
Vol:.(1234567890)

Real-Time Systems (2023) 59:664–704
https://doi.org/10.1007/s11241-023-09411-3

1 3

A formal framework to design and prove trustworthy
memory controllers

Felipe Lisboa Malaquias1 · Mihail Asavoae2 · Florian Brandner1

Accepted: 25 October 2023 / Published online: 14 November 2023
© The Author(s) 2023

Abstract
In order to prove conformance to memory standards and bound memory access
latency, recently proposed real-time DRAM controllers rely on paper and pen-
cil proofs, which can be troubling: they are difficult to read and review, they are
often shown only partially and/or rely on abstractions for the sake of conciseness,
and they can easily diverge from the controller implementation, as no formal link
is established between both. We propose a new framework written in Coq, in which
we model a DRAM controller and its expected behaviour as a formal specification.
The trustworthiness in our solution is two-fold: (1) proofs that are typically done on
paper and pencil are now done in Coq and thus certified by its kernel, and (2) the
reviewer’s job develops into making sure that the formal specification matches the
standards—instead of performing a thorough check of the mathematical formalism.
Our framework provides a generic DRAM model capturing a set of controller prop-
erties as proof obligations, which all implementations must comply with. We focus
on properties related to the assertiveness that timing constraints are respected, every
incoming request is handled in bounded time, and the DRAM command protocol is
respected. We refine our specification with two implementations based on widely-
known arbitration policies—First-in First-Out (FIFO) and Time-Division Multiplex-
ing (TDM). We extract proved code from our model and use it as a “trusted core” on
a cycle-accurate DRAM simulator.

Keywords DRAM · Memory controller · Coq · Formal proof assistant

 * Felipe Lisboa Malaquias
 flisboa@telecom-paris.fr

 Mihail Asavoae
 mihail.asavoae@cea.fr

 Florian Brandner
 florian.brandner@telecom-paris.fr

1 LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
2 CEA List, Université Paris-Saclay, Palaiseau, France

http://orcid.org/0000-0002-0292-3437
http://orcid.org/0000-0001-5291-8567
http://orcid.org/0000-0002-2493-7864
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-023-09411-3&domain=pdf

665

1 3

Real-Time Systems (2023) 59:664–704

1 Extended version

This paper is an extension of a paper published at the 30th International Con-
ference on Real-Time Networks and Systems (RTNS’22) entitled A Coq Frame-
work For More Trustworthy DRAM Controllers Lisboa Malaquias et al. (2022).
The main additions are: a section where we discuss in greater detail and through
examples how paper-and-pencil latency-analysis/proofs can lead to untrustworthi-
ness (Sect. 2.1); a section where we present how the framework can be used to
model controller semantics, such as memory consistency models (Sect. 6); and a
section where we discuss how exactly our framework enhances trust w.r.t DRAM
controllers design (Sect. 8). Furthermore, we extend and re-work several parts of
the text of the original paper: textual descriptions are more detailed, code defini-
tions previously omitted due to space constraints are shown, and new figures and
tables are added with the goal of easing comprehension.

2 Introduction

Multi-core architectures pose a challenge for critical and mixed-criticality sys-
tems due to resource contention on the main memory. Memory Controllers (MCs)
have to deal with a fundamental trade-off: ensuring predictable behaviour for crit-
ical (hard) requests, while providing good bandwidth (BW) for non-critical (soft)
requests Guo and Pellizzoni (2017).

On one side of the spectrum, commercial-off-the-shelf (COTS) DRAM con-
trollers employ a series of performance-driven optimisations that degrade pre-
dictability, such as reordering and bundling queued requests. As an example,
take one of the most commonly used algorithms in high-performance controllers,
First-Ready First-Come-First-Serve Rixner et al. (2000) (FR-FCFS), which prior-
itises row-hits over row-misses. Requests can be re-ordered, and hence, a critical
request could suffer starvation due to the prioritisation of a non-critical request.
As a consequence, this type of arbitration algorithm is poorly suited for memory
controllers in real-time systems—as timing analysis gets more complex and mem-
ory accesses latencies can be difficult to bound.

On the other side of the spectrum, Real-Time DRAM controllers often adapt
conservative techniques, offering predictability at the cost of decreased average-
case performance. However, as the need for performance and computational
demands in real-time system quickly grows Akesson et al. (2020), research has
made significant progress in proposing predictable DRAM controllers at mini-
mum performance cost in recent years (Mirosanlou et al. 2021, 2020; Valsan and
Yun 2015; Guo and Pellizzoni 2017; Paolieri et al. 2009; Hassan et al. 2015; Li
et al. 2014; Wu et al. 2013; Jalle et al. 2014; Ecco and Ernst 2015; Reineke et al.
2011; Schranzhofer et al. 2011; Yun et al. 2015).

Nonetheless, additionally to latency bounds, memory controller designers have
to ensure that the DRAM commands generated by the MC and sent to the device

666 Real-Time Systems (2023) 59:664–704

1 3

respect the timing constraints established by the Joint Electron Devices Engi-
neering Councils (JEDEC). Taking this into account, the mathematical proofs
that ensure conformance to the JEDEC standard and bound memory access
latency can be lengthy, complex, and lack readability. These issues are presented
in greater detail in Sect. 2.1.

Formal methods come in handy when dealing with such problems. Increasing the
trust in the designed system is delegated to specialised tools, which, depending on
the approach, can do different things. The two most popular approaches are model
checking and deductive verification. The former performs exhaustive exploration of
a mathematical model. The latter can be used to generate mathematical proof obli-
gations that are part of the formal specification of a system (a property also known
as the Curry-Howard isomorphism Sørensen and Urzyczyn (2006)); therefore, every
implementation of the specification must provide proofs that these obligations are
met.

While model checking provides greater automation, deductive verification has
better expressivity Shankar (2018). In the context of Real-Time Memory Control-
lers, the expressivity provided by the deductive approach brings benefits:

1. If one convinces oneself that the formal specification of a system and the stated
properties really correspond to the addressed problem—here DRAM control-
lers—then one can become agnostic to the actual implementations and the inner
mechanisms of the proofs, as long as they are accepted by the tool’s kernel;

2. Different than model checking, deductive verification allows modelling of more
complex systems, since computation does not dependent on the number of pos-
sible states. In other words, more often than not, model checking approaches do
not scale well for models with large/unbounded number of elements and have to
apply abstractions to keep the state space manageable.

More specifically, we use Coq,1 an interactive theorem prover. It allows its user to
write specifications, implement them, and discharge proof obligations through the
aid of proof scripts. We choose Coq over other prove assistants for a variety of rea-
sons—largely based on the points made by Chlipala (2022) in the book Certified
Programming with Dependent Types:

1. Coq’s specification language supports Higher-Order logic—which allows us to
enjoy the benefits of conventional functional programming languages.

2. It is based on dependent types—which allows us to include references to programs
inside of types.

3. Coq is based on an easy-to-check and small kernel to check the correctness of
proofs (according to the “de Bruijn” criterion).

4. It supports coding new proof manipulations, and thanks to the third point, these
new manipulations cannot be incorrect.

1 https:// coq. inria. fr/.

https://coq.inria.fr/.

667

1 3

Real-Time Systems (2023) 59:664–704

The trustworthiness that our model provides is two-fold: 1) paper-and-pencil proofs
are replaced by Coq-written proofs, which are certified by Coq’s kernel, and 2) since
proofs are presented as artefacts, reading and reviewing designs introduced within the
framework is simpler: instead of performing a thorough check of the underlying mathe-
matical formalism, one just needs to check if the specification accurately captures what
is described in the standard. In Sect. 8, we discuss in detail how exactly our framework
impacts trust.

Novel Contributions

– We propose a framework written in Coq that offers a higher degree of trust w.r.t
DRAM controllers design. It contains a generic and reusable model of memory
controllers in the form of a formal specification that can be refined through actual
implementations. The specification carries correctness criteria as proof obligations.

– We refine the specification with two instances: one based on First-In First-Out
(FIFO) arbitration and the other on Time-division multiplexing (TDM). For both,
proof obligations are met and certified by Coq’s kernel. The proofs written for
these two instances serve as a model for future implementations and uses of the
framework.

– The framework cleanly separates the specifications and proofs from the imple-
mentation, which allows us to extract executable code from Coq that can be used
as a “root of trust” in a cycle-accurate DRAM simulator.

Paper Organisation
Section 2.1 reviews recently proposed Real-Time Memory Controllers in order

to highlight the issues that motivate our work, Sect. 2.2 presents how the DRAM
communication protocol, the related timing constraints, and the worst-case latency
bounds have been modelled with the aid of formal methods, and Sect. 2.3 highlights
how Coq-based solutions have recently gained ground in the design of trustwor-
thy hardware. Section 3.1 presents a concise background on DRAM systems and
Sect. 3.2 presents Coq’s Type Classes, a key feature used in the development of our
framework. Sections 4 and 5 present our contributions: while the former introduces
the formal specification and the proof obligations in it, the latter shows how we
refine the specification, derive latency bounds and resolve proof obligations. Sec-
tion 6 shows how the framework can be used to model controller semantics. Sec-
tion 7 discusses how we extract Haskell code from our model and embedded it into
an existing cycle-accurate DRAM system simulator. Finally, Sect. 8 discusses our
framework’s implications on trust, and Sect. 9 concludes the paper by revisiting our
contributions and presenting future research directions.

3 Related work

3.1 Real‑time memory controllers & Trustworthiness

Latency-analysis (or timing analysis) has always been a key element of any work
introducing new Real-Time hardware components. This is because the latency

668 Real-Time Systems (2023) 59:664–704

1 3

introduced by the hardware logic has to be upper-bounded for it to be accounted in a
task’s Worst Case Execution Time (WCET). Two important components that intro-
duce significant latency in a system are the memory and the memory controller. His-
torically, timing analyses w.r.t these components, along with proofs of conformance
to the JEDEC standards, have been done on paper-and-pencil, which can be hard to
deal with, in more than one aspect.

We analysed the most-often cited Real-Time memory controllers in literature
regarding the length of latency analysis/proofs (Ecco and Ernst 2015; Guo and Pel-
lizzoni 2017; Hassan et al. 2015; Jalle et al. 2014; Li et al. 2014; Mirosanlou et al.
2020, 2021; Paolieri et al. 2009; Reineke et al. 2011; Schranzhofer et al. 2011; Val-
san and Yun 2015; Wu et al. 2013; Yun et al. 2015). In each work, latency analysis
takes from 30% up to 50% of the total space of the paper. Although the content and
decision procedures of proofs might be of interest for fields such as mathematics or
physics, we advocate for the point of view that hardware design should present them
merely as artefacts. Therefore, the space that these proofs take in the papers could
be better used – to include details about implementations, experiments, results, and
other engineering aspects, for example. Approaching the problem through com-
puter-aided formal methods allows us to properly treat proofs as artefacts and hide
the underlying mathematical formalism from the reader.

Moreover, these analyses are often presented for the simplest of cases, leaving out
essential details. As an example, Mirosanlou et al. (2021) only derives static Worst
Case Latency (WCL) for read requests, briefly arguing that the analysis for write
requests is very similar, which is therefore omitted. Work by Ecco and Ernst (2015)
proceeds in the same way, omitting the proof of a Lemma based on the similarity
argument.

In other work, the timings analysis is based on assumptions that reduce the set
of valid scenarios. For instance, work by Guo and Pellizzoni (2017) describes their
timing analysis as being only valid for a subset of DDR3 devices.2 Work by Wu
et al. (2013) assumes that the task under analysis runs non-preemptively on its
assigned core, arguing that the analysis could be easily extended if the maximum
number of preemptions is known (although the claim is not supported and details
are not given).

