
Vol:.(1234567890)

Real-Time Systems (2023) 59:348–407
https://doi.org/10.1007/s11241-023-09395-0

1 3

Scheduling IDK classifiers with arbitrary dependences
to minimize the expected time to successful classification

Tarek Abdelzaher1 · Kunal Agrawal2 · Sanjoy Baruah2 · Alan Burns3 ·
Robert I. Davis3  · Zhishan Guo4 · Yigong Hu1

Accepted: 16 February 2023 / Published online: 13 March 2023
© The Author(s) 2023

Abstract
This paper introduces and evaluates a general construct for trading off accuracy and
overall execution duration in classification-based machine perception problems—
namely, the generalized IDK classifier cascade. The aim is to select the optimal
sequence of classifiers required to minimize the expected (i.e. average) execution
duration needed to achieve successful classification, subject to a constraint on qual-
ity, and optionally a latency constraint on the worst-case execution duration. An
IDK classifier is a software component that attempts to categorize each input pro-
vided to it into one of a fixed set of classes, returning “I Don’t Know” (IDK) if it
is unable to do so with the required level of confidence. An ensemble of several
different IDK classifiers may be available for the same classification problem, offer-
ing different trade-offs between effectiveness (i.e. the probability of successful clas-
sification) and timeliness (i.e. execution duration). A model for representing such
characteristics is defined, and a method is proposed for determining the values of
the model parameters for a given ensemble of IDK classifiers. Optimal algorithms
are developed for sequentially ordering IDK classifiers into an IDK cascade, such
that the expected duration to successfully classify an input is minimized, optionally
subject to a latency constraint on the worst-case overall execution duration of the
IDK cascade. The entire methodology is applied to two real-world case studies. In
contrast to prior work, the methodology developed in this paper caters for arbitrary
dependences between the probabilities of successful classification for different IDK
classifiers. Effective practical solutions are developed considering both single and
multiple processors.

Keywords  Real-time · Classifiers · Optimal ordering · DNN · Arbitrary dependences

The authors’ names are listed in alphabetical order.

 *	 Robert I. Davis
	 rob.davis@york.ac.uk

Extended author information available on the last page of the article

http://orcid.org/0000-0002-5772-0928
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-023-09395-0&domain=pdf

349

1 3

Real-Time Systems (2023) 59:348–407	

1  Introduction

This paper investigates a generalized approach for trading-off quality versus
latency of classification in machine perception systems, called generalized IDK
classifier cascades. The approach uses an ensemble of classifiers that can individ-
ually either return a class or say “I don’t know" (IDK). The problem is to decide
on the optimal order in which classifiers should be run in order to minimize the
time to successful classification, optionally within a maximum latency constraint,
given their different execution times, their individual success probabilities, and
their dependences, i.e. the probability that one will succeed given that another
has failed.

The broad challenge of investigating the trade-offs between latency and clas-
sification accuracy is motivated by the increasing role of machine perception in
modern intelligent real-time applications, such as drones (Kangunde et al. 2021),
autonomous cars (Shi et al. 2017; Bechtel et al. 2018), and medical IoT sys-
tems (Balaskas and Siozios 2019; Hossain et al. 2022). Perception in such Cyber-
Physical Systems is increasingly being performed using classifiers that are based
on Deep Learning, thus generating interest in understanding and optimizing the
trade-offs between the quality of deep-learning-based perception and perception
latency. Examples of such trade-off optimization approaches, proposed in recent
literature, include: (i) adaptive neural network approximations aimed at meeting
latency constraints (Bateni and Liu 2018; Kim et al. 2020; Heo et al. 2020; Yao
et al. 2020), and (ii) adaptive model-switching systems that pick one of multiple
neural network versions depending on the time available (Hu et al. 2021a).

Another direction is to consider ensembles of IDK classifiers (Trappenberg
and Back 2000; Khani et al. 2016). When applied to neural networks, IDK classi-
fiers build on the intuition, mentioned by Hu et al. (2021a), that switching entire
neural network models, using a hypothetical optimal model-switching algorithm,
is in principle generally superior to adapting only some neural network param-
eters dynamically, as is done in adaptive approximation systems. This is because
training an adaptive neural network must optimize any non-adaptive parameters
for some compromise among all possible values of the adaptive parameters (Hu
et al. 2021a). This compromise typically reduces run-time output quality for any
specific instantiation of the adaptive parameters. One way to avoid this compro-
mise is to train an entirely separate neural network for each different point in
the quality/latency trade-off space. The problem with the latter approach is that
optimal switching is impossible without a form of clairvoyance. This is because a
decision on which neural-network version to execute must be made ahead of time,
and not after some partial processing of the input has taken place. Since the opti-
mal decision might depend on the level of difficulty of the input, having to decide
before the input has been processed is a challenge.

IDK classifier cascades (Wang et al. 2018) address this challenge by taking a
different design approach. Like model-switching, they use an ensemble of differ-
ent classifiers; however, they assume that the chosen classifier, when not confi-
dent enough, can return an “I don’t know" value, that will then prompt the system

350	 Real-Time Systems (2023) 59:348–407

1 3

to choose another classifier, thereby executing a situation-dependent sequence
similar to adaptive approximation approaches. Prior work by Baruah et al. (2021,
2022) developed analytical results for the special cases of IDK classifiers where
the probabilities of successful classification by the respective classifiers were
either independent, or fully dependent of one another. This paper generalizes
from those special cases to the case of a general IDK classifier cascade, mean-
ing one with arbitrary dependences between the different classifiers. Further,
prior work by Baruah et al. (2021, 2022) also relies on the concept of a deter-
ministic classifier that is guaranteed to always make a successful classification,
albeit typically at the expense of a long execution time. This paper recognizes
that such a construct may not always be possible in practice, and therefore also
provides solutions based on a classification threshold. This classification thresh-
old specifies the minimum probability, e.g. 0.925, such that in the long run any
IDK cascade employed must be able to successfully classify at least 92.5% of its
inputs. Finally, Baruah et al. (2021, 2022) consider only single processor systems,
whereas this paper also considers solutions for multiple processors. Here we use
the term processor in the broad sense of an independent processing unit. Given
that classifiers often make use of hardware accelerators such as GPUs, such a
processor may include both a CPU and a GPU.

Results from experimentation with real-life data sets, including vision as well as
acoustic and seismic sensors, show that the use of different sensing modalities and
neural network topologies often creates partial correlations between the behaviors
of different classifiers. Exploiting those correlations, together with knowledge of
relevant classifier execution times, one can arrive at an optimal order in which to
execute the classifiers that appreciably improves the expected duration, i.e. the aver-
age time to successful classification.

The remainder of the paper is organized as follows. In Sect. 2 we review the
essential background on IDK classifiers and elaborate the problem. In Sect. 3 we
present our model for representing collections of IDK classifiers that may have arbi-
trary dependences between them. In Sect. 4 we explain how to assign values to the
parameters in such a model, and illustrate the process on two real-world case studies.
In Sect. 5 we present algorithms for synthesizing optimal IDK cascades on a single
processor from individual IDK classifiers that are specified according to our model.
In Sect. 6 we use these algorithms to synthesize optimal IDK cascades for the real-
world case studies modeled in Sect. 4. Section 7 extends our approach to multiple
processors, including synthesizing optimal IDK cascades for one of the real-world
case studies on two, three, and four processors. Section 8 concludes the paper with a
list of future research directions.

2 � Background

Perception in autonomous mobile Cyber-Physical Systems is increasingly being per-
formed using classifiers that are based on Deep Learning. Classifiers that are used in
this way must be able to make accurate predictions in real time using limited compu-
tational resources. However, in mainstream machine learning research, much current

351

1 3

Real-Time Systems (2023) 59:348–407	

work relegates timing issues to the background and focuses primarily on improving
the accuracy of classification. This focus on accuracy rather than timing has resulted
in very accurate classifiers that take substantial time to process even simple inputs
that should be straightforward to classify. For example, Wang et al. (2018) showed
that for a considerable fraction of the ImageNet 2012 benchmark (Russakovsky et al.
2015), an order-of-magnitude increase in classifier execution time has yielded only
a negligible improvement in the accuracy of predictions. They suggested a trade-off
between accuracy and latency, based on the insight that if advanced but slower clas-
sifiers were only used in the more challenging cases, then the time taken to achieve
successful classification could be reduced on average, without any reduction in
accuracy.

2.1 � IDK classifier cascades

One approach aimed at achieving appropriate accuracy-latency trade-offs is the use
of IDK classifiers (Trappenberg and Back 2000; Khani et al. 2016). An IDK classi-
fier is obtained from an existing base classifier by attaching a computationally light-
weight augmenting classifier that enables the IDK classifier to return an auxiliary “I
Don’t Know” (IDK) class depending on the degree of uncertainty in the predictions
made by the base classifier1. In other words, an IDK classifier classifies an input
as being in the IDK class if the base classifier is not able to predict some actual
class for that input with a level of confidence that exceeds a predefined confidence
threshold. (In Sect. 4 we describe in detail how to obtain an IDK classifier from a
base classifier.) We define success for an IDK classifier as the act of outputting a
non-IDK class. Note that, success only means that the true object class is recognized
with a sufficiently high probability. It does not imply a complete absence of misclas-
sifications with respect to the ground truth.

In principle, it is possible to generalize the notion of “success” of an IDK clas-
sifier to include meeting additional quality criteria. For example, we might refer
to a neural network for target detection and classification as “successful” if it not
only returned a high confidence in the target class but also in the object location.
In machine learning, such a network (e.g. YOLO) is said to perform both detection
and classification, however, for the purposes of this paper, we use the term IDK
classifier.

Multiple different IDK classifiers, with different execution times and probabilities
of success (i.e. of not outputting IDK), may be devised for the same classification
problem. Wang et al. (2018) proposed arranging such IDK classifiers into IDK cas-
cades, which are sequences of IDK classifiers designed to work as follows:

1.	 The first classifier in the IDK cascade is invoked first, for any input that needs to
be classified.

2.	 If the classifier outputs a real class, rather than IDK, then the IDK cascade ter-
minates and characterizes the input as being of the identified class.

1  This notion is similar to that of classifiers that defer (Madras et al. 2018).

352	 Real-Time Systems (2023) 59:348–407

1 3

3.	 Otherwise (i.e. the classifier outputs IDK), the subsequent classifier in the IDK
cascade is invoked and the process continues from step 2.

If it is a requirement that all inputs be successfully classified, in the sense of suc-
cess defined above, then it must be the case that the last classifier in the cascade
succeeds. We refer to a classifier that always succeeds as a deterministic classifier.
There are various forms that the deterministic classifier may take. Wang et al. (2018)
proposed that all inputs that are not classifiable by the IDK classifiers be pushed up
to a human expert, who thus takes on the role of the deterministic classifier. In some
applications, a fully developed Deep Learning Neural Network may be sufficiently
accurate to take on the role of deterministic classifier; however, its computational
needs may be so large that it should only be executed when absolutely necessary,
with other more efficient classifiers used if they can cater for typical inputs. Finally,
to deal with applications that exhibit high levels of uncertainty, it may be necessary
to introduce the class unclassifiable that the final arbiter in the cascade, the deter-
ministic classifier, can output if a real class cannot be identified with the required
level of confidence. Alternatively, a classification threshold may be specified requir-
ing that any IDK cascade employed has an overall probability (long run frequency)
of success that is no lower than the classification threshold. We return to the concept
of a classification threshold in Sect. 6.4.

2.2 � The generalized IDK classification problem

Given a collection of several different IDK classifiers for a particular classification
problem, this paper considers how they should be sequentially ordered for execution
so as to minimize the expected duration to successfully classify an input, option-
ally subject to guaranteeing to meet a latency constraint on the worst-case execution
duration of the IDK cascade.

Probabilistic characterization of classifiers Observe that this problem, by
seeking to minimize expected (i.e. average) duration, implicitly requires a proba-
bilistic characterization of the likelihood of a classifier successfully classifying
any given input, as opposed to outputting IDK. Obtaining such probabilistic char-
acterizations that are accurate and useful is crucial to the successful solution of
the problem. In addition to characterizing each classifier individually, the rela-
tionships between different classifiers must also be characterized. Two IDK clas-
sifiers may behave in a manner that is independent of one another. By independ-
ent, we mean that the probability that one classifier will output a real class is
independent of whether it is run on all inputs or on only those inputs where the
other classifier outputs IDK. For example, intuitively it is a reasonable hypoth-
esis that an IDK classifier that processes camera images of a scene may perform
very differently from an IDK classifier that processes radar signals of the same
scene—these two classifiers may be expected to exhibit behavior that is mutu-
ally independent. Indeed, Madani et al. (2012, 2013) provide ample and persua-
sive experimental evidence that very different sources of information such as text,
audio, and video features obtained from the same scenario, and hence with the

353

1 3

Real-Time Systems (2023) 59:348–407	

same ground truth, are effectively independent. At the other extreme, two image-
based classifiers that use the same input image scaled to different resolutions (Hu
et al. 2021) may exhibit behavior that is fully dependent: the less powerful classi-
fier is only able to successfully classify a strict subset of the inputs that the more
powerful classifier can identify.

Prior research has proposed solutions to the problem of synthesizing IDK
cascades out of collections of fully independent (Baruah et al. 2021) and fully
dependent (Baruah et al. 2022) classifiers, as well as combinations of the
two (Baruah et al. 2022). However, other forms of correlation and dependency
between classifiers that are more complicated than independence or full depend-
ence can occur and are likely to be more common. For example, this is true for
the two real-world case studies that we consider in this paper.

This work This paper investigates the problem of optimally synthesizing IDK
cascades from collections of classifiers that are correlated according to more gen-
eral relationships than independence or full dependence. The main contributions
are as follows:

–	 Extending the real-time model for IDK classifiers that was presented
by Baruah et al. (2021, 2022) for fully dependent and independent classifi-
ers, by proposing a framework for specifying arbitrary forms of dependence
between different classifiers.

–	 Extending current practice in the training and testing of classifiers: (i) to
obtain IDK classifiers from base classifiers, and (ii) to obtain a probabilistic
characterization of their expected run-time behavior, including their mutual
dependences.

–	 Proposing algorithms for optimally synthesizing IDK cascades that are so
characterized, thus extending the algorithmic framework that was initiated
by Baruah et al. (2021, 2022) for single processors, substantially enhancing its
practical applicability.

–	 Proving key properties of optimal IDK cascades on multiple processors, and
proposing algorithms for synthesizing them.

–	 Illustrating all of the contributions listed above —modeling; obtaining proba-
bilistic characterizations; and synthesizing optimal IDK cascades— via two
real-world case studies. The first case study is from the domain of image-rec-
ognition, which has been the focus of much research on classification using
Deep Learning. The second case study comes from a Cyber-Physical Systems
application that seeks to autonomously detect hostile presence in a battlefield
environment, for use in future military systems.

In common with prior work (Baruah et al. 2021, 2022), this paper considers the
use of IDK cascades as a single-shot solution to the machine perception prob-
lem. Such solutions are also viable for systems where inputs are generated recur-
rently, i.e. periodically or sporadically, but no account is taken of the input data
or results from previous time frames, i.e. each machine perception or classifica-
tion job is effectively independent.

354	 Real-Time Systems (2023) 59:348–407

1 3

3 � System model: motivation and definitions

We consider a collection of n IDK classifiers K1 , K2 , … ,Kn that are all designed to
solve a given classification problem. Prior work taking a real-time perspective on
IDK cascades (Baruah et al. 2021, 2022) has characterized each classifier Ki by a
pair of parameters (Ci,Pi) , specifying its execution time Ci (assumed by Baruah
et al. (2021, 2022) to be constant) and its success probability Pi . These param-
eters denote that when invoked on an input, the classifier Ki takes Ci time units to
complete execution and returns a real class, rather than IDK, with probability Pi ,
where 0 < Pi ≤ 1 . In this paper, we employ a more nuanced characterization of
execution times, with C̄i representing the average-case execution time and Ci rep-
resenting the worst-case execution time of classifier Ki . We discuss how values
for all of the parameters may be determined in Sect. 4.

Dependences amongst classifiers While the parameters, C̄i , and Pi , character-
ize the expected behavior of each individual classifier, they do not address the
relationship, i.e. the mutual dependences, between the behaviors of the different
classifiers. Baruah et al. (2021) assumed that all the classifiers are pairwise inde-
pendent, while Baruah et al. (2022) additionally considered the case where some
classifiers are pairwise fully dependent. However, more complex relationships
also arise in practice, with classifiers exhibiting related behaviors for a variety
of reasons. Dependences may be induced by the environment (an object that is
difficult for one classifier to identify may also be difficult for another classifier
to identify), by the training process (the same data may be used in the training
of all classifiers), and by common components and algorithms (the same Deep
Neural Network approach may be applied in a subset of the classifiers). Depend-
ences may also be experienced even among seemingly different modalities such
as sound and vision. For example, a moving object that gets partially obscured by
a barrier on an otherwise open plain may be harder to classify using both vision,
due to occlusion, and acoustics, due to sound reflecting off the barrier thus reduc-
ing the signal volume. These dependences may give rise to observable behavior
that is to some extent correlated.

Consider a simple example of two classifiers, K1 and K2 . The probability of
failure (i.e. an output of IDK) from K1 is (1 − P1) ; similarly for K2 it is (1 − P2) .
Let P(F) denote the observed probability of K1 and K2 both outputting IDK. It is
evident that 0 ≤ P(F) ≤ 1 −max (P1,P2).

–	 If P(F) = 1 −max (P1,P2) , then the classifiers are fully dependent.
–	 If P(F) = (1 − P1) × (1 − P2) then the classifiers are independent.
–	 If (1 − P1) × (1 − P2) < P(F) < 1 −max (P1,P2) then there is partial depend-

ency resulting from an observed positive correlation.
–	 If 0 ≤ P(F) < (1 − P1) × (1 − P2) then there is partial dependency resulting

from an observed negative correlation.

Clearly it is best, if possible, for the classifiers developed or selected for use in
an IDK cascade to behave with a negative correlation. If this is not possible then

355

1 3

Real-Time Systems (2023) 59:348–407	

the closest to independence is desirable. The worst case, giving the highest prob-
ability of failure (i.e. returning IDK), is when the classifiers are fully dependent.

Conceptually, it is convenient to think of the probability space as a Venn Diagram
partitioned into 2n distinct regions, see Fig. 1 for the case of n = 3 classifiers, with
each region corresponding to one of the 2n possible combinations of the n individual
classifiers successfully classifying an input or returning IDK. In Sect. 4 we describe
how to obtain the actual probabilities associated with each of these regions.

General model: Summarizing the above, a collection of n IDK classifiers K1 ,
K2 , … ,Kn for the same classification problem are characterized by their execution
times (their C̄i and Ci parameters) and the probability values associated with each
of the 2n disjoint regions in the Venn Diagram of the probability space. (Note, the
parameter Pi in the model previously-proposed by Baruah et al. (2021, 2022) is eas-
ily recovered from this model, by simply summing over the 2n−1 disjoint regions that
lie within the circle of the Venn Diagram representing the IDK classifier Ki.)

