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Abstract
In order to prove conformance to memory standards and bound memory access 
latency, recently proposed real-time DRAM controllers rely on paper and pen-
cil proofs, which can be troubling: they are difficult to read and review, they are 
often shown only partially and/or rely on abstractions for the sake of conciseness, 
and they can easily diverge from the controller implementation, as no formal link 
is established between both. We propose a new framework written in Coq, in which 
we model a DRAM controller and its expected behaviour as a formal specification. 
The trustworthiness in our solution is two-fold: (1) proofs that are typically done on 
paper and pencil are now done in Coq and thus certified by its kernel, and (2) the 
reviewer’s job develops into making sure that the formal specification matches the 
standards—instead of performing a thorough check of the mathematical formalism. 
Our framework provides a generic DRAM model capturing a set of controller prop-
erties as proof obligations, which all implementations must comply with. We focus 
on properties related to the assertiveness that timing constraints are respected, every 
incoming request is handled in bounded time, and the DRAM command protocol is 
respected. We refine our specification with two implementations based on widely-
known arbitration policies—First-in First-Out (FIFO) and Time-Division Multiplex-
ing (TDM). We extract proved code from our model and use it as a “trusted core” on 
a cycle-accurate DRAM simulator.
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1  Extended version

This paper is an extension of a paper published at the 30th International Con-
ference on Real-Time Networks and Systems (RTNS’22) entitled A Coq Frame-
work For More Trustworthy DRAM Controllers Lisboa Malaquias et  al. (2022). 
The main additions are: a section where we discuss in greater detail and through 
examples how paper-and-pencil latency-analysis/proofs can lead to untrustworthi-
ness (Sect. 2.1); a section where we present how the framework can be used to 
model controller semantics, such as memory consistency models (Sect. 6); and a 
section where we discuss how exactly our framework enhances trust w.r.t DRAM 
controllers design (Sect. 8). Furthermore, we extend and re-work several parts of 
the text of the original paper: textual descriptions are more detailed, code defini-
tions previously omitted due to space constraints are shown, and new figures and 
tables are added with the goal of easing comprehension.

2 Introduction

Multi-core architectures pose a challenge for critical and mixed-criticality sys-
tems due to resource contention on the main memory. Memory Controllers (MCs) 
have to deal with a fundamental trade-off: ensuring predictable behaviour for crit-
ical (hard) requests, while providing good bandwidth (BW) for non-critical (soft) 
requests Guo and Pellizzoni (2017).

On one side of the spectrum, commercial-off-the-shelf (COTS) DRAM con-
trollers employ a series of performance-driven optimisations that degrade pre-
dictability, such as reordering and bundling queued requests. As an example, 
take one of the most commonly used algorithms in high-performance controllers, 
First-Ready First-Come-First-Serve Rixner et al. (2000) (FR-FCFS), which prior-
itises row-hits over row-misses. Requests can be re-ordered, and hence, a critical 
request could suffer starvation due to the prioritisation of a non-critical request. 
As a consequence, this type of arbitration algorithm is poorly suited for memory 
controllers in real-time systems—as timing analysis gets more complex and mem-
ory accesses latencies can be difficult to bound.

On the other side of the spectrum, Real-Time DRAM controllers often adapt 
conservative techniques, offering predictability at the cost of decreased average-
case performance. However, as the need for performance and computational 
demands in real-time system quickly grows Akesson et  al. (2020), research has 
made significant progress in proposing predictable DRAM controllers at mini-
mum performance cost in recent years (Mirosanlou et al. 2021, 2020; Valsan and 
Yun 2015; Guo and Pellizzoni 2017; Paolieri et al. 2009; Hassan et al. 2015; Li 
et al. 2014; Wu et al. 2013; Jalle et al. 2014; Ecco and Ernst 2015; Reineke et al. 
2011; Schranzhofer et al. 2011; Yun et al. 2015).

Nonetheless, additionally to latency bounds, memory controller designers have 
to ensure that the DRAM commands generated by the MC and sent to the device 
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respect the timing constraints established by the Joint Electron Devices Engi-
neering Councils (JEDEC). Taking this into account, the mathematical proofs 
that ensure conformance to the JEDEC standard and bound memory access 
latency can be lengthy, complex, and lack readability. These issues are presented 
in greater detail in Sect. 2.1.

Formal methods come in handy when dealing with such problems. Increasing the 
trust in the designed system is delegated to specialised tools, which, depending on 
the approach, can do different things. The two most popular approaches are model 
checking and deductive verification. The former performs exhaustive exploration of 
a mathematical model. The latter can be used to generate mathematical proof obli-
gations that are part of the formal specification of a system (a property also known 
as the Curry-Howard isomorphism Sørensen and Urzyczyn (2006)); therefore, every 
implementation of the specification must provide proofs that these obligations are 
met.

While model checking provides greater automation, deductive verification has 
better expressivity Shankar (2018). In the context of Real-Time Memory Control-
lers, the expressivity provided by the deductive approach brings benefits: 

1. If one convinces oneself that the formal specification of a system and the stated 
properties really correspond to the addressed problem—here DRAM control-
lers—then one can become agnostic to the actual implementations and the inner 
mechanisms of the proofs, as long as they are accepted by the tool’s kernel;

2. Different than model checking, deductive verification allows modelling of more 
complex systems, since computation does not dependent on the number of pos-
sible states. In other words, more often than not, model checking approaches do 
not scale well for models with large/unbounded number of elements and have to 
apply abstractions to keep the state space manageable.

More specifically, we use Coq,1 an interactive theorem prover. It allows its user to 
write specifications, implement them, and discharge proof obligations through the 
aid of proof scripts. We choose Coq over other prove assistants for a variety of rea-
sons—largely based on the points made by Chlipala (2022) in the book Certified 
Programming with Dependent Types: 

1. Coq’s specification language supports Higher-Order logic—which allows us to 
enjoy the benefits of conventional functional programming languages.

2. It is based on dependent types—which allows us to include references to programs 
inside of types.

3. Coq is based on an easy-to-check and small kernel to check the correctness of 
proofs (according to the “de Bruijn” criterion).

4. It supports coding new proof manipulations, and thanks to the third point, these 
new manipulations cannot be incorrect.

1 https:// coq. inria. fr/.

https://coq.inria.fr/.
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The trustworthiness that our model provides is two-fold: 1) paper-and-pencil proofs 
are replaced by Coq-written proofs, which are certified by Coq’s kernel, and 2) since 
proofs are presented as artefacts, reading and reviewing designs introduced within the 
framework is simpler: instead of performing a thorough check of the underlying mathe-
matical formalism, one just needs to check if the specification accurately captures what 
is described in the standard. In Sect. 8, we discuss in detail how exactly our framework 
impacts trust.

Novel Contributions

– We propose a framework written in Coq that offers a higher degree of trust w.r.t 
DRAM controllers design. It contains a generic and reusable model of memory 
controllers in the form of a formal specification that can be refined through actual 
implementations. The specification carries correctness criteria as proof obligations.

– We refine the specification with two instances: one based on First-In First-Out 
(FIFO) arbitration and the other on Time-division multiplexing (TDM). For both, 
proof obligations are met and certified by Coq’s kernel. The proofs written for 
these two instances serve as a model for future implementations and uses of the 
framework.

– The framework cleanly separates the specifications and proofs from the imple-
mentation, which allows us to extract executable code from Coq that can be used 
as a “root of trust” in a cycle-accurate DRAM simulator.

Paper Organisation
Section  2.1 reviews recently proposed Real-Time Memory Controllers in order 

to highlight the issues that motivate our work, Sect. 2.2 presents how the DRAM 
communication protocol, the related timing constraints, and the worst-case latency 
bounds have been modelled with the aid of formal methods, and Sect. 2.3 highlights 
how Coq-based solutions have recently gained ground in the design of trustwor-
thy hardware. Section  3.1 presents a concise background on DRAM systems and 
Sect. 3.2 presents Coq’s Type Classes, a key feature used in the development of our 
framework. Sections 4 and 5 present our contributions: while the former introduces 
the formal specification and the proof obligations in it, the latter shows how we 
refine the specification, derive latency bounds and resolve proof obligations. Sec-
tion 6 shows how the framework can be used to model controller semantics. Sec-
tion 7 discusses how we extract Haskell code from our model and embedded it into 
an existing cycle-accurate DRAM system simulator. Finally, Sect. 8 discusses our 
framework’s implications on trust, and Sect. 9 concludes the paper by revisiting our 
contributions and presenting future research directions.

3  Related work

3.1  Real‑time memory controllers & Trustworthiness

Latency-analysis (or timing analysis) has always been a key element of any work 
introducing new Real-Time hardware components. This is because the latency 
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introduced by the hardware logic has to be upper-bounded for it to be accounted in a 
task’s Worst Case Execution Time (WCET). Two important components that intro-
duce significant latency in a system are the memory and the memory controller. His-
torically, timing analyses w.r.t these components, along with proofs of conformance 
to the JEDEC standards, have been done on paper-and-pencil, which can be hard to 
deal with, in more than one aspect.

We analysed the most-often cited Real-Time memory controllers in literature 
regarding the length of latency analysis/proofs (Ecco and Ernst 2015; Guo and Pel-
lizzoni 2017; Hassan et al. 2015; Jalle et al. 2014; Li et al. 2014; Mirosanlou et al. 
2020, 2021; Paolieri et al. 2009; Reineke et al. 2011; Schranzhofer et al. 2011; Val-
san and Yun 2015; Wu et al. 2013; Yun et al. 2015). In each work, latency analysis 
takes from 30% up to 50% of the total space of the paper. Although the content and 
decision procedures of proofs might be of interest for fields such as mathematics or 
physics, we advocate for the point of view that hardware design should present them 
merely as artefacts. Therefore, the space that these proofs take in the papers could 
be better used – to include details about implementations, experiments, results, and 
other engineering aspects, for example. Approaching the problem through com-
puter-aided formal methods allows us to properly treat proofs as artefacts and hide 
the underlying mathematical formalism from the reader.

