering and petroleum geoscience: from drilling to enhanced oil recovery.

Our mesh-free solution technique treats the domain of interest as a whole, rather than
discretizing it into small grid blocks as in finite-difference or finite element methods. The
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Fig. 6 A schematic of a cylindrical well in a fractured porous medium

mesh-free solutions allow to capture properties and particularities of the transient pressure
behavior otherwise inaccessible to mesh-relying methods, as well as to obtain highly accurate
solutions. The purpose of this study is to develop a mesh-free pressure transient solution for
naturally fractured reservoirs and to present some examples to show their behavior.

Let us consider a single-phase slightly compressible fluid flow in an infinite isotropic
reservoir � ≡ R

2 produced from one well with a radius rw, as shown in Fig. 6. The produc-
tion (flow) rate, q(t), is assumed to be known and time-dependent or constant. The reservoir
porosityφ, compressibility ct , horizontal permeability k, and fluid viscosityμ are all assumed
to be constant and time and pressure invariant. We also assume that the reservoir contains a
network of discrete fractures, where 	i denotes the i th fracture with the half-length li , and i
is the fracture counter. In general, as it was said above, some of the fractures may intersect
each other. Figures 7 and 8 show a well with an intersecting fracture and two intersecting
fractures, respectively. The fluid flow in the matrix outside the fractures is described by the
pressure diffusion equation as

k

μ

∂2P
∂x2 + k

μ

∂2P
∂y2 = φct

∂P
∂t
, (1)

where P = p0 − p(x, y, t) is a reservoir pressure change induced by fluid withdrawal, p0 is
the initial reservoir pressure, and {x, y} are Cartesian coordinates. In addition, the pressure
change P should also satisfy the following boundary conditions at the wellbore (unless the
well intersects a fracture):
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Fig. 7 The schematic of a well with an intersecting fracture in a formation

Fig. 8 The schematic of two intersecting fractures in a formation

P(rw cosϕ, rw sin ϕ, t) = Pw(t), ϕ ∈ [0, 2π], (2)

rw
k

μ

2π∫

0

∂P
∂r
(rw cosϕ, rw sin ϕ, t)dϕ = −q(t), (3)

where Pw = p0 − pw, {r, ϕ} denote polar coordinates with origin associated with the well-
bore position, as shown in Fig. 6, and pw is the uniform wellbore pressure over the surface of
the cylindrical wellbore (sandface), which is a priori unknown. The fluid flow inside a single
fracture 	i can be described by the following equation (Riley et al. 2007):
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(
∂2P
∂x2

i

+ 1

Fi

[
∂P
∂yi

]) ∣∣∣
	i

= 0,
∂P
∂xi

= 0 on the extremities of 	i , (4)

where Fi = kfi bi

k
is the conductivity of the i th fracture, kfi is i th fracture permeability,

bi is its width, k is the reservoir permeability, {xi , yi } is the local Cartesian coordinate
system associated with fracture 	i , with xi going in tangential and yi in normal directions
to the fracture. [ ∂P

∂yi
] = limyi →+0

∂P
∂yi

− limyi →−0
∂P
∂yi

denotes a normal pressure derivative
jump across the fracture; i.e., a difference of normal pressure derivative values at both sides
of the fracture. The integration of Eq. 4 over the fracture length, together with the boundary
conditions on the extremities, gives the boundary condition for the incompressible fluid flow
inside the fracture, which can be expressed as

li∫

−li

[
∂P
∂yi

]
dxi = 0. (5)

For an infinite-conductivity fracture, the governing equation (Eq. 4) can be simplified by
tending the fracture conductivity Fi to infinity, which together with conditions on fracture
extremities yields

∂P
∂xi

= 0 on 	i , (6)

or

P = Pfi (t) on 	i , (7)

where Pfi = p0 − pfi and Pfi is a uniform pressure induced on a fracture face 	i , which
is a priori unknown (as with the wellbore case). Finite-conductivity fractures will be treated
below in a separate section.

Now let us assume that some of the fractures intersect each other and/or the wellbore.
Let I j denote a set of indices i belonging to a j th group of connected fractures (including a
wellbore), and let j = 0 correspond to a group containing the well and Pf0 = Pw. In this
case, the conditions given by Eqs. 3, 4, 6, and 7 should be reformulated as follows:

P = Pf0 = Pw on 	i , i ∈ I0, (8)

rw
k

μ

2π∫

0

∂P
∂r
(rw cosϕ, rw sin ϕ, t)dϕ + k

μ

∑
i∈I0

li∫

−li

[
∂P
∂yi

]
dxi = −q(t), (9)

P = Pf j on 	i , i ∈ I j , j > 0, (10)

k

μ

∑
i∈I j

li∫

−li

[
∂P
∂yi

]
dxi = 0, j > 0. (11)

Note that physically these equations correspond to the equality of the pressure change within
a connected group (since fractures and wellbore are assumed to have an infinite conductivity,
i.e., to be under the uniform pressure condition) and to the condition on the total flow rate
within a group—which should be q(t) if the well is present in the group, and 0 otherwise.
To close the system, we should also add the initial condition

P(x, y, 0) = 0, (12)
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corresponding to zero pressure change at t = 0. Let us define to the following dimensionless
variables to simplify the above equations:

tD = kt

μctφl2 , pD = 2kπh

μq0
P, xD = x

l
, yD = y

l
,

lDi = li
l
, xDi = xi

li
, yDi = yi

li
, rD = r

l
, rDw = rw

l
, (13)

where l denotes a reference length (half-length of the longest fracture, for example), h is the
reservoir height, and q0 is a reference flow rate. In terms of these dimensionless variables,
the mathematical model defined by Eqs. 1, and 8–12 can be rewritten as

∂2 pD

∂x2
D

+ ∂2 pD

∂y2
D

= ∂pD

∂tD
, (14)

pD = pDf0(tD) = pDw(tD) on 	i , i ∈ I0, (15)

rDw

2π

2π∫

0

∂pD

∂rD
(rDw cosϕ, rDw sin ϕ, tD)dϕ + 1

2π

∑
i∈I0

1∫

−1

[
∂pD

∂yDi

]
dxDi = −qD(t), (16)

pD = pDf j (tD) on 	i , i ∈ I j , j > 0, (17)

1

2π

∑
i∈I j

1∫

−1

[
∂pD

∂yDi

]
dxDi = 0, j > 0, (18)

pD(xD, yD, 0) = 0. (19)

Application of the Laplace transform to this system yields

∂2 p̄D

∂x2
D

+ ∂2 p̄D

∂y2
D

= s p̄D, (20)

p̄D = p̄Df0(s) = p̄Dw(s) on 	i , i ∈ I0, (21)

rDw

2π

2π∫

0

∂ p̄D

∂rD
(rDw cosϕ, rDw sin ϕ, s)dϕ + 1

2π

∑
i∈I0

1∫

−1

[
∂ p̄D

∂yDi

]
dxDi = −q̄D(s), (22)

p̄D = p̄Df j (s) on 	i , i ∈ I j , j > 0, (23)