The presence of a latency constraint: We also consider a variant of the problem
in which the objective is to determine the optimal IDK cascade, that minimizes the
expected duration for successful classification, subject to the worst-case execution
duration not exceeding a specified latency constraint.

The presence of a classification threshold: We also consider a variant of
the problem in which the overall probability of successful classification need not
be guaranteed (i.e. 1), but rather must meet or exceed a specified classification
threshold.

Reasonable values for n: The number of IDK classifiers, n, that could be used
to form an IDK cascade to solve a specific classification problem is application
dependent, and many different values may be found in the literature on classifier
ensembles. As noted earlier, diversity comes from having classifiers with different
types of input, different internal models, and different training data. Even a single
classifier, such as the image-based example described previously, can have a number

Fig. 1   The 2n disjoint regions
in the probability space for
n = 3 . The blue circle denotes
the part of the space where K1 is
successful; the red circle, where
K2 is successful; and the brown
circle, where K3 is successful.
These three circles partition the
probability space into 23 = 8
disjoint regions; each of these
is labeled with a 3-tuple, with
Ki ( Ki , respectively) denoting
that the region corresponds to
the IDK classifier Ki returning
an actual class (resp. IDK).
(Note that the entire space can
be thought of as denoting the
region in which the determinis-
tic classifier is successful) (K1, K2, K3)

A: (K1, K2, K3)

(K1, K2, K3)

(K1, K2, K3) (K1, K2, K3)

A

(K1, K2, K3)

(K1, K2, K3) (K1, K2, K3)

356	 Real-Time Systems (2023) 59:348–407

1 3

of different pixel resolutions defined, and hence give rise to two, three, or more dis-
tinct, though likely fully dependent, classifiers. Combining such ensembles of classi-
fiers can lead to IDK cascades with eight or more components. In practice, however,
we expect that values of n that are much greater than about 12 are unlikely to be
commonly encountered in practice. This is important, since our model, comprising
O(2n) parameters, is of a size exponential in n.

Table 1 provides a glossary of selected terminology along with brief informal
definitions. These terms are discussed and defined in more detail in Sects. 4 and 5.

4 � Populating the model

Given n different base classifiers for the same classification problem, we now dis-
cuss our methodology for first converting each to an IDK classifier, and subse-
quently determining the model parameters that characterize the expected behavior
of these IDK classifiers with regards to their execution times ( ̄Ci and Ci ), their prob-
abilities of success ( Pi ) and their mutual dependences. We refer to this step as the
profiling phase.

Prior to this profiling phase each of the classifiers will have been trained and veri-
fied using representative input data. In many applications this data can then be used
directly in the profiling phase, i.e. no further data is required. Where new data is
required for profiling, for example because the training and verification data is pro-
prietary, then it must of course also be representative of the inputs expected during
deployment.

Gathering data: During the profiling phase, we test each of the n base classifiers
on the same N input samples. Each input sample is a data structure that includes
information collected from all sensing modalities used by the respective classifiers.
It is expected that each sample comprises information relating to a valid ground-
truth class, i.e. a class that the respective classifiers were trained to identify. There

Table 1   Glossary of selected terminology

Terminology Informal definition

confidence A base classifier’s self-assessment of the probability that the class it has
returned is correct.

confidence threshold The minimum confidence required from a base classifier for the IDK classifier
built upon it to return a real class rather than IDK.

classification threshold The minimum success probability required of an IDK cascade,
latency constraint The maximum permitted execution duration for an IDK cascade.
precision The probability of correct classification (i.e. equating to the ground truth)

when a real class is returned by an IDK classifier.
precision threshold The minimum precision required of an IDK classifier.
successful classification When an IDK classifier or IDK cascade returns a real class, rather than IDK.
success probability The probability of successful classification for an IDK classifier or an IDK

cascade.

357

1 3

Real-Time Systems (2023) 59:348–407	

is no constraint on the format of the respective modalities, other than being con-
sistent with the input format expected by the respective classifiers. For example, in
a scenario involving vision, acoustic, and seismic sensing and classification (as in
Sect. 4.2), a single sample could include an image of a target, a 1 second acoustic
sound clip of the same target, recorded at 4KHz, and a 1 second seismic time-series
measurement of the target, recorded at 100Hz. Further, the number of classifiers
used may be different from the number of modalities present in the input sample.
For example, a joint acoustic plus seismic classifier would make use of both the
acoustic and the seismic information within the sample. By contrast, three different
image classifiers could be used that all act on the same video information, but differ
in their resolution and execution time.

For each of the N input samples, each classifier outputs an ordered pair
(class, confidence) , where class is the class that the classifier has determined most
likely matches the input sample, and confidence is a real number in the range [0, 1]
that indicates how confident the classifier is that the input sample is indeed of the
class returned. We store all N of these ordered pairs output by each of the n classifi-
ers for further processing as discussed below. The ground truth, i.e. the actual class,
for each of the N input samples is also known and stored.

During the profiling phase, we also measure and store the execution time of each
classifier on each input sample. In this paper, we assume that the execution time
of each classifier is independent of its actual input, but nevertheless is subject to
variation due to other factors related to the hardware platform. This is typically the
case because the neural networks used for such processing run on a dedicated GPU.
Furthermore, the neural networks generally perform the same computations on each
input, resulting in an execution time that depends primarily on the neural network
architecture, input size, and GPU type, but not on the actual data values. In princi-
ple, some optimizations, such as the use of sparse matrix algebra to accelerate pro-
cessing of sparse inputs, e.g. a row of all zeros, can result in shortened execution
times for some inputs, but the common case of having a dense input has a consistent
execution time. In the case studies considered in this paper, we use the average exe-
cution time observed for each classifier Ki over the large number of input samples
used in the profiling phase to determine its average execution time C̄i.

Obtaining IDK classifiers: An IDK classifier Ki is obtained from the i’th base
classifier, 1 ≤ i ≤ n , by defining a confidence threshold Hi , 0 ≤ Hi ≤ 1 , that is used
in the following way. Suppose the classifier outputs the ordered pair (X, f) for some
input sample, denoting that it believes that the input sample belongs to class X with
a confidence equal to f. If f ≥ Hi then the IDK classifier Ki outputs the class X,
whereas if f < Hi then it outputs IDK.

It remains to explain how to derive a value for the confidence threshold Hi of each
classifier Ki . We assume that the application requirements specify a minimum preci-
sion threshold for successful classification. The precision threshold is a lower bound
on the fraction of a classifier’s non-IDK classification decisions that must be correct.
For example, a precision threshold of 0.95 indicates that at least 95% of the non-
IDK classification decisions made by a classifier must be correct, i.e. in agreement
with the ground truth. For each base classifier, we sort the N output pairs by their
confidence values f, and then choose the lowest value of Hi such that the fraction of

358	 Real-Time Systems (2023) 59:348–407

1 3

samples with f ≥ Hi where the classifier returns the correct class, as determined by
the ground truth, is no smaller than the precision threshold.

Assigning values to the probability parameters: Once the confidence thresh-
olds have been determined for each of the n IDK classifiers K1,K2,… ,Kn , then
we are ready to determine the probabilities associated with each of the 2n disjoint
regions in the Venn diagram representation of the probability space, as illustrated
by Fig. 1. We do so by processing the data collected during the profiling phase as
follows:

1.	 Suppose that on the j’th input sample ( 1 ≤ j ≤ N ), classifier Ki outputs a real class,
then it is deemed to have been successful on the j’th input sample. Otherwise, Ki
outputs IDK and is deemed to have been unsuccessful.

2.	 Once we have considered all N inputs samples for all n IDK classifiers, then we
can determine, for each input sample, which of the n classifiers were successful
and which were not, thus associating each input sample with exactly one of the
2n regions in the probability space. We can therefore determine, for each of the 2n
regions in the probability space, what fraction of the N inputs were successfully
classified by only those classifiers associated with that region of the probability
space.

4.1 � ResNet case study as an example

We now illustrate the methodology discussed above for obtaining IDK classifiers
from base classifiers, and for determining the parameter values that characterize
their dependences via probabilities, on a case study drawn from the domain of image
classification. We examined five classifiers, which are all variants of the popular
ResNet Deep Residual Network (He et al. 2015): ResNet-18, ResNet-34, ResNet-50,
ResNet-100, and ResNet-152. (The number x in ResNet-x denotes the number of
layers in the network; larger values of x tend to yield more accurate classifiers that
have greater execution times.) We tested all five classifiers on a representative data
set of 50,000 test images drawn from the validation set2 of the ImageNet Large Scale
Visual Recognition Challenge data set (Russakovsky et al. 2015), and recorded the
Top-1 correctness (i.e. the top class to which the classifier matches the input) and
the associated confidence for each classifier on each of the test images.

Figure 2 shows the observed precision, i.e. the proportion of non-IDK outputs
that are correct, as a function of the confidence threshold. We use the data sum-
marized in this graph to set the confidence threshold, Hi , by assigning to it the
minimum value that yields an observed precision that is no lower than the speci-
fied precision threshold. The confidence thresholds determine the probability
that the IDK classifiers will output a real class rather than IDK. Figure 3 shows
that as the selected confidence threshold becomes larger, so the IDK classifiers
tend to output IDK more frequently. Thus we see that there is a clear relationship

2  The validation and test data for ImageNet includes 200,000 photographs collected from Flickr and
other search engines, hand labelled with the presence or absence of 1000 object categories. The valida-
tion set is a random subset consisting of 50,000 of these images with labels.

359

1 3

Real-Time Systems (2023) 59:348–407	

between precision and success probability for IDK classifiers: the greater the pre-
cision required, the more likely they are to output IDK rather than a real class.

Having set the confidence thresholds, Hi , we can then compute the probabili-
ties associated with each of the 2n disjoint regions of the probability space. These
probabilities are shown in Table 2; to keep the table and this example to a man-
ageable size, we have omitted ResNet-101 from consideration and so are left with
four classifiers, and hence 24 = 16 regions of the probability space for which we
computed the probabilities. Table 2 can be interpreted as follows: The first four
columns correspond to the four classifiers ResNet-18, ResNet-34, ResNet-50,
and ResNet152. In each of these columns a 0 indicates that the classifier returns
IDK, whereas a 1 indicates that it returns a real class. Thus, each of the 16 rows
of the table represents one of the 16 disjoint regions of the probability space.
The column entitled “Count” denotes how many of the N = 50,000 input samples
fall into each of the 16 regions; the entries in the column entitled “Prob-S” are
obtained by dividing these counts by N. Prob-S therefore denotes the probability
that exactly the specific pattern of IDK classifiers indicated by 1’s will be able to
classify an input, and those indicated by 0’s will not and so will return IDK.

Fig. 2   Populating the model:
Setting the confidence threshold

Fig. 3   Populating the model:
Percentage of IDKs

360	 Real-Time Systems (2023) 59:348–407

1 3

For subsequent use in more efficiently calculating the expected duration of an
IDK cascade (see Sect. 6) we require a further set of probabilities given in the col-
umn entitled “Prob-A”. Prob-A denotes the probability that at least one of IDK
classifiers indicated by 1’s will be able to classify an input, and is calculated from
the Prob-S values. For example, in the fourth row of the table, the IDK classifiers
denoted by C and D are indicated by a 1. The associated value of Prob-A is there-
fore the sum of all of the Prob-S values where there is a 1 in either column C or D.
(Obtaining all of the Prob-A values takes a time that is quadratic in the number of
rows, i.e. in O(22n) = O(4n) time, given that there are 2n rows in the table.)

Table 2 also reports the average-case and worst-case execution time parameters
( ̄Ci and Ci ) of the classifiers on an NVIDIA Jetson TX2, considering the 50,000
runs, as well as the confidence thresholds, Hi , set assuming a required precision
threshold of 0.95. Since the focus of this paper is not on obtaining definitive worst-
case execution times for classifiers, we use the 95-percentile execution time for each
classifier as a proxy for its worst-case execution time Ci . (Note, this choice does not
impact the methods subsequently presented; higher values for Ci could be used if

Table 2   ResNet example

ResNet

− 18 − 34 − 50 − 152 Count Prob-S Prob-A

A B C D

0 0 0 0 15880 0.3176 0
0 0 0 1 3011 0.06022 0.5902
0 0 1 0 1423 0.02846 0.545
0 0 1 1 2465 0.0493 0.64564
0 1 0 0 914 0.01828 0.49216
0 1 0 1 960 0.0192 0.63488
0 1 1 0 545 0.0109 0.60016
0 1 1 1 3382 0.06764 0.66942
1 0 0 0 649 0.01298 0.4284
1 0 0 1 452 0.00904 0.62476
1 0 1 0 304 0.00608 0.5847
1 0 1 1 1208 0.02416 0.66412
1 1 0 0 275 0.0055 0.54442
1 1 0 1 609 0.01218 0.65394
1 1 1 0 500 0.01 0.62218
1 1 1 1 17423 0.34846 0.6824
Totals 50000 1.00

Classifier A B C D E

Hi 0.890 0.895 0.896 0.910 1
C̄i (ms) 16.9 27.8 37 101.1 1000
Ci (ms) 22.6 37.5 49.5 125.1 1000

361

1 3

Real-Time Systems (2023) 59:348–407	

a high reliability in meeting latency constraints were required). Table 2 also lists a
hypothetical deterministic classifier E that always returns a real class, never IDK,
and that has a significantly larger (arbitrarily assigned) execution time than any of
the IDK classifiers. In Sect. 6, we use the information presented in Table 2 to syn-
thesize optimal IDK cascades for this case study.

Figure 4 illustrates the execution time distributions for the ResNet classifiers, for
the 50,000 input samples, normalized to the mean value for each classifier. Observe
that almost all of the execution times lie between 0.75 and 1.5 times the mean value.

4.2 � Multi‑modal case study as an example

All of the classifiers in the ResNet case study discussed in Sect. 4.1 operate on the
same type of information: camera images. In this section, we explore another case
study in which different classifiers use very different kinds of information. Here, it is
a reasonable hypothesis (Madani et al. 2012, 2013) that some of the classifiers may
behave independently. The data used in this case study was collected previously by
Liu et al. (2022) as part of a project that seeks to autonomously detect the presence
of potentially hostile enemy vehicles in a battlefield environment. Three different
kinds of sensors were deployed for this purpose: acoustic (a microphone array), seis-
mic (a Raspberry Shake, comprising a Raspberry Pi plus a vertical-axis geophone),
and vision (a camera). Each sensor is paired with its own neural network, which acts
as the classifier. All three classifiers have adjustable parameters, in particular, each
classifier can down-sample to reduce the resolution of the input, thereby trading off
a fine granularity of information for faster processing times. The manner in which
the input samples were collected is described by Liu et al. (2022) as follows:

We deployed our devices on the grounds of the DEVCOM Army Research Lab-
oratory Robotics Research Collaboration Campus [...] and collected seismic
and acoustic signals, while different ground vehicles were driven around the
site. Data of three different targets: a Polaris all-terrain vehicle, a Chevrolet

Fig. 4   Execution time distribu-
tions for the ResNet classifiers
normalized to the mean

0

0.05

0.1

0.15

0.2

0.25

0.
5

0.
57

5
0.

65
0.

72
5

0.
8

0.
87

5
0.

95
1.

02
5

1.
1

1.
17

5
1.

25
1.

32
5

1.
4

1.
47

5
1.

55
1.

62
5

1.
7

1.
77

5
1.

85
1.

92
5 2

)selp
mastupnifo

egatnecrep(
ycneuqerF

Execu�on �me normalized to the mean

 ResNet-18

 ResNet-34

 ResNet-50

 ResNet-152

362	 Real-Time Systems (2023) 59:348–407

1 3

Silverado, and Warthog UGV were collected. Each target repeatedly passed
by the sensors. The total length of the experiment was 115 minutes, spread
roughly equally across the three targets. [...] A camera was employed to simul-
taneously record video of the target.

From the data provided by Liu et al. (2022), we considered four classifiers as
follows:

–	 A: deepsense_both_contras: This classifier used both seismic and acoustic sensor
data as input, and processed the data using the DeepSense neural network archi-
tecture (Yao et al. 2017a), trained using contrastive learning (Liu et al. 2021).

–	 B: cnn_acoustic: This classifier used only acoustic data, and processed it using a
standard convolutional neural network.

–	 C: deepsense_seismic: This classifier used only seismic data, and processed it
using the DeepSense neural network architecture (Yao et al. 2017a).

–	 D: yolov5s-compressed: This classifier used only image data. It was derived
from the YOLOv5 neural network (small version), after further image compres-
sion using the DeepIoT neural network architecture compression framework (Yao
et al. 2017b).

We processed the profiling data (class, confidence) outputs for each of the four
classifiers for each of the 1800 randomly chosen input samples3, as described in
Sect. 4.1. First, we assumed a required precision of 0.95 and used this value to com-
pute the confidence threshold for each classifier4. Having computed the confidence
thresholds, we used these values in the construction of the probabilities (Prob-S)
associated with each of the 2n disjoint regions of the probability space, and subse-
quently the probabilities (Prob-A) that each distinct subset of the IDK classifiers will
be able to successfully classify an input. These probabilities are shown in Table 3.
Table 3 also reports the average-case and worst-case execution time parameters ( ̄Ci
and Ci ) of the classifiers on a Raspberry Pi 4, considering the 1800 runs, as well as
the (arbitrarily assigned) execution time of a hypothetical deterministic classifier E
that always returns an actual class. In Sect. 6, we use the information presented in
Table 3 to synthesize optimal IDK cascades for this case study.

Figure 5 illustrates the execution time distributions for the Multi-Modal classi-
fiers, for the 1800 input samples, normalized to the mean value for each classifier.
Observe that almost all of the execution times lie between 0.75 and 1.5 times the
mean value.

3  From each input sample, the different classifiers used as their input the different kinds of information
that were obtained by the different sensors.
4  The yolov5s-compressed classifier was accurate in all cases where it returned a non-zero confidence
value, hence an arbitrarily small confidence threshold of 0.01 was set.

363

1 3

Real-Time Systems (2023) 59:348–407	

4.3 � Characterizing classifier dependences

With the data that is available in the profiling phase it is possible to estimate the
level of dependence, i.e. the degree of correlation, between the behavior of the

Table 3   MultiModal example A: deepsense_both_contras; B: cnn_acoustic; C: deepsense_seismic; D:
yolov5s-compressed

A B C D Count Prob-S Prob-A

0 0 0 0 56 0.031111111 0
0 0 0 1 33 0.018333333 0.298333333
0 0 1 0 35 0.019444444 0.736111111
0 0 1 1 18 0.01 0.816666667
0 1 0 0 11 0.006111111 0.221666667
0 1 0 1 5 0.002777778 0.461111111
0 1 1 0 5 0.002777778 0.807777778
0 1 1 1 4 0.002222222 0.868333333
1 0 0 0 181 0.100555556 0.907222222
1 0 0 1 76 0.042222222 0.940555556
1 0 1 0 698 0.387777778 0.941666667
1 0 1 1 304 0.168888889 0.962777778
1 1 0 0 82 0.045555556 0.921111111
1 1 0 1 31 0.017222222 0.949444444
1 1 1 0 195 0.108333333 0.950555556
1 1 1 1 66 0.036666667 0.968888889
Totals 1800 1.00

Classifier A B C D E

Hi 0.705 0.543 0.86 0.01 1
C̄i (ms) 17.0 3.9 11.4 1440.8 5000
Ci (ms) 19.6 5.3 13.7 1613.2 5000

Fig. 5   Execution time distribu-
tions for the Multi-Modal classi-
fiers normalized to the mean

0

0.05

0.1

0.15

0.2

0.25

0.
5

0.
57

5
0.