Moreover, these analyses are often presented for the simplest of cases, leaving out 
essential details. As an example, Mirosanlou et al. (2021) only derives static Worst 
Case Latency (WCL) for read requests, briefly arguing that the analysis for write 
requests is very similar, which is therefore omitted. Work by Ecco and Ernst (2015) 
proceeds in the same way, omitting the proof of a Lemma based on the similarity 
argument.

In other work, the timings analysis is based on assumptions that reduce the set 
of valid scenarios. For instance, work by Guo and Pellizzoni (2017) describes their 
timing analysis as being only valid for a subset of DDR3 devices.2 Work by Wu 
et  al. (2013) assumes that the task under analysis runs non-preemptively on its 
assigned core, arguing that the analysis could be easily extended if the maximum 
number of preemptions is known (although the claim is not supported and details 
are not given).

Furthermore, works may base themselves on different sets of assumptions. It is 
therefore hard for users of the design, readers, and reviewers to keep track of the 
assumptions within the paper, often scattered throughout and/or presented as side 
notes. It is even harder to compare the set of assumptions that validate different 
Real-Time memory controller designs. This issue is identified and addressed in a 
survey by Guo et al. (2018), in which the set of assumptions for a dozen Real-Time 
memory controllers is made explicit. As an example, in order to compare the WCL 
analysis performed by Ecco and Ernst (2015), the authors of the survey had to per-
form a new auxiliary analysis applying the common assumption on the arrival of 
requests used in related work.

2 Although a footnote states that the analysis is still applicable if the right parameters are selected, the 
claim is not supported.
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Although we do not deem wrong nor contest the author’s choices in each men-
tioned work, we do see the points made in the paragraphs above as possible sources 
of untrustworthiness. These points are resumed below:

– Proofs are not machine-checked, i.e., checking that the analysis is correct still 
depends on human labour by the authors themselves and through peer-review. 
The inherent difficulty, length, and incompleteness of the presented proofs makes 
peer-reviewing a challenging task requiring expert knowledge. Regular users and 
readers also have the deal with these complex proofs—which should rather be 
presented as artefacts.

– Works often base themselves on different sets of assumptions. Since these 
assumptions are often not highlighted or made explicit, it is difficult to keep track 
of the assumptions within the work itself, and to compare assumptions between 
different approaches.

– The fact that there is no formal link between system implementation and the 
mathematical abstractions used to perform timing analysis may also introduce 
untrustworthiness.

3.2  DRAM & formal methods

Jung et al. (2019) model the DRAM timing protocols with timed Petri Nets and gen-
erate executable code that can be used for simulation-based validation. However, as 
their approach only takes the device’s timing constraints into consideration, it cannot 
handle system properties, such as the worst-case latency or the protocol correctness.

Li et al. (2016) use timed automata (TA) models of a memory controller to derive 
the Worst-Case Bandwidth (WCBW) and Worst-Case Response Time (WCRT) 
through the Uppaal model checker Larsen et  al. (1997). However, when perform-
ing worst-case analysis, in order to keep the state-space limited, they assume that 
each requestor has at most one outstanding request, i.e., they constrain how requests 
arrive in the system. Moreover, getting convinced that the TA models reflect the 
actual DRAM states is not straightforward, since the models are complex and writ-
ten by hand. We come back to this point in Sect. 8, where we debate how exactly our 
framework provides more trust.

Hassan and Patel (2017) use Linear Temporal Logic (LTL) formulas to specify 
the correctness of memory controller models. However, the specification is not used 
to prove the actual implementation correct. Instead, counterexamples are obtained 
from simplified models of an implementation by bounded model checking, which 
are then used to build a test bench for the validation of the implementation. The 
considered models might also slightly diverge from the actual implementation. The 
obtained test bench might thus be incomplete or contain false positives/negatives.
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3.3  Uses of Coq in related problems

Coq, and other similar theorem provers, such as Isabelle/HOL Nipkow et al. (2002) 
and Fstar,3 have been used successfully to model and prove the correctness of com-
plex systems. PROSA Cerqueira et al. (2016), for instance, proposes a framework 
to model real-time task scheduling (including task properties, scheduling policies, 
etc.), which allows to prove scheduling policies correct under a given set of condi-
tions using Coq. Guo et al. (2019) go even a step further by connecting PROSA’s 
formal model to an actual real-time operating system RT-CertiKOS—thus proving 
the scheduler implementation correct.

In 2020, Bozhko and Brandenburg (2020) built a Coq framework, leveraging 
previous results from PROSA, to formally reason about Response Time Analysis 
(RTA), and more specifically, the ubiquitous principle of busy-window. The authors 
motivate their work by identifying a lack for commonality and formality in liter-
ature, claiming that “the general idea [of the busy-window principle] has become 
part of the real-time folklore, spread across many papers, where it is frequently re-
developed from scratch, using ad-hoc notation and problem-specific definitions”. 
Moreover, they advocate that “papers introducing novel RTA should not start from 
first principles, but rather build on a well understood and general foundation [...]”. 
This reasoning is on par with the arguments we present in this work, which aims at 
providing a formal foundation for memory controller design. In 2022, Maida et al. 
(2022) extended the results from Bozhko and Brandenburg (2020) by connecting 
the foundational RTA analysis to a larger formal system used to produce “strong and 
independently checkable evidence of temporal correctness”.

Several research groups and companies are promoting the use of Coq for the 
development of trustworthy hardware. Researchers at Google have developed 
a plug-in replacement of the cryptographic core of the OpenTitan4 silicon root of 
trust. The hardware is implemented in Cava5—a Domain-Specific Language (DSL) 
based on Lava Bjesse et al. (1998) and embedded within Coq. Cava allows to lever-
age Coq’s proof-engine and to derive SystemVerilog code. Kami, a similar system, 
was first developed by Choi et al. (2017) and later adopted by SiFive. It has its roots 
in Bluespec,6 which also serves as the target language derived from Kami. The veri-
fication procedure in Kami is based on proving that modules refine a given specifi-
cation based on trace inclusion, i.e., the specification defines traces of observable 
events which have to be respected by its implementation—an approach similar to the 
one we adopt in this paper.

Following the same rule-based design approach, the more recently proposed 
DSLs Koîka Bourgeat et al. (2020) and Choi et al. (2022) extend the bases set by 
the Kami project. The former does so by introducing semantics that can be used to 
prove performance properties, e.g., that a pipelined system indeed behaves like a 

3 https:// www. fstar- lang. org/.
4 https:// opent itan. org/.
5 https:// github. com/ proje ct- oak/ silve roak.
6 https:// blues pec. com/.

https://www.fstar-lang.org/.
https://opentitan.org/.
https://github.com/project-oak/silveroak.
https://bluespec.com/.


671

1 3

Real-Time Systems (2023) 59:664–704 

pipelined system. The latter proposes a method to prove the serializability property 
of cache-coherence protocol.

4  Background

4.1  DRAM systems

We centre the discussion around DDR4 devices, as they can be seen as super-sets 
of older technologies (although sometimes we refer to DDR3 devices as well). The 
topmost logical unit in a DRAM module is a rank, followed by bank-groups and 
banks. Each bank is composed of a grid of memory cells, a page-sized buffer—the 
row-buffer—and sense amplifiers. The overall structure of a DDR3 chip is depicted 
in Fig. 1 (for DDR4 the N banks in the figure would represent a single bank-group).

DRAM controllers are typically organised in two parts: front-end and back-end. 
In the front-end, three things take place: (1) The Address Mapping, which deter-
mines how a request’s address is mapped to the corresponding rank, bank-group, 
bank, row, and column. (2) The Scheduling Policy, responsible for establishing the 
order in which requests will be serviced. (3) The Command Generation, responsible 
for generating the needed commands for each request, based on the status of the 
targeted bank. In the back-end, the generated commands go through an arbitration 
policy and are sent to the device’s command bus—possibly in a different order.

Fig. 1  DRAM chip structure
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There are several types of commands, but for conciseness, only the four related to 
servicing requests are explained: (1) Activate (ACT) commands are responsible for 
loading the content of a row into the row-buffer, that acts like a small cache for the 
bank. (2) Column Address Strobe (CAS) can be either reads (RD) or writes (WR). If 
it is a RD, then the command selects a column address and transfers the correspond-
ing data from the row-buffer to the data bus. The WR commands do the opposite, 
choosing a column address from the data bus and writing it in the targeted bank’s 
row-buffer. Bear in mind that CAS commands can only be issued if there is a row 
currently present in the row-buffer, i.e., if an ACT commands has been previously 
issued. (3) If a request aims at a different row, the data present in the row-buffer 
needs to be written back to the DRAM’s cell matrix. This is because loading rows, 
i.e., reading the content of a DRAM cell is a destructive process. This re-write pro-
cedure is done by Precharge (PRE) commands. (4) The capacitors in the DRAM 
cells have to be recharged using Refresh (REF) commands, which have to be issued 
periodically. Similar to existing work (Li et  al. 2014; Jalle et  al. 2014; Yun et  al. 
2015; Ecco and Ernst 2015; Hassan et al. 2015; Li et al. 2016; Guo and Pellizzoni 
2017), refresh-induced delays are not considered in this work at the moment—these 
delays are best taken into consideration as additional interference (Bhat and Mueller 
2011; Wu et al. 2013).

The JEDEC standards establish several constraints on how far apart in time dif-
ferent commands must be. These constraints are summarised in Table 1. Note that 

Table 1  JEDEC timing constraints for a DDR3 and a DDR4 device

 In the device name, the number represents the device’s speed in MHz in the letter is the speed grade

Symbol Description DDR3-1600K (in data bus 
clock cycles)

DDR4-2400U (in data 
bus clock cycles)

Exclusively intra-bank
tRCD ACT to WR/RD 11 18
tRP PRE to ACT 11 18
tRC ACT to ACT 39 57
tRAS ACT to PRE 28 (min), 9xtREFI (max) 39 (min), 9x tREFI (max)
tWL WR to data bus transfer 8 12
tRL RD to data bus transfer 11 18
tRTP RD to PRE 6 9
tWR WR data to PRE 12 15
Intra and inter-bank
tRD−to−WR RD to WR 9 12
tWTR End of WR transaction to RD 6 s=3, l=9
tWR−to−RD WR to RD 18 s=19,l=25
tBURST Data bus transfer 4 4
tCCD WR-to-WR or RD-to-RD 4 s=4, l=6
Exclusively inter-bank
tRRD ACT to ACT 5 s=7, l=8
tFAW Four ACT window 24 30
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some constraints only apply to different banks, some only to the same bank, and 
some to all banks. For DDR4 devices, some constraints can have two values, with 
identifiers s (short) and l (long). The former applies to commands aiming at banks of 
different bank groups, the latter to banks in the same group. Note also that the con-
straint tRAS is the only one to impose both upper and lower bounds.