1

2π

∑
i∈I j

1∫

−1

[
∂ p̄D

∂yDi

]
dxDi = 0, j > 0. (24)

2.1 Transient Solution for Infinite-Conductivity Fractures

Let us assume that the dimensionless pressure change “induced by the wellbore” can be
expanded into the Fourier series as

p̄D0(rD cosϕ, rD sin ϕ, s) = ā0(s)
K0(

√
srD)

K1(
√

srDw)
√

srDw

+
∞∑

n=1

2Kn(
√

srD)

[Kn+1(
√

srDw)+ Kn−1(
√

srDw)]√srDw
(ān(s) cos nϕ + b̄n(s) sin nϕ), (25)
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where Kn denotes a Modified Bessel function of the second kind of nth order. Similarly,
we assume that the pressure change “induced by the i th fracture” can be represented in its
local coordinate system in the following way:

p̄Di (xDi , yDi , s) = 1

π

∞∑
n=0

c̄in(s)

1∫

−1

K0

(√
slDi

√
(xDi − ξ)2 + y2

Di

)
Tn(ξ)√
1 − ξ2

dξ

= 1

π

∞∑
n=0

c̄in(s)

π∫

0

K0

(√
slDi

√
(xDi − cosψ)2 + y2

Di

)
cos nψdψ.

(26)

It is easy to see that the above function definitions automatically satisfy Eq. 20. Generally
speaking, the function defined by Eq. 25 corresponds to a solution of the diffusion equation
in an infinite reservoir with the flux density specified on the wellbore as

q̄Dw(s, ϕ) = ā0(s)+
∞∑

n=1

[
ān(s) cos nϕ + b̄n(s) sin nϕ

]
, (27)

while Eq. 26 defines a plane-source solution with flux density distribution on the fracture
	i equal to

q̄Dfi (s, xDi ) = 1

2

[
∂ p̄D

∂yDi

]
=

∞∑
n=0

c̄in(s)
Tn(xDi )√
1 − x2

Di

. (28)

Notice that instead of Eq. 26 we could also use Mathieu functions, but since their computation
is difficult and time consuming, the alternative is preferable. On the other hand, the functions
defined by Eq. 26 can be easily evaluated, as shown in Appendix. Another reason to use
these functions over others is that they reflect the primary singularity of the flux density—its
divergence on the edges of the fracture, which insures fast convergence of the corresponding
series.

The unknown expansion coefficients ān(s), b̄n(s), and c̄in(s) can be found from Eqs.
21–24. That is, if we denote

p̄D0n1 [xD(rD, ϕ), yD(rD, ϕ)] = 2Kn(
√

srD)[
Kn+1(

√
srDw)+ Kn−1(

√
srDw)

]√
srDw

cos nϕ, (29)

p̄D0n2 [xD(rD, ϕ), yD(rD, ϕ)] = 2Kn(
√

srD)[
Kn+1(

√
srDw)+ Kn−1(

√
srDw)

]√
srDw

sin nϕ, (30)

p̄Din [xD(xDi , yDi ), yD(xDi , yDi )] = 1

π

π∫

0

K0

[√
slDi

√
(xDi − cosψ)2 + y2

Di

]
cos nψdψ,

(31)

—notice that here we omit the coordinate transformation from a local coordinate system to
a global one (xD, yD) ↔ (xDi , yDi ), which is trivial but cumbersome—Eqs. 21–24 can then
be rewritten as follows:
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∞∑
n=0

ān p̄D0n1[xD(rD, ϕ), yD(rD, ϕ)] +
∞∑

n=1

b̄n p̄D0n2[xD(rD, ϕ), yD(rD, ϕ)]

+
M∑

k=1

∞∑
n=0

c̄kn p̄Dkn[xD(xDk, yDk), yD(xDk, yDk)] = p̄Dw(s) on 	i , i ∈ I0, (32)

ā0 +
∑
i∈I0

c̄i0 = q̄D(s), (33)

∞∑
n=0

ān p̄D0n1[xD(rD, ϕ), yD(rD, ϕ)] +
∞∑

n=1

b̄n p̄D0n2[xD(rD, ϕ), yD(rD, ϕ)]

+
M∑

k=1

∞∑
n=0

c̄kn p̄Dkn[xD(xDk, yDk), yD(xDk, yDk)] = p̄Df j (s) on 	i , i ∈ I j , j > 0,

(34)

∑
i∈I j

c̄i0 = 0, j > 0, (35)

where M denotes the number of fractures in the reservoir.
Now, to solve this system we must restrict ourselves to a finite number of terms in each of

the series defined by Eqs. 25, 26. We suggest taking N ≈ 10 to 30 elements for every series.
For very long fractures it might be wise to divide them into a few smaller ones connected at the
endpoints, to improve numerical stability. The next step is the discretization of Eqs. 32–35. It
is also possible to expand the equations over some basis functions like cos(nϕ) and sin(nϕ)
on the wellbore, and Tk(xDi ) (Chebyshev polynomials) on the fractures; however, this would
be very time consuming. By considering Eqs. 32–35 only on special grid nodes, such as
ϕm = π

N (0.5 + 2m), m = 0, 1, . . . , N − 1, and xDim = cos[ πN (0.5 + m)], m = 0, 1, . . . ,
N − 1, we can attain the same result in less time as this procedure corresponds to such an
expansion in the sense of Gaussian quadrature rules. One can choose the number of nodes to
be greater than the number of coefficients, and thus instead of searching for the exact solution
of the discretized system, compute its pseudo-solution in the least squares sense. However,
this approach did not prove to give any advantage.

2.2 Transient Solutions for Finite-Conductivity Fractures

In this section, we show how the previous method can be extended to take into account
finite-conductivity fractures. As we have already stated, the flow inside a fracture in its local
coordinate system is described by the following equation:(

∂2P
∂x2

i

+ 1

Fi

[
∂P
∂yi

]) ∣∣∣
	i

= 0, (36)

which can be rewritten in Laplace domain in terms of dimensionless variables defined by
Eq. 13 as

(∂2 p̄D

∂x2
Di

+ lDi

FDi

[
∂ p̄D

∂yDi

] )∣∣∣
	i

= 0, (37)
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where

FDi = kfi bi

kl
. (38)

Equation 37 is only valid for an isolated fracture. In the case of intersecting fractures,
it must include additional terms corresponding to the flow exchange in the intersection
point. Suppose that the fracture i intersects the fractures i1, i2, . . . , iNi at the points
xDi i1 , xDi i2 , . . . , xDi iNi

, respectively. Equation 37 should then be replaced with the
following: ⎧⎨

⎩
∂2 p̄D

∂x2
Di

+ lDi

FDi

⎛
⎝
[
∂ p̄D

∂yDi

]
− 2π

Ni∑
k=1

q̄i ik δ(xDi − xDi ik )

⎞
⎠
⎫⎬
⎭
∣∣∣
	i

= 0, (39)

where qiik corresponds to the flux passing to ith fracture from ik th in the corresponding
intersection point and δ is the Dirac delta functional. It is evident that due to the continuity
of the flux q̄i ik = −q̄ik i .