65
0.

72
5

0.
8

0.
87

5
0.

95
1.

02
5

1.
1

1.
17

5
1.

25
1.

32
5

1.
4

1.
47

5
1.

55
1.

62
5

1.
7

1.
77

5
1.

85
1.

92
5 2

)selp
mastupnifo

egatnecrep(ycneuqerF

Execu�on �me normalized to the mean

deepsense_both_contras

deepsense_seismic

cnn_acous�c

yolov5s-compressed

364	 Real-Time Systems (2023) 59:348–407

1 3

different classifiers. This can be characterized in a number of different ways. First,
Pearson’s correlation coefficient5 can be calculated for each pair of classifiers. This
coefficient r is given by:

where xi and yi are the paired results for the two classifiers on input sample
i = 1…N , while x and y are the respective means of the N results.

Pearson’s correlation coefficient r can take values in the range [−1,+1] , with
r = 0 implying no correlation, and hence possibly independence.6 The value r = +1
implies identical behavior, and at the other extreme r = −1 implies exactly opposite
behavior.

For the purposes of assessing correlations, the results for each classifier were con-
verted into binary form, with 1 indicating a non-IDK output and 0 indicating IDK.
Tables 4 and 5 show the coefficients computed for the ResNet and Multi-Modal case
studies respectively, color-coded by the degree of correlation between distinct clas-
sifiers: red indicating a strong degree of correlation ( abs(r) > 0.5 ), orange a moder-
ate degree of correlation ( 0.1 < abs(r) ≤ 0.5 ), yellow a weak degree of correlation
( 0.05 < abs(r) ≤ 0.1 ), and green a very weak degree of correlation ( abs(r) ≤ 0.05).

As expected, the classifiers in the ResNet case study show a consistent strong
positive correlation of between 0.579 and 0.686 between each pair. By compari-
son the classifiers in the Multi-Modal case study, with its different types of infor-
mation (acoustic, seismic, and camera), demonstrate lower levels of correlation.
Here. classifiers A and C (i.e. deepsense_both_contras and deepsense_seismic)
show a moderate degree of positive correlation of 0.265, whereas the other pairs

r =

∑N

i=1
(xi − x)(yi − y)

�∑N

i=1
(xi − x)2

�∑N

i=1
(yi − y)2

Table 4   ResNet classification: Pearson correlation coefficients
A B C D

A 1 0.668 0.630 0.579
B 0.668 1 0.678 0.639
C 0.630 0.678 1 0.686
D 0.579 0.639 0.686 1

Table 5   Multi-modal classification: Pearson correlation coefficients
A B C D

A 1 0.055 0.265 -0.042
B 0.055 1 -0.071 -0.037
C 0.265 -0.071 1 -0.009
D -0.042 -0.037 -0.009 1

5  See https://​en.​wikip​edia.​org/​wiki/​Pears​on_​corre​lation_​coeff​icient
6  Although independence implies a correlation of zero, a correlation of zero does not necessarily imply
independence.

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

365

1 3

Real-Time Systems (2023) 59:348–407	

of classifiers have either weak degrees of correlation ( 0.05 < abs(r) ≤ 0.1 ), or
very weak degrees of correlation ( abs(r) ≤ 0.05 ). Interestingly, although close to
0 a number of the correlations are negative implying slightly better than inde-
pendent performance.

Another method of assessing dependences is to compare the probability that all
of the IDK classifiers return IDK as obtained from the profiling data, with the prob-
ability computed assuming: (i) that all of the classifiers are independent, and (ii)
that all of the classifiers are fully dependent. These values for the two case studies
are shown in Table 6. With the ResNet case study the failure rate computed for arbi-
trary dependences is somewhat closer to fully dependent behavior than independent
behavior. By contrast, with the Multi-Modal case study the failure rate computed for
arbitrary dependences is at an intermediate level between the values expected if the
IDK classifiers were independent or fully dependent.

The fact that the classifiers comprising the case studies are neither independent
nor fully dependent, means that prior approaches (Baruah et al. 2021, 2022) based
on those assumptions cannot be used to synthesize optimal IDK cascades.

The above analysis examines dependences between the behavior of the classifiers
in terms of successfully classifying an input or returning IDK. We also examined the
dependencies between the execution times of the classifiers. For each of the N input
samples, we recorded the execution time of each classifier and categorized these
execution times as either: 1 indicating above the median value or 0 indicating equal
to or below the median value. We then computed Pearson’s correlation coefficient
for each pair of classifiers based on this binary data. Recall that the coefficients can
range from −1 to +1 , with a value of 0 implying no correlation. Tables 7 and 8 show
these coefficients for the ResNet and Multi-Modal case studies respectively.

Table 6   Probability of failure Case study Independent Fully dependent Arbitrary

ResNet 0.054125569 0.4098 0.3176
Multi-Modal 0.013371 0.092778 0.031111

Table 7   ResNet execution times: Pearson correlation coefficients
A B C D

A 1 -0.003 -0.005 0.007
B -0.003 1 0.040 0.039
C -0.005 0.040 1 0.018
D 0.007 0.039 0.018 1

Table 8   Multi-modal execution times: Pearson correlation coefficients
A B C D

A 1 -0.013 0.024 0.013
B -0.013 1 0.062 -0.044
C 0.024 0.062 1 -0.013
D 0.013 -0.044 -0.013 1

366	 Real-Time Systems (2023) 59:348–407

1 3

Observe that for the ResNet classifiers, the correlation coefficients in Table 7
for all pairs of distinct classifiers indicate very weak correlation ( abs(r) ≤ 0.05 ).
Similarly, for the Multi-Modal classifiers, the correlation coefficients in Table 8
indicate either weak correlation ( 0.05 < abs(r) ≤ 0.1 ) or very weak correlation
( abs(r) ≤ 0.05).

Applying a Chi-squared test of independence on such a large sample size,
e.g. either 50,000 or 1800 samples, means that the test will deem significant
( p < 0.05 ) even small deviations from perfectly independent behavior. Despite
this sensitivity, for some pairs of classifiers there was no evidence against a null
hypothesis of independence, i.e. the observed variability had a probability p > 0.05
of occurring by chance. For other pairs of classifiers there was evidence against a
hypothesis of independence. The weak degree of correlation observed in both case
studies implies that the majority of the execution time of each classifier is effec-
tively independent of the execution time of other classifiers, with a small effect size
of less than 7% that is dependent. Hence regarding the execution time behavior of
the classifiers as independent is a reasonable approximation. In the analysis derived
in the following sections we assume that the execution times of the classifiers are
independent.7

5 � Synthesizing optimal IDK cascades on a single processor

Once the mutual dependences among the classifiers have been characterized via the
tables of probabilities as detailed in Sect. 4 and illustrated in Tables 2 and 3, we
proceed to use this information to determine the optimal IDK cascade: the one with
the minimum expected duration, optionally subject to a latency constraint that the
worst-case execution duration of the IDK cascade is not permitted to exceed. Ini-
tially, we assume a single processor system. The synthesis of optimal IDK cascades
for systems with multiple processors is addressed later in Sect. 7.

Recall that we we have a collection of n IDK classifiers K1,K2,… ,Kn that solve
the same classification problem. In addition, we may also have a single determin-
istic classifier denoted by Kd that also solves the problem, and which if employed
will always be the last classifier in the IDK cascade to complete execution. Initially,
we assume that such a deterministic classifier is both available and must be used,
i.e. successful classification is a prerequisite. Subsequently, we relax this limitation
and require instead that a specified classification threshold must be met. In other
words, only IDK cascades with an overall probability of successful classification
that meets or exceeds the classification threshold can provide feasible solutions.
Before describing the solution, we first introduce some notation and preliminary
computations.

7  This assumption is implicit in the way in which the average execution times are summed together
weighted by probabilities.

367

1 3

Real-Time Systems (2023) 59:348–407	

Definition 1  For any subset S of the collection of IDK classifiers, P̂[S] denotes the
probability that at least one of the classifiers in S is successful, i.e. does not return
IDK.

In terms of the Venn diagram representation of the probability space, P̂[S] denotes
the probability measure inside the union of the circles corresponding to each of the
classifiers in S. Hence P̂[�] = 0.0 , while for sets containing only a single classifier, Ki ,
we have P̂[{Ki}] = Pi , i.e. the probability that Ki returns a real classification, and not
IDK. Note that the P̂[S] values depend only on the members of the set S, and not on
their order. For efficiency we pre-compute the values of P̂[S] for each of the 2n distinct
subsets S of the IDK classifiers; these are the Prob-A values shown in Tables 2 and 3.

Now consider any given cascade of classifiers

for some n′ ≤ n . The first classifier in this cascade will execute on each input sam-
ple. However, the second classifier, K′

2
 , will only execute in the event that the first

classifier outputs IDK, the third classifier K′
3
 will only execute in the event that the

first two classifiers both output IDK, and so on. Letting C̄′
i
 denote the average execu-

tion time of classifier K′
i
 , the expected duration of the IDK cascade is therefore equal

to:

Hence determining the expected duration of any given IDK cascade is a straightfor-
ward operation; simply apply (2), looking up the required probability values P̂[S] in
the table.

Unfortunately, the number of possible IDK cascades that need to be considered
grows very rapidly with the number of available IDK classifiers k. We can obtain an
upper bound of the number of IDK cascades as follows. Since the number of r-permu-
tations of k distinct objects is k!

(k−r)!
 , it follows that for each r, 0 ≤ r ≤ k , there are k!

(k−r)!

possible distinct IDK cascades comprising r IDK classifiers followed by the determin-
istic classifier. Hence the total number of IDK cascades that we need to consider is
given by

5.1 � DAG‑based representation and algorithm

To avoid having to evaluate every permutation and thus incur complexity that is fac-
torial in the number of classifiers, we employ a graph-based representation in the

(1)
⟨
K�
1
,K�

2
,… ,K�

n�
,Kd

⟩

(2)

n�∑

i=1

(
C̄�
i
×
(
1 − �P[{K�

1
,K�

2
,… ,K�

i−1
}]
))

+ C̄d ×
(
1 − �P[{K�

1
,K�

2
,… ,K�

n�
}]
)

(3)
k∑

r=0

k!

(k − r)!

368	 Real-Time Systems (2023) 59:348–407

1 3

form of a Directed Acyclic Graph (DAG). Each vertex in the graph corresponds to
a unique subset of the IDK classifiers. There are 2n − 1 such subsets of n IDK clas-
sifiers and hence 2n − 1 such vertices. In addition, there is start vertex, denoted by
X, that represents the empty set of classifiers, and an exit vertex, denoted by E. The
vertices are connected via directed edges. A directed edge connects each vertex rep-
resenting a subset of IDK classifiers with each of the vertices that represents the
same subset extended via the addition of exactly one further classifier. For example,
with four IDK classifiers A, B, C, and D, there is a directed edge from the vertex
AB to each of the vertices ABC and ABD. In addition to this there is a directed edge
from all other vertices to the exit vertex E.

Figure 6 illustrates the DAG representation for the case of four IDK classifiers
A, B, C, and D. When a deterministic classifier is considered, then it is represented
by the exit vertex E, since all possible IDK cascades end with the deterministic
classifier.

Observe that each unique permutation forming an IDK cascade corre-
sponds to a unique path through the DAG, from start to exit. On a given path
the corresponding IDK cascade can be recovered by collecting the classi-
fiers that are added in moving from one vertex to the next. For example the
path X → A → AC → ACD → ABCD → E corresponds to the IDK cascade
⟨A,C,D,B,E⟩ . (Note that when a deterministic classifier is not used, then the exit
vertex and the graph remain the same, however E is not included in the correspond-
ing IDK cascade).

Fig. 6   DAG representation of
the subsets of IDK classifiers
(vertices), with arrows (directed
edges) representing the addi-
tion of a further classifier and
the associated increase in the
expected execution duration

X

A B C D

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCD

E

Edges from all other vertices

369

1 3

Real-Time Systems (2023) 59:348–407	

Recall that the directed edge from a vertex corresponding to a subset S of IDK
classifiers to another vertex corresponding to a subset S′ represents the addition of a
single classifier, K�

i
= S� − S . Moreover, that edge represents the addition of classi-

fier K′
i
 to any of the sub-paths (sub-sequences) of IDK classifiers that are permuta-

tions of S. Further, the increase in expected execution duration by adding classifier
K′
i
 to any sub-sequence formed from all of the classifiers in S is given by

C̄�
i
×
(
1 − �P[S]

)
 . For example, the directed edge from ACD to ABCD in Fig. 6 repre-

sents the addition of IDK classifier B, and the increase in expected execution dura-
tion (cost) is given by C̄B ×

(
1 − �P[{A,C,D}]

)
 . This is the case irrespective of

which one of the 6 possible paths is taken to reach vertex ACD from the start vertex
X. The additional cost depends only on the set of classifiers, and not on their order.
This is the crucial point that facilitates constructing an algorithm with lower com-
plexity. We therefore annotate the DAG with the cost associated with each edge.
(Note, when a deterministic classifier is not used, then the cost associated with each
of the incoming edges of the exit vertex is zero).

Now the problem of determining the IDK cascade with minimum expected exe-
cution duration is reduced to finding the shortest path from the start to the end of
the DAG. This is a standard problem in graph traversal. Since there is a single start
vertex, the problem can be solved using a standard topological ordering algorithm8,
in time that is linear in the number of edges plus vertices. Since there are 2n vertices,
not counting the exit vertex, and each vertex can have at most n outgoing edges,
the number of edges is upper bounded by n2n . Hence, once the graph has been con-
structed, finding the optimal IDK cascade has O(n2n) complexity.

Considering the overall complexity starting from the results of profiling, deriving
the Prob-A (i.e. P̂[S] ) values can be achieved in O(4n) time9, while construction of
the DAG and computation of the optimal IDK cascade can then be done in O(n2n)
time. Thus the overall complexity is O(4n) . Recall that we do not expect practical
applications to require more than approximately 12 distinct classifiers running in
sequence to solve the same classification problem. By comparison, the DAG-based
approach introduced in this section is viable for up to n = 20 , requiring less than 20
minutes processing time on a single core of an Intel i5-8265U 1.6 GHz laptop com-
puter, see Sect. 7.4 for further details of our proof-of-concept implementation.

The DAG-based representation can be adapted to cater for both a latency con-
straint on the worst-case execution duration, and a classification threshold denot-
ing the minimum required overall probability of successful classification. This is
achieved by first pruning away vertices and edges that are only present on infeasible
paths corresponding to IDK cascades that do not meet those requirements, and then
running the topological ordering algorithm to determine the optimal IDK cascade.

To cater for a latency constraint, for each vertex (except for the exit) we first sum
up the worst-case execution duration for the corresponding set of classifiers plus
the deterministic classifier if there is one. Any vertices with a worst-case execution

8  See https://​en.​wikip​edia.​org/​wiki/​Topol​ogical_​sorti​ng
9  Assuming that logical (bit-wise) AND operations can be performed on n-bit values in O(1) time, which
is certainly possible for n ≤ 64.

https://en.wikipedia.org/wiki/Topological_sorting

370	 Real-Time Systems (2023) 59:348–407

1 3

duration that exceeds the latency constraint are then deleted from the graph along
with their incoming and outgoing edges. The crucial point here is that any path
which passes through such a deleted vertex cannot comply with the latency con-
straint, since the worst-case execution duration is a property of the set of classifiers,
irrespective of their order.

To cater for a classification threshold L (without a deterministic classifier), for
each vertex and corresponding subset of classifiers S we evaluate the total probabil-
ity of successful classification given by P̂[S] . If this probability is less than the clas-
sification threshold, i.e. �P[S] < L , then we delete the edge from that vertex to the
exit vertex. Again, the crucial point is that any path that traverses such a deleted
edge cannot comply with the threshold, since the total probability of successful clas-
sification depends on the set of classifiers in S irrespective of their order. Alterna-
tively, to cater for a classification threshold with a deterministic classifier, we simply
treat the deterministic classifier as if it were another IDK classifier, and do not rep-
resent it by the exit vertex. Edges are then deleted as described above, thus ensuring
that any path that reaches the exit vertex complies with the classification threshold,
irrespective of whether or not it includes the deterministic classifier.

We note that if following deletion of vertices and edges to ensure compliance
with the latency constraint and classification threshold, no complete paths remain
from the start to the exit vertex, then this means that no feasible solution to the prob-
lem exists.

6 � Case studies: synthesizing optimal IDK cascades

In this section, we revisit the two case studies, previously examined in Sects. 4.1
and 4.2, for which we obtained probabilistic models, summarized in Tables 2 and 3.
For each case study, we use these probabilistic models to synthesize optimal IDK
cascades with the minimum expected execution duration. First, in Sects. 6.1 and 6.2,
we consider the case where a deterministic classifier is available, and there is no
latency constraint on the worst-case execution duration of the IDK cascades. Sec-
ond, in Sect. 6.3, we introduce such a latency constraint, Finally, in Sect. 6.4, we
relax the limitation of having a deterministic classifier and instead specify a clas-
sification threshold, i.e. a minimum required overall probability of successful
classification.

6.1 � The ResNet case study

In Sect. 4.1, we described how the profiling data was processed for several instan-
tiations of the ResNet Deep Residual Network (He et al. 2015) to: (i) define IDK
variants of the base classifiers; and (ii) obtain a probabilistic characterization of
the effectiveness of these IDK classifiers, summarized for four IDK classifiers in
Table 2. We now discuss how to use this probabilistic characterization to obtain,
via the algorithm described in Sect. 5, an optimal IDK cascade with the minimum

371

1 3

Real-Time Systems (2023) 59:348–407	

expected execution duration from these four IDK classifiers (labelled A, B, C, and
D) and a deterministic classifier, E.

Since k = 4 , by (3) there are 65 potential IDK cascades, each ending with the
deterministic classifier. We computed the expected duration for each of these 65
IDK cascades using (2); these values are depicted in Fig. 7. Note, the results are
arranged left to right grouped and color-coded according to the number of classifiers
in the IDK cascade, and in lexicographic order within each such group.

The expected durations ranged from a high of 1 second for the default IDK cas-
cade ⟨E⟩ comprising only the deterministic classifier, to a low of 405.39ms, depicted
in green and highlighted by a red arrow in Fig. 7, for ⟨A,C,B,D,E⟩, which is the
optimal IDK cascade, as determined by the DAG-based algorithm described in
Sect. 5. That is, the expected execution duration is minimized when we call the
ResNet-18, ResNet-50, ResNet-34, and ResNet-152 IDK classifiers followed by the
deterministic classifier.