Furthermore, works may base themselves on different sets of assumptions. It is
therefore hard for users of the design, readers, and reviewers to keep track of the
assumptions within the paper, often scattered throughout and/or presented as side
notes. It is even harder to compare the set of assumptions that validate different
Real-Time memory controller designs. This issue is identified and addressed in a
survey by Guo et al. (2018), in which the set of assumptions for a dozen Real-Time
memory controllers is made explicit. As an example, in order to compare the WCL
analysis performed by Ecco and Ernst (2015), the authors of the survey had to per-
form a new auxiliary analysis applying the common assumption on the arrival of
requests used in related work.

2 Although a footnote states that the analysis is still applicable if the right parameters are selected, the
claim is not supported.

669

1 3

Real-Time Systems (2023) 59:664–704

Although we do not deem wrong nor contest the author’s choices in each men-
tioned work, we do see the points made in the paragraphs above as possible sources
of untrustworthiness. These points are resumed below:

– Proofs are not machine-checked, i.e., checking that the analysis is correct still
depends on human labour by the authors themselves and through peer-review.
The inherent difficulty, length, and incompleteness of the presented proofs makes
peer-reviewing a challenging task requiring expert knowledge. Regular users and
readers also have the deal with these complex proofs—which should rather be
presented as artefacts.

– Works often base themselves on different sets of assumptions. Since these
assumptions are often not highlighted or made explicit, it is difficult to keep track
of the assumptions within the work itself, and to compare assumptions between
different approaches.

– The fact that there is no formal link between system implementation and the
mathematical abstractions used to perform timing analysis may also introduce
untrustworthiness.

3.2 DRAM & formal methods

Jung et al. (2019) model the DRAM timing protocols with timed Petri Nets and gen-
erate executable code that can be used for simulation-based validation. However, as
their approach only takes the device’s timing constraints into consideration, it cannot
handle system properties, such as the worst-case latency or the protocol correctness.

Li et al. (2016) use timed automata (TA) models of a memory controller to derive
the Worst-Case Bandwidth (WCBW) and Worst-Case Response Time (WCRT)
through the Uppaal model checker Larsen et al. (1997). However, when perform-
ing worst-case analysis, in order to keep the state-space limited, they assume that
each requestor has at most one outstanding request, i.e., they constrain how requests
arrive in the system. Moreover, getting convinced that the TA models reflect the
actual DRAM states is not straightforward, since the models are complex and writ-
ten by hand. We come back to this point in Sect. 8, where we debate how exactly our
framework provides more trust.

Hassan and Patel (2017) use Linear Temporal Logic (LTL) formulas to specify
the correctness of memory controller models. However, the specification is not used
to prove the actual implementation correct. Instead, counterexamples are obtained
from simplified models of an implementation by bounded model checking, which
are then used to build a test bench for the validation of the implementation. The
considered models might also slightly diverge from the actual implementation. The
obtained test bench might thus be incomplete or contain false positives/negatives.

670 Real-Time Systems (2023) 59:664–704

1 3

3.3 Uses of Coq in related problems

Coq, and other similar theorem provers, such as Isabelle/HOL Nipkow et al. (2002)
and Fstar,3 have been used successfully to model and prove the correctness of com-
plex systems. PROSA Cerqueira et al. (2016), for instance, proposes a framework
to model real-time task scheduling (including task properties, scheduling policies,
etc.), which allows to prove scheduling policies correct under a given set of condi-
tions using Coq. Guo et al. (2019) go even a step further by connecting PROSA’s
formal model to an actual real-time operating system RT-CertiKOS—thus proving
the scheduler implementation correct.

In 2020, Bozhko and Brandenburg (2020) built a Coq framework, leveraging
previous results from PROSA, to formally reason about Response Time Analysis
(RTA), and more specifically, the ubiquitous principle of busy-window. The authors
motivate their work by identifying a lack for commonality and formality in liter-
ature, claiming that “the general idea [of the busy-window principle] has become
part of the real-time folklore, spread across many papers, where it is frequently re-
developed from scratch, using ad-hoc notation and problem-specific definitions”.
Moreover, they advocate that “papers introducing novel RTA should not start from
first principles, but rather build on a well understood and general foundation [...]”.
This reasoning is on par with the arguments we present in this work, which aims at
providing a formal foundation for memory controller design. In 2022, Maida et al.
(2022) extended the results from Bozhko and Brandenburg (2020) by connecting
the foundational RTA analysis to a larger formal system used to produce “strong and
independently checkable evidence of temporal correctness”.

Several research groups and companies are promoting the use of Coq for the
development of trustworthy hardware. Researchers at Google have developed
a plug-in replacement of the cryptographic core of the OpenTitan4 silicon root of
trust. The hardware is implemented in Cava5—a Domain-Specific Language (DSL)
based on Lava Bjesse et al. (1998) and embedded within Coq. Cava allows to lever-
age Coq’s proof-engine and to derive SystemVerilog code. Kami, a similar system,
was first developed by Choi et al. (2017) and later adopted by SiFive. It has its roots
in Bluespec,6 which also serves as the target language derived from Kami. The veri-
fication procedure in Kami is based on proving that modules refine a given specifi-
cation based on trace inclusion, i.e., the specification defines traces of observable
events which have to be respected by its implementation—an approach similar to the
one we adopt in this paper.

Following the same rule-based design approach, the more recently proposed
DSLs Koîka Bourgeat et al. (2020) and Choi et al. (2022) extend the bases set by
the Kami project. The former does so by introducing semantics that can be used to
prove performance properties, e.g., that a pipelined system indeed behaves like a

3 https:// www. fstar- lang. org/.
4 https:// opent itan. org/.
5 https:// github. com/ proje ct- oak/ silve roak.
6 https:// blues pec. com/.

https://www.fstar-lang.org/.
https://opentitan.org/.
https://github.com/project-oak/silveroak.
https://bluespec.com/.

671

1 3

Real-Time Systems (2023) 59:664–704

pipelined system. The latter proposes a method to prove the serializability property
of cache-coherence protocol.

4 Background

4.1 DRAM systems

We centre the discussion around DDR4 devices, as they can be seen as super-sets
of older technologies (although sometimes we refer to DDR3 devices as well). The
topmost logical unit in a DRAM module is a rank, followed by bank-groups and
banks. Each bank is composed of a grid of memory cells, a page-sized buffer—the
row-buffer—and sense amplifiers. The overall structure of a DDR3 chip is depicted
in Fig. 1 (for DDR4 the N banks in the figure would represent a single bank-group).

DRAM controllers are typically organised in two parts: front-end and back-end.
In the front-end, three things take place: (1) The Address Mapping, which deter-
mines how a request’s address is mapped to the corresponding rank, bank-group,
bank, row, and column. (2) The Scheduling Policy, responsible for establishing the
order in which requests will be serviced. (3) The Command Generation, responsible
for generating the needed commands for each request, based on the status of the
targeted bank. In the back-end, the generated commands go through an arbitration
policy and are sent to the device’s command bus—possibly in a different order.

Fig. 1 DRAM chip structure

672 Real-Time Systems (2023) 59:664–704

1 3

There are several types of commands, but for conciseness, only the four related to
servicing requests are explained: (1) Activate (ACT) commands are responsible for
loading the content of a row into the row-buffer, that acts like a small cache for the
bank. (2) Column Address Strobe (CAS) can be either reads (RD) or writes (WR). If
it is a RD, then the command selects a column address and transfers the correspond-
ing data from the row-buffer to the data bus. The WR commands do the opposite,
choosing a column address from the data bus and writing it in the targeted bank’s
row-buffer. Bear in mind that CAS commands can only be issued if there is a row
currently present in the row-buffer, i.e., if an ACT commands has been previously
issued. (3) If a request aims at a different row, the data present in the row-buffer
needs to be written back to the DRAM’s cell matrix. This is because loading rows,
i.e., reading the content of a DRAM cell is a destructive process. This re-write pro-
cedure is done by Precharge (PRE) commands. (4) The capacitors in the DRAM
cells have to be recharged using Refresh (REF) commands, which have to be issued
periodically. Similar to existing work (Li et al. 2014; Jalle et al. 2014; Yun et al.
2015; Ecco and Ernst 2015; Hassan et al. 2015; Li et al. 2016; Guo and Pellizzoni
2017), refresh-induced delays are not considered in this work at the moment—these
delays are best taken into consideration as additional interference (Bhat and Mueller
2011; Wu et al. 2013).

The JEDEC standards establish several constraints on how far apart in time dif-
ferent commands must be. These constraints are summarised in Table 1. Note that

Table 1 JEDEC timing constraints for a DDR3 and a DDR4 device

 In the device name, the number represents the device’s speed in MHz in the letter is the speed grade

Symbol Description DDR3-1600K (in data bus
clock cycles)

DDR4-2400U (in data
bus clock cycles)

Exclusively intra-bank
tRCD ACT to WR/RD 11 18
tRP PRE to ACT 11 18
tRC ACT to ACT 39 57
tRAS ACT to PRE 28 (min), 9xtREFI (max) 39 (min), 9x tREFI (max)
tWL WR to data bus transfer 8 12
tRL RD to data bus transfer 11 18
tRTP RD to PRE 6 9
tWR WR data to PRE 12 15
Intra and inter-bank
tRD−to−WR RD to WR 9 12
tWTR End of WR transaction to RD 6 s=3, l=9
tWR−to−RD WR to RD 18 s=19,l=25
tBURST Data bus transfer 4 4
tCCD WR-to-WR or RD-to-RD 4 s=4, l=6
Exclusively inter-bank
tRRD ACT to ACT 5 s=7, l=8
tFAW Four ACT window 24 30

673

1 3

Real-Time Systems (2023) 59:664–704

some constraints only apply to different banks, some only to the same bank, and
some to all banks. For DDR4 devices, some constraints can have two values, with
identifiers s (short) and l (long). The former applies to commands aiming at banks of
different bank groups, the latter to banks in the same group. Note also that the con-
straint tRAS is the only one to impose both upper and lower bounds.

Next, we discuss rows-hits/misses and row-buffer/page policy.7 If a request, aim-
ing at a given row, finds its data already in the row-buffer, it is said to be a row-hit.
If, however, the targeted row is different than the one in the row-buffer, it is said to
be a row-miss. One of the key aspects of (real-time) DRAM controllers is how to
handle the row-buffer. One strategy is to keep rows loaded in the row-buffer for as
long as possible. This way, row-hits will enjoy small latencies. This is known as the
open-page policy. Since the controller leaves the bank in an unknown state, the tim-
ing analysis employed to bound the worst-case latency grows in complexity. Another
strategy is to treat every request as a row-miss, issuing the same PRE-ACT-CAS
sequence for every request. This is known as the closed-page policy. It offers the
benefit of simplified timing analysis at the cost of average-case performance.

Figure 2 illustrates a command scheduling scheme on a DDR3-800E device. The
clock signal depicted in the figure is the data bus clock. The second line from top to
bottom corresponds to the command bus (NOP commands are not shown). The third
line from top to bottom is the data bus. The two lines below that correspond to the
commands issued to banks i and j, respectively.

Consider the two banks i and j (Bi and Bj) to be idle at the initial time instant
(left-most clock cycle in the figure). Moreover, consider that the system is serving
three distinct requests: R1 is a write to bank i, R2 a read to bank j, and R3 again writes
in bank i. The controller issues commands for both R1 and R2 concurrently, always
respecting the timing constraints between commands. Note that R1 and R2 could be

Fig. 2 Example of timing constraints for a DDR3-800E device. Commands and data: Bank i (Bi
), Bank j (Bj). Constraints: Exclusively intra-bank, Inter- and intra-bank, Exclusively inter-bank

7 The terms row-buffer policy and page policy are used interchangeably.

674 Real-Time Systems (2023) 59:664–704

1 3

either row-misses or hits, while R3 is a row-miss, since it has to issue a PRE. Except
from Refresh related constraints, all timing constraints are depicted in the figure.8

4.2 A brief introduction to Coq

In the rest of the work we will heavily rely on Type Classes. While presenting details
about Coq’s proof engine is out of the scope of this work, we will try to give an
intuitive explanation of these type classes and their use.