Assuming that the pressure change generated by i th fracture can still be expressed by
Eq. 26, we then can rewrite Eq. 39 as

p̄D(lDi cosϕi ) = lDi

FDi

{
2c̄i0(sin ϕi − ϕi cosϕi )+ c̄i1

[
ϕi − 1

2
sin(2ϕi )

]

+
∞∑

n=2

c̄in

n

{
sin[(n − 1)ϕi ]

n − 1
+ sin[(n + 1)ϕi ]

n + 1

}

−2π
Ni∑

k=1

q̄i ik H(ϕi ik − ϕi )(cosϕi − cosϕi ik )

⎫⎬
⎭+ Āi , (40)

where xDi = lDi cosϕi , ϕi ∈ [0, π ], and H is the Heaviside step function, defined as

H(x) =
{

0, if x ≤ 0,
1, otherwise.

(41)

It implies that the right-hand side of Eq. 40 should replace the right-hand sides of
Eqs. 34 and 32 (for fractures only). The unknowns q̄i ik and Āi can be found from the pressure
continuity condition, given as

p̄D(lDi cosϕi ik )

∣∣∣
	i

= p̄D(lDik cosϕik i )

∣∣∣
	ik

, (42)

stating that the right-hand sides of Eq. 40 for intersecting fractures should be equal at the
intersection point, and the condition on the total flux passing through the fracture, which is

c̄i0 +
Ni∑

k=1

q̄i ik = 0. (43)

Note that if i = 0 (i.e., the “fracture” is actually the wellbore), then these conditions can be
expressed as

p̄Dw = p̄D(lDik cosϕik 0)

∣∣∣
	ik

, (44)

ā0 +
N0∑

k=1

q̄0ik = q̄D(s). (45)
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2.3 Compressible Fluid Flow Inside Finite-Conductivity Fractures

In most of the finite-conductivity fracture solutions by Riley et al. (2007), Cinco-Ley and
Samaniego (1981), Cinco-Ley et al. (1978), and Lee and Brockenbrough (1986), but not in
the solutions by Kuchuk and Habashy (1997), the fluid flow within the fracture is assumed
to be incompressible. In this section, we explain how the solution should be modified to take
into account compressible flow inside finite-conductivity fractures. Let us assign a porosity
φfi and total compressibility ctfi to the fracture	i . The governing equation for the flow inside
the fracture (it is assumed that Darcy’s law is valid) then becomes

φfi ctfi
∂P
∂t

= kfi

μ

∂2P
∂x2

i

+ k

μ

[
∂P
∂yi

] ∣∣∣
	i

= 0, (46)

which we can write in Laplace domain in dimensionless form as

(χfi l
2
Di )s p̄D = ∂2 p̄D

∂x2
Di

+ lDi

FDi

[
∂ p̄D

∂yDi

] ∣∣∣
	i
, (47)

where

χfi = ctfiφfi

ctφ
× k

kfi
(48)

is the matrix-fracture diffusivity ratio. Again Eq. 47 is valid only for an isolated fracture.
If the fracture intersects other fractures and/or the wellbore, the governing equation takes the
following form:

(
χfi l

2
Di

)
s p̄Di = ∂2 p̄D

∂x2
Di

+ lDi

FDi

⎛
⎝
[
∂ p̄D

∂yDi

]
− 2π

Ni∑
k=1

q̄i ik δ(xDi − xDi ik )

⎞
⎠∣∣∣

	i
. (49)

Now using the expression for [ ∂ p̄D
∂yDi

] from Eq. 28, we can solve Eq. 49 for p̄D:

p̄D(xDi ) = 2lDi

FDi

⎡
⎣ ∞∑

n=0

c̄in(s)�̄n(χfi l
2
Di s, xDi )− π

Ni∑
k=1

q̄i ik �̄(χfi l
2
Di s, xDi , xDik)

⎤
⎦ , (50)

where

�̄2m(χfi l
2
Di s, xDi ) = (−1)mπ

∞∑
r=0

J2m(πr) cos(πr xDi )

χfi l2
Di s + π2r2

(
1 − δ0r

2

)
, (51)

�̄2m+1(χfi l
2
Di s, xDi ) = (−1)mπ

∞∑
r=0

J2m+1[π(r + 0.5)] cos[π(r + 0.5)xDi ]
χfi l2

Di s + π2(r + 0.5)2
, (52)

and

�̄(χfi l
2
Di s, xDi , xDik) = 1

2χfi l2
Di s

+
∞∑

r=1

cos
[
πr
2 (xDi + 1)

]
cos

[
πr
2 (xDi ik + 1)

]
χfi l2

Di s + π2r2
. (53)

Using the tables of series sums from Prudnikov et al. (1981), we can reduce the last
expression to
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Fig. 9 A schematic of a fault

�̄(χfi l
2
Di s, xDi , xDik) = π

4χfi l2
Di s

×
ch

[
χfi l2

Di s
2π (xDi + xDi ik )

]
+ ch

[
χfi l2

Di s
2π (2 − ∣∣xDi − xDi ik

∣∣)
]

sh(χfi l2
Di s/π)

.

(54)

The continuity conditions given by Eqs. 42–45 at fracture intersection points stay the same.
If the fracture and formation storativity are of the same order of magnitude, the matrix-fracture
diffusivity ratio—as a proportionality but not strictly speaking—is given as

χfi ∼ k

kfi
= 1

FDi

b

l
, (55)

which is generally very small, and thus the compressibility effects of the fracture fluid can
be neglected in most cases.

2.4 Transient Solutions for Reservoirs with Sealing and Leaky Faults

In this section, we will explain how non- or low-conductive faults can be incorporated in
fractured reservoir model presented above. The flow of a single-phase slightly compressible
fluid through a fault can be described by the following equation (see Fig. 9):

k

μ

∂P+

∂yi
= k

μ

∂P−

∂yi
= αi (P+ − P−) on the ith fault, (56)

where P+ and P− are the pressure values on the different sides of the fault and

αi = kfi

μ

1

bi
(57)

is the fault transmissibility (Kuchuk and Habashy 1997; Yaxley 1978), {xi , yi } are the coor-
dinates associated with the fault with the origin in its middle and xi axis being parallel to the
fault.