Making an unfounded assumption that the IDK classifiers are independent and
using the optimal algorithm defined by Baruah et al. (2021, 2022) for such cases,
would result in the selection of IDK cascade ⟨A,B,C,D,E⟩, which is not optimal
in this case. Further, relying on the basic probability values, Pi , and computations
assuming independence would underestimate the expected duration of that IDK cas-
cade at 111ms rather than 405.44ms. Alternatively, making an unfounded assump-
tion that the IDK classifiers are fully dependent and using the optimal algorithm

Fig. 7   ResNet: Expected dura-
tion for all 65 possible IDK
Cascades

0

200

400

600

800

1000

1200

1 6 11 16 21 26 31 36 41 46 51 56 61 66

)s
m(

noitaruD
detcepxE

Enumera�on of IDK Cascades in Lexicographical Order

1 Classifier
2 Classifiers
3 Classifiers
4 Classifiers
5 Classifiers
Op�mal

Op�mal

Table 9   ResNet: the optimal
IDK cascade is different for
deterministic classifiers with
different execution times

C̄d
 IDK cascade Expected

duration
(ms)

2000 ⟨A,C,B,D,E⟩ 722.99
1000 ⟨A,C,B,D,E⟩ 405.39
500 ⟨A,C,B,E⟩ 238.50
250 ⟨A,C,E⟩ 141.87
100 ⟨A,E⟩ 74.06

372	 Real-Time Systems (2023) 59:348–407

1 3

defined by Baruah et al. (2022) for such cases, would result in the selection of IDK
cascade ⟨A,D,E⟩, which is also not optimal. Further, relying on the basic probabil-
ity values, Pi , and computations assuming full dependence would overestimate the
expected duration of that IDK cascade at 484.49ms rather than 449.93ms.

The optimal IDK cascade depends on the execution time, C̄d , of the deterministic
classifier. Here, smaller values of C̄d may reduce the need to execute the IDK clas-
sifiers, as illustrated in Table 9. Note, an approach based on an assumption of inde-
pendence would not select the optimal IDK cascade for any of the values of C̄d in
the table. Similarly, an approach based on an assumption of full dependence would
not select the optimal IDK cascade for any of the values of C̄d in the table, with the
exception of C̄d = 100.

6.2 � Multi‑modal case study

We repeated the process described in Sect. 6.1 on the Multi-Modal case study.
Recall that this case study is notable in that the same input samples are classified
by different classifiers that use information obtained from different sensors (acous-
tic, seismic, and camera), and hence the classifiers have substantially lower mutual
dependence (see Sect. 4.3). The model that we constructed from the profiling data
(as described in Sect. 4.2) is summarized in Table 3. Once again we have k = 4 , and
therefore a total of 65 possible IDK cascades. We again used (2) to compute the
expected duration for each of these 65 IDK cascades, as depicted in Fig. 8. Observe
that in this case, there is a much larger variation in the expected duration of different
IDK cascades, this is due to the larger differences in the execution times of the IDK
classifiers used in this case study (see Table 3). The expected durations ranged from
a high of 5000ms for the default IDK cascade ⟨E⟩ , comprising only the deterministic
classifier, to a low of 242.5ms for the IDK cascade ⟨C,B,A,D,E⟩, which is the opti-
mal IDK cascade, as determined by the DAG-based algorithm described in Sect. 5.

Making an unfounded assumption that the IDK classifiers are independent and
using the optimal algorithm defined by Baruah et al. (2021, 2022) for such cases,
would also result in the selection of IDK cascade ⟨C,B,A,D,E⟩ in this particular

Fig. 8   Multi-modal: Expected
duration for all 65 possible IDK
Cascades

0

1000

2000

3000

4000

5000

6000

1 6 11 16 21 26 31 36 41 46 51 56 61 66

)s
m(

noitaruD
detcepxE

Enumera�on of IDK Cascades in Lexicographical Order

1 Classifier
2 Classifiers
3 Classifiers
4 Classifiers
5 Classifiers
Op�mal

Op�mal

373

1 3

Real-Time Systems (2023) 59:348–407	

case. However, relying on the basic probability values, Pi , and computations assum-
ing independence would underestimate the expected duration of that IDK cascade at
110.2ms rather than 242.5ms.

As with the ResNet case study in Sect. 6.1, the structure of the optimal IDK cas-
cade depends on the execution time, C̄d , of the deterministic classifier, as illustrated
in Table 10. An approach based on an assumption of independence would not select
the optimal IDK cascade for C̄d = 4000 , but rather would select ⟨C,B,A,E⟩ instead.
Similarly, an approach based on an assumption of full dependence would not select
the optimal IDK cascade for any of the values of C̄d in the table, but rather would
select ⟨C,A,E⟩ instead.

As we have seen, approaches based on assumptions of independent or fully
dependent behavior do not result in optimal or correct results for IDK classifiers
with arbitrary dependences. In particular, relying on the basic probability values, Pi ,
and computations assuming independence or full dependence can greatly underesti-
mate or overestimate the expected duration of IDK cascades. In the remainder of this
paper we therefore make no further comparisons with these techniques. They are not
appropriate when the underpinning assumptions of independence or full dependence
do not hold, and should not be used in those circumstances.

6.3 � When a latency constraint is specified

As mentioned in Sect. 5, a specified latency constraint rules out from consideration
those IDK cascades whose worst-case execution duration exceeds the constraint.
Consider, for example, the ResNet case study from Sect. 6.1, with C̄d = 1000 ms
as specified in Table 2. In the absence of a latency constraint there were 65 feasi-
ble IDK cascades, with expected execution durations as depicted in Fig. 7. When
a latency constraint of 1100ms is specified, then the DAG representation described
in Fig. 6 in Sect. 5 is modified by deleting all of those vertices, and the edges con-
nected to them, where the sum of the worst-case execution times of the correspond-
ing IDK classifiers plus the deterministic classifier exceeds 1100ms. The result is
that only vertices X, A, B, C, AB, BC, AC, and E remain and hence only 10 of the 65
possible IDK cascades remain feasible, i.e. are guaranteed to complete within the
constraint. The IDK cascade ⟨A,C,B,D,E⟩ , which was optimal in the absence of a
latency constraint, is not one of them; instead, the IDK cascade ⟨B,C,E⟩ , with an
expected duration of 446.43ms becomes the optimal one. Similar observations can
be made about the multi-modal case study: the added latency constraint may render

Table 10   Multi-Modal:The
optimal IDK cascade is different
for deterministic classifiers with
different execution times

C̄d
 Cascade Expected

duration
(ms)

5000 ⟨C,B,A,D,E⟩ 242.5
4000 ⟨C,B,A,D,E⟩ 211.4
3000 ⟨C,B,A,E⟩ 164.0
2000 ⟨C,B,A,E⟩ 114.6

374	 Real-Time Systems (2023) 59:348–407

1 3

Fig. 9   ResNet: Pareto Front
giving the expected duration in
ms (y-axis) of the optimal IDK
cascade for increasing latency
constraints (x-axis)

0

200

400

600

800

1000

1200

1000 1050 1100 1150 1200 1250

)s
m(

noitaruD
detcepxE

Latency Constraint (ms)

Table 11   ResNet: Pareto
optimal IDK cascades

IDK Cascade Worst-case (ms) Expected
duration
(ms)

⟨E⟩ 1000 1000
⟨A,E⟩ 1022.64 588.5
⟨B,E⟩ 1037.52 535.64
⟨C,E⟩ 1049.45 492
⟨A,B,E⟩ 1060.16 488.37
⟨A,C,E⟩ 1072.09 453.34
⟨B,C,E⟩ 1086.97 446.43
⟨A,C,B,E⟩ 1109.61 427.41
⟨A,B,D,E⟩ 1185.24 424.91
⟨A,C,D,E⟩ 1197.17 415.92
⟨A,C,B,D,E⟩ 1234.69 405.39

Fig. 10   Multi-modal: Pareto
Front giving the expected dura-
tion in ms (y-axis) of the opti-
mal IDK cascade for increasing
latency constraint (x-axis)

0

1000

2000

3000

4000

5000

6000

5000 5010 5020 5030 5040 5050 5060 5070 5080 5090 5100

)s
m(

noitaruD
detcepxE

Latency Constraint (ms)

375

1 3

Real-Time Systems (2023) 59:348–407	

some of the 65 IDK cascades, whose expected execution durations are shown in
Fig. 8, infeasible. How the expected duration of the optimal (feasible) IDK cascade
varies with the latency constraint specified is represented graphically in Fig. 9 for
the ResNet case study, and Fig. 10 for the Multi-Modal case study.

In these graphs of the Pareto Front, the x co-ordinate represents the speci-
fied latency constraint, while the y co-ordinate represents the expected duration of
the optimal IDK cascade. In Fig. 9, observe that there are steps in the graph after
x = 1100ms. It is the presence of these steps that are responsible for the optimal
IDK cascade for a latency constraint of 1100ms being different from that for no
latency constraint or a larger latency constraint. Further, for a specified latency con-
straint of 1050ms, the optimal IDK cascade is ⟨C,E⟩ , with an expected duration of
492ms. In fact, for the ResNet case study there are 11 Pareto optimal IDK cascades
as detailed in Table 11. Similarly, for the Multi-Modal case study, there are 9 Pareto
optimal IDK cascades as detailed in Table 12. Both Pareto graphs illustrate an inter-
esting property of the proposed framework. The larger the latency that is permitted,
the larger the worst-case duration can be, and hence the smaller the expected dura-
tion of the optimal IDK cascade, providing a clear trade-off between worst-case and
average-case behavior.

6.4 � When a classification threshold is specified

So far, we have assumed that in the event that all of the IDK classifiers in a cascade
returned IDK, then a deterministic classifier would be called; however, it may not
always be possible to have such an ultimate arbiter of all inputs. As an alternative, a
classification threshold L, e.g. 0.925, can be specified, such that in the long run any
IDK cascade employed must be able to successfully classify at least 92.5% of its
inputs. The classification threshold thus acts as a constraint on the subsets of IDK
classifiers that can form feasible IDK cascades, i.e. that meet all of the constraints.

Recall that when a classification threshold is used instead of a deterministic
classifier, then the DAG representation described in Sect. 5 is modified as fol-
lows. Firstly, since there is no deterministic classifier, all incoming edges to the

Table 12   Multi-Modal: Pareto
optimal IDK cascades

IDK Cascade Worst-case (ms) Expected
duration
(ms)

⟨E⟩ 5000 5000
⟨B,E⟩ 5005.3 3895.567
⟨C,E⟩ 5013.7 1330.844
⟨C,B,E⟩ 5019 973.540
⟨A,E⟩ 5019.6 480.889
⟨B,A,E⟩ 5024.9 411.576
⟨C,A,E⟩ 5033.3 307.553
⟨C,B,A,E⟩ 5038.6 262.919
⟨C,B,A,D,E⟩ 6651.8 242.492

376	 Real-Time Systems (2023) 59:348–407

1 3

exit vertex are labelled with a cost of zero. Secondly, all edges to the exit vertex
from vertices corresponding to some subset S of IDK classifiers where �P[S] < L
are removed.

With the ResNet case study, setting a classification threshold of 0.65 implies that
the subset S of IDK classifiers used must be one of: {B,C,D} , {A,C,D} , {A,B,D} ,
or {A,B,C,D} , since these are the only ones where the P̂[S] (i.e. Prob-A) values in
Table 2 exceed the threshold. Hence the edges between all other vertices and the exit
vertex are deleted. Subject to this threshold, the optimal IDK cascade is ⟨A,B,D⟩
with an expected duration of 788.5ms and a probability of successful classification
of 0.65394.

With the Multi-Modal case study, setting a classification threshold of 0.925
implies that the subset S of IDK classifiers used must be one of: {A,D} , {A,C} ,
{A,C,D} , {A,B,D} , {A,B,C} , or {A,B,C,D} , since these are the only ones where
the P̂[S] (i.e. Prob-A) values in Table 3 exceed the threshold. Subject to this thresh-
old, the optimal IDK cascade is ⟨C,B,A⟩ with an expected duration of just 15.697ms
and a probability of successful classification of 0.951. Fig. 11 shows the Pareto front
illustrating how the expected duration of the optimal IDK cascade increases with an
increasing classification threshold for the Multi-Modal case study, considering only
IDK classifiers A, B, C, and D.

6.5 � Validation

We validated the performance of the optimal IDK cascade ⟨A,B,D⟩ (i.e. ResNet-18,
ResNet-32, and ResNet-152), along with three other plausible IDK cascades
{A,C,D} , {B,C,D} , and {A,B,C,D} from the ResNet case study on 10,000 images
from the “TopImages” version of the ImageNetV2 data set. (Recall that 50,000
images from the ImageNet Large Scale Visual Recognition Challenge data set (Rus-
sakovsky et al. 2015) were used for profiling). The results are shown in Table 13.
Observe that in each case, the actual average execution duration was between 2.24%
and 2.82% lower that expected, and the actual frequency of successful classification
was between 2.73% and 3.65% lower than the probability computed. This is a strong

Fig. 11   Multi-modal: Pareto
front giving the expected dura-
tion (x-axis) of the optimal IDK
cascade for increasing values
of the classification threshold
(y-axis)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

dlohserhT
noitacifissalC

Expected dura�on (ms)

377

1 3

Real-Time Systems (2023) 59:348–407	

validation result given the disparate data sets used for profiling and validation. We
were unable to validate the Multi-Modal case study on a separate data set, since no
such additional compatible data set exists. The alternative of dividing up the limited
number of samples available would potentially compromise the 2n probability values
computed from that data.

We note that in practice it is necessary to have sufficient input samples to pop-
ulate the probability table, i.e. Tables 2 and 3, created during the profiling phase.
Since there are 2n probabilities characterizing the model, ideally at least 100 × 2n
representative input samples would be used for profiling. With n = 4 IDK classifiers,
there are 16 distinct regions in the probability space and hence 16 rows in the prob-
ability table. Since the ResNet and Multi-Modal case studies have 50,000 and 1800
input samples respectively, they fulfill this criteria when four IDK classifiers are
considered. For larger numbers of classifiers, as in the complete Multi-Modal case
study discussed below, then having a relatively small number of input samples could
impact the accuracy with which the dependences between the behaviors of different
classifiers can be determined and represented.

6.6 � The complete multi‑modal case study

In order to illustrate the proposed approach in full detail, so far we have limited the
number of IDK classifiers in the case study examples to four. However, the Multi-
Modal case study has nine different IDK classifiers that could be used. We recognize
that considering all nine classifiers stretches the 1800 available input samples over
29 = 512 regions of the probability space, which means there are fewer input sam-
ples used in construction of the probability table than would ideally the case. Never-
theless, considering all nine classifiers provides a useful proof-of-concept in apply-
ing the method to larger numbers of classifiers. We note that the number of input
samples is sufficient to assess the correlations between the behaviors and execution
times of the nine classifiers, see below.

The initial characterization of the nine Multi-Modal IDK classifiers is given in
Table 14.

The confidence thresholds for each classifier were set so as to meet a required
precision threshold of 0.95. (Recall that the precision threshold is a lower bound

Table 13   ResNet: validation

IDK cascade ⟨A,B,D⟩ ⟨A,C,D⟩ ⟨B,C,D⟩ ⟨A,B,C,D⟩

Expected Duration (ms) 788.50 800.36 870.14 878.45
Average Duration (ms) 766.32 782.44 850.41 853.70
Percentage Difference 2.81% 2.24% 2.27% 2.82%
Probability of Classification 0.65394 0.66412 0.66942 0.6824
Frequency of Classification 0.6266 0.6322 0.6379 0.6459
Difference 2.73% 3.19% 3.15% 3.65%

378	 Real-Time Systems (2023) 59:348–407

1 3

on the fraction of a classifier’s non-IDK classification decisions that must be cor-
rect, i.e. match the ground truth). Such a precision threshold of 0.95, combined
with a classification threshold of 0.95, ensures an overall accuracy for feasible
IDK cascades of at least 0.95 × 0.95 ≈ 0.9 or 90%. Meaning that a minimum of
90% of all input samples will be correctly classified as defined by the ground
truth, with approximately 5% of those remaining unclassified (i.e. IDK returned
by the final classifier in the IDK cascade) and approximately 5% incorrectly
classified.

With the classifications thresholds set as shown in Table 14, we examined
the correlation between the categorized behaviors ( 1 = non-IDK, 0 = IDK)
of each distinct pair of the nine classifiers using Pearson’s correlation coef-
ficient, r. Recall that this coefficient r takes values in the range [−1,+1] , with
r = 0 implying no correlation, and r = +1 implying perfect positive correla-
tion. The results are shown in Table 15, color-coded by the degree of correla-
tion between distinct classifiers: red indicating a strong degree of correlation
( abs(r) > 0.5 ), orange a moderate degree of correlation ( 0.1 < abs(r) ≤ 0.5 ), yel-
low a weak degree of correlation ( 0.05 < abs(r) ≤ 0.1 ), and green a very weak
degree of correlation ( abs(r) ≤ 0.05 ). Observe that there is a wide range of

Table 14   Multi-Modal: characterization of all nine IDK classifiers

Name Index Execution time
(ms)

Confidence
threshold

Success probability

deepsense_both A 17.5 0.66 0.899444
deepsense_both_contras B 17.0 0.705 0.907222
deepsense_acoustic C 11.7 0.715 0.213333
deepsense_seismic D 11.4 0.86 0.736111
cnn_both E 4.0 0.649 0.595556
cnn_acoustic F 3.9 0.5433 0.220556
cnn_seismic G 3.7 0.752 0.327222
yolov5s H 3145.9 0.1 0.298889
yolov5s-compressed I 1440.8 0.1 0.298333

Table 15   Multi-modal classification: Pearson correlation coefficient
A B C D E F G H I

A 1 0.377 0.111 0.282 0.177 0.080 0.143 0.052 0.048
B 0.377 1 0.059 0.265 0.209 0.055 0.121 -0.043 -0.043
C 0.111 0.059 1 -0.067 0.219 0.701 -0.103 -0.028 -0.030
D 0.282 0.265 -0.067 1 0.127 -0.071 0.219 -0.005 -0.008
E 0.177 0.209 0.219 0.127 1 0.231 0.326 0.035 0.037
F 0.080 0.055 0.701 -0.071 0.231 1 -0.066 -0.036 -0.035
G 0.143 0.121 -0.103 0.219 0.326 -0.066 1 0.155 0.151
H 0.052 -0.043 -0.028 -0.005 0.035 -0.036 0.155 1 0.988
I 0.048 -0.043 -0.030 -0.008 0.037 -0.035 0.151 0.988 1

379

1 3

Real-Time Systems (2023) 59:348–407	

different degrees of correlation between the behaviors of the different pairs of
classifiers. For example, classifiers H (yolov5s) and I (yolov5s-compressed) are
very strongly correlated ( r = 0.998 ), since they apply essentially the same clas-
sifier on uncompressed and compressed video data. At the other extreme, classi-
fiers D (deepsense_seismic) and I (yolov5s-compressed) are almost completely
uncorrelated ( r = 0.008 ), since they use different classifiers on different types
of data. Between these extremes, there are many pairs of classifiers with weak
degrees of correlation ( 0.05 < abs(r) ≤ 0.1 ), as well as pairs of classifiers such as
A paired with either B, C, D, E, or G that have moderate degrees of correlation
( 0.1 < abs(r) ≤ 0.5 ), while classifiers C (deepsense_acoustic) and F (cnn_acous-
tic) have a strong degree of correlation ( r = 0.701 ), since both operate on the
same type of data.