A type class in Coq is, in some regards, similar to abstract classes or interfaces
from object-oriented programming languages—it allows us to specify a set of mem-
bers. Listing 1 shows an example of a container—similar to the Container9 and Col-
lection10 concepts in C++ or Java, respectively.

Listing 1: Interface specification for a container/collection.
Class container_t {T C : Type} := mkContainer {
append : T → C → C; (* append element to container *)
contains : T → C → bool; (* is element in container? *)
size : C → nat; (* get number of element in container *)
app_inc : forall (x : T) (c : C), size (append x c) = (size c).+1
app_in : forall (x : T) (c : C), contains x (append x c)
}.

The class container_t takes two type parameters, where T specifies the Type of
the container’s elements and C the type of the data structure holding those elements. The
identifier mkContainer is the class constructor—a function used to build instances.
The member append is a function, taking an element of type T and a container of type
C as parameters, while returning a new container. The member contains is a func-
tion with an element and a container as parameter that returns a boolean (bool), while
size expects a container as input and returns a natural number (nat).

Intuitively it is clear what the append function is supposed to do. Still, in Java
or C++ the meaning of the function is usually explained explicitly in comments
or an additional document. Coq, however, allows to make the expected behaviour
explicit—as illustrated by the members app_inc and app_in. These members
are proof obligations (POs), i.e., properties that every instantiation of the container
class has to respect. They indicate that the size of a container should increment
by one when an element is appended and that a newly appended element always
has to be present in the container. The usage of type classes is similar to classes in

8 In Fig. 2, the arbitration, though valid, does not correspond to any specific algorithm, as it simply illus-
trates a situation where all constraints are respected. Moreover, the timing constraints in the standard
represent minimum intervals. In the figure, the depicted constraints assume values greater or equal to
these minimum values.
9 https:// en. cppre feren ce. com/w/ cpp/ named_ req/ Conta iner.
10 https:// docs. oracle. com/ javase/ 8/ docs/ api/ java/ util/ Colle ction. html.

https://en.cppreference.com/w/cpp/named_req/Container.
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html.

675

1 3

Real-Time Systems (2023) 59:664–704

conventional programming languages—they can be used as parameters in functions
and other type classes, where its members can be used.

Furthermore, the Coq command Context allows us to introduce variables in
the local context—which behave like abstract instances, i.e., their members (func-
tions and logical propositions/POs) can be used in the local context, even if concrete
instances do not yet exist. As an example, as shown in Listing 1, we introduce the
types Q and R in the local context, followed by X, which is an abstract instance of
container_t using the previously defined types Q and R.

Listing 2: Using the container_t class.
(* introduces variables Q and R in the local context *)
Context {Q R: Type}.
(* introduces variable X of type container_t in the local context *)
Context {X : container_t (T:=Q) (C:=R)}.

We can now use the member functions of X—the abstract instance of
container_t—to write other functions, such as concatenate_list (List-
ing 2). It takes a list of type seq Q11 and recursively appends its elements into a
variable of type R (previously defined in Listing 1). Note how the append function
is used within the function.

Listing 3: Writing a function using members from container_t

Fixpoint concatenate_list (a : R) (b : seq Q) :=
match b with
| [::] ⇒ a
| hd::tl ⇒ append hd (concatenate_list a tl)
end.

Moreover, we can prove properties about concatenate_list, as shown by
the Theorem size_concatenate in Listing 3—a theorem stating that the size
of a container resulting from concatenating a list to a container is the sum of the
sizes of each. The code between commands Proof and Qed is a proof script. A
proof script relies on the use of tactics, which interactively allow the user to per-
form steps in proving a theorem. In this specific proof, we use the tactics induc-
tion, which performs mathematical induction on a specified variable; simpl,
which simplifies terms by reduction; rewrite, which rewrites terms manually; and
reflexivity, which is used to trivially prove goals in the equality form. Note how
the proof applies the property app_inc, a member of the container_t type
class.

11 The seq type is an alias of Coq’s standard list type with several useful pre-defined functions and lem-
mas. It is part of Mathematical Components (mathcomp)—a widely-used Coq library for formalised
mathematics.

676 Real-Time Systems (2023) 59:664–704

1 3

Listing 4: Using container_t to prove a property
Theorem size_concatenate (la : C) (lb : seq T) :
size (concatenate_list la lb) = size la + seq.size lb.

Proof.
induction lb; simpl; try rewrite addn0; try reflexivity.
by rewrite app_inc IHlb addnS.

Qed.
_

It is important to keep in mind that having only introduced abstract instances, the
proof size_append will hold for any concrete instance of container_t. This
feature is widely used in our framework to build implementations and proofs that are
agnostic to the arrival model of requests, for instance.

In addition, type classes can also be instantiated, i.e., associated with concrete
implementations of the member functions. Listing 4 shows an example of a concrete
instance of container_t where we define some functions using the seq type.

Listing 5: Functions implementing the collection interface.
(* Using mathcomp.ssreflect.seq functions *)
Definition my_append (n : nat) (c : seq nat) : seq nat :=
seq.append c n.

Definition my_contains (n : nat) (c : seq nat) : bool :=
n \in c. (* returns true if n is a member of c *)

Definition my_size (c : seq nat) : nat :=
seq.size c. (* returns the length of c *)

In Listing 6, we write proofs for the members app_inc and app_in using our
defined functions and instantiate the container through its constructor—mkCon-
tainer. Notice that aside from types and functions, proofs are also passed as argu-
ments to the constructor.

677

1 3

Real-Time Systems (2023) 59:664–704

Listing 6: Proofs and instantiation of the collection interface.
Theorem my_appn_inc (x : nat) (c : seq nat) :
my_size (my_append x c) = (my_size c).+1.
Proof.
unfold my_size, my_append; by rewrite cats1 size_rcons.
Qed.

Theorem my_app_in (x : nat) (c : seq nat) :
my_contains x (my_append x c).
Proof.
unfold my_contains, my_append; by rewrite mem_cat mem_seq1 eq_refl orbT.
Qed.

(* Container instance *)
Instance my_list : container_t := mkContainer

nat (seq nat) (* Types *)
my_append my_contains my_size (* Functions *)
my_appn_inc my_app_in. (* Proofs *)

Furthermore, we occasionally use Coq Records instead of type classes.
Records are simple structures with fields—similar to C structs and record types
used in other programming languages. In fact, each type class definition gives
rise to a corresponding record declaration (apart from type classes with a single
method).

5 Specification & proof obligations

The framework we propose is organised in two parts: 1) A generic and reusable
formal specification containing all correctness criteria; and 2) Concrete Real-Time
memory controller implementations. The formal specification is composed by the
following elements: a DRAM model, a memory controller (or memory interface)
model, a request arrival model, and an implementation interface—each model
being a PO-carrying type class. These elements are presented, respectively, in
Sects. 4.1, 4.2, 4.3, and 4.4. Implementations are discussed in Sect. 5. A high-level
representation of the framework’s architecture can be seen in Fig. 3.

In the figure, one can identify three main parts: the JEDEC standard at the top,
the formal specification (the largest rectangle), and the implementations, at the bot-
tom. The framework is designed in such a way that any new Real-Time memory con-
troller can be introduced as an implementation. In practical terms, the design flow
consists of using the implementation interface (bottom-most arrow in the figure) to
implement the Memory Controller class, which consists of writing a transition sys-
tem to produce DRAM command traces. Writing the formal specification itself and
capturing properties described in the standard as proof obligations is a task only

678 Real-Time Systems (2023) 59:664–704

1 3

performed once (by the framework development team). Naturally, these properties
can eventually be extended.12

Listing 7: System Configuration.
Class System_configuration := {
BANKGROUPS : nat; (* number of bankgroups *)
BANKS : nat; (* number of banks *)
...
T_BURST : nat;
T_WL : nat;
T_RRD : nat;
...
(* Proof obligations *)
BANKS_pos : BANKS != 0; (* number of banks has to be non-zero *)
T_RRD_pos : T_RRD != 0; (* T_RRD constraint has to be non-zero *)
...

}.

Fig. 3 Framework Architecture

12 As it will be discussed in Sect. 9, it is in our plans to extend the properties captured by the formal
specification.

679

1 3

Real-Time Systems (2023) 59:664–704

5.1 DRAM model

Similar to the JEDEC standard itself, we do not model the internal state of actual
DRAM devices nor the content of the memory. Instead we only model the device’s
main characteristics and its command bus. This is sufficient since the device’s
responses and internal state, as well as the usage of the data bus is entirely deter-
mined by the commands.

The first building block is a type class called System_configuration—
shown in Listing 7. It provides symbolic names for all device parameters, which
can then be used in algorithms and proofs. The latter are thus valid for all possible
valuations of these parameters, i.e. all devices. For instance, it defines the symbol
T_RRD—which specifies the intra-bank ACT to ACT delay—and all the other con-
straints from Table 1. The class also carries proof obligations that bound these sym-
bols to positive values.

Moreover, we define requests as a record with six fields, as shown in Listing 8. The
listing also shows the definition of Request_kind_t, an enumeration of possible
kinds of requests. The remaining definitions are not shown for brevity: Requestor_t
describes the type of requestors, and the remaining definitions of Bank_group_t,
Bank_t, and Row_t are numeric types derived from the parameters of the System_
configuration class.

Listing 8: Definitions of Request_t and Request_kind_t.
Inductive Request_kind_t : Set :=

RD | WR.

Record Request_t := mkReq {
Requestor : Requestor_t; (* The type of requestors *)
Date : nat; (* The arrival date of requests *)
Kind : Request_kind_t; (* Either if it is a RD or WR *)
Bank_group : Bank_group_t; (* Type of bankgroups : bounded natural *)
Bank : Bank_t; (* Type of banks : bounded natural *)
Row : Row_t (* Type of rows : bounded natural *)

}.

Listing 9: Definitions of Command_t and Commands_t.
Inductive Command_kind_t : Set :=

ACT | PRE | PREA | CRD | CWR | NOP.
(* CRD and CWR are CAS commands *)

Record Command_t := mkCmd {
CDate : nat; (* The issue date of commands *)
CKind : Command_kind_t; (* The type of commands *)
Request : Request_t (* The request that has generated the command *)

}.

Definition Commands_t := seq Command_t.

680 Real-Time Systems (2023) 59:664–704

1 3

We define DRAM commands as a record with three fields, as shown in Listing 9.
The first field, CDate, a nat type, is the date (time stamp) that the controller has
issued the command; the second, CKind, of type Command_kind_t, represents the
command type, and Request, of type Request_t, is the corresponding request that
lead to the command being generated. With the Command_t type, the Commands_t
type can also be defined, which is simply a list of commands.

Based on the types presented in Listings 8 and 9, we model the DRAM com-
mand bus. This is done through the record Trace_t, which models the commands
sent to the DRAM device over time—with one command being issued per bus clock
cycle—as shown in Listing 10.