Applying the Laplace transform and using dimensionless variables introduced earlier we
can rewrite Eq. 56 as

∂ p̄+
D

∂yDi
= ∂ p̄−

D

∂yDi
= αDi ( p̄

+
D − p̄−

D ), −1 < xDi < 1, (58)

where

αDi = kfi

k

li
bi

(59)

is the dimensionless fault transmissibility, and li is the fault half-length.
Similarly to the fracture case, we need to find a “suitable” function for representing the

pressure change induced by this fault. According to Eq. 58, it should be discontinuous on
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the fault, have a “continuous” generalized normal derivative on it (i.e., a true derivative
having a removable discontinuity) and also be continuous everywhere else. One of the pos-
sible functions satisfying these properties is

p̄Di (xDi , yDi , s) =
∞∑

n=0

c̄in(s)
yDi

√
slDi

π

∥∥∥C (2)
n

∥∥∥2

1∫

−1

K1

[√
slDi

√
(xDi − ξ)2 + y2

Di

]
√
(xDi − ξ)2 + y2

Di

×C (2)
n (ξ)(1 − ξ2)3/2dξ, (60)

where C (2)
n denote Gegenbauer polynomials of order n with parameter equal to 2. Notice

that instead of these polynomials any other function can be used, the essential is to keep the
multiplier (1 − ξ2)3/2 to make pressure continuous at the endpoints of the fault. For further
information on Gegenbauer polynomials and their properties see, for example, Abramowitz
and Stegun (1972). Now let us consider more closely the function

p̄Din(xDi , yDi , s) = yDi
√

slDi

π

∥∥∥C (2)
n

∥∥∥2

1∫

−1

K1

[√
slDi

√
(xDi − ξ)2 + y2

Di

]
√
(xDi − ξ)2 + y2

Di

×C (2)
n (ξ)(1 − ξ2)3/2dξ. (61)

It can be seen that Eq. 61 satisfies Eq. 20 outside the fault. This function itself as well as
its derivative are sufficiently easy to evaluate outside the fault (see Appendix for one possi-
ble approach to its efficient computation). On the fault, the corresponding integral does not
exist and the whole expression should be regarded as a limit as yDi tends to zero. Using the
properties of the Modified Bessel functions given in Abramowitz and Stegun (1972) it can
be shown that

lim
yDi →±0

p̄Din(xDi , yDi , s) = ± 1

π

∥∥∥C (2)
n

∥∥∥2 C (2)
n (xDi )(1 − x2

Di )
3/2, −1 ≤ xDi ≤ 1. (62)

The calculation of derivative on the fault is slightly more complicated; however, it can be
written in the following form:

∂ p̄Din(xDi , yDi , s)

∂yDi

∣∣∣∣
yDi →0

= ∂

∂yDi

yDi

π

∥∥∥C (2)
n

∥∥∥2

1∫

−1

C (2)
n (ξ)(1 − ξ2)3/2

(xDi − ξ)2 + y2
Di

dξ

∣∣∣∣∣∣∣
yDi →0

+ ∂

∂yDi

yDi

π

×
1∫

−1

⎧⎪⎪⎨
⎪⎪⎩

√
slDi K1

[√
slDi

√
(xDi − ξ)2 + y2

Di

]
√
(xDi − ξ)2 + y2

Di

− 1

(xDi − ξ)2 + y2
Di

⎫⎪⎪⎬
⎪⎪⎭

(63)

× C (2)
n (ξ)∥∥∥C (2)

n

∥∥∥2 (1 − ξ2)3/2dξ

∣∣∣∣∣∣∣
yDi →0

.
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It can be seen that the integral in the second term exists for every yDi (although sub-integral
expression has a logarithmic singularity, but it is still integrable), while using the rules for
integral differentiation and substitution ξ = zyDi + xDi , we obtain

∂

∂yDi
yDi

1∫

−1

C (2)
n (ξ)(1 − ξ2)3/2

(xDi − ξ)2 + y2
Di

dξ

∣∣∣∣∣∣
yDi →0

= ∂

∂yDi

1−xDi
yDi∫

−1−xDi
yDi

C (2)
n (zyDi + xDi )[1 − (zyDi + xDi )

2]3/2

z2 + 1
dz

∣∣∣∣∣∣∣∣∣
yDi →0

=
1∫

−1

[C (2)
n (ξ)(1 − ξ2)3/2]′(ξ − xDi )

(xDi − ξ)2 + y2
Di

dξ

∣∣∣∣∣∣
yDi →0

=
1∫

−1

[
ω′(ξ)− ω′(xDi )

]
(ξ − xDi )

(xDi − ξ)2 + y2
Di

dξ

∣∣∣∣∣∣
yDi →0

− ω′(xDi )

1∫

−1

(ξ − xDi )

(xDi − ξ)2 + y2
Di

dξ

∣∣∣∣∣∣
yDi →0

=
1∫

−1

[
ω′(ξ)− ω′(xDi )

]
(ξ − xDi )

dξ − ω′(xDi )ln

∣∣∣∣1 − xDi

1 + xDi

∣∣∣∣ , (64)

where ω(ξ) = C (2)
n (ξ)(1 − ξ2)3/2. The last expression exists due to smoothness of its deriv-

ative in the interval (−1, 1) and the fact that it vanishes at −1 and 1. Finally, we obtain

∂ p̄Din(xDi , yDi , s)

∂yDi

∣∣∣∣
yDi →0

= 1

π

∥∥∥C (2)
n

∥∥∥2

⎧⎨
⎩

1∫

−1

[
ω′(ξ)−ω′(xDi )

]
(ξ−xDi )

dξ−ω′(xDi )ln

∣∣∣∣1−xDi

1+xDi

∣∣∣∣
(65)

+
1∫

−1

[√
slDi K1

(√
slDi |xDi − ξ |)

|xDi − ξ | − 1

(xDi − ξ)2

]
C (2)

n (ξ)(1 − ξ2)3/2dξ

⎫⎬
⎭ .