We also examined the correlation between the categorized execution times ( 1 =
above the median, 0 = equal to or below the median) of all distinct pairs of the nine
classifiers. The results are shown in Table 16. In stark contrast to the classification
behavior, the classifier execution times exhibit either very weak ( abs(r) < 0.05 ) or
weak ( 0.05 < abs(r) ≤ 0.1 ) degrees of correlation. This indicates that the assump-
tion that execution times are independent continues to be a reasonable approxima-
tion when all nine classifiers are considered.

Applying the DAG-based algorithm described in Sect. 5, considering all nine
classifiers and assuming a required classification threshold of 0.95, yields ⟨E,D,B⟩
as the optimal IDK cascade, with an expected duration of 10.8962ms, a worst-case
duration of 38.1ms (on a Raspberry Pi 4), and an overall success probability of
0.956667. Computing this optimal IDK cascade from the initial profiling data took
less than 10ms on a single core of an Intel i5-8265U 1.6 GHz laptop computer.

Table 17 illustrates how the optimal IDK cascade changes as the classification
threshold increases. Observe that while increasing the required classification thresh-
old increases the minimum expected duration, this does not necessarily imply that
the worst-case duration of the optimal IDK cascade also increases. For example,
⟨E,D,F,G,C⟩ , which is the optimal IDK cascade for a classification threshold of
0.9, has a larger worst-case duration than ⟨E,D,B⟩ , which is the optimal IDK cas-
cade for a classification threshold of 0.95.

Table 16   Multi-modal execution times: Pearson correlation coefficient
A B C D E F G H I

A 1 0.031 0.036 -0.011 -0.027 -0.009 0.022 0.007 0.004
B 0.031 1 0.009 0.024 -0.040 -0.013 -0.024 -0.011 0.013
C 0.036 0.009 1 0.000 0.029 -0.004 0.031 -0.002 0.049
D -0.011 0.024 0.000 1 -0.020 0.062 -0.058 0.020 -0.013
E -0.027 -0.040 0.029 -0.020 1 -0.007 0.076 -0.018 0.007
F -0.009 -0.013 -0.004 0.062 -0.007 1 0.024 -0.009 -0.044
G 0.022 -0.024 0.031 -0.058 0.076 0.024 1 -0.011 0.024
H 0.007 -0.011 -0.002 0.020 -0.018 -0.009 -0.011 1 -0.013
I 0.004 0.013 0.049 -0.013 0.007 -0.044 0.024 -0.013 1

380	 Real-Time Systems (2023) 59:348–407

1 3

We note that the optimal IDK cascades shown in Table 17 are non-trivial to find,
in particular ⟨E,D,A,B⟩ matches none of the plausible heuristics such as ordering
IDK classifiers by their average execution time C̄i , their probability of success Pi , or
by the ratio of these two values, C̄i∕Pi.

7 � Multiprocessor IDK cascades

In this section, we extend the model and synthesis of optimal IDK cascades to mul-
tiple processors.

As noted by Liu (1969) real-time scheduling on multiple processors is intrinsi-
cally a much more difficult problem than single processor scheduling:

Few of the results obtained for a single processor generalize directly to the
multiple processor case; bringing in additional processors adds a new dimen-
sion to the scheduling problem. The simple fact that a task can use only one
processor even when several processors are free at the same time adds a sur-
prising amount of difficulty to the scheduling of multiple processors.

Even with non-preemptive execution, the scheduling problem on multiple proces-
sors is significantly more complex than on a single processor. The reason for this
is that both the allocation of classifiers to processors, and the scheduling of classi-
fiers on each processor needs to be determined. Further, with multiple processors,
the order in which classifiers finish executing does not necessarily match the order
in which they start executing. This impacts allocation and scheduling, while also
requiring a revised analysis.

In this first investigation of optimal IDK cascades on multiple processors, we
reduce the difficulty of the problem by making the following simplifying assump-
tion. We assume that the execution time of each classifier can be represented by
a single value Ci . In other words that each classifier takes a near constant time to
execute, or at least holds the processor for a near constant time. In this section, we
therefore assume that Ci = C̄i , and leave removing this assumption to future work.
Further, we assume non-preemptive and therefore partitioned scheduling on a sys-
tem with multiple processors that are fully isolated from one another, in other words
where there is no inter-processor interference caused by shared hardware resources.

Table 17   Multi-modal: optimal IDK cascades considering all 9 IDK classifiers

Classification
threshold

IDK cascade Expected dura-
tion (ms)

Worst-case dura-
tion (ms)

Probability of
classification

0.85 ⟨E,D⟩ 8.61067 18.5 0.865556
0.9 ⟨E,D,F,G,C⟩ 10.8212 42.8 0.9
0.925 ⟨E,B⟩ 10.8756 24.4 0.932778
0.95 ⟨E,D,B⟩ 10.8962 38.1 0.956667
0.975 ⟨E,D,A,B⟩ 11.6546 59.5 0.981111
1 ⟨E,D,B,A,G,F,C,X⟩ 89.7576 5083.8 1

381

1 3

Real-Time Systems (2023) 59:348–407	

In Sect. 7.1, we discuss the properties of optimal IDK cascades on multiple pro-
cessors, and provide some theorems and proofs concerning their key characteris-
tics. This analysis informs an exhaustive solution that involves considering every
possible sequential ordering (i.e. permutation) of the n classifiers, converted into
an allocation and schedule on multiple processors via a list scheduler. Second, in
Sect. 7.2, to avoid having to evaluate every permutation and thus incur complexity
that is factorial in n, we again employ a graph-based representation in the form of a
Directed Acyclic Graph (DAG) that can be used to determine the optimal IDK cas-
cade for multiple processors via standard topological ordering algorithms for graph
traversal. The DAG-based approach has complexity that is exponential in n, which
is to be expected given that the problem is NP-complete, as shown in the Appendix.
Finally, Sect. 7.3 extends the Multi-Modal case study to multiple processors, while
Sect. 7.4 outlines our implementation of the DAG-based algorithm and explores its
scalability.

7.1 � Multiprocessor model and analysis

Instead of a single processor running the IDK classifiers in sequence, we assume
that there are m processors that can run up to m IDK classifiers in parallel10.

Each IDK classifier Ki is assumed to take the same execution time C̄i , and to have
the same probability Pi of successful classification, irrespective of which processor
it executes on.

In the context of multiple processors, an IDK cascade is conceptually defined by
a static allocation of classifiers to processors and an order in which each proces-
sor should run the classifiers allocated to it. Classifiers are assumed to execute non-
preemptively on their allocated processor. As we will see, a more compact defini-
tion is also possible based on the concept of list scheduling. With list scheduling,
whenever a processor becomes available, it simply runs the next classifier in the list.
Since each classifier Ki is assumed to occupy a processor for a fixed duration11 equal
to its execution time C̄i , in the case of list scheduling a single global list suffices to
define both the allocation of classifiers to processors and the running order of classi-
fiers on each processor.

Similar to the single processor case, the problem is to determine the optimal IDK
cascade, that is the allocation and running order of classifiers that minimizes the
expected duration, meaning the elapsed time to successful classification, optionally
subject to a maximum permitted latency constraint.

For a given IDK cascade, let f ′
1
 denote the finish time of the classifier that fin-

ishes first, f ′
i
 denote the finish time of the i-th classifier to finish, and f ′

n
 denote the

10  Recall that we use the term processor with the broad meaning of an independent processing unit.
Given that classifiers often make use of hardware accelerators such as GPUs, such a processing unit may
include both a CPU and a GPU. In this section, we assume that m such independent processing units can
run up to m classifiers in parallel.
11  This is a necessary assumption for list scheduling to produce a consistent schedule on multiple pro-
cessors. Permitting a classifier to release a processor early could otherwise lead to a different sched-
ule, resulting in timing anomalies, where early completion of one classifier results in a longer overall
expected duration.

382	 Real-Time Systems (2023) 59:348–407

1 3

finish time of the n-th and last classifier to finish, assuming that all n classifiers are
executed. Thus (f �

1
, f �
2
,… fi,… f �

n−1
, f �
n
) is an ordered list of classifier finish times,

with (K�
1
,K�

2
,…Ki,…K�

n−1
,K�

n
) denoting the corresponding classifiers that finish at

those times. (Note, for completeness, if two classifiers Kj and Kk , with j < k , finish
at the same time, then they are ordered according to their indices, i.e. K�

i
= Kj and

K�
i+1

= Kk and f �
i
= f �

i+1
).

The expected duration of an IDK cascade depends only on the classifiers and their
finish times, irrespective of how many processors are used and whether or not the
schedules on each processor are work conserving or not. Once classifiers in the set
{K�

1
,K�

2
,…K�

i
} have finished executing at time f ′

i
 , then the probability of successful

classification is given by P̂[{K�
1
,… ,K�

i
}] (see Definition 1), where P̂[S] denotes the

probability that at least one of the classifiers in the set S is successful, i.e. does not
return IDK. The expected duration is therefore given by:

If a deterministic classifier is employed, then as soon as it finishes and is therefore
included in the set S of classifiers that have completed, then P̂[S] = 1 and so no fur-
ther terms contribute to the expected duration. (Note that such a deterministic classi-
fier may or may not be the last classifier to finish).

Also, if two classifiers K�
i+1

 and K′
i
 finish at the same time f �

i+1
= f �

i
 then there is

no change to the expected duration when considering the second of those two clas-
sifiers K�

i+1
 , since f �

i+1
− f �

i
= 0 ; however, the probability P̂[S] considered for subse-

quent classifiers that finish later than f �
i+1

 accounts for the fact that both K�
i+1

 and K′
i

have finished.
The expected duration of an IDK cascade Q can also be expressed as follows:

where t is measured in integer time units (e.g. clock cycles), F(Q) is the last fin-
ish time of any classifier, S(t, Q) is the set of classifiers that finish strictly before
time t, and P̂[S(t,Q)] denotes the probability that at least one of the classifiers in the
set S(t, Q) is successful. This formulation is not intended for use in computing the
expected duration, rather it is helpful in reasoning about optimal IDK cascades.

Lemma 1  An IDK cascade, meaning an allocation of classifiers to processors and a
schedule of classifiers on each processor, exists that is optimal and is locally work
conserving, i.e. no processor becomes idle until all classifiers allocated to it have
finished.

Proof  We assume for contradiction that there is no such optimal IDK cascade, and
instead there is an optimal IDK cascade Q such that some processor or processors
have a schedule that is not work-conserving, i.e. the schedule contains inserted idle
time between the execution of classifiers, or at the start. We modify the schedule for

(4)f �
1
+

n−1∑

i=1

(f �
i+1

− f �
i
)(1 − P̂[{K�

1
,… ,K�

i
}])

(5)
F(Q)∑

t=1

(1 − P̂[S(t,Q)])

383

1 3

Real-Time Systems (2023) 59:348–407	

each such processor so that it is work-conserving by removing all of the inserted idle
time, while retaining the order in which the classifiers on each processor execute.
We refer to the transformed IDK cascade as V. Since the start and finish times of
every classifier in IDK cascade V are no later than in IDK cascade Q, it follows that
∀t S(t,Q) ⊆ S(t,V) and hence ∀t P̂[S(t,Q)] ≤ P̂[S(t,V)] , and further that IDK cas-
cade V finishes no later than IDK cascade Q, i.e. F(Q) ≥ F(V) . It follows from (5)
that the expected duration of IDK cascade V is no greater than that of IDK cascade
Q, hence V must also be an optimal IDK cascade 	� ◻

Lemma 2  An optimal IDK cascade exists that leaves no processor idle when there is
a classifier to run, i.e. the global schedule is work-conserving.

Proof  We assume for contradiction that there is no such optimal IDK cascade, and
instead there is an optimal IDK cascade Q that results in at least one processor being
idle when there is at least one as yet un-started classifier allocated to some other
processor. We first denote IDK cascade Q by V1 and then iteratively transform IDK
cascade Vi into Vi+1 for i = 1… z until IDK cascade Vz has a global schedule that is
work-conserving. On each iteration, we show that the transformation is such that the
new IDK cascade Vi+1 must also be optimal, given that Vi is optimal.

Base step: V1 = Q . By definition of Q, V1 is an optimal IDK cascade for which
there exists some processor x and some time t at which processor x is idle from time
t to time t + 1 and there is at least one classifier allocated to some other processor
that does not start until time t + 1 or later.

Iterative step: From IDK cascade Vi we select the processor x which becomes idle
at the earliest time t such that at time t + 1 there is un-started classifier allocated to
some other processor. From Lemma 1, the local schedule for processor x must nec-
essarily be work-conserving and hence processor x has no more classifiers to execute
in IDK cascade Vi after time t. We make a new IDK cascade Vi+1 by copying IDK
cascade Vi . We then remove classifier Kj that has the latest start time of any classifier
from its currently allocated processor, which cannot be x, and append it to the sched-
ule for processor x, so that Kj starts at time t. Comparing IDK cascades Vi+1 and Vi ,
all classifiers except Kj have unchanged start and finish times; however classifier Kj
starts and finishes earlier in Vi+1 than in Vi . It follows that ∀t S(t,Vi) ⊆ S(t,Vi+1) and
hence ∀t P̂[S(t,Vi)] ≤ P̂[S(t,Vi+1)] , and further that F(Vi) ≥ F(Vi+1) . Hence from
(5), the expected duration of IDK cascade Vi+1 is no greater than that of Vi , and
so Vi+1 must also be an optimal IDK cascade, given that Vi is optimal. If Vi+1 has a
globally work-conserving schedule then iteration terminates, otherwise it continues.

Termination: Iteration must terminate within a finite number of steps z since on
each iteration the start time of one classifier ( Kj ) is reduced by at least 1 time unit,
which cannot continue to happen indefinitely without the overall schedule becoming
globally work-conserving 	� ◻

Theorem 1  List scheduling of an appropriate ordered list of classifiers suffices to
provide an optimal IDK cascade.

384	 Real-Time Systems (2023) 59:348–407

1 3

Proof  Lemmas 1 and 2 show that the optimal IDK cascade implies a globally work-
conserving schedule. Since the duration for which each classifier Ki occupies a pro-
cessor is fixed at C̄i , and all classifiers are non-preemptable, it follows that list sched-
uling applied to all distinct ordered lists of the n classifiers generates all possible
distinct globally work-conserving schedules, at least one of which must therefore be
optimal 	� ◻

Theorem 1 suggests an exhaustive approach to determining an optimal IDK cas-
cade for a system with m processors as follows:

–	 Create a list corresponding to each of the n! permutations of the n classifiers.
These n! lists represent all possible IDK cascades.

–	 For each list (permutation) construct the schedules for all m processors, and
hence determine the ordered list of classifier finish times (f �

1
, f �
2
,… f �

i
,… f �

n−1
, f �
n
)

and the corresponding ordered list of classifiers (K�
1
,K�

2
,…K�

i
,…K�

n−1
,K�

n
) .

From these two lists compute the expected duration of the IDK cascade. Option-
ally, in the case of a maximum permitted latency constraint, then the feasibility
of the corresponding IDK cascade is determined by comparing the finish time of
the deterministic classifier with the latency constraint.

–	 Record the feasible IDK cascade with the minimum expected duration. This is an
optimal IDK cascade.

To cater for a classification threshold L (see Sect. 6.4) that negates the need for a
deterministic classifier, the above algorithm is modified as follows: The summa-
tion over values of i in the formula for the expected duration (4) terminates when
P̂[{K�

1
,… ,K�

i+1
}] ≥ L . In other words, the IDK cascade terminates once it achieves

a success probability that meets the classification threshold L. Note, this happens
after classifier K�

i+1
 completes a time f �

i+1
 . Further, in the case of a maximum per-

mitted latency constraint, the feasibility of the corresponding IDK cascade is deter-
mined by comparing the finish time f �

i+1
 of classifier K�

i+1
 with the latency constraint.

With the exhaustive approach described above, n! lists (IDK cascades) are con-
sidered. Further, the calculation required to determine the schedule on the m proces-
sors and hence the total expected duration for each IDK cascade takes O(nm) time.
Hence, once the table of 2n P̂[S] probability values has been computed during the
profiling stage in O(4n) time, then finding the optimal IDK cascade has O(n!nm)
complexity.

7.2 � DAG‑based algorithm for multiple processors

To improve upon the exhaustive approach, which has factorial complexity, we
developed a graph-based representation in the form of a DAG that can be used to
determine the optimal IDK cascade for multiple processors via standard topological
ordering algorithms for graph traversal. We first discuss the fundamental difference
between classifier schedules on single and multiple processors that necessitates a
more nuanced representation in the latter case. We then describe the representation

385

1 3

Real-Time Systems (2023) 59:348–407	

used for vertices and edges along with how the DAG is constructed, how the costs
associated with each edge are calculated, and finally how the DAG may be used to
determine the optimal IDK cascade.

Throughout, we make use of a running example to aid understanding. This
example considers two processors and five IDK classifiers A, B, C, D, and E, with
execution times of 40, 60, 50, 20, and 15 respectively. Figure 12 illustrates the
global work-conserving schedule for four different IDK cascades: ⟨A,B,C,D,E⟩ ,
⟨A,D,B,C,E⟩ , ⟨A,D,E,B,C⟩ , and ⟨A,E,D,B,C, ⟩ on the two processors. In each
schedule, the finish times of the first to fifth classifier to complete are indicated by
f ′
1
 to f ′

5
.

In order to compute the expected execution duration of an IDK cascade, we
need to consider the finishing time of each classifier. In the single processor case,
the classifiers run sequentially and so the order in which they are specified in the
IDK cascade determines not only the order in which they start, but also the order in
which they finish. This means that the cost calculations can proceed directly as each
classifier in the IDK cascade is considered in sequence. By contrast, in the multiple
processor case, the classifiers can run in parallel, and so the order in which they are
specified in the IDK cascade determines only the order in which they start; the order
in which they finish may be different. This means that the cost calculation cannot
proceed directly as each classifier in the IDK cascade is considered in sequence.
Rather, it can only proceed as far as the current minimum makespan of the m pro-
cessors, where the makespan of a processor is the total execution duration of the
classifiers allocated to it so far. Since list scheduling is employed, when x classifiers
are considered on m processors, the minimum makespan corresponds to the finish

Fig. 12   Processor allocation and
schedule for the following four
IDK cascades: ⟨A,B,C,D,E⟩ ,
⟨A,D,B,C,E⟩ , ⟨A,D,E,B,C⟩ ,
and ⟨A,E,D,B,C, ⟩ on two
processors. In each schedule,
the finish times of the first to
fifth classifier to complete are
indicated by f �

1
… f �

5

A C

0 f ′
1 = 40 f ′

4 = 90

B D E

0 f ′
2 = 60 f ′

3 = 80 f ′
5 = 95

A C

0 f ′
2 = 40 f ′

4 = 90

D B E

0 f ′
1 = 20 f ′

3 = 80 f ′
5 = 95

A C

0 f ′
3 = 40 f ′

4 = 90

D E B

0 f ′
1 = 20 f ′

2 = 35 f ′
5 = 95

A C

0 f ′
3 = 40 f ′

4 = 90

E D B

0 f ′
1 = 15 f ′

2 = 35 f ′
5 = 95

386	 Real-Time Systems (2023) 59:348–407

1 3

time of the (x − (m − 1))-th classifier to finish, or zero when x < m . The reason for
this is that there can be at most m − 1 unfinished, i.e. running, classifiers when a new
one is added.