Listing 10: Trace of commands with proof obligations.
Record Trace_t := mkTrace {
Commands : Commands_t;
Time : nat;
...
(* PO: related to JEDEC timing constraint *)
Cmds_T_RRD_ok : forall a b, a \in Commands → b \in Commands → isACT a → isACT b →

(Same_Bank a b = false) → Before a b → a.(CDate) + T_RRD <= b.(CDate);
...
(* PO: related to the correctness of the protocol *)
Cmds_row_ok : forall b c, b \in Commands → c \in Commands → isCAS b → isPRE c →

Same_Bank b c → Before c b →
exists a, (a \in Commands) && (isACT a) && (Same_Row a b) && (After a c) && (

Before a b)

(* PO: related to the correctness of the protocol *)
Cmds_ACT_ok: forall b c, c \in Commands → b \in Commands → isACT_or_CAS c →

isACT b → Same_Bank c b → Before c b
→ exists a, (a \in Commands) && (isPRE a) && (Same_Bank c a) && (Before a b)

&& (After a c).

(* implies the init state of the memory *)
Cmds_initial : forall b, b \in Commands → isCAS b →

exists a, (a \in Commands) && (isACT a) && (Same_Row a b) && (Before a b)
}.

A trace contains a command list (Commands), the last time stamp (Time), and
a series of POs. Bear in mind that Listing 10 omits several POs and some function
definitions for conciseness. The terms isACT , isCAS, isPRE, After, Same_
Bank (implies same bank group), Same_Row (implies same bank), Before, and
After are functions that evaluate to a bool type. Though not shown here, their
definition can be taken literally by their name, e.g., Before a b evaluates to true
if command a was issued before command b.

The first PO appearing in Listing 10, Cmds_T_RRD_ok, is read as: for two given
commands a and b, knowing that a and b are elements of the list Commands, that
both are ACT commands targeting different banks, that a was issued before b, then
a.(CDate) +TRRD ≤ b.(CDate) must hold. This ensures that every controller
implementation has to respect the tRRD constraint. It follows that any implementation
when calling the constructor mkTrace must provide a proof that this obligation is
met. We model all JEDEC timing constraints in a similar way as Cmds_T_RRD_ok.

681

1 3

Real-Time Systems (2023) 59:664–704

Table 2 establishes a correspondence between PO names and the underlying prop-
erty described in the JEDEC DDR4 standard JEDEC (2021).

The second (Cmds_row_ok), third (Cmds_ACT_ok), and fourth (Cmds_ini-
tial) POs in Trace_t relate to what we call protocol correctness. These condi-
tions—taken from the JEDEC standards (c.f Table 2)—ensure the correct function-
ing of controllers, i.e., the fact that only valid commands should be issued.

More specifically, the PO Cmds_row_ok ensures that there is always an ACT
command to a given bank and row between a PRE to that bank and a CAS to that
bank and row. In natural language, the PO is read as: for two given commands b
and c, knowing that b and c are elements of the list Commands, b is a CAS com-
mand, c is an ACT or a PRE, b and c target the same bank, and c is issued before
b, then command a must exist, where a is also in Commands, is an ACT command
to the same bank and row as b, and is issued before b and after c. This situation is
depicted in Fig. 4. In the figure (and in Fig. 5), the notation CAS

(bg,bk,r,cl) represents
a CAS to bank-group bg, bank bk, row r and column cl; PRE

(bg,bk) represents a pre-
charge to bank-group bg, bank bk; and ACT

(bg,bk,r) represents an activate to bank-
group bg, bank bk, and row r. The symbol “ _ ” means that the corresponding field
does not play a role in the PO, e.g., a CAS

(0,0,0,_) represents a CAS to bank group 0,
bank 0, row 0, and any column.

The PO Cmds_ACT_ok states that an ACT to a given bank and row is always
preceded by a matching PRE to the same bank, without any ACT or CAS to the
same bank in-between. The PO is depicted in Fig. 5, where the PO is met by the
conjunction of scenarios S1 and S2.

Furthermore, we model the memory’s initial state through the Cmds_initial
PO. It states that any CAS should be preceded by an ACT command, which implies
that a CAS cannot be the first command sent to the device; only PRE and ACT com-
mands are accepted. In other words, this is an assumption that at initialisation, every
bank is closed, i.e., no row is loaded in any of the row-buffers, thus an ACT to a cer-
tain bank is needed before any CAS to that bank can be issued.

Together, these three POs guarantee that implemented controllers generate valid
commands and respect the protocol described in the standard. The conditions estab-
lished by the POs can also be visualised in Table 3. We use the notation → to denote
an immediate sequence between commands, e.g, PRE

(bg,bg) → CAS
(bg,bk,r,c) repre-

sents a CAS issued directly after a PRE.
Each coloured cell in the table corresponds to a sequence and the fact if either it is

allowed or not, e.g., the sequence PRE
(bg,bk) → CAS

(bg,bk,r0,_)
 is forbidden by Cmds_

row_ok. Moreover, it can be seen from the table that consecutive ACT commands
to the same bank, either to the same or different rows (ACT

(bg,bk,r0)
 or ACT

(bg,bk,r1)
),

are forbidden by Cmds_ACT_ok. Additionally, ACT commands following a CAS
command are also forbidden by Cmds_ACT_ok. Finally, a CAS following an ACT
to a different row (ACT

(bg,bk,r1)
 → CAS

(bg,bk,r0,_)
) is forbidden as well. The latter con-

dition is met by applying the three POs: Cmds_initial states that an ACT to row
r0 must exist before CAS

(bg,bk,r0,c)
 ; then, Cmds_ACT_ok ensures that a PRE

(bg,bk) is

682 Real-Time Systems (2023) 59:664–704

1 3

between the two ACTs, and finally, Cmds_row_ok ensures that ACT
(bg,bk,r0)

 will be
between the PRE

(bg,bk) and the CAS
(bg,bk,r0,_)

.

Table 2 Correspondence between proof obligations in our code and the DDR4 JEDEC Standard No.
79-4 JEDEC (2021)

1 The PO Cmds_T_WTP_ok models the minimal distance between a WR and a PRE command, while
the constraint t

WR
 in the standard represents the distance between the end of the WR’s data bus utilisa-

tion and a PRE command. Since our specification only considers the command bus trace, we capture
timing constraints on the data bus only indirectly via the WR and PRE commands.
2 Similar to Cmds_T_WTP_ok/t

WR
,1 the constraint t

WTR
 in the standard represents the minimum dis-

tance between the end of the data bus utilisation of a WR and a RD command. We model t
WTR

 indi-
rectly through Cmds_T_WtoR_SBG_ok and Cmds_T_WtoR_DBG_ok, which represent the distance
between a WR and a RD command to the same or a different bank group, respectively.
3 Some constraints are represented through multiple POs—this is the case for t

WTR
 , t

CCD
 , and t

RRD
 . In

DDR4 devices, these three constraints can admit different values depending on whether commands target
the same bank group—which are modelled using distinct POs (SBG and DBG). Note that DDR3 device
can be modelled as having a single bank group. The POs that require different bank groups (DBG) then
trivially hold, since all commands always target the same (unique) bank group

PO name Property Location in the
standard

Timing constraints
 Cmds_T_RCD_ok tRCD is respected Pgs. 163-166
 Cmds_T_RP_ok tRP is respected Pgs. 163-166
 Cmds_T_RC_ok tRC is respected Pgs. 163-166
 Cmds_T_RAS_ok tRAS is respected Pgs. 163-166
 Cmds_T_RTP_ok tRTP is respected Pgs. 101-103, 189-

193
 Cmds_T_WTP_ok Constraint between WR and PRE. Unnamed in the

standard. (tWR is respected)1
Pgs. 115 (Fig-

ure 122), 188-193
 Cmds_T_RtoW_ok Constraint between RD and WR. Unnamed in the

standard
Pg.104 (Figure 100)

 Cmds_T_WtoR_SBG_ok
 Cmds_T_WtoR_DBG_ok3

tWTR is respected2 Pg. 112 (Fig-
ure 116)

 Cmds_T_CCD_WR_SBG_ok
 Cmds_T_CCD_RD_SBG_ok
 Cmds_T_CCD_WR_DBG_ok
 Cmds_T_CCD_RD_DBG_ok3

tCCD is respected Pgs. 188-193

 Cmds_T_RRD_SBG_ok
 Cmds_T_RRD_DBG_ok3

tRRD is respected Pgs. 188-193

 Cmds_T_FAW_ok tFAW is respected Pgs. 188-193
Command protocol correctness
 Cmds_ACT_ok Basic functionality is assured Pgs. 8 and 9
 Cmds_row_ok Basic functionality is assured Pgs. 8 and 9
 Cmds_initial Basic functionality is assured Pgs. 8 and 9

683

1 3

Real-Time Systems (2023) 59:664–704

5.2 The request arrival model

The previous definitions specify what a correct DRAM command trace is. We
now specify an interface with cores/requestors. The arrival of requests over time
is modelled through the type class Arrival_function_t and its member
function Arrival_at (Listing 11). It yields the set of requests (Requests_t)
that arrive in the system at a certain time t. It also imposes two POs: Arrival_
date ensures that if r ∈ Arrival_at ta, r.(Date) ≡ ta , i.e., the arrival

Fig. 4 Illustration of the Cmds_row_ok PO

Fig. 5 Illustration of the Cmds_ACT_ok PO

Table 3 Protocol correctness for a given bank group and a given bank

1st 2nd

PREbg,bk ACTbg,bk,r0 ACTbg,bk,r1 CASbg,bk,r0,_

PREbg,bk OK OK OK FORBID-
DEN

(Covered by
Cmds_
row_ok)

ACTbg,bk,r0 OK FORBIDDEN
(Covered by Cmds_ACT_ok)

FORBIDDEN
(Covered by Cmds_ACT_ok)

OK

ACTbg,bk,r1 OK FORBIDDEN
(Covered by Cmds_ACT_ok)

FORBIDDEN
(Covered by Cmds_ACT_ok)

FORBID-
DEN

(Covered by
the combi-
nation of

Cmds_
row_ok
and
Cmds_
ACT_ok)

CASbg,bk,r0,_ OK FORBIDDEN
(Covered by Cmds_ACT_ok)

FORBIDDEN
(Covered by Cmds_ACT_ok)

OK

684 Real-Time Systems (2023) 59:664–704

1 3

function needs to yield the arrival date of requests; Arrival_uniq guarantees
that requests arriving at a given time t are unique.

Listing 11: Arrival Function.
Class Arrival_function_t := mkArrivalFunction {
Arrival_at : nat → Requests_t;

Arrival_date : forall ta x, (x \in (Arrival_at ta)) → x.(Date) = ta;

Arrival_uniq : forall t, uniq (Arrival_at t);
}.

When writing concrete controller implementations, we do not create any
instance of the Arrival_function_t class, which means that proofs should
hold for any instance of the arrival function. This is an important feature that
allows us to build implementations and proofs that are not constrained by any
assumption on cores/requestors.

5.3 Memory controller model

As it can be seen in Fig. 3, in order to establish the link between the arrival of
requests and the DRAM device, i.e., the processing of requests, we specify a
memory controller model (Listing 12). The Controller_t class is made of
the Arbitrate function and a PO. The Arbitrate function takes a (nat)
parameter representing the number of commands to be produced and generates a
corresponding Trace_t, i.e., the list of DRAM commands that have been gener-
ated by the controller up to that point.

Listing 12: Memory Controller
Class Controller_t {AF : Arrival_function_t} := mkController {
Arbitrate : nat → Trace_t;

(* Proof obligation: all requests must be handled *)
Requests_handled : forall ta req, req \in (Arrival_at ta)
→ exists tc, (CAS_of_req req tc) \in (Arbitrate tc).(Commands);

}.

The PO Requests_handled ensures that each request that has arrived will
eventually have a corresponding CAS command in the trace produced by the con-
troller. It is read as: for a given time instant ta and a request req, knowing that req
is an element of the set generated by Arrival_at ta, there must exist a timing
instant tc such that a CAS command belonging to request req (CAS_of_req)
and issued at tc is element of the trace generated by the Arbitrate function up
to tc. Along with the Cmds_ACT_ok and Cmds_row_ok POs, this ensures that
every request is eventually and properly handled.