Next, we discuss rows-hits/misses and row-buffer/page policy.7 If a request, aim-
ing at a given row, finds its data already in the row-buffer, it is said to be a row-hit. 
If, however, the targeted row is different than the one in the row-buffer, it is said to 
be a row-miss. One of the key aspects of (real-time) DRAM controllers is how to 
handle the row-buffer. One strategy is to keep rows loaded in the row-buffer for as 
long as possible. This way, row-hits will enjoy small latencies. This is known as the 
open-page policy. Since the controller leaves the bank in an unknown state, the tim-
ing analysis employed to bound the worst-case latency grows in complexity. Another 
strategy is to treat every request as a row-miss, issuing the same PRE-ACT-CAS 
sequence for every request. This is known as the closed-page policy. It offers the 
benefit of simplified timing analysis at the cost of average-case performance.

Figure 2 illustrates a command scheduling scheme on a DDR3-800E device. The 
clock signal depicted in the figure is the data bus clock. The second line from top to 
bottom corresponds to the command bus (NOP commands are not shown). The third 
line from top to bottom is the data bus. The two lines below that correspond to the 
commands issued to banks i and j, respectively.

Consider the two banks i and j ( Bi and Bj ) to be idle at the initial time instant 
(left-most clock cycle in the figure). Moreover, consider that the system is serving 
three distinct requests: R1 is a write to bank i, R2 a read to bank j, and R3 again writes 
in bank i. The controller issues commands for both R1 and R2 concurrently, always 
respecting the timing constraints between commands. Note that R1 and R2 could be 

Fig. 2  Example of timing constraints for a DDR3-800E device. Commands and data:  Bank i ( Bi
),  Bank j ( Bj ). Constraints:  Exclusively intra-bank,  Inter- and intra-bank,  Exclusively inter-bank

7 The terms row-buffer policy and page policy are used interchangeably.
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either row-misses or hits, while R3 is a row-miss, since it has to issue a PRE. Except 
from Refresh related constraints, all timing constraints are depicted in the figure.8

4.2  A brief introduction to Coq

In the rest of the work we will heavily rely on Type Classes. While presenting details 
about Coq’s proof engine is out of the scope of this work, we will try to give an 
intuitive explanation of these type classes and their use.

A type class in Coq is, in some regards, similar to abstract classes or interfaces 
from object-oriented programming languages—it allows us to specify a set of mem-
bers. Listing 1 shows an example of a container—similar to the Container9 and Col-
lection10 concepts in C++ or Java, respectively.

Listing 1: Interface specification for a container/collection.
Class container_t {T C : Type} := mkContainer {
append : T → C → C; (* append element to container *)
contains : T → C → bool; (* is element in container? *)
size : C → nat; (* get number of element in container *)
app_inc : forall (x : T) (c : C), size (append x c) = (size c).+1
app_in : forall (x : T) (c : C), contains x (append x c)
}.

The class container_t takes two type parameters, where T specifies the Type of 
the container’s elements and C the type of the data structure holding those elements. The 
identifier mkContainer is the class constructor—a function used to build instances. 
The member append is a function, taking an element of type T and a container of type 
C as parameters, while returning a new container. The member contains is a func-
tion with an element and a container as parameter that returns a boolean (bool), while 
size expects a container as input and returns a natural number (nat).

Intuitively it is clear what the append function is supposed to do. Still, in Java 
or C++ the meaning of the function is usually explained explicitly in comments 
or an additional document. Coq, however, allows to make the expected behaviour 
explicit—as illustrated by the members app_inc and app_in. These members 
are proof obligations (POs), i.e., properties that every instantiation of the container 
class has to respect. They indicate that the size of a container should increment 
by one when an element is appended and that a newly appended element always 
has to be present in the container. The usage of type classes is similar to classes in 

8 In Fig. 2, the arbitration, though valid, does not correspond to any specific algorithm, as it simply illus-
trates a situation where all constraints are respected. Moreover, the timing constraints in the standard 
represent minimum intervals. In the figure, the depicted constraints assume values greater or equal to 
these minimum values.
9 https:// en. cppre feren ce. com/w/ cpp/ named_ req/ Conta iner.
10 https:// docs. oracle. com/ javase/ 8/ docs/ api/ java/ util/ Colle ction. html.

https://en.cppreference.com/w/cpp/named_req/Container.
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html.
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conventional programming languages—they can be used as parameters in functions 
and other type classes, where its members can be used.

Furthermore, the Coq command Context allows us to introduce variables in 
the local context—which behave like abstract instances, i.e., their members (func-
tions and logical propositions/POs) can be used in the local context, even if concrete 
instances do not yet exist. As an example, as shown in Listing 1, we introduce the 
types Q and R in the local context, followed by X, which is an abstract instance of 
container_t using the previously defined types Q and R.

Listing 2: Using the container_t class.
(* introduces variables Q and R in the local context *)
Context {Q R: Type}.
(* introduces variable X of type container_t in the local context *)
Context {X : container_t (T:=Q) (C:=R)}.

We can now use the member functions of X—the abstract instance of 
container_t—to write other functions, such as concatenate_list (List-
ing 2). It takes a list of type seq Q11 and recursively appends its elements into a 
variable of type R (previously defined in Listing 1). Note how the append function 
is used within the function.

Listing 3: Writing a function using members from container_t

Fixpoint concatenate_list (a : R) (b : seq Q) :=
match b with
| [ ::] ⇒ a
| hd::tl ⇒ append hd (concatenate_list a tl)
end.

Moreover, we can prove properties about concatenate_list, as shown by 
the Theorem size_concatenate in Listing 3—a theorem stating that the size 
of a container resulting from concatenating a list to a container is the sum of the 
sizes of each. The code between commands Proof and Qed is a proof script. A 
proof script relies on the use of tactics, which interactively allow the user to per-
form steps in proving a theorem. In this specific proof, we use the tactics induc-
tion, which performs mathematical induction on a specified variable; simpl, 
which simplifies terms by reduction; rewrite, which rewrites terms manually; and 
reflexivity, which is used to trivially prove goals in the equality form. Note how 
the proof applies the property app_inc, a member of the container_t type 
class.

11 The seq type is an alias of Coq’s standard list type with several useful pre-defined functions and lem-
mas. It is part of Mathematical Components (mathcomp)—a widely-used Coq library for formalised 
mathematics.
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Listing 4: Using container_t to prove a property
Theorem size_concatenate (la : C) (lb : seq T) :
size (concatenate_list la lb) = size la + seq.size lb.

Proof.
induction lb; simpl; try rewrite addn0; try reflexivity.
by rewrite app_inc IHlb addnS.

Qed.
_

It is important to keep in mind that having only introduced abstract instances, the 
proof size_append will hold for any concrete instance of container_t. This 
feature is widely used in our framework to build implementations and proofs that are 
agnostic to the arrival model of requests, for instance.

In addition, type classes can also be instantiated, i.e., associated with concrete 
implementations of the member functions. Listing 4 shows an example of a concrete 
instance of container_t where we define some functions using the seq type.

Listing 5: Functions implementing the collection interface.
(* Using mathcomp.ssreflect.seq functions *)
Definition my_append (n : nat) (c : seq nat) : seq nat :=
seq.append c n.

Definition my_contains (n : nat) (c : seq nat) : bool :=
n \in c. (* returns true if n is a member of c *)

Definition my_size (c : seq nat) : nat :=
seq.size c. (* returns the length of c *)

In Listing 6, we write proofs for the members app_inc and app_in using our 
defined functions and instantiate the container through its constructor—mkCon-
tainer. Notice that aside from types and functions, proofs are also passed as argu-
ments to the constructor.
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Listing 6: Proofs and instantiation of the collection interface.
Theorem my_appn_inc (x : nat) (c : seq nat) :
my_size (my_append x c) = (my_size c).+1.
Proof.
unfold my_size, my_append; by rewrite cats1 size_rcons.
Qed.

Theorem my_app_in (x : nat) (c : seq nat) :
my_contains x (my_append x c).
Proof.
unfold my_contains, my_append; by rewrite mem_cat mem_seq1 eq_refl orbT.
Qed.

(* Container instance *)
Instance my_list : container_t := mkContainer

nat (seq nat) (* Types *)
my_append my_contains my_size (* Functions *)
my_appn_inc my_app_in. (* Proofs *)

Furthermore, we occasionally use Coq Records instead of type classes. 
Records are simple structures with fields—similar to C structs and record types 
used in other programming languages. In fact, each type class definition gives 
rise to a corresponding record declaration (apart from type classes with a single 
method).

5  Specification & proof obligations

The framework we propose is organised in two parts: 1) A generic and reusable 
formal specification containing all correctness criteria; and 2) Concrete Real-Time 
memory controller implementations. The formal specification is composed by the 
following elements: a DRAM model, a memory controller (or memory interface) 
model, a request arrival model, and an implementation interface—each model 
being a PO-carrying type class. These elements are presented, respectively, in 
Sects. 4.1,  4.2, 4.3, and 4.4. Implementations are discussed in Sect. 5. A high-level 
representation of the framework’s architecture can be seen in Fig. 3.

In the figure, one can identify three main parts: the JEDEC standard at the top, 
the formal specification (the largest rectangle), and the implementations, at the bot-
tom. The framework is designed in such a way that any new Real-Time memory con-
troller can be introduced as an implementation. In practical terms, the design flow 
consists of using the implementation interface (bottom-most arrow in the figure) to 
implement the Memory Controller class, which consists of writing a transition sys-
tem to produce DRAM command traces. Writing the formal specification itself and 
capturing properties described in the standard as proof obligations is a task only 
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performed once (by the framework development team). Naturally, these properties 
can eventually be extended.12

Listing 7: System Configuration.
Class System_configuration := {
BANKGROUPS : nat; (* number of bankgroups *)
BANKS : nat; (* number of banks *)
...
T_BURST : nat;
T_WL : nat;
T_RRD : nat;
...
(* Proof obligations *)
BANKS_pos : BANKS != 0; (* number of banks has to be non-zero *)
T_RRD_pos : T_RRD != 0; (* T_RRD constraint has to be non-zero *)
...