As an example, the first schedule at the top of Fig. 12 is for the IDK cascade
⟨A,B,C,D,E⟩ running on two processors. Notice that although the classifiers start
in the order: A, B, C, D, E, they finish in a different order: A, B, D, C, E. Once clas-
sifiers A, B, and C have been added, then the costs can only be calculated up to the
minimum makespan considering those three classifiers. This minimum makespan
equates to the finish time f ′

2
 of the second classifier to complete, i.e. B. It is not until

the fifth classifier, E, is added that we can calculate the costs up to the finish time f ′
4

of classifier C, which was the third classifier added, but the fourth to finish.
Constructing the DAG: In the case of multiple processors, in order to perform

the necessary cost calculations, we need to distinguish between the set of classifiers
that have finished executing on a given processor, referred to as its completed set,
and the last classifier that was added to that processor, referred to as its running set.
Each vertex in the DAG therefore corresponds to 2m sets of classifiers, comprising
one completed set and one running set for each of the m processors. Each of the n
classifiers may appear in at most one of these 2m sets. Further, at most one classifier
may appear in each of the m running sets, and each running set may contain at most
one classifier.

Each vertex records:

–	 The contents of each of the m completed sets.
–	 The contents of each of the m running sets.
–	 A finishing time f ′

i
 that equates to the minimum makespan of the m processors

taking into account the classifiers in the completed sets and the running sets.
–	 The set S containing all classifiers that are in the completed sets, and the sin-

gle classifier in the running set of the processor selected as having the minimum
makespan.12

–	 The overall success probability P̂[S] . The P̂[S] values are found via table lookup
from the table of values determined during the profiling phase, see Sect. 4; these
are the Prob-A values illustrated in Tables 2 and 3.

Directed edges join two vertices. We refer to the vertex where the edge is outgoing as the
previous vertex, and the vertex where the edge is incoming as the next vertex. The DAG is
constructed beginning with a single start vertex that has empty completed sets and empty
running sets. Construction proceeds recursively, adding only those edges that are permitted
by the rules set out below and the vertices that they lead to, or by linking to vertices that
already exist.

With list scheduling, the first m classifiers in an IDK cascade are allocated to dif-
ferent processors, hence the DAG is bootstrapped by adding a first layer of vertices

12  When two processors have the same makespan, then the processor with the lowest index value is
selected.

387

1 3

Real-Time Systems (2023) 59:348–407	

that account for all combinations13 of m classifiers chosen from the n classifiers that
are initially unused. Each vertex in the first layer therefore has one classifier in each
of its m running sets, and is linked to by an incoming edge from the start vertex.

After the first layer of vertices have been constructed in the bootstrapping phase,
the only normal edges that are permitted are those that add an as yet unused classi-
fier to the processor that currently has the minimum makespan, with ties broken in
favor of the processor with the lowest index.14 Adding solely to the processor with
the minimum makespan ensures that only those allocations that result in a globally
work-conserving schedule can be generated, and that all such distinct schedules can
be generated from the DAG.15 Stated otherwise, along a normal edge joining a pre-
vious vertex v to a next vertex w, an unused classifier is added to the selected pro-
cessor with the minimum makespan. The next vertex w thus equates to the previous
vertex v with the classifier in the running set of the selected processor first moved
into the corresponding completed set, and then the new classifier added to the run-
ning set.

The number of outgoing normal edges from a vertex equates to the number of
unused classifiers, i.e. the number of classifiers that are not in the completed or run-
ning sets of that vertex. Hence, vertices that contain all n classifiers have no outgo-
ing normal edges. Rather, they may have outgoing special edges that represent the
transfer of a classifier from the running set of a processor into its corresponding
completed set.

Normal edges are used to handle cost calculations up to and including the
(n − (m − 1))-th classifier to finish, while special edges are used to handle the
remaining cost calculations for the final m − 1 classifiers to finish. We return to
special edges after illustrating the basic construction of the DAG via the running
example.

Recall that the running example assumes two processors and five IDK classifiers
A, B, C, D, and E, with execution times of 40, 60, 50, 20, and 15 respectively. As a
compact notation, we use ∅ to mean the empty set, and append the subset contents
together separated by a colon and a vertical line. Thus AB:D|C:E indicates that clas-
sifiers A and B are in the completed set of processor 1 and classifier D is in its run-
ning set, while classifier C is in the completed set of processor 2, with classifier E in
its running set. The start vertex is indicated by ∅:∅|∅:∅ , with no classifiers in any of
its completed or running sets.

Figure 13 illustrates part of the DAG representation for this example. Note, the
graph is incomplete and shows only those vertices and edges that are referred to in
the text. Each edge is labelled with an identifier to aid discussion. A path from the
start vertex to an exit vertex of the DAG corresponds to an IDK cascade, with the
order in which the classifiers appear in the IDK cascade recoverable via the edges

13  It is sufficient to cover all combinations, rather than all permutations, since that avoids duplication
where two vertices can be made equivalent by switching the processor numbering.
14  This consistent tie-breaking avoids some of the duplication inherent in cases where two vertices can
be made equivalent by switching the processor numbering.
15  By distinct schedules, we mean schedules that cannot be made equivalent by switching the processor
numbering.

388	 Real-Time Systems (2023) 59:348–407

1 3

and vertices visited. The path on the left hand side of the DAG, via edges 1a, 2a, 3a,
4a, and 5a, represents the IDK cascade ⟨A,B,C,D,E⟩ ; the path to the left of centre,
via edges 1b, 2b, 3b, 4b, and 5a, represents the IDK cascade ⟨A,D,B,C,E⟩ ; the path
to the right of centre, via edges 1b, 2c, 3c, 4c, and 5b, represents the IDK cascade
⟨A,D,E,B,C⟩ ; and finally the path on the right hand side, via edges 1c, 2d, 3d, 4c,
and 5b, represents the IDK cascade ⟨A,E,D,B,C, ⟩ . The schedules for these four
IDK cascades are illustrated in Fig. 12.

Initially, the first layer of vertices are created containing all combinations of
m = 2 classifiers chosen from the n = 5 that are available. Note, only three of these
vertices are shown in Fig. 13. Following the path on the left hand side of the graph,
edge 1a, from the start vertex, adds classifiers A and B to the running sets. Recall
that after the first layer, it is only permitted to add a classifier to the processor with
the minimum makespan, hence at edge 2a, classifier C is added to processor 1, since
at the previous vertex the two processors have makespans of 40 and 60 respectively.
The converse is true for edge 2b, with the two processors having makespans of 40
and 20, and so in that case classifier B is added to processor 2. Observe that edges
4a and 4b have the same next vertex, even though the order in which classifiers B
and D are added on the two paths that join at that vertex are different. Edge 5a is a
special edge as the previous vertex already includes all n classifiers. Edge 5a links to
the only special vertex on this path, which is also an exit vertex. It moves classifier
C from the running set to the completed set of processor 1, since that processor has
the minimum makespan of the processors that have classifiers in their running sets.

We now return to the construction of special edges and special vertices. Recall
that special edges are used to handle the cost calculations for the final m − 1 clas-
sifiers to finish. Special edges are therefore added to each vertex that includes
all n classifiers and has more than one running set with a classifier in it. Along a

Fig. 13   DAG representation of
the 2m subsets of IDK classifiers
(vertices), with arrows (directed
edges) representing the cost
(contribution to the expected
execution duration). Special
edges are shown as dashed lines,
and link to special vertices.
Note, this DAG is incomplete
and shows only the vertices and
edges described in the text

∅:∅|∅:∅
start vertex

∅:A|∅:B ∅:A|∅:D ∅:A|∅:E

A:C|∅:B ∅:A|D:B ∅:A|D:E ∅:A|E:D

∅:A|DE:B

A:C|DE:B

A:C|B:D A:C|D:B

A:C|BD:E

AC:∅|BD:E AC:∅|DE:B

exit vertex exit vertex

1a 1b 1c

2a 2b 2c 2d

3a 3b 3c 3d

4a 4b 4c

5a 5b

389

1 3

Real-Time Systems (2023) 59:348–407	

special edge joining a previous vertex v to a next vertex w, of the processors with
running sets that contain classifiers at vertex v, the one with the minimum makes-
pan is selected, and the classifier in the running set of that processor is transferred
to the corresponding completed set. Stated otherwise, the next vertex w equates to
the previous vertex v with the classifier in the running set of the selected proces-
sor moved into the corresponding completed set, and that running set thus empty.
It follows that traversing a chain of special edges moves m − 1 classifiers, one by
one, from the running sets into the corresponding completed sets, finally reaching
an exit vertex that includes all n classifiers and has only one running set with a
classifier in it. Exit vertices have no outgoing edges.

A vertex is referred to as special if its incoming edge(s) are special. Each spe-
cial vertex records:

–	 The contents of each of the m completed sets.
–	 The contents of each of the m running sets.
–	 A finishing time f ′

i
 that equates to the minimum makespan of the processors

with a classifier in their running set, taking into account the classifiers in both
the completed sets and the running sets of those processors.

–	 The set S containing all classifiers that are in the completed sets, and the sin-
gle classifier in the running set of the processor selected as having the mini-
mum makespan of those processors with a classifier in their running set.

–	 The overall success probability P̂[S].

Cost calculations on edges: Each edge represents an increase in the expected
execution duration (cost) for all paths (IDK cascades) that include it. Edges
represent the cost increase as the time considered moves on from the minimum
makespan computed at the previous vertex, equating to the finish time f ′

i
 of some

classifier or f �
0
= 0 in the case of the start vertex, to the minimum makespan com-

puted at the next vertex, equating to the finish time f �
i+1

 of the next classifier to
complete.

The cost of an edge is given by:

where P̂[S] is the overall success probability recorded for the previous vertex, with
S defined as the set of all classifiers that are in any of the completed sets and the
classifier in the running set of the single processor selected as having the minimum
makespan at that vertex. Due to the way in which the graph is constructed by only
ever adding classifiers to the processor with the minimum makespan, it follows that
all of the classifiers in S are guaranteed to be finished by f ′

i
.

Returning to the example in Fig. 13, traversing edge 1a, the minimum makes-
pan increases from 0 to 40 (i.e. f �

1
= 40 ) and the set S at the previous (i.e. start)

vertex contains no classifiers, and so the cost of this edge is 40. Traversing edge
2a, the minimum makespan increases from 40 to 60 (i.e. f �

2
= 60 ) and classifier A

is added to the completed set for processor 1. The set S at the previous vertex
contains only classifier A, and hence the cost of this edge is given by

(6)(f �
i+1

− f �
i
) ×

(
1 − P̂[S]

)

390	 Real-Time Systems (2023) 59:348–407

1 3

20 ×
(
1 − P̂[{A}]

)
 . Traversing edge 3a, the minimum makespan increases from

60 to 80 (i.e. f �
3
= 80 ) and classifier B is added to the completed set for processor

2. The set S at the previous vertex now contains classifiers A and B, hence the
cost of this edge is given by 20 ×

(
1 − P̂[{A,B}]

)
 . Further, traversing edge 4a, the

minimum makespan increases from 80 to 90 (i.e. f �
4
= 90 ) and classifier D is

added to the completed set for processor 2. The set S at the previous vertex now
contains classifiers A, B, and D, hence the cost of this edge is given by
10 ×

(
1 − P̂[{A,B,D}]

)
.

Observe that on any path reaching the layer of vertices that have all n clas-
sifiers allocated (i.e. the next vertices to edges 4a, 4b, and 4c), costs have been
calculated as far as the minimum makespan of the m processors when all n classi-
fiers are considered. However, this means that there are still some additional costs
to be incurred as the classifiers in the running sets of each of the remaining m − 1
processors, that were not yet selected as having the minimum makespan, finish.
This is taken care of via the cost calculation for the special edges that link to the
special vertices.

Continuing with the example, traversing special edge 5a, processor 1 is
selected as having the minimum makespan of 90, compared to 95 for processor 2,
and hence for the next vertex, classifier C is removed from the running set of pro-
cessor 1 and placed in the corresponding completed set. Since the next vertex of
edge 5a is special, the minimum makespan increases from 90 to 95 (i.e. f �

5
= 95 ).

(Recall that for special vertices, the minimum makespan excludes those proces-
sors with empty running sets). The set S at the previous vertex now contains clas-
sifiers A, B, C, and D, hence the cost of this edge is given by
5 ×

(
1 − P̂[{A,B,C,D}]

)
 . Finally, the exit vertex, in the final layer, records the

overall success probability P̂[S] where S now contains all of the classifiers.
Note that since this example is for two processors, the first special vertices on

any path are also exit vertices. With more processors additional special edges and
special vertices would move further classifiers into the completed sets, and hence
complete the calculations.

Observe that on the path on the left hand side of the graph in Fig. 13, even
though classifier C is added to the corresponding IDK cascade at edge 2a, we
cannot complete all of the cost calculations up to the finish time of classifier C
until later in the graph at edge 4a. This is a consequence of the fact that the start
and finish times of classifiers are interleaved due to parallel execution, and is why
we need to separately keep track of the classifiers in the completed sets and the
running sets.

Finally, the two paths on the right hand side of the graph in Fig. 13 and the cor-
responding two schedules at the bottom of Fig. 12 illustrate how the DAG-based
representation gains over examining all possible permutations. When two paths join
because the sets of completed and running classifiers have become the same even
though the classifiers did not execute in the same order, for example via edges 3c
and 3d, then the subsequent evolution of these paths and the calculations required
are identical and do not need to be duplicated.

391

1 3

Real-Time Systems (2023) 59:348–407	

Note that different to the DAG-based algorithm presented for a single processor
in Sect. 5.1, in the case of multiple processors we make no distinction regarding the
deterministic classifier if any. It is treated exactly the same as any other classifier.

Finding the optimal IDK cascade: The problem of finding the optimal IDK cas-
cade is characterized by a latency constraint, which is assumed to be infinite if there
is no such constraint, and a classification threshold, which is assumed to be 1 if suc-
cessful classification has to be guaranteed. For there to be any feasible solutions,
then the overall success probability considering the complete set of n classifiers
must not be less than the classification threshold. Assuming that a feasible solution
exits, then an optimal IDK cascade can be found as follows.

Firstly, vertices and the edges to and from them are omitted from the DAG if their
recorded finish time exceeds the latency constraint. Since the finish time of succes-
sor vertices is monotonically non-decreasing on any path through the DAG, this is
done as the graph is constructed, i.e. all successor vertices of a vertex that breaks a
latency constraint must also break that constraint and are therefore not required. Fur-
ther, the remaining vertices are marked as qualifying if their recorded overall suc-
cess probability meets or exceeds the classification threshold. The problem of deter-
mining the optimal IDK cascade, subject to a latency constraint and classification
threshold, then amounts to finding the minimum cost path through the DAG from
the single start vertex to any one of the qualifying vertices. This is a well-known
problem in graph traversal. Since there is a single start vertex, the problem can be
solved using a standard topological ordering algorithm, in time that is linear in the
number of vertices plus edges. The complexity of the DAG-based algorithm hence
depends on the number of vertices and edges and the operations involved in con-
structing them. The complexity of the problem and the DAG-based algorithm are
discussed further in the Appendix. We note that if after catering for the latency con-
straint and classification threshold, no qualifying vertices remain, then this means
that there is no feasible solution to the problem.

7.3 � Complete multi‑modal case study on multiple processors

In order to illustrate the proposed approach for multiple processors, we consider the
complete Multi-Modal case study with all nine IDK classifiers as characterized in
Table 14. For comparison purposes, Table 18 first sets out the equivalent results for
the case of a single processor.

Assuming a required classification threshold of 0.95, and considering all nine
classifiers A to I, yields ⟨E,D,F,G,B⟩ as the optimal IDK cascade for a two proces-
sor system, with an expected duration of 8.16333ms, a worst-case duration of 21ms,
and an overall success probability of 0.963889. Table 19 illustrates how, for a two
processor system, the optimal IDK cascade changes as the classification threshold
increases. The final row in the table sets the classification threshold to 1.0 and also
includes a hypothetical deterministic classifier X with an assigned execution time of
5000ms. In this case the optimal IDK cascade is ⟨E,G,D,F,B,A,C, I,H,X⟩ with

392	 Real-Time Systems (2023) 59:348–407

1 3

classifiers ⟨E,G,B,X⟩ running on the first processor and classifiers ⟨D,F,A,C, I,H⟩
running on the second processor. The expected duration is 70.4877ms and the worst-
case duration is 5024.7ms. It is interesting to note that the previous rows in the table
remain unaltered by the addition of such a deterministic classifier, since it is more
efficient to rely upon a selection of IDK classifiers to reach the required classifica-
tion thresholds, rather than use the deterministic classifier.

Tables 20 and 21 for three and four processors respectively, similarly illustrate
how the optimal IDK cascade changes as the classification threshold increases.
Tables 19, 20, and 21 for two, three, and four processors respectively, are directly
comparable to Table 18 for a single processor.16

Assuming a classification threshold of 0.95, then by using two processors the
expected duration is reduced to 74.9% of that required using a single processor
(8.16333 ms vs. 10.8962 ms) and the worst-case duration is reduced to 64.8% (21
ms vs. 32.4 ms). Using three processors the expected duration is reduced to 67.3%

Table 18   Multi-modal: optimal IDK cascades for a single processor considering all 9 IDK classifiers and
a deterministic classifier

Classification
threshold

IDK cascade Expected dura-
tion (ms)

Worst-case dura-
tion (ms)

Probability of
classification

0.85 ⟨E,D⟩ 8.61067 15.4 0.865556
0.9 ⟨E,D,F,G,C⟩ 10.8212 34.7 0.9
0.925 ⟨E,B⟩ 10.8756 21 0.932778
0.95 ⟨E,D,B⟩ 10.8962 32.4 0.956667
0.975 ⟨E,D,B,A⟩ 11.6546 49.9 0.981111
1 ⟨E,D,B,A,G,F,C,X⟩ 89.7576 5069.2 1

Table 19   Multi-modal: optimal IDK cascades for a dual processor considering all 9 IDK classifiers and a
deterministic classifier

Clas-
sification
threshold

IDK cascade Processor 1 Processor 2 Expected
duration
(ms)

Worst-case
duration
(ms)

Probability of
classification

0.85 ⟨E,G,D⟩ ⟨E,G⟩ ⟨D⟩ 6.77911 11.4 0.876667
0.9 ⟨E,G,D,F,C⟩ ⟨E,G,C⟩ ⟨D,F⟩ 7.69972 19.4 0.9
0.925 ⟨E,D,F,G,B⟩ ⟨E,B⟩ ⟨D,F,G⟩ 8.16333 21 0.963889
0.95 ⟨E,D,F,G,B⟩ ⟨E,B⟩ ⟨D,F,G⟩ 8.16333 21 0.963889
0.975 ⟨E,G,D,F,B,A⟩ ⟨E,G,B⟩ ⟨D,F,A⟩ 8.5605 32.8 0.983889
1 ⟨E,G,D,F,B,

A,C, I,H,X⟩
⟨E,G,B,X⟩ ⟨D,F,A,C, I,H⟩ 70.4877 5024.7 1

16  Note that in computing Table 18, we made the same simplifying assumption about classifier execution
times that was used in the analysis of multiple processors. For that reason, the worst-case durations differ
from those given in Table 17 in Sect. 6.6.