Now, the newly defined function p̄Di together with its derivative can be sufficiently easy
evaluated everywhere in reservoir, and thus we can use it in Eqs. 32–35 together with the
boundary condition Eq. 58 to account for presence of the non- or low-conductive faults in the
reservoir. As collocation points on faults we suggest to take Gegenbauer-Gauss quadrature
nodes and to evaluate the integrals using Gegenbauer-Gauss quadrature rule (see Appendix)
because it corresponds to expansion of the “generating” functions on the fault in terms of
Gegenbauer polynomials in the sense of quadrature rules. Note that due to the continuity of
all other functions on the ith fault, only p̄Di will contribute to the pressure difference term
in Eq. 58, so that it can be rewritten as
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M∑
k=1

∑
n

c̄kn
∂ p̄Dkn

∂yDi
[xDi (xDk, yDk), yDi (xDk, yDk), s]

= 2αDi

π

∑
n

c̄in
C (2)

n (xDi )(1 − x2
Di )

3/2

∥∥∥C (2)
n

∥∥∥2 , −1 ≤ xDi ≤ 1. (66)

2.5 Composite Systems and Reservoirs with Boundaries

Finite reservoir boundaries and composite limits can be modeled using a standard boundary
elements technique [see, for example, Brebbia (1978)]. For the sake of completeness, we
present a slightly different approach which is based on using continuous functions rather
than discontinuous elements. Let us assume that the boundary (or a composite limit ) is a
closed curve γ defined in its coordinate system (the orientation of the coordinate system is
not important here, but the origin should be “inside” the curve) as follows:{

xDγ (ϕ) = uγ (ϕ), 0 ≤ ϕ ≤ 2π,
yDγ (ϕ) = vγ (ϕ), 0 ≤ ϕ ≤ 2π,

(67)

and that the source intensity distribution on this curve is given as

fγ (ϕ, s)√[
u′
γ (ϕ)

]2 +
[
v′
γ (ϕ)

2
] , (68)

where ′ denotes the derivative. In this case, the pressure change in the reservoir induced by
such source distribution can be written as follows:

p̄Dγ (xDγ , yDγ , s) = 1

π

2π∫

0

K0

{√
s
√

[xDγ − uγ (ϕ)]2 + [yDγ − vγ (ϕ)]2

}
fγ (ϕ, s)dϕ.

(69)

To evaluate this function at any point of the reservoir one can use the same techniques as
for the fracture case. However, it might be necessary to evaluate the outer normal deriv-
ative exactly on the boundary (for example to honor the no-flow condition) which can be
complicated. Using the properties of the Modified Bessel functions it can be shown that

∂ p̄Dγ

∂n±

(
vγ (ψ), uγ (ψ), s

)

= fγ (ψ)±
√

s

2π

2π∫

0

K1

{√
s
√

[uγ (ψ)− uγ (ϕ)]2 + [vγ (ψ)− vγ (ϕ)]2

}

×[uγ (ϕ)− uγ (ψ)]v′
γ (ψ)− [vγ (ϕ)− vγ (ψ)]u′

γ (ψ)√
[uγ (ϕ)− uγ (ψ)]2 + [vγ (ϕ)− vγ (ψ)]2

fγ (ϕ, s)dϕ, 0 ≤ ψ ≤ 2π.

(70)

The “+”’ sign corresponds to the inner normal to the boundary defined by Eq. 67, and “−”
to the outer normal to the same boundary. Using Taylor’s decomposition, it is easy to see
that sub-integral expression is non-singular as long as uγ and vγ are twice differentiable and
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√
(u′
γ )

2 + (v′
γ )

2 is positive everywhere on the curve (condition of non-degeneration). Now,

if we assume that fγ can be expanded into a series as

fγ (ϕ, s) =
∑

n

c̄γ n(s) fγ n(ϕ), (71)

we can define the function representing the pressure change induced by the boundary γ as
follows:

p̄Dγ (xDγ , yDγ , s) =
∑

n

c̄γ n p̄Dγ n(xDγ , yDγ , s), (72)

where

p̄Dγ n(xDγ , yDγ , s) = 1

π

2π∫

0

K0

{√
s
√

[xDγ − uγ (ϕ)]2 + [yDγ − vγ (ϕ)]2

}
fγ n(ϕ)dϕ.

(73)

Note that as { fγ n}n we can take any complete system of orthogonal functions like
cos nϕ, sin mϕ, or any other. Depending on the nature of the process, the condition on
boundary might be one of the following:

• Constant pressure boundary

M∑
k=1

∑
n

c̄kn p̄Dkn[xD(xDk, yDk), yD(xDk, yDk), s] = 0 on γ, (74)

where n runs through the indexes of features lying only inside or outside of the boundary.
• No-flow boundary

M∑
k=1

∑
n

c̄kn
∂ p̄Dkn

∂n±
[xD(xDk, yDk), yD(xDk, yDk), s] = 0 on γ. (75)

The “+” sign corresponds the normal coming inwards, and thus to outer boundary (n runs
only through indexes of features that are inside the boundary) and “−” to the one coming
outwards, and thus to the inner boundary (n runs only through indexes of features that
are outside of the boundary).

• Composite limit boundary If the boundary separates two regions—the inner with
the values of fluid and rock properties equal to φ+, ct+, k+, μ+ and the outer with
φ−, ct−, k−, μ−, then, assuming that all dimensionless variables are defined with respect
to some reference values of φ, ct, k, and μ, the following conditions must be satisfied on
the boundary:

M∑
k=1

∑
n∈inside

c̄kn p̄Dkn

[
xD(xDk, yDk), yD(xDk, yDk), s

φ+μ+ct+k

φμctk+

]

=
M∑

k=1

∑
n∈outside

c̄kn p̄Dkn

[
xD(xDk, yDk), yD(xDk, yDk), s

φ−μ−ct−k

φμctk−

]
on γ, (76)
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− k+μ
kμ+

M∑
k=1

∑
n∈inside

c̄kn
∂ p̄Dkn

∂n+

[
xD(xDk, yDk), yD(xDk, yDk), s

φ+μ+ct+k

φμctk+

]

= k−μ
kμ−

M∑
k=1

∑
n∈outside

c̄kn
∂ p̄Dkn

∂n−

[
xD(xDk, yDk), yD(xDk, yDk), s

φ−μ−ct−k

φμctk−

]
on γ.

(77)

Other boundary conditions are also possible and they may be written in the same way.

2.6 Transient Solution in Time Domain

The solutions presented above can be simplified in a certain sense if we rewrite them in time
domain. Really, applying the inverse Laplace transform to Eqs. 32–35 we can obtain the
following system:

∞∑
n=0

an ⊗ pD0n1 [xD(rD, ϕ), yD(rD, ϕ)] +
∞∑

n=1

bn ⊗ pD0n2 [xD(rD, ϕ), yD(rD, ϕ)]

+
M∑

k=1

∞∑
n=0

ckn ⊗ pDkn [xD(xDk, yDk), yD(xDk, yDk)] = pDw(tD) on 	i , i ∈ I0,

a0 +
∑
i∈I0

ci0 = qD(tD), (78)

∞∑
n=0

an ⊗ pD0n1 [xD(rD, ϕ), yD(rD, ϕ)] +
∞∑

n=1

bn ⊗ pD0n2 [xD(rD, ϕ), yD(rD, ϕ)]

+
M∑

k=1

∞∑
n=0

ckn ⊗ pDkn [xD(xDk, yDk), yD(xDk, yDk)] = pDf j (tD) on 	i , i ∈ I j , j > 0,

(79)

∑
i∈I j

ci0 = 0, j > 0, (80)

where “⊗” symbol denotes convolution operation, i.e., f (t) ⊗ h(t) = ∫ t
0 f (t − τ)h(τ )dτ .