}.

Fig. 3  Framework Architecture

12 As it will be discussed in Sect. 9, it is in our plans to extend the properties captured by the formal 
specification.
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5.1  DRAM model

Similar to the JEDEC standard itself, we do not model the internal state of actual 
DRAM devices nor the content of the memory. Instead we only model the device’s 
main characteristics and its command bus. This is sufficient since the device’s 
responses and internal state, as well as the usage of the data bus is entirely deter-
mined by the commands.

The first building block is a type class called System_configuration—
shown in Listing 7. It provides symbolic names for all device parameters, which 
can then be used in algorithms and proofs. The latter are thus valid for all possible 
valuations of these parameters, i.e. all devices. For instance, it defines the symbol 
T_RRD—which specifies the intra-bank ACT to ACT delay—and all the other con-
straints from Table 1. The class also carries proof obligations that bound these sym-
bols to positive values.

Moreover, we define requests as a record with six fields, as shown in Listing 8. The 
listing also shows the definition of Request_kind_t, an enumeration of possible 
kinds of requests. The remaining definitions are not shown for brevity: Requestor_t 
describes the type of requestors, and the remaining definitions of Bank_group_t, 
Bank_t, and Row_t are numeric types derived from the parameters of the System_
configuration class.

Listing 8: Definitions of Request_t and Request_kind_t.
Inductive Request_kind_t : Set :=

RD | WR.

Record Request_t := mkReq {
Requestor : Requestor_t; (* The type of requestors *)
Date : nat; (* The arrival date of requests *)
Kind : Request_kind_t; (* Either if it is a RD or WR *)
Bank_group : Bank_group_t; (* Type of bankgroups : bounded natural *)
Bank : Bank_t; (* Type of banks : bounded natural *)
Row : Row_t (* Type of rows : bounded natural *)

}.

Listing 9: Definitions of Command_t and Commands_t.
Inductive Command_kind_t : Set :=

ACT | PRE | PREA | CRD | CWR | NOP.
(* CRD and CWR are CAS commands *)

Record Command_t := mkCmd {
CDate : nat; (* The issue date of commands *)
CKind : Command_kind_t; (* The type of commands *)
Request : Request_t (* The request that has generated the command *)

}.

Definition Commands_t := seq Command_t.
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We define DRAM commands as a record with three fields, as shown in Listing 9. 
The first field, CDate, a nat type, is the date (time stamp) that the controller has 
issued the command; the second, CKind, of type Command_kind_t, represents the 
command type, and Request, of type Request_t, is the corresponding request that 
lead to the command being generated. With the Command_t type, the Commands_t 
type can also be defined, which is simply a list of commands.

Based on the types presented in Listings 8 and 9, we model the DRAM com-
mand bus. This is done through the record Trace_t, which models the commands 
sent to the DRAM device over time—with one command being issued per bus clock 
cycle—as shown in Listing 10.

Listing 10: Trace of commands with proof obligations.
Record Trace_t := mkTrace {
Commands : Commands_t;
Time : nat;
...
(* PO: related to JEDEC timing constraint *)
Cmds_T_RRD_ok : forall a b, a \in Commands → b \in Commands → isACT a → isACT b →

(Same_Bank a b = false) → Before a b → a.(CDate) + T_RRD <= b.(CDate);
...
(* PO: related to the correctness of the protocol *)
Cmds_row_ok : forall b c, b \in Commands → c \in Commands → isCAS b → isPRE c →

Same_Bank b c → Before c b →
exists a, (a \in Commands) && (isACT a) && (Same_Row a b) && (After a c) && (

Before a b)

(* PO: related to the correctness of the protocol *)
Cmds_ACT_ok: forall b c, c \in Commands → b \in Commands → isACT_or_CAS c →

isACT b → Same_Bank c b → Before c b
→ exists a, (a \in Commands) && (isPRE a) && (Same_Bank c a) && (Before a b)

&& (After a c).

(* implies the init state of the memory *)
Cmds_initial : forall b, b \in Commands → isCAS b →

exists a, (a \in Commands) && (isACT a) && (Same_Row a b) && (Before a b)
}.

A trace contains a command list (Commands), the last time stamp (Time), and 
a series of POs. Bear in mind that Listing 10 omits several POs and some function 
definitions for conciseness. The terms isACT , isCAS, isPRE, After, Same_
Bank (implies same bank group), Same_Row (implies same bank), Before, and 
After are functions that evaluate to a bool type. Though not shown here, their 
definition can be taken literally by their name, e.g., Before a b evaluates to true 
if command a was issued before command b.

The first PO appearing in Listing 10, Cmds_T_RRD_ok, is read as: for two given 
commands a and b, knowing that a and b are elements of the list Commands, that 
both are ACT commands targeting different banks, that a was issued before b, then 
a.(CDate) +TRRD ≤ b.(CDate) must hold. This ensures that every controller 
implementation has to respect the tRRD constraint. It follows that any implementation 
when calling the constructor mkTrace must provide a proof that this obligation is 
met. We model all JEDEC timing constraints in a similar way as Cmds_T_RRD_ok. 
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Table 2 establishes a correspondence between PO names and the underlying prop-
erty described in the JEDEC DDR4 standard JEDEC (2021).

The second (Cmds_row_ok), third (Cmds_ACT_ok), and fourth (Cmds_ini-
tial) POs in Trace_t relate to what we call protocol correctness. These condi-
tions—taken from the JEDEC standards (c.f Table 2)—ensure the correct function-
ing of controllers, i.e., the fact that only valid commands should be issued.

More specifically, the PO Cmds_row_ok ensures that there is always an ACT 
command to a given bank and row between a PRE to that bank and a CAS to that 
bank and row. In natural language, the PO is read as: for two given commands b 
and c, knowing that b and c are elements of the list Commands, b is a CAS com-
mand, c is an ACT or a PRE, b and c target the same bank, and c is issued before 
b, then command a must exist, where a is also in Commands, is an ACT command 
to the same bank and row as b, and is issued before b and after c. This situation is 
depicted in Fig. 4. In the figure (and in Fig. 5), the notation CAS

(bg,bk,r,cl) represents 
a CAS to bank-group bg, bank bk, row r and column cl; PRE

(bg,bk) represents a pre-
charge to bank-group bg, bank bk; and ACT

(bg,bk,r) represents an activate to bank-
group bg, bank bk, and row r. The symbol “ _ ” means that the corresponding field 
does not play a role in the PO, e.g., a CAS

(0,0,0,_) represents a CAS to bank group 0, 
bank 0, row 0, and any column.

The PO Cmds_ACT_ok states that an ACT to a given bank and row is always 
preceded by a matching PRE to the same bank, without any ACT or CAS to the 
same bank in-between. The PO is depicted in Fig. 5, where the PO is met by the 
conjunction of scenarios S1 and S2.

Furthermore, we model the memory’s initial state through the Cmds_initial 
PO. It states that any CAS should be preceded by an ACT command, which implies 
that a CAS cannot be the first command sent to the device; only PRE and ACT com-
mands are accepted. In other words, this is an assumption that at initialisation, every 
bank is closed, i.e., no row is loaded in any of the row-buffers, thus an ACT to a cer-
tain bank is needed before any CAS to that bank can be issued.

Together, these three POs guarantee that implemented controllers generate valid 
commands and respect the protocol described in the standard. The conditions estab-
lished by the POs can also be visualised in Table 3. We use the notation → to denote 
an immediate sequence between commands, e.g, PRE

(bg,bg) → CAS
(bg,bk,r,c) repre-

sents a CAS issued directly after a PRE.
Each coloured cell in the table corresponds to a sequence and the fact if either it is 

allowed or not, e.g., the sequence PRE
(bg,bk) → CAS

(bg,bk,r0,_)
 is forbidden by Cmds_

row_ok. Moreover, it can be seen from the table that consecutive ACT commands 
to the same bank, either to the same or different rows ( ACT

(bg,bk,r0)
 or ACT

(bg,bk,r1)
 ), 

are forbidden by Cmds_ACT_ok. Additionally, ACT commands following a CAS 
command are also forbidden by Cmds_ACT_ok. Finally, a CAS following an ACT 
to a different row ( ACT

(bg,bk,r1)
 → CAS

(bg,bk,r0,_)
 ) is forbidden as well. The latter con-

dition is met by applying the three POs: Cmds_initial states that an ACT to row 
r0 must exist before CAS

(bg,bk,r0,c)
 ; then, Cmds_ACT_ok ensures that a PRE

(bg,bk) is 
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between the two ACTs, and finally, Cmds_row_ok ensures that ACT
(bg,bk,r0)

 will be 
between the PRE

(bg,bk) and the CAS
(bg,bk,r0,_)

.