393

1 3

Real-Time Systems (2023) 59:348–407	

Ta
bl

e 
20

  
M

ul
ti-

m
od

al
: o

pt
im

al
 ID

K
 c

as
ca

de
s f

or
 a

 tr
i p

ro
ce

ss
or

 c
on

si
de

rin
g

al
l 9

 ID
K

 c
la

ss
ifi

er
s a

nd
 a

 d
et

er
m

in
ist

ic
 c

la
ss

ifi
er

C
la

ss
ifi

ca
tio

n
th

re
sh

ol
d

ID
K

 c
as

ca
de

Pr
oc

es
so

r 1
Pr

oc
es

so
r 2

Pr
oc

es
so

r 3
Ex

pe
ct

ed
 d

ur
a-

tio
n

(m
s)

W
or

st-
ca

se
 d

ur
a-

tio
n

(m
s)

Pr
ob

ab
ili

ty
 o

f
cl

as
si

fic
at

io
n

0.
85

⟨G
,
E
,
F
,
D
⟩

⟨G
,
F
⟩

⟨E
⟩

⟨D
⟩

6.
33

20
6

11
.4

0.
89

27
78

0.
9

⟨G
,
E
,
F
,
D
,
C
⟩

⟨G
,
C
⟩

⟨E
,
F
⟩

⟨D
⟩

6.
77

16
1

15
.4

0.
9

0.
92

5
⟨G

,
E
,
F
,
D
,
C
,
B
⟩

⟨G
,
B
⟩

⟨E
,
F
,
C
⟩

⟨D
⟩

7.
33

19
5

20
.7

0.
96

55
56

0.
95

⟨G
,
E
,
F
,
D
,
C
,
B
⟩

⟨G
,
B
⟩

⟨E
,
F
,
C
⟩

⟨D
⟩

7.
33

19
5

20
.7

0.
96

55
56

0.
97

5
⟨G

,
E
,
F
,
D
,
B
,
C
,
A
⟩

⟨G
,
B
⟩

⟨E
,
F
,
A
⟩

⟨D
,
C
⟩

7.
50

57
8

25
.4

0.
98

44
44

1
⟨G

,
E
,
F
,
D
,
B
,
A
,
C
,
I,
H
,
X
⟩

⟨G
,
B
,
I⟩

⟨E
,
F
,
A
,
C
,
H
⟩

⟨D
,
X
⟩

69
.2

98
4

50
11

.4
1

394	 Real-Time Systems (2023) 59:348–407

1 3

Ta
bl

e 
21

  
M

ul
ti-

m
od

al
: o

pt
im

al
 ID

K
 c

as
ca

de
s f

or
 a

 q
ua

d
pr

oc
es

so
r c

on
si

de
rin

g
al

l 9
 ID

K
 c

la
ss

ifi
er

s a
nd

 a
 d

et
er

m
in

ist
ic

 c
la

ss
ifi

er

C
la

ss
ifi

ca
tio

n
th

re
sh

ol
d

ID
K

 c
as

ca
de

Pr
oc

. 1
Pr

oc
. 2

Pr
oc

. 3
Pr

oc
. 4

Ex
pe

ct
ed

 d
ur

a-
tio

n
(m

s)
W

or
st-

ca
se

 d
ur

a-
tio

n
(m

s)
Pr

ob
ab

ili
ty

 o
f

cl
as

si
fic

at
io

n

0.
85

⟨G
,
F
,
E
,
D
⟩

⟨G
⟩

⟨F
⟩

⟨E
⟩

⟨D
⟩

6.
18

79
4

11
.4

0.
89

27
78

0.
9

⟨G
,
E
,
F
,
D
,
C
⟩

⟨G
,
F
⟩

⟨E
⟩

⟨D
⟩

⟨C
⟩

6.
36

42
2

11
.7

0.
9

0.
92

5
⟨G

,
E
,
F
,
D
,
C
,
B
⟩

⟨G
,
F
⟩

⟨E
,
C
⟩

⟨D
⟩

⟨B
⟩

6.
92

31
1

17
0.

96
55

56
0.

95
⟨G

,
E
,
F
,
D
,
C
,
B
⟩

⟨G
,
F
⟩

⟨E
,
C
⟩

⟨D
⟩

⟨B
⟩

6.
92

31
1

17
0.

96
55

56
0.

97
5

⟨G
,
E
,
F
,
D
,
B
,
C
,
A
⟩

⟨G
,
F
,
C
⟩

⟨E
,
A
⟩

⟨D
⟩

⟨B
⟩

7.
09

13
3

21
.5

0.
98

44
44

1
⟨G

,
E
,
F
,
D
,
B
,
A
,
C
,
I,
H
,
X
⟩

⟨G
,
F
,
X
⟩

⟨E
,
A
,
H
⟩

⟨D
,
I⟩

⟨B
,
C
⟩

68
.8

58
4

50
07

.6
1

395

1 3

Real-Time Systems (2023) 59:348–407	

of that required using a single processor (7.33195 ms vs. 10.8962 ms) and the worst-
case duration is reduced to 63.9% (20.7 ms vs. 32.4 ms). Finally, using four proces-
sors the expected duration is reduced to 63.5% of that required using a single proces-
sor (6.92311 ms vs. 10.8962 ms) and the worst-case duration is reduced to 52.5%
(17 ms vs. 32.4 ms).

The above results and comparisons assume that the execution times for the clas-
sifiers are unchanged when the classifiers are run in parallel on multiple proces-
sors rather than serially on a single processor, i.e. assuming no interference effects
between the processors. A consideration of any such effects is beyond the scope of
this paper.

7.4 � Proof of concept implementation

We implemented the DAG-based algorithm, described in Sect. 7.2, in C++. The
implementation built upon the algorithmic description in the following ways:

–	 Data structures were used to represent the DAG and each vertex.
–	 The DAG data structure recorded the input parameters, i.e. the number of pro-

cessors, the number of classifiers and their execution times, and provided access
to the pre-computed table of P̂[S] probability values. Further, it provided access
to the layers of vertices as they were created, and also recorded, as construction
progressed, the lowest cost qualifying vertex that complied with the latency con-
straint and the classification threshold.

–	 The vertex data structure contained all of the information detailed in the algo-
rithmic description, as well as fields to record the cost for the vertex (i.e. the total
cost up to and including the vertex along the lowest cost path to it), and a pointer
to the vertex in the previous layer on that lowest cost path.

–	 The cost for each vertex was computed on-the-fly as the DAG was constructed,
i.e. as vertices were added, layer by layer. This had the advantage that no lasting
representation of edges was required. Instead, each vertex required only a single
pointer back to the vertex in the previous layer that was on the lowest cost path
to it. Once the DAG was complete, this enabled the optimal IDK cascade to be
recovered from the path back to the start vertex from the minimum cost vertex
that complied with the latency constraint and the classification threshold.

–	 A large hash table was used to eliminate equivalent vertices that could otherwise
occur in each layer. A 32-bit CRC was obtained from a binary representation of
the completed sets and the running sets of each vertex.17 The bottom 26 bits of
the CRC was then used as a hash key into a hash table of size 226 . On removing
an equivalent vertex, the remaining vertex was given the minimum cost of the
pair and its pointer back to the vertex in the previous layer was updated to cor-
respond to the lowest cost path.

–	 Effective pruning of vertices was achieved by avoiding construction of unneces-
sary vertices in the first place. Any vertex exceeding the latency constraint was

17  Recall that vertices are effectively equivalent if their running sets and completed sets are the same.

396	 Real-Time Systems (2023) 59:348–407

1 3

marked as a stopping point and was not extended to further vertices in the subse-
quent layer. Similarly, qualifying vertices that already complied with the latency
constraint and the classification threshold were not extended, since they represent
better solutions than any of their successors.

A simplified algorithm was also implemented for the single processor case, based on
the DAG-based algorithm described in Sect. 5.1. In this case the hash key used was
simply the bottom 20-bits of the binary representation of the allocated classifiers,
with a hash table of size 220.

Our DAG-based implementations were run on one core of a mid-range laptop PC
(a Lenovo ThinkPad with an Intel Core i5-8265U CPU clocked at 1.60 GHz to 1.80
GHz, with 16 GBytes of RAM, running Microsoft Windows 10). A separate run was
made to create each row in Tables 18, 19, 20, and 21. The longest run-time in each
case was for the final row in the table, with a classification threshold of 1.0. The

Fig. 14   Number of non-dupli-
cated vertices created for m
processors and n classifiers

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

secitreVforeb
muN

Number of classifiers

m=1
m=2
m=3
m=4
m=5
m=6

Fig. 15   Run-time of the DAG-
based algorithm for m proces-
sors and n classifiers

0.001

0.01

0.1

1

10

100

1000

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

)sdnoces(
e

mit
nuR

Number of classifiers

P[S] table
m=1
m=2
m=3
m=4
m=5
m=6

397

1 3

Real-Time Systems (2023) 59:348–407	

run-times measured using the C++ clock() function were approximately: 7ms,
521ms, 568ms, and 555ms, for one, two, three, and four processors respectively.
(Note, that in each case the run-time was dominated by the initialization of the hash
table for each layer of vertices). Similarly, the numbers of non-equivalent vertices
created (not counting the start vertex) were: 1023, 83870, 221874, and 197975
respectively. The above run-times cover only the code used to determine the opti-
mal IDK cascade using the DAG-based algorithms. The additional pre-processing
needed to set up the table of 210 = 1024 P̂[S] values took less than 1ms, and was the
same in each case.

The Multi-modal case study with 9 IDK classifiers and a deterministic classifier
presents only a limited computational challenge. To investigate the scalability of our
DAG-based implementations, we devised a test based on n classifiers that all had the
same execution duration, with disjoint probabilities of success each equating to 1/n.
Further, no latency constraint was specified. We selected these settings since a set of
classifiers that all have the same execution duration maximizes the number of dif-
ferent work-conserving schedules, and hence the number of non-equivalent vertices
created. Further, the disjoint probabilities of success meant that all n classifiers were
required to meet a classification threshold of 1.0, so all vertices, with the exception
of the exit vertices in the final layer, needed to be extended to vertices in the next
layer.

Figure 14 shows the number of non-equivalent vertices that were created by our
DAG-based implementations in solving the optimal IDK cascade problem for m = 1
to 6 processors and n = 6 to 20 classifiers. Where the lines stop before 20 classifiers,
this indicates that more than 24 GBytes of memory would be required to store the
vertices required for the next point. For m = 1 , the simpler algorithm was employed
and the number of vertices (not counting the start vertex) is given by 2n − 1 . For
m = 2 to 6, the more complex algorithm was employed. Observe that in this case the
number of vertices grows faster (i.e. the lines have a steeper slope) for larger num-
bers of processors, but those lines start at a lower value. For example, with m = 6
processors and n = 6 classifiers the problem is trivial, there is only one vertex in the
first layer and one special vertex in each of the five subsequent layers for 6 vertices
in all, whereas with m = 2 processors and n = 6 classifiers there are far more dis-
tinct possibilities, leading to 699 vertices in all, not counting the start vertex. As the
number of classifiers increases to 12 or more, so the number of distinct possibilities
on m = 6 processors becomes greater than that on m = 2 processors and so the lines
cross.

Figure 15 illustrates the corresponding run-times of our DAG-based implemen-
tations in solving the optimal IDK cascade problem for m = 1 to 6 processors and
n = 6 to 20 classifiers, when run on one core of a laptop PC. For n = 6 to 10 classi-
fiers, the run-times were dominated by the time taken to initialize the hash table for
each layer of vertices. Recall that for the single processor case a much smaller hash
table is used and this accounts for most of the difference between the single and
multiple processor run-times for smaller values of n. Observe also that in each case,
the run-time for 7 classifiers is lower than that for 6 classifiers; this is an artefact of
cache warm-up. For more than n = 10 classifiers, the run-times reflect the number
of non-equivalent vertices, shown in Fig. 14. Also shown in Fig. 15 is the O(4n)

398	 Real-Time Systems (2023) 59:348–407

1 3

run-time required to set up the table of 2n P̂[S] i.e. Prob-A values from the table of
2n Prob-S values. The run-time of this preliminary processing is independent of the
number of processors. It is the dominant factor in the overall run-time when consid-
ering problems on a single processor ( m = 1 ), but effectively negligible when con-
sidering problems on two or more processors ( m > 1).

Within the limits of approximately 1200 seconds (20 minutes) run-time and 24
GBytes of (potentially paged) memory usage, the maximum number of classifiers
that could be catered for by our implementation of the DAG-based algorithm for
multiple processors was 16 classifiers for m = 2 and 13 classifiers for m > 2 . Assum-
ing a single processor, the maximum number of classifiers that could be catered for
was at least 20, with the construction of the table of P̂[S] probability values dominat-
ing the overall run-time in that case.

8 � Conclusions and future research

The increasing use of machine perception in many forms of Cyber-Physical Systems
(CPS) is leading to the application of a wide range of Deep Learning components
whose role is to classify input data and thereby ensure the safe and effective behav-
ior of the system. To achieve the levels of fidelity and reliability required, it is nec-
essary to employ a collection of diverse classifiers. One method of managing this
collection is to convert each classifier into an IDK classifier and to organize their
execution into an IDK cascade that can perform the necessary classification.

Previous work showed how such IDK cascades can be analyzed and optimized,
but made the unrealistic assumption that the behaviors of the classifiers, in terms of
their probabilities of successful classification, are either completely independent or
fully dependent. In this paper we removed this assumption and showed how repre-
sentative profiling data can be used to characterize the level of mutual dependence
exhibited by the classifiers, via a probabilistic representation that caters for arbitrary
dependences. This probabilistic representation was then used in the synthesis of
optimal IDK cascades that have the minimum expected duration, with or without a
latency constraint on the overall worst-case execution duration.

Previous work also relied on the concept of a deterministic classifier that is guar-
anteed to always make a successful classification. In this paper, we recognized that
such a construct may not always be viable in practice, and therefore also provided
solutions based on a classification threshold, equating to the minimum overall prob-
ability (long run frequency) of successful classification that is deemed acceptable.

Further, we developed solutions for both single processors and multiple proces-
sors that use DAG-based representations and topological ordering algorithms. The
effectiveness of our proposed solution was demonstrated via two real-world case
studies, using a variety of classifiers with inputs including image, seismic, and
acoustic data.

Finally, our analysis of the behaviors of the classifiers from these case studies
indicated a whole range of strong, moderate, and weak correlations between differ-
ent pairs of classifiers. Thus demonstrating that assumptions of independence or full

399

1 3

Real-Time Systems (2023) 59:348–407	

dependence do not in general hold. Rather the approach taken in this paper, catering
for arbitrary dependences, is necessary in order to solve the optimal IDK cascade
problem in practice.

There are a number of interesting directions for future work in this area:

1.	 Removing the simplifying assumption that each classifier holds a processor for
a constant time, used in the analysis of optimal IDK cascades for the multiple
processor case.

2.	 Considering the impact of the environment on the probability of success of each
classifier, and deriving optimal IDK cascades that are sensitive to the current
mode of the environment (e.g. daylight or darkness).

3.	 Allowing the permitted latency on the overall execution duration to be set dynami-
cally, and hence facilitate switching between a collection of statically “optimal”
IDK cascades at run-time.

4.	 Allowing the actual execution time of each IDK classifier to influence subsequent
(dynamic) choices of which IDK classifier to run next, when there is a latency
constraint.

5.	 Allowing the confidence threshold to have a mixed-criticality perspective
(i.e. lower-criticality requirements having a lower threshold than higher-criticality
ones).

6.	 Verifying that representative input data sets, used to provide the profiling data,
properly capture the arbitrary dependences between the classifiers.

7.	 Considering the optimal order of execution of classifiers when some subsets of
classifiers may be executed in parallel on the same GPU.

8.	 Considering the scheduling of classifiers when the input data is recurrent,
i.e. forming a time-series, and the classifiers are executed periodically. In this case
classification performance may be improved via knowledge of the input samples
and confidence in the identification of the same object in prior time frames.

Appendix

In this appendix we discuss the complexity of the DAG-based algorithm for the opti-
mal IDK cascade problem on multiple processors.

Complexity of the algorithm

In the DAG-based algorithm, described in Sect. 7.2, considering the m completed
sets of a vertex, each classifier has m + 1 possible states, it is either in none of the m
completed sets or it is in exactly one of them. Hence an upper bound on the number
of different variations for the m completed sets is (m + 1)n . Considering the m run-
ning sets of a vertex, each running set has n + 1 possible states, it is either empty or
contains exactly one of the n classifiers. Hence an upper bound on the number of
different variations for the m running sets is (n + 1)m . It follows that the total num-
ber of different variations encompassing both completed sets and running sets is

400	 Real-Time Systems (2023) 59:348–407

1 3

(m + 1)n(n + 1)m , which provides a simple upper bound on the number of vertices
in the DAG.

The total number of edges per vertex is bounded by n as follows. Vertices in the
first layer have n − m outgoing edges, one for each unused classifier, as well as one
incoming edge from the start vertex. Subsequent layers of normal vertices have at
most n − (m − 1) − x outgoing edges, where x is the number of the layer from 2 to
n − m . Finally, vertices with a full allocation of all n classifiers have at most one out-
going special edge, while exit vertices have no outgoing edges. The total number of
edges is therefore upper bounded by n(m + 1)n(n + 1)m.

The amount of computation required for each vertex is O(m). This comprises
determining the minimum makespan of the m processors, and looking up the total
success probability for the classifiers in the set S.18 The amount of computation
required for each edge is O(1) based on the information available at the previous and
next vertex.

It follows that, once the table of 2n P̂[S] probability values has been computed
during the profiling stage in O(4n) time, then finding the optimal IDK cascade by
constructing the DAG and then applying a standard topological ordering algorithm
has at most O((n + m)(m + 1)n(n + 1)m) complexity.

This exponential upper bound is far from tight, since some variations included
in the vertex count are not permitted or cannot be generated as part of the DAG
construction. These include variations where the same classifier appears in two run-
ning sets which is not permitted, and allocations that do not correspond to global
work-conserving schedules and so cannot be generated, for example where one or
more processors are unused. The bound does however suffice to show that for a
fixed number of processors m, the complexity of finding the optimal IDK cascade is
bounded by an exponential in n rather than a factorial in n.