685

1 3

Real-Time Systems (2023) 59:664–704

In Sect. 5, we will furthermore show that for both our implementations, not only
Request_handled holds, but also that the respective proofs yield closed formu-
las characterising the instant when a given request completes.

5.4 Implementation interface

Finally, in order to establish a systematic and reproducible way to design controllers,
we provide what we call an implementation interface. It is made of a set of classes
and functions used to describe transition systems that are capable of creating traces.
The implementation interface is represented in Fig. 3 by the bottom-most arrow.

Designing an implementation pivots around providing an instance for the
Implementation_t type class (Listing 13), which is made of the functions Init and
Next. These functions operate on a set of currently-arriving requests (Requests_t)
and implementation-specific controller states (State_t). Together, these functions form
a state-machine that defines the controllers’s request scheduling policy.

Listing 13: Interfaces for controller implementations.
Class Implementation_t := mkImplementation {
(* Init produces an initial state *)
Init : Requests_t → State_t;
(* Next produces a new state and a command for a request *)
Next : Requests_t → State_t → State_t * Command_kind_t * Request_t;
}.

Class Controller_state_t := mkControllerState {
(* Common to all implementations *)
Controller_Commands : Commands_t;
Controller_Time : nat;
(* Implementation-specific *)
Implementation_State : State_t;
...
}.

More specifically, the Init function is responsible for creating the system’s
initial state: it takes the first set of currently-arriving requests and generates the
first controller state. The Next function is responsible for creating every subse-
quent state, taking a set of currently-arriving requests and a controller state as
arguments and producing a triple as result. The triple is made of the new control-
ler state, a Command_kind_t (ACT , PRE, ...), and a Request_t. This means
that an implementation outputs a new state and a new command at every time
stamp, and that a command may belong to a request—though some commands,
such as No-Operations (NOP)s, do not belong to any request.

The controller state can be described in two abstraction layers. The first one,
State_t, is operated by the Init and Next functions and can be used to hold
anything needed for implementing the controller’s algorithm, such as counters,
request queues, et cetera. If we were to think about Next as a Finite State Machine
(FSM) implemented in hardware, the State_t would be the set of all signals that

686 Real-Time Systems (2023) 59:664–704

1 3

are fed back to the sequential circuit, i.e., the circuit’s internal state. Secondly, the
Controller_state_t type serves as an overlay, containing a State_t, the
current time instant Controller_Time, and Controller_Commands – a
list with the history of all generated commands up to Controller_Time.

Note that Controller_Commands and Controller_Time have the same
types as the members of Trace_t. This is because the members of Trace_t are
constructed exactly from the members of an Controller_state_t; more spe-
cifically, the trace is built from the last state out of a sequence of generated states.

As a link between the DRAM model and its memory interface, we define the
function Default_arbitrate (Listing 14). It allows us to reason about the
behaviour of the DRAM model and implementation over time, and thus build our
proofs—while cleanly separating the formal specification and proofs from the
implementation. In practical terms, implemented instances call the Default_
arbitrate function to generate the traces and to prove POs.

Listing 14: Default behaviour of controllers.
Program Fixpoint Default_arbitrate {AF : Arrival_function_t}

{IM : Implementation_t} t {struct t} : Controller_state_t :=
let R := Arrival_at t in
match t with
| 0 ⇒ mkControllerState [::] t (Init R)
| S(t’) ⇒ (* get controller state at instant t’ *)
let ast := Default_arbitrate t’ in
(* obtain impl. state and next command to issue *)
let (ist, kind, req) := Next R ast.(Implementation_State) in
(* append new command to command list *)
let new_cmd := mkCmd t ckind creq in
let cmd_list := (new_cmd ::ast.(Controller_Commands)) in
(* build next controller state*)
mkControllerState cmd_list t ist

end.

In more detail, the Default_arbitrate function produces t states by recur-
sion, where t is provided as argument. If t = 0 , the function builds the first Control-
ler_state_t with an empty command list, time stamp equal to 0, and internal
state built by the function Init – which itself takes as argument the list of currently-
arriving requests, R (Arrival_at cf. Listing 12). If, however, t > 0 , the Next func-
tion is used to build a new state, taking the old state—obtained through a recursive
call to Default_arbitrate—as an argument. Following that, we build the new
command, append it into the command list, and finally build a new Controller_
state_t. In addition, bear in mind that since AF is kept as an implicit parameter of
Default_arbitrate, it is never instantiated and our proofs hold for all possible
arrival functions, as long as they respect their specification and the POs in it. A dia-
gram illustrating the production of states is shown in Fig. 6. The situation depicted in
the figure results from a call to Default_arbitrate t.

687

1 3

Real-Time Systems (2023) 59:664–704

6 Implementations & proofs

We refine our specification with two implementations: one based on the First-In
First-Out (FIFO) arbitration policy and the other on Time-Division Multiplexing
(TDM). Both implementations differ in the way they schedule requests, i.e., they
implement different front-end scheduling policies. As for the back-end and com-
mand generation, we implement both controllers with closed-page policies, i.e., for
any request, we issue the same PRE-ACT-CAS sequence. The generated commands
do not go through a new arbitration policy, they are sent to the command bus in the
order that they are generated. Neither controller can preempt requests. Moreover, the
two implementations are intended to serve as templates for future Real-Time mem-
ory controller implementations within the framework, which means that the high-
level strategies used for discharging proof obligations are largely re-usable.

In the next subsection, we give implementation details about one of the two,
TDM.13 Then, in Sect. 5.2, as an example of how to solve proof obligations, we pre-
sent step-by-step the high-level proof strategy used to prove the Request_han-
dled PO and bound the worst-case latency for the TDM controller.

6.1 TDM implementation

We start by introducing our TDM controller main parameters, characteristics, and
hypotheses, all represented in the TDM_configuration class, shown in Listing
15: SN is the number of slots within a period; we assume that each requestor occu-
pies a slot, in conformance with the temporal isolation principle. As an example, if
SN:= 3, the TDM controller periodically serves three requestors in a defined order.
SL is the length of each individual slot, which has to be big enough to fit the neces-
sary commands to service each request while respecting the timing constraints, i.e.,
it has to be sufficiently large to fit a PRE, an ACT and a CAS.

Fig. 6 Production of states through Default_arbitrate

13 We only present details of TDM, since the methodology for FIFO is similar.

688 Real-Time Systems (2023) 59:664–704

1 3

Listing 15: TDM_configuration.
Class TDM_configuration := {
SN : nat; (* number of requestors/slots in the system *)
SL : nat; (* TDM slot length in DRAM bus cycles *)

(* Proof obligations *)
SN_one : 1 < SN; (* there has to be at least two requestors in TDM *)
SL_pos : 0 < SL;

(* The slot length has to be big enough to fit all commands *)
SL_ACT : ACT_date < SL;
SL_CASS : CAS_date.+1 < SL;
T_RAS_SL : T_RP.+1 + T_RAS < SL;
T_RC_SL : T_RC < SL;
T_RRD_SL : T_RRD < SL;
T_RTW_SL : T_RTW < SL;
T_CCD_SL : T_CCD < SL;
WTR_SL : T_WTR + T_WL + T_BURST < SL;
T_FAW_3SL : T_FAW < SL + SL + SL

}.

While it is easy to see from Listing 15 that the principle of temporal isolation
is respected, the spatial isolation is imposed through the Axiom Private_Map-
ping, show in Listing 16. The bank mapping policy does not affect the performance
of the FIFO arbitration, but it is important for TDM. We use it to prove the TRTP con-
straint: since consecutive TDM slots always target different banks, a PRE command
can be issued in the cycle following a CAS command—an optimisation w.r.t FIFO.

Listing 16: Private Bank Mapping
Axiom Private_Mapping : forall a b, Same_Bank a b →

TDM_slot (Default_arbitrate b.(CDate)).(Implementation_State) =
TDM_slot (Default_arbitrate a.(CDate)).(Implementation_State).

It is important to remember that, when writing implementations, we do not create
instances of the TDM_configuration class. This allows us to build the imple-
mentations and proofs with arbitrary parameter values. The same is true for the
Arrival_function_t class and a few others. In a later stage, if one wants to
run a simulation, concrete instances have to be provided for all classes, and proof
obligations have to be resolved.

Note also that the TDM_configuration class contains POs that ensure that the
SL and SN values are consistent with the timing parameters of the DRAM device.
Differently than paper-and-pencil proofs, note that this approach allows us to effec-
tively manage assumptions that a given controller relies upon by concisely writing
them all at the same place.

Concerning the controller’s functioning, at each time step it can find itself in one
of two possible states: IDLE or RUNNING.

689

1 3

Real-Time Systems (2023) 59:664–704

1. The controller is said to be IDLE during a TDM slot if no request is chosen to
be serviced in that slot – which can only take place if the requestor that owns the
slot does not have any pending request at the beginning of that slot.

2. The controller is in its RUNNING state whenever a request is serviced within a
TDM slot.

Furthermore, at all times, the TDM controller carries within itself three state
variables:

1. A counter of type Slot_t, keeps track of slots within a period—its maximum
value being SN (Slot_t ∈ [0, SN[).

2. A counter of type Counter_t, keeps track of cycles elapsed within a slot—its
maximum value being SL (Counter_t ∈ [0, SL[).

3. A list of pending requests.

If the controller is in the RUNNING state, it carries an additional variable used to
identify the request currently being serviced.

Figure 7 illustrates a TDM arbitration between three requestors/cores: A, B,
and C (SN:= 3). The run-time status of the state variables described above is
shown in the figure as well. Four requests are present in the system: r0a , from
requestor A; r0b , from requestor B; and r0c and r1c , from requestor C. Bear in mind
that requests from different requestors target different banks. The controller can-
not initially serve r0a because it has arrived too late into the slot to be taken into
account. Then, on cycle 9, request r0b is served, followed by request r0c . In the
next TDM period (starting at cycle 25), r0a is served. The request r1c is finally
served in the slot starting at cycle 41.

The controller issues the PRE command on the first cycle of a slot and then
issues the ACT and CAS commands at offsets within slots designated by ACT_
date and CAS_date respectively. Those are functions that derive the right off-
set from the DRAM devices timing parameters. Note that CAS and PRE com-
mands of consecutive slots are issued back-to-back, since, assuming at least two
requestors (cf. Listing 15, PO SN_one), neighbouring TDM slots always target
different banks (private bank mapping). Recall that tWR and tRTP are intra-bank
constraints. Moreover, assume that, in the figure, the request queue is empty at
the start. The annotations tar1c , tcr1c , txr1c , and tkr1c will be introduced and used in
Sect. 5.2.

6.2 Proving the requests_handled PO for TDM

The proof of the theorem that satisfies the PO Requests_handled is organ-
ised in steps, written in Coq as Lemmas. The key idea is to advance in time step-
by-step, starting from the instant ta when a request arrives in the system, through
intermediate steps (tc , tx , and tk), up until the point where a matching CAS is

690 Real-Time Systems (2023) 59:664–704

1 3

issued. Figure 7 provides a graphic illustration of these logical steps for request
r1c.

Concerning the low-level proof strategy, i.e., the strategy for individual steps,
we rely heavily on induction (over time or queues), often accompanied by tactics
that perform case analysis on the state variables described in the previous sec-
tion. Although going into details about the low-level proof strategies is out of
the scope of this work; we describe, in the following text, most of the high-level
proof strategy—thus providing the reader a logical sequence of steps, which can
be reproduced in future implementations.

Definition 1 Let ra be an arbitrary request issued by requestor A at instant ta.