Table 2  Correspondence between proof obligations in our code and the DDR4 JEDEC Standard No. 
79-4 JEDEC (2021)

1 The PO Cmds_T_WTP_ok models the minimal distance between a WR and a PRE command, while 
the constraint t

WR
 in the standard represents the distance between the end of the WR’s data bus utilisa-

tion and a PRE command. Since our specification only considers the command bus trace, we capture 
timing constraints on the data bus only indirectly via the WR and PRE commands.
2 Similar to Cmds_T_WTP_ok/t

WR
,1 the constraint t

WTR
 in the standard represents the minimum dis-

tance between the end of the data bus utilisation of a WR and a RD command. We model t
WTR

 indi-
rectly through Cmds_T_WtoR_SBG_ok and Cmds_T_WtoR_DBG_ok, which represent the distance 
between a WR and a RD command to the same or a different bank group, respectively.
3 Some constraints are represented through multiple POs—this is the case for t

WTR
 , t

CCD
 , and t

RRD
 . In 

DDR4 devices, these three constraints can admit different values depending on whether commands target 
the same bank group—which are modelled using distinct POs (SBG and DBG). Note that DDR3 device 
can be modelled as having a single bank group. The POs that require different bank groups (DBG) then 
trivially hold, since all commands always target the same (unique) bank group

PO name Property Location in the 
standard

Timing constraints
  Cmds_T_RCD_ok tRCD is respected Pgs. 163-166
   Cmds_T_RP_ok tRP is respected Pgs. 163-166
  Cmds_T_RC_ok tRC is respected Pgs. 163-166
  Cmds_T_RAS_ok tRAS is respected Pgs. 163-166
  Cmds_T_RTP_ok tRTP is respected Pgs. 101-103, 189-

193
   Cmds_T_WTP_ok Constraint between WR and PRE. Unnamed in the 

standard. ( tWR is respected)1
Pgs. 115 (Fig-

ure 122), 188-193
   Cmds_T_RtoW_ok Constraint between RD and WR. Unnamed in the 

standard
Pg.104 (Figure 100)

   Cmds_T_WtoR_SBG_ok
   Cmds_T_WtoR_DBG_ok3

tWTR is respected2 Pg. 112 (Fig-
ure 116)

   Cmds_T_CCD_WR_SBG_ok
   Cmds_T_CCD_RD_SBG_ok
   Cmds_T_CCD_WR_DBG_ok
  Cmds_T_CCD_RD_DBG_ok3

tCCD is respected Pgs. 188-193

   Cmds_T_RRD_SBG_ok
   Cmds_T_RRD_DBG_ok3

tRRD is respected Pgs. 188-193

   Cmds_T_FAW_ok tFAW is respected Pgs. 188-193
Command protocol correctness
   Cmds_ACT_ok Basic functionality is assured Pgs. 8 and 9
   Cmds_row_ok Basic functionality is assured Pgs. 8 and 9
   Cmds_initial Basic functionality is assured Pgs. 8 and 9
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5.2  The request arrival model

The previous definitions specify what a correct DRAM command trace is. We 
now specify an interface with cores/requestors. The arrival of requests over time 
is modelled through the type class Arrival_function_t and its member 
function Arrival_at (Listing 11). It yields the set of requests (Requests_t) 
that arrive in the system at a certain time t. It also imposes two POs: Arrival_
date ensures that if r ∈ Arrival_at ta, r.(Date) ≡ ta , i.e., the arrival 

Fig. 4  Illustration of the Cmds_row_ok PO

Fig. 5  Illustration of the Cmds_ACT_ok PO

Table 3  Protocol correctness for a given bank group and a given bank

1st 2nd

PREbg,bk ACTbg,bk,r0 ACTbg,bk,r1 CASbg,bk,r0,_

PREbg,bk OK OK OK FORBID-
DEN

(Covered by 
Cmds_
row_ok)

ACTbg,bk,r0 OK FORBIDDEN
(Covered by Cmds_ACT_ok)

FORBIDDEN
(Covered by Cmds_ACT_ok)

OK

ACTbg,bk,r1 OK FORBIDDEN
(Covered by Cmds_ACT_ok)

FORBIDDEN
(Covered by Cmds_ACT_ok)

FORBID-
DEN

(Covered by 
the combi-
nation of

Cmds_
row_ok 
and 
Cmds_
ACT_ok)

CASbg,bk,r0,_ OK FORBIDDEN
(Covered by Cmds_ACT_ok)

FORBIDDEN
(Covered by Cmds_ACT_ok)

OK
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function needs to yield the arrival date of requests; Arrival_uniq guarantees 
that requests arriving at a given time t are unique.

Listing 11: Arrival Function.
Class Arrival_function_t := mkArrivalFunction {
Arrival_at : nat → Requests_t;

Arrival_date : forall ta x, (x \in (Arrival_at ta)) → x.(Date) = ta;

Arrival_uniq : forall t, uniq (Arrival_at t);
}.

When writing concrete controller implementations, we do not create any 
instance of the Arrival_function_t class, which means that proofs should 
hold for any instance of the arrival function. This is an important feature that 
allows us to build implementations and proofs that are not constrained by any 
assumption on cores/requestors.

5.3  Memory controller model

As it can be seen in Fig. 3, in order to establish the link between the arrival of 
requests and the DRAM device, i.e., the processing of requests, we specify a 
memory controller model (Listing 12). The Controller_t class is made of 
the Arbitrate function and a PO. The Arbitrate function takes a (nat) 
parameter representing the number of commands to be produced and generates a 
corresponding Trace_t, i.e., the list of DRAM commands that have been gener-
ated by the controller up to that point.

Listing 12: Memory Controller
Class Controller_t {AF : Arrival_function_t} := mkController {
Arbitrate : nat → Trace_t;

(* Proof obligation: all requests must be handled *)
Requests_handled : forall ta req, req \in (Arrival_at ta)
→ exists tc, (CAS_of_req req tc) \in (Arbitrate tc).(Commands);

}.

The PO Requests_handled ensures that each request that has arrived will 
eventually have a corresponding CAS command in the trace produced by the con-
troller. It is read as: for a given time instant ta and a request req, knowing that req 
is an element of the set generated by Arrival_at ta, there must exist a timing 
instant tc such that a CAS command belonging to request req (CAS_of_req) 
and issued at tc is element of the trace generated by the Arbitrate function up 
to tc. Along with the Cmds_ACT_ok and Cmds_row_ok POs, this ensures that 
every request is eventually and properly handled.
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In Sect. 5, we will furthermore show that for both our implementations, not only 
Request_handled holds, but also that the respective proofs yield closed formu-
las characterising the instant when a given request completes.

5.4  Implementation interface

Finally, in order to establish a systematic and reproducible way to design controllers, 
we provide what we call an implementation interface. It is made of a set of classes 
and functions used to describe transition systems that are capable of creating traces. 
The implementation interface is represented in Fig. 3 by the bottom-most arrow.

Designing an implementation pivots around providing an instance for the 
Implementation_t type class (Listing 13), which is made of the functions Init and 
Next. These functions operate on a set of currently-arriving requests (Requests_t) 
and implementation-specific controller states (State_t). Together, these functions form 
a state-machine that defines the controllers’s request scheduling policy.

Listing 13: Interfaces for controller implementations.
Class Implementation_t := mkImplementation {
(* Init produces an initial state *)
Init : Requests_t → State_t;
(* Next produces a new state and a command for a request *)
Next : Requests_t → State_t → State_t * Command_kind_t * Request_t;
}.

Class Controller_state_t := mkControllerState {
(* Common to all implementations *)
Controller_Commands : Commands_t;
Controller_Time : nat;
(* Implementation-specific *)
Implementation_State : State_t;
...
}.

More specifically, the Init function is responsible for creating the system’s 
initial state: it takes the first set of currently-arriving requests and generates the 
first controller state. The Next function is responsible for creating every subse-
quent state, taking a set of currently-arriving requests and a controller state as 
arguments and producing a triple as result. The triple is made of the new control-
ler state, a Command_kind_t (ACT , PRE, ...), and a Request_t. This means 
that an implementation outputs a new state and a new command at every time 
stamp, and that a command may belong to a request—though some commands, 
such as No-Operations (NOP)s, do not belong to any request.

The controller state can be described in two abstraction layers. The first one, 
State_t, is operated by the Init and Next functions and can be used to hold 
anything needed for implementing the controller’s algorithm, such as counters, 
request queues, et cetera. If we were to think about Next as a Finite State Machine 
(FSM) implemented in hardware, the State_t would be the set of all signals that 
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are fed back to the sequential circuit, i.e., the circuit’s internal state. Secondly, the 
Controller_state_t type serves as an overlay, containing a State_t, the 
current time instant Controller_Time, and Controller_Commands – a 
list with the history of all generated commands up to Controller_Time.

Note that Controller_Commands and Controller_Time have the same 
types as the members of Trace_t. This is because the members of Trace_t are 
constructed exactly from the members of an Controller_state_t; more spe-
cifically, the trace is built from the last state out of a sequence of generated states.

As a link between the DRAM model and its memory interface, we define the 
function Default_arbitrate (Listing 14). It allows us to reason about the 
behaviour of the DRAM model and implementation over time, and thus build our 
proofs—while cleanly separating the formal specification and proofs from the 
implementation. In practical terms, implemented instances call the Default_
arbitrate function to generate the traces and to prove POs.

Listing 14: Default behaviour of controllers.
Program Fixpoint Default_arbitrate {AF : Arrival_function_t}

{IM : Implementation_t} t {struct t} : Controller_state_t :=
let R := Arrival_at t in
match t with
| 0 ⇒ mkControllerState [::] t (Init R)
| S(t’) ⇒ (* get controller state at instant t’ *)
let ast := Default_arbitrate t’ in
(* obtain impl. state and next command to issue *)
let (ist, kind, req) := Next R ast.(Implementation_State) in
(* append new command to command list *)
let new_cmd := mkCmd t ckind creq in
let cmd_list := (new_cmd ::ast.(Controller_Commands)) in
(* build next controller state*)
mkControllerState cmd_list t ist

end.

In more detail, the Default_arbitrate function produces t states by recur-
sion, where t is provided as argument. If t = 0 , the function builds the first Control-
ler_state_t with an empty command list, time stamp equal to 0, and internal 
state built by the function Init – which itself takes as argument the list of currently-
arriving requests, R (Arrival_at cf. Listing 12). If, however, t > 0 , the Next func-
tion is used to build a new state, taking the old state—obtained through a recursive 
call to Default_arbitrate—as an argument. Following that, we build the new 
command, append it into the command list, and finally build a new Controller_
state_t. In addition, bear in mind that since AF is kept as an implicit parameter of 
Default_arbitrate, it is never instantiated and our proofs hold for all possible 
arrival functions, as long as they respect their specification and the POs in it. A dia-
gram illustrating the production of states is shown in Fig. 6. The situation depicted in 
the figure results from a call to Default_arbitrate t.
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6  Implementations & proofs

We refine our specification with two implementations: one based on the First-In 
First-Out (FIFO) arbitration policy and the other on Time-Division Multiplexing 
(TDM). Both implementations differ in the way they schedule requests, i.e., they 
implement different front-end scheduling policies. As for the back-end and com-
mand generation, we implement both controllers with closed-page policies, i.e., for 
any request, we issue the same PRE-ACT-CAS sequence. The generated commands 
do not go through a new arbitration policy, they are sent to the command bus in the 
order that they are generated. Neither controller can preempt requests. Moreover, the 
two implementations are intended to serve as templates for future Real-Time mem-
ory controller implementations within the framework, which means that the high-
level strategies used for discharging proof obligations are largely re-usable.