Now, choosing a certain uniform time grid tDg = g�tD and assuming that unknown functions
an, bn, ckn are constant within each interval [(g − 1)�tD, g�tD] and taking on it values of
ag

n , bg
n and cg

kn

∞∑
n=0

G∑
g=0

ag
n PG−g

D0n1 [xD(rD, ϕ), yD(rD, ϕ)] +
∞∑

n=1

G∑
g=0

bg
n PG−g

D0n2 (xD(rD, ϕ), yD(rD, ϕ))

+
M∑

k=1

∞∑
n=0

G∑
g=0

cg
kn PG−g

Dkn [xD(xDk , yDk), yD(xDk , yDk)] = pDw(tDG) on 	i , i ∈ I0, (81)

aG
0 +

∑
i∈I0

cG
i0 = qD(tDG), (82)
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∞∑
n=0

G∑
g=0

ag
n PG−g

D0n1 [xD(rD, ϕ), yD(rD, ϕ)] +
∞∑

n=1

G∑
g=0

br
n PG−g

D0n2 (xD(rD, ϕ), yD(rD, ϕ))

+
M∑

k=1

∞∑
n=0

G∑
g=0

cg
kn PG−g

Dkn [xD(xDk , yDk), yD(xDk , yDk)] = pDf j (tDG) on 	i , i ∈ I j , j > 0,

(83)∑
i∈I j

cG
i0 = 0, j > 0, (84)

where

Pg
D0n1[xD(rD, ϕ), yD(rD, ϕ)] =

tDg∫

tD(g−1)

L−1
{

2Kn(
√

srD) cos nϕ

[Kn+1(
√

srDw)+ Kn−1(
√

srDw)]√srDw

}
dτ,

(85)

Pg
D0n2[xD(rD, ϕ), yD(rD, ϕ)] =

tDg∫

tD(g−1)

L−1
{

2Kn(
√

srD) sin nϕ

[Kn+1(
√

srDw)+ Kn−1(
√

srDw)]√srDw

}
dτ,

(86)

Pg
Din[xD(xDi , yDi ), yD(xDi , yDi )] =

tDg∫

tD(g−1)

1

2τπ

⎧⎨
⎩

π∫

0

e− l2Di [(xDi −cosψ)2+y2
Di ]

4τ cos nψdψ

⎫⎬
⎭ dτ,

(87)

and L−1 denotes the inverse Laplace transform.
Carrying out integration in time domain, we can rewrite these functions as follows:

Pg
D0n1(xD(rD, ϕ), yD(rD, ϕ)) = Wn

(
τ

r2
Dw

,
rD

rDw

)∣∣∣∣∣
tDg

tD(g−1)

cosϕ, (88)

Pg
D0n2(xD(rD, ϕ), yD(rD, ϕ)) = Wn

(
τ

r2
Dw

,
rD

rDw

)∣∣∣∣∣
tDg

tD(g−1)

sin ϕ, (89)

Pg
Din(xD(xDi , yDi ), yD(xDi , yDi )) = 1

2π

π∫

0

E1

[
(xDi − cosψ)2 + y2

Di

4τ/ l2
Di

]∣∣∣∣∣
tDg

tD(g−1)

cos nψdψ,

(90)

where E1 denotes exponential integral and

Wn(τ, rD) = L−1
{

2Kn(
√

srD)

[Kn+1(
√

s)+ Kn−1(
√

s)]s√s

}
. (91)

The system defined by Eqs. 81–84 is solved by a stepping procedure starting from initial
moment of time which is to be increased on every new step. Due to the presence of convo-
lution operation it is only convenient to solve the system with constant time step. However,
computations show that this scheme is very robust and its accuracy is almost independent
of time step. It gives the values very close to the ones obtained from solution in Laplace
domain for a very wide range of time steps (at least for 10−4 < �tD < 104 ), provided
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that the total flow rate qD(tD) is independent of time. The last fact should not be considered
as a restriction since it can be easily overcome by using convolution integral to obtain the
solution for a time-dependent flow rate. Finally, let us note that this approach proves to be
much faster than the one for Laplace domain. The same technique without any significant
changes can be also applied to finite-conductivity fractures case to convert the corresponding
solution from Laplace to time domain. The modeling of faults requires special consideration
since in this case the functions p̄Dkn are expressed in terms of Modified Bessel functions of
the first order (see Eqs. 61, 65). In time domain, we suggest to take the following function:

Pg
Din[xD(xDi , yDi ), yD(xDi , yDi )]

= yDi

π

tDg∫

tD(g−1)

1∫

−1

L−1

⎧⎪⎪⎨
⎪⎪⎩

K1

[√
slDi

√
(xDi − ξ)2 + y2

Di

]

√
slDi

√
(xDi − ξ)2 + y2

Di

⎫⎪⎪⎬
⎪⎪⎭

C2
n (ξ)∥∥C2

n

∥∥2 (1 − ξ2)3/2dξdτ

(92)

= yDi

π

1∫

−1

⎧⎪⎪⎨
⎪⎪⎩

E2

[
(xDi −ξ)2+y2

Di
4tDg/ l2

Di

]
[
(xDi −ξ)2+y2

Di
tDg/ l2

Di

] −
E2

[
(xDi −ξ)2+y2

Di
4tD(g−1)/ l2

Di

]
[
(xDi −ξ)2+y2

Di
tD(g−1)/ l2

Di

]
⎫⎪⎪⎬
⎪⎪⎭

C2
n (ξ)∥∥C2

n

∥∥2 (1 − ξ2)3/2dξ,

where E2(x) = e−x − xE1(x). Note that it corresponds to the one defined by Eq. 61 divided
by slDi , since it provides better accuracy in time domain than the original one. Eq. 92 also
allows to find the corresponding expression for the normal derivative on the fault from Eq. 65.

Similarly, to account for boundaries in time domain we suggest to use the following
function:

Pg
Dγ n[xD(xDγ , yDγ ), yD(xDγ , yDγ )]

= 1

π

tDg∫

tD(r−1)

2π∫

0

L−1

⎛
⎜⎝

K0

{√
s
√

[xDγ − uγ (ϕ)]2 + [yDγ − vγ (ϕ)]2
}

s
fγ n(ϕ)

⎞
⎟⎠ dϕdτ

(93)

= 1

2π

2π∫

0

τU

⎧⎨
⎩

√
[xDγ − uγ (ϕ)]2 + [yDγ − vγ (ϕ)]2

τ

⎫⎬
⎭
∣∣∣∣∣∣

tDg

tD(g−1)

fγ n(ϕ)dϕ,

where U(x) = E1(x)− E2(x). Again this function corresponds to the one defined by Eq. 69
multiplied by 1/s to achieve better accuracy in time domain. Its normal derivative on the
boundary can be easily obtained from Eq. 70 by using Eq. 92.