Step 1: Pending_on_arrival We prove that ra is instantly inserted into the
request queue. (Proven by case analysis on state variables and function unfolding).

Definition 2 Let tc be the next instant after ta when the controller can again decide
to service a request from requestor A.

Fig. 7 TDM arbitration

691

1 3

Real-Time Systems (2023) 59:664–704

Step 2: Pending_requestor_slot_start We prove that, once ra is in
the pending queue, it stays there until at least tc . (Induction over time, case analy-
sis on state variables)

Definition 3 Let P(t, R) be a function that returns an ordered sub-set of the pending
queue at time stamp t consisting only of elements issued by a given requestor R. Let
i be the position of ra in P(tc,A) . Let tx be equal to tc + i ⋅ SN ⋅ SL.

Step 3: Request_index_zero We prove that if ra is in the pending queue
at tc , then it will get to the head of P(tx,A) at tx , i.e., exactly i ⋅ SN ⋅ SL cycles after
tc . (Induction over i)

Step 4: Request_processing_starts We use steps 1, 2, and 3 to prove
that if ra arrived at ta , then it will get to the head of P(tx,A) at tx (Listing 17). Note
that the proof script consists of using the Coq tactic apply, which simply makes
use of existing lemmas. (Follows directly from steps 1,2, and 3)

Listing 17: Step 4 – Proof outline of Request_processing_starts.
Lemma Request_processing_starts ta ra:

(* Requestor_slot_start calculates tc for ta and ra *)
let tc := Requestor_slot_start ta ra.(Requestor) in
(* The controller state at tc *)
let S := (Default_arbitrate tc).(Implementation_State) in
(* P(tc,A): pending queue of requestor A at instant tc *)
let P := Pending_of ra.(Requestor) S in
(* i: position of ra in the pending queue *)
let i := index ra P in
(* tx: instant when processing of ra starts *)
let tx := tc + i * SN * SL in
(* The controller state at tx *)
let S’ := (Default_arbitrate tx).(Implementation_State) in
ra \in Arrival_at ta

→ ra \in (Pending_of ra.(Requestor) S’) &&
(index ra (Pending_of ra.(Requestor) S’) = 0).

Proof.
intros HA. (* HA := ra \in Arrival_at ta *)
(* Use Step 1 *)
apply Pending_on_arrival in HA as HP.
...
(* Use Step 2 : Any pending request at least remains

pending until its requestors slot is reached *)
apply Pending_requestor_slot_start in HP.
...
(* Use Step 3: Any pending request ultimately gets to the

head of the pending queue (index zero) *)
apply Request_index_zero in HP; simpl in HP; exact HP.
Qed.

Step 5.1: Request_slot_start_aligned We prove that the internal
counter (represented by TDM_counter of type Counter_t) is equal to 0 at tx ,
i.e., tx marks the beginning of a slot. (Follows from modulo arithmetic on TDM_
counter from Coq’s arithmetic libraries)

692 Real-Time Systems (2023) 59:664–704

1 3

Step 5.2: Request_starts We prove that, for any given t, if ra is the head
of P(t, A) and TDM_counter equals 0, then the request starts to be processed
the very next cycle. (Case analysis on state variables)

Step 6: Request_running_in_slot We prove that, for any given t, if a
request is being serviced at t and TDM_counter is equal to 1 at t, then for all
d such that d < SL − 1 , the request will remain being served until at least t + d .
(Induction over d)

Step 7: Request_processing We use steps 4, 5.1, 5.2, and 6 to prove, for all
d smaller than SL − 1 , that ra will be the request currently being processed (repre-
sented by TDM_request) at tx + d (Listing 18). (Follows from previous steps)

Listing 18: Step 7 – Proof outline of Request_processing.
Lemma Request_processing ta ra:

let tc := Requestor_slot_Start ta ra.(Requestor) in
let S := (Default_arbitrate tc).(Implementation_State) in
let P := Pending_of ra.(Requestor) S in
let i := index ra P in
let tx := tc + i * SN * SL in
ra \in (Arrival_at ta) → forall d, d < SL.− 1

→
(* The controller state at tx + d *)
let S’:=(Default_arbitrate (tx + d)).(Implementation_State) in
(* The conclusion *)
(TDM_counter S’ = d.+1) && (TDM_request S’ = ra)

Proof.
... (* Applies lemmas described in steps 4,5.1,5.2 and 6 *)
Qed.

Definition 4 Let tk be tx + CAS_date , where CAS_date is the CAS command offset
within a TDM slot (cf. Figure 7).

Step 8.1: Request_CAS We use step 7 with d equal to CAS_date to prove that ra
will have its CAS issued at tx + CAS_date (Listing 19). (Application of step 7, unfold-
ing, and arithmetic simplification).

693

1 3

Real-Time Systems (2023) 59:664–704

Listing 19: Step 8.1 – Proof outline of Request_CAS.
Lemma Request_CAS ta ra:
let tc := Requestor_slot_Start ta ra.(Requestor) in
let S := (Default_arbitrate tc).(Implementation_State) in
let i := index ra (Pending_of ra.(Requestor) S) in
let tk := tc + i * SN * SL+ CAS_date in
ra \in (Arrival_at ta) →
(CAS_of_req ra tk) \in (Default_arbitrate tk).(Controller_Commands)
Proof.
intros HA. (* HA := ra \in Arrival_at ta *)
(* Use Step 7 :
any request is processed until the CAS date is reached *)
apply Request_processing with (d := CAS_date) in HA as HR.
...
Qed.

Step 8.2: Requests_handled We prove the theorem that satisfies the final PO
(Follows from step 8.1).

Figure 8 shows an automatically-generated graphical representation of the proof. For
the sake of conciseness, we only show the high-level lemmas relevant for the proof
strategy discussed above. The steps discussed above are highlighted in the graph.

We would like to emphasise that, as it can be seen in Listing 19, tk is the typical
closed-form expression one would expect for TDM. The formula is made of three parts:

Fig. 8 Proof structure: Requests_handled

694 Real-Time Systems (2023) 59:664–704

1 3

1. tc, which is bounded by ta + SL − 1;
2. i ⋅ SN ⋅ SL , which is bounded by the number of pending requests of the respective

requestor;
3. CAS_date , which is constant.

A timing analysis tool may now easily derive correct latency bounds for our TDM
implementation by evaluating this formula. For this it would need to supply the correct
TDM configuration (SL and SN) and establish bounds on i through an additional model
of the requestor (i.e., by modelling the arrival function).

For example: considering a DDR4-2400U device (c.f Table 1), the minimum pos-
sible value of SL is 40, as it can be seen from Eq. 1 (as determined by PO SL_CASS in
Listing 15).

Listing 20: From implementations to instantiating the controller.
(* Creates a proved trace from the implementation *)
Definition TDM_arbitrate t :=

mkTrace (Default_arbitrate t).(Controller_Commands)
(Default_arbitrate t).(Controller_Time)
(Cmds_T_RRD_ok t) (* proof *)
(Cmds_T_FAW_ok t) (* proof *)
... (* all the other proofs *)

(* Instantiate the TDM controller *)
Instance TDM_controller : Controller_t :=

mkController AF TDM_arbitrate Requests_handled.

Consider now four cores (SN = 4) that can only issue two outstanding memory
requests at a time (which implies that the maximum value of i is 1). The worst-case
latency WCL is then given by Eq. 2:

Even more, analyses that are themselves formalised in Coq could simply reuse our
proofs in order certify memory latency bounds.

6.3 Putting it all together

Finally, in Listing 20, we show the code that instantiates the trace through the con-
structor mkTrace, defines the proven arbitration function TDM_controller,
and finally instantiates the controller (using mkController, cf. Listing 12). The

(1)

ACTdate ∶= TRP + 1

CASdate ∶= ACTdate + (TRCD + 1) = (TRP + 1) + (TRCD + 1) = 38

SL > CASdate + 1

SL > 39

(2)
WCL = (SL − 1) + i ⋅ SL ⋅ SN + CASdate

= 39 + 1 ⋅ 40 ⋅ 4 + 38 = 237

695

1 3

Real-Time Systems (2023) 59:664–704

command trace instance is only accepted by Coq if all proofs are provided as argu-
ments to the constructor, which means that the implementation is correct. In the list-
ing, we show that Cmds_T_RRD_ok t and Cmds_T_FAW_ok t are provided
as arguments. These are the actual proofs that satisfy the tRRD and tFAW constraints,
respectively. The command trace itself is obtained from the last state produced by
the Default_arbitrate function. Similarly, the Controller_t instantiation
is only accepted when a proof for the Requests_handled PO is provided. Even
for someone not familiar with Coq, it is thus trivial to verify the correctness of the
controller implementation.

7 Modelling semantics

The expressivity provided by Coq allows us to model other interesting properties
about DRAM controllers. Notably, we can write classes that define certain seman-
tics, e.g., guarantees on the possible order in which requests are handled. To show-
case this, we model two flavors of Lamport’s definition of Sequential Consistency
Lamport (1979) (SC). According to Lamport, sequential consistency in a multipro-
cessor system is achieved when two requirements are met:

– Requirement R1: Each processor issues memory requests in the order specified
by its program.

– Requirement R2: Memory requests from all processors issued to an individual
memory module are serviced from a single FIFO queue. Issuing a memory
request consists of entering the request into this queue.

Requirement R1, on the one hand, is an assumption on the behaviour of proces-
sors, and is therefore not modelled from the memory controller’s point of view. This
makes sense, considering that a memory consistency model can be seen as a con-
tract between software/programs and the hardware, and is conceptually implemented
by both. Requirement R2, on the other hand, should be implemented by the memory
controller.

Moreover, Lamport defines a relaxed version of R2 that still guarantees SC: “We
need only require that all requests to the same memory cell be serviced in the order
that they appear in the queue.” This relaxed version of R2 comes from the observa-
tion that actually only memory accesses to the same address can introduce inco-
herence w.r.t the order of execution between cores, and therefore, a FIFO order of
execution should be guaranteed only between accesses to the same addresses. We
emphasise that Lamport’s definitions are seen today as sufficient conditions, and a
more formal definition of SC was introduced by Sezgin (2004).

In practical terms, we define two classes in our framework that model require-
ment R2 as proof obligation R2 and its relaxed version as proof obligation R2_
relaxed, respectively, as shown in Listing 21.

696 Real-Time Systems (2023) 59:664–704

1 3

Listing 21: Modelling Controller Semantics.
Class SequentialConsistent_Controller {AF : Arrival_function_t} {AR : Arbiter_t}

:= mkSeqController {

R2 : forall ta reqa tb reqb,
reqa \in (Arrival_at ta) → (* reqa arrives at ta *)
reqb \in (Arrival_at tb) → (* reqb arrives at tb *)
(* either reqa arrived before reqb OR

they arrived at the same instant, but there
is an arbitrary order between reqa and reqb,
and reqa is to be serviced before *)

(ta < tb) ∨
(ta = tb ∧ index reqa (Arrival_at ta) < index reqb (Arrival_at ta))
(* txa, the completion date of reqa must happen before txb,

the completion date of reqb *)
→ exists txa txb, (CAS_of_req reqa txa \in (Arbitrate txa).(Commands))
&& (CAS_of_req reqb txb \in (Arbitrate txb).(Commands)) && (txa < txb)

}.

Class W_SequentialConsistent_Controller {AF : Arrival_function_t} {AR :
Controller_t} := mkWSeqController {

R2_relaxed : forall ta reqa tb reqb,
reqa \in (Arrival_at ta) → (* reqa arrives at ta *)
reqb \in (Arrival_at tb) → (* reqb arrives at tb *)
(ta < tb) ∨
(ta = tb ∧ index reqa (Arrival_at ta) < index reqb (Arrival_at ta))
(* Here, an additional pre-condition: reqa and reqb target the same row *)

→ reqa.(Row) = reqb.(Row) →
(* txa, the completion date of reqa must happen before txb,

the completion date of reqb *)
exists txa txb,
(CAS_of_req reqa txa \in (Arbitrate txa).(Commands)) &&
(CAS_of_req reqb txb \in (Arbitrate txb).(Commands)) && (txa < txb)

}.