In the next subsection, we give implementation details about one of the two, 
TDM.13 Then, in Sect. 5.2, as an example of how to solve proof obligations, we pre-
sent step-by-step the high-level proof strategy used to prove the Request_han-
dled PO and bound the worst-case latency for the TDM controller.

6.1  TDM implementation

We start by introducing our TDM controller main parameters, characteristics, and 
hypotheses, all represented in the TDM_configuration class, shown in Listing 
15: SN is the number of slots within a period; we assume that each requestor occu-
pies a slot, in conformance with the temporal isolation principle. As an example, if 
SN:= 3, the TDM controller periodically serves three requestors in a defined order. 
SL is the length of each individual slot, which has to be big enough to fit the neces-
sary commands to service each request while respecting the timing constraints, i.e., 
it has to be sufficiently large to fit a PRE, an ACT and a CAS.

Fig. 6  Production of states through Default_arbitrate

13 We only present details of TDM, since the methodology for FIFO is similar.
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Listing 15: TDM_configuration.
Class TDM_configuration := {
SN : nat; (* number of requestors/slots in the system *)
SL : nat; (* TDM slot length in DRAM bus cycles *)

(* Proof obligations *)
SN_one : 1 < SN; (* there has to be at least two requestors in TDM *)
SL_pos : 0 < SL;

(* The slot length has to be big enough to fit all commands *)
SL_ACT : ACT_date < SL;
SL_CASS : CAS_date.+1 < SL;
T_RAS_SL : T_RP.+1 + T_RAS < SL;
T_RC_SL : T_RC < SL;
T_RRD_SL : T_RRD < SL;
T_RTW_SL : T_RTW < SL;
T_CCD_SL : T_CCD < SL;
WTR_SL : T_WTR + T_WL + T_BURST < SL;
T_FAW_3SL : T_FAW < SL + SL + SL

}.

While it is easy to see from Listing 15 that the principle of temporal isolation 
is respected, the spatial isolation is imposed through the Axiom Private_Map-
ping, show in Listing 16. The bank mapping policy does not affect the performance 
of the FIFO arbitration, but it is important for TDM. We use it to prove the TRTP con-
straint: since consecutive TDM slots always target different banks, a PRE command 
can be issued in the cycle following a CAS command—an optimisation w.r.t FIFO.

Listing 16: Private Bank Mapping
Axiom Private_Mapping : forall a b, Same_Bank a b →

TDM_slot (Default_arbitrate b.(CDate)).(Implementation_State) =
TDM_slot (Default_arbitrate a.(CDate)).(Implementation_State).

It is important to remember that, when writing implementations, we do not create 
instances of the TDM_configuration class. This allows us to build the imple-
mentations and proofs with arbitrary parameter values. The same is true for the 
Arrival_function_t class and a few others. In a later stage, if one wants to 
run a simulation, concrete instances have to be provided for all classes, and proof 
obligations have to be resolved.

Note also that the TDM_configuration class contains POs that ensure that the 
SL and SN values are consistent with the timing parameters of the DRAM device. 
Differently than paper-and-pencil proofs, note that this approach allows us to effec-
tively manage assumptions that a given controller relies upon by concisely writing 
them all at the same place.

Concerning the controller’s functioning, at each time step it can find itself in one 
of two possible states: IDLE or RUNNING. 
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1. The controller is said to be IDLE during a TDM slot if no request is chosen to 
be serviced in that slot – which can only take place if the requestor that owns the 
slot does not have any pending request at the beginning of that slot.

2. The controller is in its RUNNING state whenever a request is serviced within a 
TDM slot.

Furthermore, at all times, the TDM controller carries within itself three state 
variables: 

1. A counter of type Slot_t, keeps track of slots within a period—its maximum 
value being SN (Slot_t ∈ [0, SN[).

2. A counter of type Counter_t, keeps track of cycles elapsed within a slot—its 
maximum value being SL (Counter_t ∈ [0, SL[).

3. A list of pending requests.

If the controller is in the RUNNING state, it carries an additional variable used to 
identify the request currently being serviced.

Figure  7 illustrates a TDM arbitration between three requestors/cores: A, B, 
and C (SN:= 3). The run-time status of the state variables described above is 
shown in the figure as well. Four requests are present in the system: r0a , from 
requestor A; r0b , from requestor B; and r0c and r1c , from requestor C. Bear in mind 
that requests from different requestors target different banks. The controller can-
not initially serve r0a because it has arrived too late into the slot to be taken into 
account. Then, on cycle 9, request r0b is served, followed by request r0c . In the 
next TDM period (starting at cycle 25), r0a is served. The request r1c is finally 
served in the slot starting at cycle 41.

The controller issues the PRE command on the first cycle of a slot and then 
issues the ACT and CAS commands at offsets within slots designated by ACT_
date and CAS_date respectively. Those are functions that derive the right off-
set from the DRAM devices timing parameters. Note that CAS and PRE com-
mands of consecutive slots are issued back-to-back, since, assuming at least two 
requestors (cf. Listing 15, PO SN_one), neighbouring TDM slots always target 
different banks (private bank mapping). Recall that tWR and tRTP are intra-bank 
constraints. Moreover, assume that, in the figure, the request queue is empty at 
the start. The annotations tar1c , tcr1c , txr1c , and tkr1c will be introduced and used in 
Sect. 5.2.

6.2  Proving the requests_handled PO for TDM

The proof of the theorem that satisfies the PO Requests_handled is organ-
ised in steps, written in Coq as Lemmas. The key idea is to advance in time step-
by-step, starting from the instant ta when a request arrives in the system, through 
intermediate steps ( tc , tx , and tk ), up until the point where a matching CAS is 
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issued. Figure 7 provides a graphic illustration of these logical steps for request 
r1c.

Concerning the low-level proof strategy, i.e., the strategy for individual steps, 
we rely heavily on induction (over time or queues), often accompanied by tactics 
that perform case analysis on the state variables described in the previous sec-
tion. Although going into details about the low-level proof strategies is out of 
the scope of this work; we describe, in the following text, most of the high-level 
proof strategy—thus providing the reader a logical sequence of steps, which can 
be reproduced in future implementations.

Definition 1 Let ra be an arbitrary request issued by requestor A at instant ta.

Step 1: Pending_on_arrival We prove that ra is instantly inserted into the 
request queue. (Proven by case analysis on state variables and function unfolding).

Definition 2 Let tc be the next instant after ta when the controller can again decide 
to service a request from requestor A.

Fig. 7  TDM arbitration
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Step 2: Pending_requestor_slot_start We prove that, once ra is in 
the pending queue, it stays there until at least tc . (Induction over time, case analy-
sis on state variables)

Definition 3 Let P(t, R) be a function that returns an ordered sub-set of the pending 
queue at time stamp t consisting only of elements issued by a given requestor R. Let 
i be the position of ra in P(tc,A) . Let tx be equal to tc + i ⋅ SN ⋅ SL.

Step 3: Request_index_zero We prove that if ra is in the pending queue 
at tc , then it will get to the head of P(tx,A) at tx , i.e., exactly i ⋅ SN ⋅ SL cycles after 
tc . (Induction over i)

Step 4: Request_processing_starts We use steps 1, 2, and 3 to prove 
that if ra arrived at ta , then it will get to the head of P(tx,A) at tx (Listing 17). Note 
that the proof script consists of using the Coq tactic apply, which simply makes 
use of existing lemmas. (Follows directly from steps 1,2, and 3)

Listing 17: Step 4 – Proof outline of Request_processing_starts.
Lemma Request_processing_starts ta ra:

(* Requestor_slot_start calculates tc for ta and ra *)
let tc := Requestor_slot_start ta ra.(Requestor) in
(* The controller state at tc *)
let S := (Default_arbitrate tc).(Implementation_State) in
(* P(tc,A): pending queue of requestor A at instant tc *)
let P := Pending_of ra.(Requestor) S in
(* i: position of ra in the pending queue *)
let i := index ra P in
(* tx: instant when processing of ra starts *)
let tx := tc + i * SN * SL in
(* The controller state at tx *)
let S’ := (Default_arbitrate tx).(Implementation_State) in
ra \in Arrival_at ta

→ ra \in (Pending_of ra.(Requestor) S’) &&
(index ra (Pending_of ra.(Requestor) S’) = 0).

Proof.
intros HA. (* HA := ra \in Arrival_at ta *)
(* Use Step 1 *)
apply Pending_on_arrival in HA as HP.
...
(* Use Step 2 : Any pending request at least remains

pending until its requestors slot is reached *)
apply Pending_requestor_slot_start in HP.
...
(* Use Step 3: Any pending request ultimately gets to the

head of the pending queue (index zero) *)
apply Request_index_zero in HP; simpl in HP; exact HP.
Qed.

Step 5.1: Request_slot_start_aligned We prove that the internal 
counter (represented by TDM_counter of type Counter_t) is equal to 0 at tx , 
i.e., tx marks the beginning of a slot. (Follows from modulo arithmetic on TDM_
counter from Coq’s arithmetic libraries)
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Step 5.2: Request_starts We prove that, for any given t, if ra is the head 
of P(t, A) and TDM_counter equals 0, then the request starts to be processed 
the very next cycle. (Case analysis on state variables)

Step 6: Request_running_in_slot We prove that, for any given t, if a 
request is being serviced at t and TDM_counter is equal to 1 at t, then for all 
d such that d < SL − 1 , the request will remain being served until at least t + d . 
(Induction over d)

Step 7: Request_processing We use steps 4, 5.1, 5.2, and 6 to prove, for all 
d smaller than SL − 1 , that ra will be the request currently being processed (repre-
sented by TDM_request) at tx + d (Listing 18). (Follows from previous steps)

Listing 18: Step 7 – Proof outline of Request_processing.
Lemma Request_processing ta ra:

let tc := Requestor_slot_Start ta ra.(Requestor) in
let S := (Default_arbitrate tc).(Implementation_State) in
let P := Pending_of ra.(Requestor) S in
let i := index ra P in
let tx := tc + i * SN * SL in
ra \in (Arrival_at ta) → forall d, d < SL.− 1

→
(* The controller state at tx + d *)
let S’:=(Default_arbitrate (tx + d)).(Implementation_State) in
(* The conclusion *)
(TDM_counter S’ = d.+1) && (TDM_request S’ = ra)

Proof.
... (* Applies lemmas described in steps 4,5.1,5.2 and 6 *)
Qed.