3 Examples

The solutions given in the previous sections are compared in this section with some well-
known analytical solutions given in the literature. First, we compare the uniform pressure
solution given in Sect. 2.1 and 2.2 with the solution given by Riley et al. (2007). They obtained
the dimensionless pressure for a vertical fracture with finite conductivity, where the fracture is
assumed to have an elliptical cross section, the flow within the fracture to be incompressible,
and the reservoir to be infinite. It is a line-source solution, from which they computed the
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Table 1 Comparison of dimensionless pressures from Riley et al. (2007) and this article

tD FD = 1 FD = 10 FD = 100 FD = 1, 000

pa
D pb

D pa
D pb

D pa
D pb

D pa
D pb

D

0.0001 0.2406 0.2441 0.077 0.07797 0.027 0.0279 0.0183 0.01876
0.001 0.4269 0.4311 0.1384 0.1411 0.0656 0.6635 0.0563 0.05641
0.01 0.7447 0.7527 0.2696 0.2756 0.1806 0.1815 0.1708 0.1709
0.1 1.2661 1.291 0.6048 0.6148 0.5025 0.5037 0.4916 0.4917
1 2.1125 2.157 1.3386 1.353 1.2218 1.224 1.2095 1.210
10 3.2042 3.255 2.3977 2.414 2.2757 2.278 2.2628 2.263
100 4.3491 4.401 3.5386 3.555 3.4158 3.418 3.4029 3.403
1000 5.4998 5.552 4.6888 4.705 4.566 4.568 4.553 4.553

aFrom this article
bFrom Riley et al. (2007)

Fig. 10 Comparison of pressure derivatives for different matrix-fracture diffusivity ratios (χfi ) with the
derivative of the incompressible fracture solution (χfi = 0)

wellbore pressure by using an equivalent wellbore radius. This is a reasonable approximation
for the uniform wellbore pressure condition if the time is not very small. Table 1 compares
the dimensionless pressures for various fracture conductivities from this article, and from
Table 3 of the Riley et al. (2007) article. All dimensionless pressures given in Table 1 are
computed at the wellbore. As can be seen, our results are lower than theirs by about 1 %,
which might be because they used an equivalent wellbore radius with a line-source solution,
whereas we used a finite (actual) wellbore radius (in the dimensionless form rDw = 10−3)
with the uniform pressure boundary condition.

In the previous section, we also presented the solutions for compressible fluid flow inside
finite-conductivity fractures to investigate whether the incompressible fracture fluid-flow
solutions are accurate enough to be used for naturally fractured reservoirs, where in reality
the fluid inside the fractures is compressible. The comparison of the solutions for different
matrix-fracture diffusivity ratios (χfi , given by Eq. 55) with the solution for the incompress-
ible fracture flow (χfi = 0) for FDi = 1, is shown in Fig. 10. As can be seen from this figure,
there is no discernible difference between the incompressible and compressible solutions for
the χfi values of 0.001 and 0.01, and very little difference for 0.1. These χfi values cover
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Fig. 11 A schematic of a periodically and discretely fractured reservoir

all possible matrix-fracture properties. There is a noticeable difference between the incom-
pressible and compressible solutions for χfi = 1. However, the χfi values greater than 0.1
(which are approximately the ratio of the matrix permeability to the fracture permeability)
normally do not occur in naturally fractured reservoirs.

We also compare our solution with the one given by Kuchuk and Habashy (1997) for a
periodically discretely fractured reservoir, shown in Fig. 11, where fractures are parallel to
each other with an infinite length in the y direction. This solution assumes compressible fluid
flow inside finite-conductivity fractures. This reservoir contains 40 parallel equally spaced
finite-conductivity fractures; the distance between two adjacent fractures is 20 ft. For conve-
nience we used l = 200 ft (i.e., 10 times the distance between two neighboring fractures) as
a characteristic length with the resulting dimensionless conductivity FD = 5 from Eq. 38.
The well is located in the formation between the 20th and 21st fractures (Fig. 11), 5 and 15 ft,
respectively, away from them. All fractures in the model have the same conductivity.

We used the same model to obtain the pressure behavior of the system, but considered
finite-length fractures, with lDi = 10; i.e., all fractures are equal in length, which is 200 times
greater than the distance between two adjacent fractures. Because of the finite fracture length,
the late time behaviors of the two models differ. The comparisons of the pressure derivative
values from both models are shown in Fig. 12. Our model derivative matches well with the
derivative from Kuchuk and Habashy (1997) during short and moderate times, and differs at
late times because, as explained above, we used finite-length fractures. The same figure also
shows the derivative of the homogenous (background medium) system without fractures.
All three curves behave in the same way at early times, but the curves for fractured reservoirs
deviate from the homogenous model behavior at tD ≈ 10−4. As shown in Fig. 12, the curves
for both cases do not show a well-stabilized radial flow regime (m = 0) because the 20th
fracture, which is 5 ft away from the well, affects the flow behavior of the system signifi-
cantly. Both derivatives exhibit a flow regime, which looks like a radial flow regime (m = 0),
from tD = 0.01 to tD = 0.5, after which the Kuchuk and Habashy (1997) and our model
derivatives exhibit m = 1/5 and m = 1/3 slope flow regimes, respectively. As observed in
Fig. 12, both models go towards a radial flow regime (m = 0) as a result of the background
homogenous medium at late times. As noted in the previous paragraph, the incompressible
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Fig. 12 Comparison of pressure logarithmic derivatives obtained from the Kuchuk and Habashy (1997)
solution and the solution given in this article for the model shown in Fig. 11

Fig. 13 Distributions of faults or fractures in a discretely fractured reservoir, where the well is located at (0,0)

fracture fluid-flow assumption is valid because the Kuchuk and Habashy (1997) compressible
flow fracture solution matches well with the incompressible flow fracture solution given in
this article.

Finally, we have simulated the transient pressure behavior of a reservoir configuration
containing 40 fractures or faults (Fig. 13). In this system, the finite-length geological fea-
tures in Fig. 13 represent either fractures or faults predominately in the north-east direction,
where the background porous medium is homogeneous. Here, we used rDw = 0.66 × 10−3

and the reference length l = 150 m (492.1 ft). All faults or fractures are fully penetrating the
formation, and are vertical and disjointed. Here, the effects of wellbore storage and skin are
intensionally disregarded to observe the full effects of fractures and faults on the behavior of
the system.