A more accurate complexity bound can be obtained by explicitly counting the
maximum number of vertices and edges in each layer. The number of vertices can be
counted as follows:

–	 There is one start vertex.
–	 There are n − (m − 1) layers of normal vertices. Let i, from i = 1 to

i = n − (m − 1) , be the layer index for these vertices. Vertices in these layers have
a classifier in each of the m running sets and i − 1 classifiers in the completed

sets. Hence there are
(

n

m

)
= n!∕(n − m)!m! ways of choosing the running sets,

(
n − m

i − 1

)
= (n − m)!∕((n − (m − 1) − i)!(i − 1)!) ways of choosing the i − 1

classifiers that are in any of the completed sets, and m(i−1) ways of assigning
those i − 1 classifiers to the m completed sets. Hence the maximum number of
normal vertices in layer i is given by: m(i−1)n!∕((n − (m − 1) − i)!(i − 1)!).

18  Set membership can be encoded as a bit map, with set union operations taking linear time at least up
to n = 64 . From a bit-map representation of S, lookup of the corresponding P̂[S] probability value also
takes linear time.

401

1 3

Real-Time Systems (2023) 59:348–407	

–	 There are m − 1 layers of special vertices. Each special vertex is linked to by a
single special edge from a single vertex in the layer above. The maximum num-
ber of special vertices in any layer is therefore given by the number of normal
vertices in layer i = n − (m − 1) , which equates to m(n−m)n!∕(n − m)! . (Note the
final layer of special vertices are exit vertices).

Further, the number of edges can be counted as follows:

–	 The start vertex has
(

n

m

)
= n!∕(n − m)!m! outgoing edges.

–	 Each normal vertex in layer i, from i = 1 to i = n − (m − 1) , has n − (m − 1) − i
outgoing normal edges. (Note, each vertex in the last of these layers has no out-
going normal edges, but rather has a single outgoing special edge that is counted
below).

–	 Each special vertex in layer i, from i = n − (m − 1) + 1 to i = n , has one incom-
ing special edge.

The complexity measure is then given by the total number of edges plus m times
the total number of vertices, since O(m) operations are required at each vertex to
determine the minimum makespan. The count obtained using the explicit method set
out above is, however, an overestimate as it includes assignments of classifiers to the
completed sets that do not represent globally work-conserving schedules.

Figure 16 shows the complexity measure for the optimal IDK cascade problem as
given by the factorial, exponential, and counting bounds for m = 2, 3, 4 processors
and n = 3… 24 classifiers. Also shown is the exponential bound, O(n2n) , for the sin-
gle processor case, m = 1.

For multiple processors, finding an optimal solution has exponential complex-
ity, since the problem of deciding if there is any IDK cascade that meets both a
maximum latency constraint and a classification threshold is NP-complete, as shown
below.

Fig. 16   Complexity measure for
m processors and n classifiers

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

1.E+12

1.E+14

1.E+16

1.E+18

1.E+20

1.E+22

1.E+24

1.E+26

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

erusae
m

ytixelp
moc

n = number of classifiers

m=4 factorial
m=3 factorial
m=2 factorial
m=4 exponen�al
m=3 exponen�al
m=2 exponen�al
m=4 coun�ng
m=3 coun�ng
m=2 coun�ng
m=1

402	 Real-Time Systems (2023) 59:348–407

1 3

An NP‑complete problem

We now show that the IDK cascade decision problem for m > 1 processors, with a
fixed value of m, is NP-complete via reduction (Karp 1972) from the BIN PACKING
decision problem, which is known to be NP-complete.

The IDK cascade decision problem involves determining if there is an IDK cas-
cade comprising up to n specified classifiers that when run on m processors meets a
required classification threshold on the overall probability of successful classification
and a maximum latency constraint on the overall elapsed time. Note the IDK decision
problem can be solved by any algorithm that determines the optimal IDK cascade.

The BIN PACKING decision problem is characterized as follows: There is a finite
set I of items with sizes gi ∈ ℤ

+ , an integer bin capacity B, and an integer K > 1 . The
question is, is there a partition of I into disjoint sets I1,… , IK such that the sum of the
sizes of the items in each Ij is B or less?

Theorem 2  Given a set of n classifiers and m > 1 processors, determining if an IDK
cascade exists that complies with a maximum latency constraint D and a classification
threshold L is NP-complete.

Proof  First, we note that the feasibility of a solution to the IDK cascade decision prob-
lem for multiple processors may be trivially checked by a deterministic algorithm in
polynomial time by constructing the processor allocation and schedule from the IDK
cascade, determining the finish time of each classifier, and computing the overall suc-
cess probability from the table of pre-computed P̂[S] values. Hence deciding if there
is a feasible IDK cascade that complies with a maximum latency constraint D and a
classification threshold L is therefore in the NP complexity class.

Given an instance of the BIN PACKING problem, we construct an instance of the
IDK cascade decision problem for multiple processors as follows. The number of clas-
sifiers n equates to the number of elements in the set I, with the execution time of each
classifier given by the size of each item in the set, i.e. C̄i = gi . The maximum latency
constraint equates to the size of the bins, D = B , and the number of processors equates
to the number of partitions (bins), m = K . Further, the probability of success for each
of the n classifiers is disjoint and set to L/n. Thus the success probability for any subset
of q classifiers is qL/n, and so execution of all n classifiers is necessary to meet the
required classification threshold L.

Now assume that we have a black box that can solve the IDK cascade decision
problem for multiple processors. Via the above construction, we may use this black
box to solve the BIN PACKING decision problem. Correctness of this approach needs
to be shown for both if and only if cases.

If case: For an instance of the BIN PACKING decision problem for which the
answer is yes, there exists an IDK cascade that provides an allocation and schedule
that executes all n classifiers on m processors within the latency constraint D. The
black box, which can solve all IDK cascade decision problems for multiple processors,
therefore gives the answer yes.

Only if case: If the black box returns yes, then there exists an IDK cascade that
provides an allocation and schedule that executes all n classifiers on m processors

403

1 3

Real-Time Systems (2023) 59:348–407	

within the latency constraint D. This implies that there is an equivalent partition of I
into K subsets such that the sum of the sizes of the items in each of the disjoint sets
I1,… , IK does not exceed B.

We have shown that our algorithm solves the BIN PACKING problem using the
black box for the IDK cascade decision problem. Since the construction takes poly-
nomial time, and we have shown that the IDK cascade decision problem is in the NP
complexity class, we conclude that the IDK cascade decision problem for multiple
processors is NP-complete. 	� ◻

Acknowledgements  This research was funded in part by Innovate UK HICLASS Project (113213), and
the US National Science Foundation (Grants CPS-1932530, CCF-2028481, and CNS-2141256). The
work was also supported in part by ARL Cooperative Agreement W911NF-17-2-0196, NSF CNS grant
20-38817, IBM-IIDAI institute, and Boeing Inc. EPSRC Research Data Management: No new primary
data was created during this study.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Balaskas K, Siozios K (2019) ECG analysis and heartbeat classification based on shallow neu-
ral networks. In: 2019 8th international conference on modern circuits and systems technologies
(MOCAST), IEEE, pp 1–4

Baruah SK, Burns A, Wu Y (2021) Optimal synthesis of idk-cascades. In: Queudet A, Bate I, Lipari G
(eds) RTNS’2021: 29th international conference on real-time networks and systems, Nantes, France,
April 7-9, 2021, ACM, pp 184–191. https://​doi.​org/​10.​1145/​34534​17.​34534​25

Baruah S, Burns A, Davis RI, Wu Y (2022) Optimally ordering IDK classifiers subject to deadlines. Real-
Time Syst. https://​doi.​org/​10.​1007/​s11241-​022-​09383-w

Bateni S, Liu C (2018) APNet: approximation-aware real-time neural network. In: 2018 IEEE real-time
systems symposium (RTSS), IEEE, pp 67–79

Bechtel MG, McEllhiney E, Kim M, Yun H (2018) DeepPiCar: a low-cost deep neural network-based
autonomous car. In: 2018 IEEE 24th international conference on embedded and real-time comput-
ing systems and applications (RTCSA), IEEE, pp 11–21

He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. CoRR abs/1512.03385,
http://​arxiv.​org/​abs/​1512.​03385, 1512.03385

Heo S, Cho S, Kim Y, Kim H (2020) Real-time object detection system with multi-path neural networks.
In: 2020 IEEE real-time and embedded technology and applications symposium (RTAS), IEEE, pp
174–187

Hossain MSB, Dranetz J, Choi H, Guo Z (2022) DeepBBWAE-Net: A CNN-RNN based deep super-
learner for estimating lower extremity sagittal plane joint kinematics using shoe-mounted imu sen-
sors in daily living. IEEE J Biomed Health Inf 26(8):3906–3917. https://​doi.​org/​10.​1109/​JBHI.​
2022.​31653​83

Hu Y, Liu S, Abdelzaher T, Wigness M, David P (2021) On exploring image resizing for optimizing
criticality-based machine perception. In: 2021 IEEE 27th International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), IEEE, pp 169–178

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3453417.3453425
https://doi.org/10.1007/s11241-022-09383-w
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/JBHI.2022.3165383
https://doi.org/10.1109/JBHI.2022.3165383

404	 Real-Time Systems (2023) 59:348–407

1 3

Kangunde V, Jamisola RS, Theophilus EK (2021) A review on drones controlled in real-time. Int J Dyn
Control 9(4):1832–1846

Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds) Pro-
ceedings of a symposium on the complexity of computer computations, held March 20-22,
1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, Ple-
num Press, New York, The IBM Research Symposia Series, pp 85–103. https://​doi.​org/​10.​1007/​
978-1-​4684-​2001-2_9

Khani F, Rinard MC, Liang P (2016) Unanimous prediction for 100% precision with application to learn-
ing semantic mappings. In: Proceedings of the 54th annual meeting of the association for computa-
tional linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, vol 1. Long Papers, The Asso-
ciation for Computer Linguistics. https://​doi.​org/​10.​18653/​v1/​p16-​1090

Kim JE, Bradford R, Shao Z (2020) Anytimenet: Controlling time-quality tradeoffs in deep neural net-
work architectures. In: 2020 design, automation & test in Europe Conference & Exhibition (DATE),
IEEE, pp 945–950

Liu CL (1969) Scheduling algorithms for multiprocessors in a hard real-time environment. JPL Space
Programs Summ 37–60:28–31

Liu D, Wang T, Liu S, Wang R, Yao S, Abdelzaher T (2021) Contrastive self-supervised representation
learning for sensing signals from the time-frequency perspective. In: 2021 international conference
on computer communications and networks (ICCCN), IEEE, pp 1–10

Liu D, Abdelzaher T, Wang T, Hu Y, Li J, Liu S, Caesar M, Kalasapura D, Bhattacharyya J, Srour N,
Wigness M, Kim J, Wang G, Kimberly G, Yao S (2022) IoBT-OS: Optimizing the sensing-to-deci-
sion loop for the internet of battlefield things. In: Proceedings of the 31st international conference
on computer communications and networks, ICCCN 2022, July 25-28, 2022, IEEE

Madani O, Georg M, Ross DA (2012) On using nearly-independent feature families for high precision and
confidence. In: Hoi SCH, Buntine WL (eds) Proceedings of the 4th Asian conference on machine
learning, ACML 2012, Singapore, Singapore, November 4-6, 2012, JMLR.org, JMLR Proceedings,
vol 25, pp 269–284. http://​proce​edings.​mlr.​press/​v25/​madan​i12.​html

Madani O, Georg M, Ross DA (2013) On using nearly-independent feature families for high precision
and confidence. Mach Learn 92(2–3):457–477. https://​doi.​org/​10.​1007/​s10994-​013-​5377-0

Madras D, Pitassi T, Zemel RS (2018) Predict responsibly: Improving fairness and accuracy by learning
to defer. In: Bengio S, Wallach HM, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds)
Advances in neural information processing systems 31: annual conference on neural information
processing systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp 6150–6160.
https://​proce​edings.​neuri​ps.​cc/​paper/​2018/​hash/​09d37​c08f7​b129e​96277​38875​7530c​72-​Abstr​act.​
html

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein
MS, Berg AC, Fei-Fei L (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis
115(3):211–252. https://​doi.​org/​10.​1007/​s11263-​015-​0816-y

Shi W, Alawieh MB, Li X, Yu H (2017) Algorithm and hardware implementation for visual perception
system in autonomous vehicle: a survey. Integration 59:148–156

Trappenberg TP, Back AD (2000) A classification scheme for applications with ambiguous data. In:
Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks, IJCNN
2000, neural computing: new challenges and perspectives for the New Millennium, Como, Italy,
July 24-27, 2000, vol 6, IEEE Computer Society, pp 296–301. https://​doi.​org/​10.​1109/​IJCNN.​2000.​
859412

Wang X, Luo Y, Crankshaw D, Tumanov A, Yu F, Gonzalez JE (2018) IDK cascades: fast deep learning
by learning not to overthink. In: Globerson A, Silva R (eds) Proceedings of the thirty-fourth confer-
ence on uncertainty in artificial intelligence, UAI 2018, Monterey, California, USA, August 6-10,
2018, AUAI Press, pp 580–590. http://​auai.​org/​uai20​18/​proce​edings/​papers/​212.​pdf

Yao S, Hu S, Zhao Y, Zhang A, Abdelzaher T (2017a) Deepsense: a unified deep learning framework for
time-series mobile sensing data processing. In: Proceedings of the 26th international conference on
world wide web, pp 351–360

Yao S, Zhao Y, Zhang A, Su L, Abdelzaher T (2017b) Deepiot: compressing deep neural network struc-
tures for sensing systems with a compressor-critic framework. In: Proceedings of the 15th ACM
conference on embedded network sensor systems, pp 1–14

Yao S, Hao Y, Zhao Y, Shao H, Liu D, Liu S, Wang T, Li J, Abdelzaher T (2020) Scheduling real-time
deep learning services as imprecise computations. In: 2020 IEEE 26th international conference on
embedded and real-time computing systems and applications (RTCSA), IEEE, pp 1–10

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.18653/v1/p16-1090
http://proceedings.mlr.press/v25/madani12.html
https://doi.org/10.1007/s10994-013-5377-0
https://proceedings.neurips.cc/paper/2018/hash/09d37c08f7b129e96277388757530c72-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/09d37c08f7b129e96277388757530c72-Abstract.html
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/IJCNN.2000.859412
https://doi.org/10.1109/IJCNN.2000.859412
http://auai.org/uai2018/proceedings/papers/212.pdf

405

1 3

Real-Time Systems (2023) 59:348–407	

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Tarek Abdelzaher  (Ph.D., UMich, 1999) is a Sohaib and Sara Abbasi
Professor of CS and Willett Faculty Scholar (UIUC), with over 300
refereed publications in Real-time Computing, Distributed Systems,
Sensor Networks, and IoT. He was Editor-in-Chief of J. Real-Time
Systems for 20 years, an AE of IEEE TMC, IEEE TPDS, ACM
ToSN, ACM TIoT, and ACM ToIT, among others, and chair of mul-
tiple top conferences in his field. Abdelzaher received the IEEE Out-
standing Technical Achievement and Leadership Award in Real-time
Systems (2012), a Xerox Research Award (2011), and several best
paper awards. He is a fellow of IEEE and ACM.

Kunal Agrawal  is a Professor at the Washington University in St.
Louis, Prior to 2009, she worked with Professor Charles Leiserson in
the Massachusetts Institute of Technology Supercomputing Technol-
ogies Group. The goal of her 2012 National Science Foundation
CAREER Award, “Provably Good Concurrency Platforms for
Streaming Applications,” is to design platforms that will allow pro-
grammers to easily write correct and efficient high-throughput paral-
lel programs.

Sanjoy Baruah  is the Hugo F. & Ina Champ Urbauer Professor of
Computer Science and Engineering at Washington University in
Saint Louis. His research interests and activities are in real-time and
safety-critical system design, scheduling theory, and resource alloca-
tion and sharing in distributed computing environments.

406	 Real-Time Systems (2023) 59:348–407

1 3

Alan Burns  holds a Personal Chair in the Department of Computer
Science at the University of York in the UK. He is a Fellow of the
Royal Academy of Engineering and a Fellow of the IEEE. He has
chaired the IEEE Technical Committee on Real-Time Systems and
received their “Outstanding Technical Achievement and Leadership
Award” in 2006. His research interests include real-time system
scheduling, mixed-criticality systems and programming languages.

Robert I. Davis  is a Reader in the Real-Time Systems Research
Group at the University of York, UK. Robert received his PhD in
Computer Science from the University of York in 1995. Since then
he has founded three start-up companies, all of which have suc-
ceeded in transferring real-time systems research into commercial
products. Robert’s research interests include real-time scheduling
and schedulability analyses for single-core, multi-core, and net-
worked systems.

Zhishan Guo  is an Associate Professor in the Department of Com-
puter Science at NC State University. Prior to 2022, he was an Asso-
ciate Professor in the Department of Electrical and Computer Engi-
neering at University of Central Florida, where he directed the
Real-Time Intelligent Systems Lab. Zhishan’s research interests are
in real-time scheduling theory, machine learning theory, and their
applications to Cyber-Physical Systems.

407

1 3

Real-Time Systems (2023) 59:348–407	

Yigong Hu  received the BS degree from Shanghai Jiao Tong Univer-
sity and the MS degree from Columbia University, in 2018 and 2020,
respectively. He is currently working toward a PhD degree in com-
puter science at the University of Illinois at Urbana-Champaign
(UIUC). His research interests include intelligent Real-Time Sys-
tems, Internet of Things (IoT), and Cyber-Physical Systems (CPS).

Authors and Affiliations

Tarek Abdelzaher1 · Kunal Agrawal2 · Sanjoy Baruah2 · Alan Burns3 ·
Robert I. Davis3  · Zhishan Guo4 · Yigong Hu1

	 Tarek Abdelzaher
	 zaher@cs.uiuc.edu

	 Kunal Agrawal
	 kunal@wustl.edu

	 Sanjoy Baruah
	 baruah@wustl.edu

	 Alan Burns
	 alan.burns@york.ac.uk

	 Zhishan Guo
	 zguo32@ncsu.edu

	 Yigong Hu
	 yigongh2@illinois.edu

1	 University of Illinois Urbana Champaign, Champaign, IL, USA
2	 Washington University in Saint Louis, Saint Louis, MO, USA
3	 University of York, York, UK
4	 North Carolina State University, Raleigh, USA

http://orcid.org/0000-0002-5772-0928

	Scheduling IDK classifiers with arbitrary dependences to minimize the expected time to successful classification
	Abstract
	1 Introduction
	2 Background
	2.1 IDK classifier cascades
	2.2 The generalized IDK classification problem

	3 System model: motivation and definitions
	4 Populating the model
	4.1 ResNet case study as an example
	4.2 Multi-modal case study as an example
	4.3 Characterizing classifier dependences

	5 Synthesizing optimal IDK cascades on a single processor
	5.1 DAG-based representation and algorithm

	6 Case studies: synthesizing optimal IDK cascades
	6.1 The ResNet case study
	6.2 Multi-modal case study
	6.3 When a latency constraint is specified
	6.4 When a classification threshold is specified
	6.5 Validation
	6.6 The complete multi-modal case study

	7 Multiprocessor IDK cascades
	7.1 Multiprocessor model and analysis
	7.2 DAG-based algorithm for multiple processors
	7.3 Complete multi-modal case study on multiple processors
	7.4 Proof of concept implementation

	8 Conclusions and future research
	Appendix
	Complexity of the algorithm
	An NP-complete problem

	Acknowledgements
	References