Definition 4 Let tk be tx + CAS_date , where CAS_date is the CAS command offset 
within a TDM slot (cf. Figure 7).

Step 8.1: Request_CAS We use step 7 with d equal to CAS_date to prove that ra 
will have its CAS issued at tx + CAS_date (Listing 19). (Application of step 7, unfold-
ing, and arithmetic simplification).
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Listing 19: Step 8.1 – Proof outline of Request_CAS.
Lemma Request_CAS ta ra:
let tc := Requestor_slot_Start ta ra.(Requestor) in
let S := (Default_arbitrate tc).(Implementation_State) in
let i := index ra (Pending_of ra.(Requestor) S) in
let tk := tc + i * SN * SL+ CAS_date in
ra \in (Arrival_at ta) →
(CAS_of_req ra tk) \in (Default_arbitrate tk).(Controller_Commands)
Proof.
intros HA. (* HA := ra \in Arrival_at ta *)
(* Use Step 7 :
any request is processed until the CAS date is reached *)
apply Request_processing with (d := CAS_date) in HA as HR.
...
Qed.

Step 8.2: Requests_handled We prove the theorem that satisfies the final PO 
(Follows from step 8.1).

Figure 8 shows an automatically-generated graphical representation of the proof. For 
the sake of conciseness, we only show the high-level lemmas relevant for the proof 
strategy discussed above. The steps discussed above are highlighted in the graph.

We would like to emphasise that, as it can be seen in Listing 19, tk is the typical 
closed-form expression one would expect for TDM. The formula is made of three parts: 

Fig. 8  Proof structure: Requests_handled 
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1. tc, which is bounded by ta + SL − 1;
2. i ⋅ SN ⋅ SL , which is bounded by the number of pending requests of the respective 

requestor;
3. CAS_date , which is constant.

A timing analysis tool may now easily derive correct latency bounds for our TDM 
implementation by evaluating this formula. For this it would need to supply the correct 
TDM configuration (SL and SN) and establish bounds on i through an additional model 
of the requestor (i.e., by modelling the arrival function).

For example: considering a DDR4-2400U device (c.f Table 1), the minimum pos-
sible value of SL is 40, as it can be seen from Eq. 1 (as determined by PO SL_CASS in 
Listing 15).

Listing 20: From implementations to instantiating the controller.
(* Creates a proved trace from the implementation *)
Definition TDM_arbitrate t :=

mkTrace (Default_arbitrate t).(Controller_Commands)
(Default_arbitrate t).(Controller_Time)
(Cmds_T_RRD_ok t) (* proof *)
(Cmds_T_FAW_ok t) (* proof *)
... (* all the other proofs *)

(* Instantiate the TDM controller *)
Instance TDM_controller : Controller_t :=

mkController AF TDM_arbitrate Requests_handled.

Consider now four cores ( SN = 4 ) that can only issue two outstanding memory 
requests at a time (which implies that the maximum value of i is 1). The worst-case 
latency WCL is then given by Eq. 2:

Even more, analyses that are themselves formalised in Coq could simply reuse our 
proofs in order certify memory latency bounds.

6.3  Putting it all together

Finally, in Listing 20, we show the code that instantiates the trace through the con-
structor mkTrace, defines the proven arbitration function TDM_controller, 
and finally instantiates the controller (using mkController, cf. Listing 12). The 

(1)

ACTdate ∶= TRP + 1

CASdate ∶= ACTdate + (TRCD + 1) = (TRP + 1) + (TRCD + 1) = 38

SL > CASdate + 1

SL > 39

(2)
WCL = (SL − 1) + i ⋅ SL ⋅ SN + CASdate

= 39 + 1 ⋅ 40 ⋅ 4 + 38 = 237
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command trace instance is only accepted by Coq if all proofs are provided as argu-
ments to the constructor, which means that the implementation is correct. In the list-
ing, we show that Cmds_T_RRD_ok t and Cmds_T_FAW_ok t are provided 
as arguments. These are the actual proofs that satisfy the tRRD and tFAW constraints, 
respectively. The command trace itself is obtained from the last state produced by 
the Default_arbitrate function. Similarly, the Controller_t instantiation 
is only accepted when a proof for the Requests_handled PO is provided. Even 
for someone not familiar with Coq, it is thus trivial to verify the correctness of the 
controller implementation.

7  Modelling semantics

The expressivity provided by Coq allows us to model other interesting properties 
about DRAM controllers. Notably, we can write classes that define certain seman-
tics, e.g., guarantees on the possible order in which requests are handled. To show-
case this, we model two flavors of Lamport’s definition of Sequential Consistency 
Lamport (1979) (SC). According to Lamport, sequential consistency in a multipro-
cessor system is achieved when two requirements are met:

– Requirement R1: Each processor issues memory requests in the order specified 
by its program.

– Requirement R2: Memory requests from all processors issued to an individual 
memory module are serviced from a single FIFO queue. Issuing a memory 
request consists of entering the request into this queue.

Requirement R1, on the one hand, is an assumption on the behaviour of proces-
sors, and is therefore not modelled from the memory controller’s point of view. This 
makes sense, considering that a memory consistency model can be seen as a con-
tract between software/programs and the hardware, and is conceptually implemented 
by both. Requirement R2, on the other hand, should be implemented by the memory 
controller.

Moreover, Lamport defines a relaxed version of R2 that still guarantees SC: “We 
need only require that all requests to the same memory cell be serviced in the order 
that they appear in the queue.” This relaxed version of R2 comes from the observa-
tion that actually only memory accesses to the same address can introduce inco-
herence w.r.t the order of execution between cores, and therefore, a FIFO order of 
execution should be guaranteed only between accesses to the same addresses. We 
emphasise that Lamport’s definitions are seen today as sufficient conditions, and a 
more formal definition of SC was introduced by Sezgin (2004).

In practical terms, we define two classes in our framework that model require-
ment R2 as proof obligation R2 and its relaxed version as proof obligation R2_
relaxed, respectively, as shown in Listing 21.
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Listing 21: Modelling Controller Semantics.
Class SequentialConsistent_Controller {AF : Arrival_function_t} {AR : Arbiter_t}

:= mkSeqController {

R2 : forall ta reqa tb reqb,
reqa \in (Arrival_at ta) → (* reqa arrives at ta *)
reqb \in (Arrival_at tb) → (* reqb arrives at tb *)
(* either reqa arrived before reqb OR

they arrived at the same instant, but there
is an arbitrary order between reqa and reqb,
and reqa is to be serviced before *)

(ta < tb) ∨
(ta = tb ∧ index reqa (Arrival_at ta) < index reqb (Arrival_at ta))
(* txa, the completion date of reqa must happen before txb,

the completion date of reqb *)
→ exists txa txb, (CAS_of_req reqa txa \in (Arbitrate txa).(Commands))
&& (CAS_of_req reqb txb \in (Arbitrate txb).(Commands)) && (txa < txb)

}.

Class W_SequentialConsistent_Controller {AF : Arrival_function_t} {AR :
Controller_t} := mkWSeqController {

R2_relaxed : forall ta reqa tb reqb,
reqa \in (Arrival_at ta) → (* reqa arrives at ta *)
reqb \in (Arrival_at tb) → (* reqb arrives at tb *)
(ta < tb) ∨
(ta = tb ∧ index reqa (Arrival_at ta) < index reqb (Arrival_at ta))
(* Here, an additional pre-condition: reqa and reqb target the same row *)

→ reqa.(Row) = reqb.(Row) →
(* txa, the completion date of reqa must happen before txb,

the completion date of reqb *)
exists txa txb,
(CAS_of_req reqa txa \in (Arbitrate txa).(Commands)) &&
(CAS_of_req reqb txb \in (Arbitrate txb).(Commands)) && (txa < txb)

}.

Note that, in both R2 and R2_relaxed, two situations are possible: either ta 
= tb, which means that the two requests have arrived at the same time; or �� < �� , 
which means that reqa has arrived before reqb. This arrival order of requests 
assumes that the condition R1 has already been satisfied, i.e., if reqa and reqb are 
requests issued by the same requestor, then reqa was issued before reqb. In the 
case where ta = tb (which could happen in a multi-core system), the arrival order 
to be considered is given by the positions of both reqa and reqb in the ordered 
set Arrival_at ta, as a real implementation would indeed impose some order 
on requests that have arrived on the same cycle. In the listing, the position in the 
ordered set is given by the function index.

The PO R2_relaxed is a relaxed version of R2, in which the condition “requests 
targeting the same cell” is described through the logical proposition reqa.(Row) 
= reqb.(Row). It follows that only controllers respecting the conditions set by 
the POs in the classes can instantiate them. Considering the two controllers imple-
mented in this work, while FIFO respects both constraints, TDM can only instanti-
ate the weakened version, W_SequentialConsistent_Controller. This is 
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because TDM (under private bank mapping), has the ability to prioritise a request 
that has arrived later than another request issued by another processor.

Furthermore, other memory consistency models, such as TSO and linearizabil-
ity, could be modelled likewise. This feature distinguishes our contributions, since 
state-of-the-art RT memory controllers have virtually ignored the semantics aspects. 
Other work that aim at using formal methods to model DRAM properties (c.f 
Sect. 2.2) focus mainly on timing properties. The fact that we can straightforwardly 
extend our framework to model (which does not necessarily imply that proofs will 
follow straightforwardly) this kind of property is a statement of how powerful this 
methodology can be.

8  Evaluation & simulation

In the following, Sect.   7.1 evaluates our approach regarding size and compila-
tion time and gives an additional insight on using our framework. Then, Sect. 7.2 
explains how we extracted code from our framework and used it to integrate our 
approach into an external DRAM software simulator.