For the first case, it is assumed that all geological features as shown in Fig. 13 are 40
fractures with the same conductivity. For each run the dimensionless fracture conductivity

123



Transient Pressure Behavior 265

Fig. 14 Dimensionless logarithmic derivative of wellbore pressure for a discretely fractured reservoir shown
in Fig. 13

(FD defined by Eq. 38) remains the same, but is varied from 10−2 to 100 to compute the
logarithmic derivatives of the wellbore pressures as shown in Fig. 14. Notice from Fig. 14
that as the value of FD becomes small, the effects of fractures on the derivative behavior
of the system become negligible as can be seen from the FD = 10−2 curve. On the other
hand, the effects of high conductivity fractures are significant. All these derivative curves
for different values of FD, particularly highly conductive ones, weakly resemble the Warren
and Root (1963) dual-porosity reservoir model derivative behavior; however, the minimums
(dip) and the shape of the derivates at the large times are quite different. Notice also that all
derivatives approach 0.5 (m = 0 line—radial flow) almost at the same time in spite of the
big difference in the fracture conductivities.

For the second case, it is assumed that all geological features as shown in Fig. 13 are 40
faults with the same transmissibility. Again, for each run the dimensionless fault transmis-
sibility (αD defined by Eq. 59) remains the same but is varied from 0 to 1,000 to compute
wellbore pressure logarithmic derivatives for different transmissibility values as shown in
Fig. 15. The αD = 0 case corresponds to zero fault permeability, kf = 0, a sealing fault. The

αD = 0 curve ( dpD
d ln(tD)

) goes above 1. The derivative value of 1 is the double slope line if the
fault is sealing and extends to infinity. If there is only one finite-length sealing fault in the
porous media, the derivative should become 1 (broken line in Fig. 14), then the derivative
goes to 0.5 (m = 0 line—radial flow), which is the derivative of the homogenous background
formation. When αD = 1, 000, the fault permeability becomes almost equal to the formation
permeability, then the derivative becomes almost equal to 0.5 (m = 0 line) as can be seen in
Fig. 15. Notice that the derivative curves for the small values of αD have a slope of m = 1/3
at early times and have two humps. For the large values of αD, the second hump and the slope
of m = 1/3 disappear. All derivatives approach 0.5 (radial flow) almost at the same time in
spite of the big difference in the fault transmissibilities.

In some reservoirs, the fault permeabilities could be higher than the host formation per-
meabilities as discussed above or fracture permeabilities could be lower. Nonetheless, our
solutions apply to both low and high conductivity fractures and both low and high transmis-
sibility faults.
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Fig. 15 Dimensionless logarithmic derivative of wellbore pressure for a discretely faulted reservoir shown
in Fig. 13

4 Conclusion

In this article, we have presented transient pressure solutions for a vertical well in a reservoir
containing arbitrary distributed finite- and/or infinite-conductivity faults and/or fractures,
i.e., in discretely fractured and faulted reservoirs. These solutions are mesh-free semianalyti-
cal in a 2D infinite reservoir and are given both in time and Laplace domains. The particularity
of the solutions is that they do not rely on space or time discretization, but rather treat the
domain of interest as a whole. This flexibility enables us to obtain the pressure in any point
of the spatial domain at any time, and also avoids error accumulation as time increases.
It is essentially based on the idea of introduction of unknown flux density functions
on fractures/faults or wellbore and their expansion in terms of singular basis func-
tions. It allows to reduce the problem to a system of linear algebraic equations of
modest size, which is easy to solve numerically. The solution techniques are numer-
ically stable and computationally efficient. The solutions are extended to account for
other reservoir features, such as sealing or leaky faults. Solutions are also presented
for the compressible fluid flow inside fractures. It is shown that the compressibility
effects are negligible, and the incompressible fluid flow assumption in fractures is cor-
rect.

Derivative examples of transient pressure behavior of different discretely fractured and
faulted reservoirs are presented. These derivatives can be used as diagnostic tools for well
test interpretation. It is shown that discretely fractured reservoirs do not exhibit well-known
characteristics of the Warren and Root (1963) dual-porosity reservoir model.
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Appendix

Here, we explain how to compute the expansion functions defined by Eq. 31 efficiently.
Except on the generating fracture itself these functions can be easily evaluated using Cheby-
shev-Gauss quadrature which gives very high precision even for a small number of nodes:

p̄Din(x, y, s) = 1

π

π∫

0

K0

[√
slDi

√
(xDi − cosψ)2 + y2

Di

]
cos nψdψ

≈ 1

N

N∑
k=0

K0

[√
slDi

√
(xDi − cosψk)2 + y2

Di

]
cos nψk, (94)

where ψk = π
N (0.5 + k) , k = 0, 1, . . . , N − 1. Notice that N should be greater than n,

although, since the higher n functions decay very fast as distance from fracture increases,
we can take lesser N and just neglect p̄Din with n > N assuming them to be zero. It seems that
the optimal value of N in terms of precision/speed is 60 for the points close to the generating
fracture (x2

Di + y2
Di < 1) and then it can be reduced to 30 and even further down to N = 1

for
√

x2
Di + y2

Di > 10, without almost any loss in accuracy. Since on the fracture itself the
sub-integral function becomes singular the direct use of this quadrature rule is inefficient,
but the singularity can be easily removed if we rewrite p̄Din as

p̄Din(cosχ, 0, s)

= 1

π

π∫

0

[
K0
(√

slDi |cosχ − cosψ |)+ ln

(√
slDi

2
|cosχ − cosψ |

)
+ γ

]
cos nψdψ

−
[

ln

(√
slDi

2

)
+ γ

]
δ0n − fn(χ)

π
, (95)

where

fn(χ) =
π∫

0

ln |cosχ − cosψ | cos nψdψ =
{−π ln2, if n = 0,

−π
n cos nχ, if n > 0.

(96)

Now sub-integral function becomes non-singular, so it can be evaluated easily using
Chebyshev-Gauss quadrature rule. The same approach can be applied for numerical eval-
uation of integrals in Eqs. 61, 65 which define the expansion functions for faults. In this
case, the pressure change on the fault is expanded in terms of Gegenbauer polynomials, so
it might be more efficient to use Gegenbauer-Gauss quadrature rule which is described, for
example, in Stroud and Secrest (1966). One can also evaluate the integrals in Eqs. 70 and 73
in the same way. Since we did not specify any particular expansion functions for boundaries,
it is difficult to suggest any specific quadrature rule, but if one decides to use trigonometric
functions as basis on the boundary, the Chebyshev-Gauss quadrature rule seems to provide
very good results in terms of speed and precision.

The same techniques can be also applied to optimize the computations of similar integrals
containing exponential integral functions E1 and E2 in time domain.
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