Note that, in both R2 and R2_relaxed, two situations are possible: either ta
= tb, which means that the two requests have arrived at the same time; or �� < �� ,
which means that reqa has arrived before reqb. This arrival order of requests
assumes that the condition R1 has already been satisfied, i.e., if reqa and reqb are
requests issued by the same requestor, then reqa was issued before reqb. In the
case where ta = tb (which could happen in a multi-core system), the arrival order
to be considered is given by the positions of both reqa and reqb in the ordered
set Arrival_at ta, as a real implementation would indeed impose some order
on requests that have arrived on the same cycle. In the listing, the position in the
ordered set is given by the function index.

The PO R2_relaxed is a relaxed version of R2, in which the condition “requests
targeting the same cell” is described through the logical proposition reqa.(Row)
= reqb.(Row). It follows that only controllers respecting the conditions set by
the POs in the classes can instantiate them. Considering the two controllers imple-
mented in this work, while FIFO respects both constraints, TDM can only instanti-
ate the weakened version, W_SequentialConsistent_Controller. This is

697

1 3

Real-Time Systems (2023) 59:664–704

because TDM (under private bank mapping), has the ability to prioritise a request
that has arrived later than another request issued by another processor.

Furthermore, other memory consistency models, such as TSO and linearizabil-
ity, could be modelled likewise. This feature distinguishes our contributions, since
state-of-the-art RT memory controllers have virtually ignored the semantics aspects.
Other work that aim at using formal methods to model DRAM properties (c.f
Sect. 2.2) focus mainly on timing properties. The fact that we can straightforwardly
extend our framework to model (which does not necessarily imply that proofs will
follow straightforwardly) this kind of property is a statement of how powerful this
methodology can be.

8 Evaluation & simulation

In the following, Sect. 7.1 evaluates our approach regarding size and compila-
tion time and gives an additional insight on using our framework. Then, Sect. 7.2
explains how we extracted code from our framework and used it to integrate our
approach into an external DRAM software simulator.

8.1 Evaluation

Table 4 presents the code size and the compilation times for the specification files,
both implementations, and the proof scripts. As it can be seen, the implementations
themselves are small compared to the specification and the proofs. The proofs are
in the order of 10 to 25 times longer than the implementations. 14 As proofs are
checked by Coq’s kernel, compiling the files containing the proofs also takes more
time than files containing simply code.

14 As stated by Boldo et al. (2017), Coq proofs are usually as long as paper and pencil proofs, which
means that automatising the proof process with Coq is comparable to manual proofs (concerning length).

Table 4 Size of the code &
Compilation time

a Results obtained on a system with the following configuration:
CPU—Intel(R) Core(TM)i5-10210U CPU 1.60GHz; Memory
– 8GiB; Operating System—Ubuntu 20.04.3 LTS; Coq Ver-
sion—8.13.2

Lines of code Compila-
tion time
(s)a

Specification 554 2.34
FIFO implementation 107 0.32
FIFO proofs 2515 9.63
TDM implementation 224 0.45
TDM proofs 2221 15.44

698 Real-Time Systems (2023) 59:664–704

1 3

Furthermore, the set of hypothesis used for the proofs form an exploitable math-
ematical model by itself. This set of hypothesis is made of formulas establishing lin-
ear inequalities between the controller parameters and the timing constraints, which
can be fed to a Linear Programming (LP) solver in order to obtain optimal values for
the controller parameters. Then, when used to concretely instantiate the controller,
these optimal values are checked by Coq’s engine—serving as a validity check for
parameters values.

8.2 Code generation & simulation

External environments/frameworks can interact with our model through calls to the
Init and Next functions. Because these functions together define a transition sys-
tem, which is essential to hardware design, they can be embedded into foreign code,
such as software simulators and hardware. To showcase this feature, we choose
MCsim Mirosanlou et al. (2020), a cycle-accurate DRAM simulator written in
C++ to host our proved code. To establish an interface between both, we use Coq’s
extraction feature, which can output code in different programming languages. We
opt for Haskell, since it has a well-documented Foreign Function Interface (FFI)15
library that allows Haskell programs to cooperate with C/C++ programs16.

We use MCsim’s trace reading function to model request arrivals, which fetches a
new request after completing the preceding one. Moreover, the simulator provides a
class to implement controllers, which contains a method update, called each clock
cycle to update the internal state of the controller. This method makes a call to the
requestSchedule method followed by a call to commandSchedule. Accord-
ing to pre-defined arbitration policies, the former fetches requests from the pending
queues, generates commands and puts them into a buffer. The latter chooses one of
the commands in this buffer and sends it to the device. Since our model performs all
of these steps, we replace the calls to requestSchedule and commandSched-
ule with calls to Init (for the first cycle) and Next. In addition, we encapsulate
the generated code inside Haskell wrapper functions to properly handle data on both
sides: states are passed back and forth between C++ and Haskell through opaque
pointers, and other data structures, such as requests and commands, are converted
with the aid of hsc2hs,17 a preprocessor that helps with writing Haskell bindings to C.

In order to validate our framework, we run the two traces that come with MCsim:
one made of requests accessing sequential addresses and the other made of random
ones. Every requestor executes the same trace—but are nevertheless forced to be
mapped to different banks. The value of the SL TDM parameter is chosen to be the
minimum possible through the methodology described in the end of Sect. 7.1. For
the DDR3-2133N device, for instance, this value is equal to tRP + tRCD = 28 . We

15 https:// ghc. gitlab. haske ll. org/ ghc/ doc/ users_ guide/ exts/ ffi. html.
16 The generated Haskell code is compiled with ghc (version 8.10.4). Then, MCsim is compiled with
g++ (version 9.4.0) and linked with ghc.
17 https:// hacka ge. haske ll. org/ packa ge/ hsc2hs.

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/ffi.html.
https://hackage.haskell.org/package/hsc2hs.

699

1 3

Real-Time Systems (2023) 59:664–704

choose the value of FIFO’s WAIT—a fixed delay to process requests, like TDM’s
SL—similarly.

As a first observed result, the simulations follow through for both TDM and FIFO
controllers. This validates our specification, since MCsim’s simulation stalls if tim-
ing constraints are not respected or incoming requests are not served at some point.

Table 5 compares the simulation output with other known DRAM controllers
(AMC Paolieri et al. (2009), ROC Xin et al. (2019), and FR-FCFS Rixner et al.
(2000))—our results are highlighted. Note that, for the described setup, our control-
lers provide competitive bandwidth compared to the real-time controller AMC. As
expected, the bandwidth is smaller than that of high-performance controllers (ROC
and FRFCFS). It can be seen that these high-performance controllers exhibit fluc-
tuations on the maximum observed latency depending on the trace format (41 to 25
and 23 to 25 respectively), while the real-time controllers offer constant values, no
matter the input. Moreover, the maximum observed latency values are consistent
with the ones presented in related work (c.f Figure 14 on Ecco and Ernst (2015)).
As a setback, since our integration with MCsim relies on a complex Haskell-C++
interaction, the simulation is considerably slower.

Bear in mind that only two things impact the simulation time and scalability: 1)
The size of the input trace, i.e., how many requests arrive in the system. 2) The
timing parameters of the device to be simulated. As faster devices (in terms of
frequency) have larger timing constraints (in terms of clock cycles), more calls to
MCsim’s simulation function are needed, thus resulting in longer simulations.

We emphasise that for this paper, our goal is not to propose high-performance
and/or high-bandwidth implementations, as the closed-page strategy together with
FIFO and TDM arbitration policies results in rather simple and relatively slow con-
trollers. Our integration with MCsim serves as a proof of concept for our specifica-
tion, and using our framework to model competitive real-time controllers is listed as
a part of our future work plans.

Table 5 Simulation results for sequential and random traces

MCsim setup: 4 Requestors, 1 Channel, 1 Rank, DDR3 2133N 2Gb_x8 device, Private Banks, In-order
cores, 1000000 cycles
a Values were obtained with the same computer setup described in the previous section

FIFO TDM AMC ROC FRFCFS

Sequential trace
 Bandwidth (MB/s) 433.89 799.97 609.536 5296.08 5931.93
 Requests completed (per requestor, on average) 4237 7812 5952 51720 57929
 Maximum observed latency (cycles) 236 136 168 41 23
Random trace
 Bandwidth (MB/s) 433.89 799.97 609.536 4995.1 4995.1
 Requests completed (per requestor) 4237 7812 5952 48780 48780
 Maximum observed latency (cycles) 236 136 168 25 25
Average simulation timea (s)

11.13 21.18 0.41 0.85 0.96

700 Real-Time Systems (2023) 59:664–704

1 3

9 Why is it more trustworthy?

The framework provides a trustworthy design path from end to end. The design flow
proposed by the framework is presented through a diagram in Fig. 9. In other words,
we claim that the trust in every link in that diagram is increased, compared to other
real-time hardware design methodologies.

First, consider the link between the JEDEC standards and the Coq-written model
(leftmost arrow). The language used to write our specification is very close to the
language used in the standard itself, which is a mixture of graphical and natural lan-
guage. Take, for instance, the listings shown throughout the paper: proof obligations
are formulated through propositions written in a mixture of first and higher-order
logic and do resemble natural language. It is relatively easy to be convinced that our
proof obligations do capture the actual behaviour described in the JEDEC standards.
Other state-of-the-art work that implement some formal approach w.r.t DRAM prob-
lem rely on complex mathematical representations to represent the same properties.
As comparison, consider the UPPALL finite state-machines proposed by Li et al.
(2016), used to model the very same properties. While we do not claim that the
representation is inherently harder, we do state that there is a larger gap between
the languages used in the model and the standard; and this gap can lead to poor
modelling.

Second, consider the link between specification (model) and implementation/
proofs. From the fact that proofs and programs are essentially the same, many ben-
efits follow:

1. Proofs are machine-checked by Coq’s kernel and therefore more trustworthy.
2. Every single hypothesis used for proving obligations must be made explicit and

grouped together in classes—which allows better management, since hypotheses
are no longer scattered throughout the paper.

3. Proofs are complete, since hand-waving and oversimplifying will not work in
Coq.

4. There is no trust gap coming from different representations of model and proofs.
In other words, paper-and-pencil mathematical abstractions about models can
introduce another language gap and lead to poor modelling.

5. Hardware designs can hide the underlying mathematical formalism of timing
analyses from the reader. Differently put, if a new hardware component is intro-
duced within such a framework, the designer can present it without giving details
about timing analyses, by just saying that all the proof obligations have been
successfully satisfied. Hence, the job of reviewers and readers then switches

Fig. 9 Design Flow with the Coq Framework

701

1 3

Real-Time Systems (2023) 59:664–704

from checking if paper-and-pencil proofs are correct to merely checking if the
properties captured by the specification are correct (which leads us back to the
first point).

Lastly, concerning the last and right-most blue arrow in Fig. 9, Coq provides extrac-
tion to many target languages. This feature allows proved executable code to be pro-
duced as output and serve as sources of trust in external software/hardware.

10 Conclusion & future work

We propose a new way of designing Real-Time Memory Controllers. We write a
formal specification that defines the properties of interest as proof obligations. We
focus on properties related to the respect of timing constraints, correctness of the
command protocol, and assertiveness that every request is handled in bounded
time. We refine our specification with two implementations (in which we write
proofs for each proof obligation in the specification). We validate our specification
through execution on a simulator and compare simulation results with other known
controllers.