8.1  Evaluation

Table 4 presents the code size and the compilation times for the specification files, 
both implementations, and the proof scripts. As it can be seen, the implementations 
themselves are small compared to the specification and the proofs. The proofs are 
in the order of 10 to 25 times longer than the implementations.  14 As proofs are 
checked by Coq’s kernel, compiling the files containing the proofs also takes more 
time than files containing simply code.

14 As stated by Boldo et al. (2017), Coq proofs are usually as long as paper and pencil proofs, which 
means that automatising the proof process with Coq is comparable to manual proofs (concerning length).

Table 4  Size of the code & 
Compilation time

a Results obtained on a system with the following configuration: 
CPU—Intel(R) Core(TM)i5-10210U CPU 1.60GHz; Memory 
– 8GiB; Operating System—Ubuntu 20.04.3 LTS; Coq Ver-
sion—8.13.2

Lines of code Compila-
tion time 
(s)a

Specification 554 2.34
FIFO implementation 107 0.32
FIFO proofs 2515 9.63
TDM implementation 224 0.45
TDM proofs 2221 15.44
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Furthermore, the set of hypothesis used for the proofs form an exploitable math-
ematical model by itself. This set of hypothesis is made of formulas establishing lin-
ear inequalities between the controller parameters and the timing constraints, which 
can be fed to a Linear Programming (LP) solver in order to obtain optimal values for 
the controller parameters. Then, when used to concretely instantiate the controller, 
these optimal values are checked by Coq’s engine—serving as a validity check for 
parameters values.

8.2  Code generation & simulation

External environments/frameworks can interact with our model through calls to the 
Init and Next functions. Because these functions together define a transition sys-
tem, which is essential to hardware design, they can be embedded into foreign code, 
such as software simulators and hardware. To showcase this feature, we choose 
MCsim Mirosanlou et  al. (2020), a cycle-accurate DRAM simulator written in 
C++ to host our proved code. To establish an interface between both, we use Coq’s 
extraction feature, which can output code in different programming languages. We 
opt for Haskell, since it has a well-documented Foreign Function Interface (FFI)15 
library that allows Haskell programs to cooperate with C/C++ programs16.

We use MCsim’s trace reading function to model request arrivals, which fetches a 
new request after completing the preceding one. Moreover, the simulator provides a 
class to implement controllers, which contains a method update, called each clock 
cycle to update the internal state of the controller. This method makes a call to the 
requestSchedule method followed by a call to commandSchedule. Accord-
ing to pre-defined arbitration policies, the former fetches requests from the pending 
queues, generates commands and puts them into a buffer. The latter chooses one of 
the commands in this buffer and sends it to the device. Since our model performs all 
of these steps, we replace the calls to requestSchedule and commandSched-
ule with calls to Init (for the first cycle) and Next. In addition, we encapsulate 
the generated code inside Haskell wrapper functions to properly handle data on both 
sides: states are passed back and forth between C++ and Haskell through opaque 
pointers, and other data structures, such as requests and commands, are converted 
with the aid of hsc2hs,17 a preprocessor that helps with writing Haskell bindings to C.

In order to validate our framework, we run the two traces that come with MCsim: 
one made of requests accessing sequential addresses and the other made of random 
ones. Every requestor executes the same trace—but are nevertheless forced to be 
mapped to different banks. The value of the SL TDM parameter is chosen to be the 
minimum possible through the methodology described in the end of Sect. 7.1. For 
the DDR3-2133N device, for instance, this value is equal to tRP + tRCD = 28 . We 

15 https:// ghc. gitlab. haske ll. org/ ghc/ doc/ users_ guide/ exts/ ffi. html.
16 The generated Haskell code is compiled with ghc (version 8.10.4). Then, MCsim is compiled with 
g++ (version 9.4.0) and linked with ghc.
17 https:// hacka ge. haske ll. org/ packa ge/ hsc2hs.

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/ffi.html.
https://hackage.haskell.org/package/hsc2hs.
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choose the value of FIFO’s WAIT—a fixed delay to process requests, like TDM’s 
SL—similarly.

As a first observed result, the simulations follow through for both TDM and FIFO 
controllers. This validates our specification, since MCsim’s simulation stalls if tim-
ing constraints are not respected or incoming requests are not served at some point.

Table  5 compares the simulation output with other known DRAM controllers 
(AMC Paolieri et  al. (2009), ROC Xin et  al. (2019), and FR-FCFS Rixner et  al. 
(2000))—our results are highlighted. Note that, for the described setup, our control-
lers provide competitive bandwidth compared to the real-time controller AMC. As 
expected, the bandwidth is smaller than that of high-performance controllers (ROC 
and FRFCFS). It can be seen that these high-performance controllers exhibit fluc-
tuations on the maximum observed latency depending on the trace format (41 to 25 
and 23 to 25 respectively), while the real-time controllers offer constant values, no 
matter the input. Moreover, the maximum observed latency values are consistent 
with the ones presented in related work (c.f Figure 14 on Ecco and Ernst (2015)). 
As a setback, since our integration with MCsim relies on a complex Haskell-C++ 
interaction, the simulation is considerably slower.

Bear in mind that only two things impact the simulation time and scalability: 1) 
The size of the input trace, i.e., how many requests arrive in the system. 2) The 
timing parameters of the device to be simulated. As faster devices (in terms of 
frequency) have larger timing constraints (in terms of clock cycles), more calls to 
MCsim’s simulation function are needed, thus resulting in longer simulations.

We emphasise that for this paper, our goal is not to propose high-performance 
and/or high-bandwidth implementations, as the closed-page strategy together with 
FIFO and TDM arbitration policies results in rather simple and relatively slow con-
trollers. Our integration with MCsim serves as a proof of concept for our specifica-
tion, and using our framework to model competitive real-time controllers is listed as 
a part of our future work plans.

Table 5  Simulation results for sequential and random traces

MCsim setup: 4 Requestors, 1 Channel, 1 Rank, DDR3 2133N 2Gb_x8 device, Private Banks, In-order 
cores, 1000000 cycles
a Values were obtained with the same computer setup described in the previous section

FIFO TDM AMC ROC FRFCFS

Sequential trace
 Bandwidth (MB/s) 433.89 799.97 609.536 5296.08 5931.93
 Requests completed (per requestor, on average) 4237 7812 5952 51720 57929
 Maximum observed latency (cycles) 236 136 168 41 23
Random trace
 Bandwidth (MB/s) 433.89 799.97 609.536 4995.1 4995.1
 Requests completed (per requestor) 4237 7812 5952 48780 48780
 Maximum observed latency (cycles) 236 136 168 25 25
Average simulation  timea (s)

11.13 21.18 0.41 0.85 0.96
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9  Why is it more trustworthy?

The framework provides a trustworthy design path from end to end. The design flow 
proposed by the framework is presented through a diagram in Fig. 9. In other words, 
we claim that the trust in every link in that diagram is increased, compared to other 
real-time hardware design methodologies.

First, consider the link between the JEDEC standards and the Coq-written model 
(leftmost arrow). The language used to write our specification is very close to the 
language used in the standard itself, which is a mixture of graphical and natural lan-
guage. Take, for instance, the listings shown throughout the paper: proof obligations 
are formulated through propositions written in a mixture of first and higher-order 
logic and do resemble natural language. It is relatively easy to be convinced that our 
proof obligations do capture the actual behaviour described in the JEDEC standards. 
Other state-of-the-art work that implement some formal approach w.r.t DRAM prob-
lem rely on complex mathematical representations to represent the same properties. 
As comparison, consider the UPPALL finite state-machines proposed by Li et  al. 
(2016), used to model the very same properties. While we do not claim that the 
representation is inherently harder, we do state that there is a larger gap between 
the languages used in the model and the standard; and this gap can lead to poor 
modelling.

Second, consider the link between specification (model) and implementation/
proofs. From the fact that proofs and programs are essentially the same, many ben-
efits follow: 

1. Proofs are machine-checked by Coq’s kernel and therefore more trustworthy.
2. Every single hypothesis used for proving obligations must be made explicit and 

grouped together in classes—which allows better management, since hypotheses 
are no longer scattered throughout the paper.

3. Proofs are complete, since hand-waving and oversimplifying will not work in 
Coq.

4. There is no trust gap coming from different representations of model and proofs. 
In other words, paper-and-pencil mathematical abstractions about models can 
introduce another language gap and lead to poor modelling.

5. Hardware designs can hide the underlying mathematical formalism of timing 
analyses from the reader. Differently put, if a new hardware component is intro-
duced within such a framework, the designer can present it without giving details 
about timing analyses, by just saying that all the proof obligations have been 
successfully satisfied. Hence, the job of reviewers and readers then switches 

Fig. 9  Design Flow with the Coq Framework



701

1 3

Real-Time Systems (2023) 59:664–704 

from checking if paper-and-pencil proofs are correct to merely checking if the 
properties captured by the specification are correct (which leads us back to the 
first point).

Lastly, concerning the last and right-most blue arrow in Fig. 9, Coq provides extrac-
tion to many target languages. This feature allows proved executable code to be pro-
duced as output and serve as sources of trust in external software/hardware.

10  Conclusion & future work

We propose a new way of designing Real-Time Memory Controllers. We write a 
formal specification that defines the properties of interest as proof obligations. We 
focus on properties related to the respect of timing constraints, correctness of the 
command protocol, and assertiveness that every request is handled in bounded 
time. We refine our specification with two implementations (in which we write 
proofs for each proof obligation in the specification). We validate our specification 
through execution on a simulator and compare simulation results with other known 
controllers.

The follow-up to this work consists in using Cava (c.f Sect. 2.3) to produce HDL 
code directly from the framework. The generated HDL code will then be used inside 
of a DDR4 hardware simulation environment. After this step is finished, many direc-
tions are actually possible, the most promising being: modelling the remaining prop-
erties described in the JEDEC standards (such as DRAM refresh operations, power-
down modes, et. cetera) with the goal of achieving a more complete specification; 
implement state-of-the-art RT MCs within the framework; capturing other types of 
properties, e.g., imposing security-related counter-measures as proof obligations; 
and writing tactics to achieve higher proof automation.
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