The follow-up to this work consists in using Cava (c.f Sect. 2.3) to produce HDL
code directly from the framework. The generated HDL code will then be used inside
of a DDR4 hardware simulation environment. After this step is finished, many direc-
tions are actually possible, the most promising being: modelling the remaining prop-
erties described in the JEDEC standards (such as DRAM refresh operations, power-
down modes, et. cetera) with the goal of achieving a more complete specification;
implement state-of-the-art RT MCs within the framework; capturing other types of
properties, e.g., imposing security-related counter-measures as proof obligations;
and writing tactics to achieve higher proof automation.

Acknowledgements This research was supported by Labex DigiCosme (Project ANR11L-ABEX-
0045DIGICOSME) operated by ANR as part of the program “Investissement d’Avenir” Idex ParisSaclay
(ANR11IDEX000302).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Akesson B, Nasri M, Nelissen G, Altmeyer S, Davis RI (2020) An empirical survey-based study into
industry practice in real-time systems. In: 2020 IEEE Real-Time Systems Symposium (RTSS).
IEEE, pp 3–11

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

702 Real-Time Systems (2023) 59:664–704

1 3

Bhat B, Mueller F (2011) Making DRAM refresh predictable. Real-Time Syst 47(5):430–453. https:// doi.
org/ 10. 1007/ s11241- 011- 9129-6

Bjesse P, Claessen K, Sheeran M, Singh S (1998) Lava: hardware design in haskell. ACM SIGPLAN
Notices 34(1):174–184

Boldo S, Clément F, Faissole F, Martin V, Mayero M (2017) A Coq formal proof of the lax-milgram
theorem. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs,
pp 79–89

Bourgeat T, Pit-Claudel C, Chlipala A (2020) The essence of bluespec: a core language for rule-based
hardware design. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pp 243–257

Bozhko S, Brandenburg BB (2020) Abstract response-time analysis: A formal foundation for the busy-
window principle

Cerqueira F, Stutz F, Brandenburg BB (2016) Prosa: A case for readable mechanized schedulability anal-
ysis. In: Euromicro Conference on Real-Time Systems, ECRTS’16. IEEE, pp 273–284

Chlipala A (2022) Certified programming with dependent types: a pragmatic introduction to the Coq
proof assistant. MIT Press, Cambridge

Choi J, Chlipala A, et al (2022) Hemiola: A DSL and verification tools to guide design and proof of hier-
archical cache-coherence protocols. In: International Conference on Computer Aided Verification.
Springer, pp 317–339

Choi J, Vijayaraghavan M, Sherman B, Chlipala A, Arvind (2017) Kami: aplatform for high-level para-
metric hardware specification and its modular verification. Proc ACM Prog Language 1:1–30

Ecco L, Ernst R (2015) Improved DRAM timing bounds for real-time DRAM controllers with read/write
bundling. In: Real-Time Systems Symposium, RTSS’15. IEEE, pp 53–64

Guo D, Hassan M, Pellizzoni R, Patel H (2018) A comparative study of predictable DRAM controllers.
ACM Trans Embed Comput Syst (TECS) 17(2):1–23

Guo D, Pellizzoni R (2017) A requests bundling DRAM controller for mixed-criticality systems. In: Real-
Time and Embedded Technology and Applications Symposium, RTAS’17. IEEE, pp 247–258

Guo X, Lesourd M, Liu M, Rieg L, Shao Z (2019) Integrating formal schedulability analysis into a veri-
fied os kernel. In: Computer Aided Verification, CAV’19. Springer, pp 496–514

Hassan M, Patel H (2017) Mcxplore: Automating the validation process of DRAM memory control-
ler designs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
37(5):1050–1063

Hassan M, Patel H, Pellizzoni R (2015) A framework for scheduling DRAM memory accesses for multi-
core mixed-time critical systems. In: Real-Time and Embedded Technology and Applications Sym.
IEEE, pp 307–316

Jalle J, Quinones E, Abella J, Fossati L, Zulianello M, Cazorla FJ (2014) A dual-criticality memory con-
troller (dcmc): Proposal and evaluation of a space case study. In: Real-Time Systems Symposium,
RTSS’14. IEEE, pp 207–217

(JEDEC), J.E.D.E.C.: DDR4 SDRAM standard (2021)
Jung M, Kraft K, Soliman T, Sudarshan C, Weis C, Wehn, N (2019) Fast validation of DRAM protocols

with timed petri nets. In: International Symposium on Memory Systems, MEMSYS’19. ACM, pp
133–147

Lamport L (1979) How to make a multiprocessor computer that correctly executes multiprocess pro-
grams. IEEE Trans Comput C 9:690–691

Larsen KG, Pettersson P, Yi W (1997) Uppaal in a nutshell. Int J Softw Tools Technol Transf
1(1):134–152

Li Y, Akesson B, Goossens K (2014) Dynamic command scheduling for real-time memory controllers.
In: Euromicro Conference on Real-Time Systems, ECRTS’14. IEEE, pp 3–14

Li Y, Akesson B, Lampka K, Goossens K (2016) Modeling and verification of dynamic command sched-
uling for real-time memory controllers. In: Real-Time and Embedded Technology and Applications
Symposium. IEEE, pp 1–12

Lisboa Malaquias F, Asavoae M, Brandner F (2022) A Coq framework for more trustworthy DRAM con-
trollers. In: Proceedings of the 30th International Conference on Real-Time Networks and Systems,
pp 140–150

Maida M, Bozhko S, Brandenburg BB (2022) Foundational response-time analysis as explainable evi-
dence of timeliness. In: 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik

https://doi.org/10.1007/s11241-011-9129-6
https://doi.org/10.1007/s11241-011-9129-6

703

1 3

Real-Time Systems (2023) 59:664–704

Mirosanlou R, Guo D, Hassan M, Pellizzoni R (2020) Mcsim: An extensible DRAM memory controller
simulator. IEEE Comput Archit Lett 19(2):105–109

Mirosanlou R, Hassan M, Pellizzoni R (2020) Drambulism: Balancing performance and predictability
through dynamic pipelining. In: 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, pp 82–94

Mirosanlou R, Hassan M, Pellizzoni R (2021) Duomc: Tight DRAM latency bounds with shared banks
and near-cots performance. In: The International Symposium on Memory Systems, pp 1–16

Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL: a proof assistant for higher-order logic, vol
2283. Springer, Berlin

Paolieri M, Quinones E, Cazorla FJ, Valero M (2009) An analyzable memory controller for hard real-
time cmps. IEEE Embed Syst Lett 1(4):86–90

Reineke J, Liu I, Patel HD, Kim S, Lee EA (2011) PRET DRAM controller: Bank privatization for pre-
dictability and temporal isolation. In: Conference on Hardware/Software Codesign and System Syn-
thesis. IEEE, pp 99–108

Rixner S, Dally WJ, Kapasi UJ, Mattson P, Owens JD (2000) Memory access scheduling. ACM
SIGARCH Comput Archit News 28(2):128–138

Schranzhofer A, Pellizzoni R, Chen JJ, Thiele L, Caccamo M (2011) Timing analysis for resource access
interference on adaptive resource arbiters. In: Real-Time and Embedded Technology and Applica-
tions Symposium, RTAS’11. IEEE, pp 213–222

Sezgin A (2004) Formalization and verification of shared memory. The University of Utah
Shankar N (2018) Combining model checking and deduction. In: Handbook of Model Checking.

Springer, pp 651–684
Sørensen MH, Urzyczyn P (2006) Lectures on the Curry-Howard isomorphism. Elsevier, Amsterdam
Valsan PK, Yun H (2015) Medusa: a predictable and high-performance DRAM controller for multicore

based embedded systems. In: 2015 IEEE 3rd international conference on cyber-physical systems,
networks, and applications. IEEE, pp 86–93

Wu ZP, Krish Y, Pellizzoni R (2013) Worst case analysis of DRAM latency in multi-requestor systems.
In: Real-Time Systems Symposium, RTSS’13. IEEE, pp 372–383

Xin X, Zhang Y, Yang J (2019) Roc: DRAM-based processing with reduced operation cycles. In: Pro-
ceedings of the 56th Annual Design Automation Conference 2019, pp 1–6

Yun H, Pellizzon R, Valsan PK (2015) Parallelism-aware memory interference delay analysis for cots
multicore systems. In: Euromicro Conference on Real-Time Systems, ECRTS’15. IEEE, pp 184–195

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Felipe Lisboa Malaquias is a PhD candidate at Télécom Paris from
late 2020. Before starting the preparation of his PhD thesis, he com-
pleted his Master’s degree in Computer Science in Télécom Paris
and Université Paris-Saclay and his Bachelor’s degree in Electrical
Engineering at Universidade Federal de Minas Gerais, in Brazil.
Since the late stride of his Masters, Felipe has gained interest in the
problems of Real-Time Systems, culminating in his thesis, which
looks at memory controllers design for mixed-criticality systems and
formal reasoning. After starting his PhD, he published in three differ-
ent venues: RTNS, in June 2022; Nasa Formal Methods, in May
2023; and Ada Europe, in June 2023. Besides research, Felipe has
also performed teaching activities, providing lab support for Master’s
courses. In addition, Felipe has also had the chance to do some
research in industry: once in 2020, when he worked with OS devel-
opment in a secure environment; and again in 2023, when he worked
with formal methods to design trustworthy RISC-V architectures.
Moreover, Felipe is also fluent in Portuguese, French, English, and

Spanish. He also has a good level of German and Italian.

704 Real-Time Systems (2023) 59:664–704

1 3

Mihail Asavoae is a R&D engineer in CEA LIST, Paris since Dec
2017. He obtained his PhD from UAIC, Iasi in 2012 and worked pre-
and post-thesis in several international universities and reasearch
centers: NUS, in Singapore from 2002-2008, Verimag Lab, in Gre-
noble from 2013-2015 and INRIA Paris from 2015-2017. He also
had short-term scientific stays in UCM, Madrid and in Saarland Uni-
versity, Saarbruecken. Mihail’s research interests are on the design
and analysis of safety-critical systems using formal verification, in
particular on timing predictability-related problems (e.g. worst-case
execution time analysis, detection of timing anomalies, interference
analysis etc.). He also works on formal verification of security prop-
erties in HW/SW systems. Mihail is fluent in Romanian, English and
French and has basic notions of German.

Florian Brandner has been an Associate Professor at Télécom Paris
(Institut Polytechnique de Paris) since 2015. He received his Diploma
and PhD in 2004 and 2009 from the Vienna University of Technology.
He then worked as a post-doctoral researcher at ENS de Lyon and the
Technical University of Denmark, before joining ENSTA ParisTech as
an Assistant Professor in 2013. His research focuses on compilation
and analysis techniques as well as time-predictable computer architec-
ture design in the context of embedded real-time systems.

	A formal framework to design and prove trustworthy memory controllers
	Abstract
	1 Extended version
	2 Introduction
	3 Related work
	3.1 Real-time memory controllers & Trustworthiness
	3.2 DRAM & formal methods
	3.3 Uses of Coq in related problems

	4 Background
	4.1 DRAM systems
	4.2 A brief introduction to Coq

	5 Specification & proof obligations
	5.1 DRAM model
	5.2 The request arrival model
	5.3 Memory controller model
	5.4 Implementation interface

	6 Implementations & proofs
	6.1 TDM implementation
	6.2 Proving the requests_handled PO for TDM
	6.3 Putting it all together

	7 Modelling semantics
	8 Evaluation & simulation
	8.1 Evaluation
	8.2 Code generation & simulation

	9 Why is it more trustworthy?
	10 Conclusion & future work
	Acknowledgements
	References

