
Vol:.(1234567890)

Real-Time Systems (2023) 59:348–407
https://doi.org/10.1007/s11241-023-09395-0

1 3

Scheduling IDK classifiers with arbitrary dependences 
to minimize the expected time to successful classification

Tarek Abdelzaher1 · Kunal Agrawal2 · Sanjoy Baruah2 · Alan Burns3 · 
Robert I. Davis3   · Zhishan Guo4 · Yigong Hu1

Accepted: 16 February 2023 / Published online: 13 March 2023 
© The Author(s) 2023

Abstract
This paper introduces and evaluates a general construct for trading off accuracy and 
overall execution duration in classification-based machine perception problems—
namely, the generalized IDK classifier cascade. The aim is to select the optimal 
sequence of classifiers required to minimize the expected (i.e.  average) execution 
duration needed to achieve successful classification, subject to a constraint on qual-
ity, and optionally a latency constraint on the worst-case execution duration. An 
IDK classifier is a software component that attempts to categorize each input pro-
vided to it into one of a fixed set of classes, returning “I Don’t Know” (IDK) if it 
is unable to do so with the required level of confidence. An ensemble of several 
different IDK classifiers may be available for the same classification problem, offer-
ing different trade-offs between effectiveness (i.e. the probability of successful clas-
sification) and timeliness (i.e.  execution duration). A model for representing such 
characteristics is defined, and a method is proposed for determining the values of 
the model parameters for a given ensemble of IDK classifiers. Optimal algorithms 
are developed for sequentially ordering IDK classifiers into an IDK cascade, such 
that the expected duration to successfully classify an input is minimized, optionally 
subject to a latency constraint on the worst-case overall execution duration of the 
IDK cascade. The entire methodology is applied to two real-world case studies. In 
contrast to prior work, the methodology developed in this paper caters for arbitrary 
dependences between the probabilities of successful classification for different IDK 
classifiers. Effective practical solutions are developed considering both single and 
multiple processors.
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1  Introduction

This paper investigates a generalized approach for trading-off quality versus 
latency of classification in machine perception systems, called generalized IDK 
classifier cascades. The approach uses an ensemble of classifiers that can individ-
ually either return a class or say “I don’t know" (IDK). The problem is to decide 
on the optimal order in which classifiers should be run in order to minimize the 
time to successful classification, optionally within a maximum latency constraint, 
given their different execution times, their individual success probabilities, and 
their dependences, i.e.  the probability that one will succeed given that another 
has failed.

The broad challenge of investigating the trade-offs between latency and clas-
sification accuracy is motivated by the increasing role of machine perception in 
modern intelligent real-time applications, such as drones (Kangunde et al. 2021), 
autonomous cars  (Shi et  al. 2017; Bechtel et  al. 2018), and medical IoT sys-
tems (Balaskas and Siozios 2019; Hossain et al. 2022). Perception in such Cyber-
Physical Systems is increasingly being performed using classifiers that are based 
on Deep Learning, thus generating interest in understanding and optimizing the 
trade-offs between the quality of deep-learning-based perception and perception 
latency. Examples of such trade-off optimization approaches, proposed in recent 
literature, include: (i) adaptive neural network approximations aimed at meeting 
latency constraints (Bateni and Liu 2018; Kim et al. 2020; Heo et al. 2020; Yao 
et al. 2020), and (ii) adaptive model-switching systems that pick one of multiple 
neural network versions depending on the time available (Hu et al. 2021a).

Another direction is to consider ensembles of IDK classifiers  (Trappenberg 
and Back 2000; Khani et al. 2016). When applied to neural networks, IDK classi-
fiers build on the intuition, mentioned by Hu et al. (2021a), that switching entire 
neural network models, using a hypothetical optimal model-switching algorithm, 
is in principle generally superior to adapting only some neural network param-
eters dynamically, as is done in adaptive approximation systems. This is because 
training an adaptive neural network must optimize any non-adaptive parameters 
for some compromise among all possible values of the adaptive parameters  (Hu 
et al. 2021a). This compromise typically reduces run-time output quality for any 
specific instantiation of the adaptive parameters. One way to avoid this compro-
mise is to train an entirely separate neural network for each different point in 
the quality/latency trade-off space. The problem with the latter approach is that 
optimal switching is impossible without a form of clairvoyance. This is because a 
decision on which neural-network version to execute must be made ahead of time, 
and not after some partial processing of the input has taken place. Since the opti-
mal decision might depend on the level of difficulty of the input, having to decide 
before the input has been processed is a challenge.

IDK classifier cascades (Wang et al. 2018) address this challenge by taking a 
different design approach. Like model-switching, they use an ensemble of differ-
ent classifiers; however, they assume that the chosen classifier, when not confi-
dent enough, can return an “I don’t know" value, that will then prompt the system 
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to choose another classifier, thereby executing a situation-dependent sequence 
similar to adaptive approximation approaches. Prior work by Baruah et al. (2021, 
2022) developed analytical results for the special cases of IDK classifiers where 
the probabilities of successful classification by the respective classifiers were 
either independent, or fully dependent of one another. This paper generalizes 
from those special cases to the case of a general IDK classifier cascade, mean-
ing one with arbitrary dependences between the different classifiers. Further, 
prior work by  Baruah et  al. (2021, 2022) also relies on the concept of a deter-
ministic classifier that is guaranteed to always make a successful classification, 
albeit typically at the expense of a long execution time. This paper recognizes 
that such a construct may not always be possible in practice, and therefore also 
provides solutions based on a classification threshold. This classification thresh-
old specifies the minimum probability, e.g. 0.925, such that in the long run any 
IDK cascade employed must be able to successfully classify at least 92.5% of its 
inputs. Finally, Baruah et al. (2021, 2022) consider only single processor systems, 
whereas this paper also considers solutions for multiple processors. Here we use 
the term processor in the broad sense of an independent processing unit. Given 
that classifiers often make use of hardware accelerators such as GPUs, such a 
processor may include both a CPU and a GPU.

Results from experimentation with real-life data sets, including vision as well as 
acoustic and seismic sensors, show that the use of different sensing modalities and 
neural network topologies often creates partial correlations between the behaviors 
of different classifiers. Exploiting those correlations, together with knowledge of 
relevant classifier execution times, one can arrive at an optimal order in which to 
execute the classifiers that appreciably improves the expected duration, i.e. the aver-
age time to successful classification.

The remainder of the paper is organized as follows. In Sect.  2 we review the 
essential background on IDK classifiers and elaborate the problem. In Sect.  3 we 
present our model for representing collections of IDK classifiers that may have arbi-
trary dependences between them. In Sect. 4 we explain how to assign values to the 
parameters in such a model, and illustrate the process on two real-world case studies. 
In Sect. 5 we present algorithms for synthesizing optimal IDK cascades on a single 
processor from individual IDK classifiers that are specified according to our model. 
In Sect. 6 we use these algorithms to synthesize optimal IDK cascades for the real-
world case studies modeled in Sect. 4. Section 7 extends our approach to multiple 
processors, including synthesizing optimal IDK cascades for one of the real-world 
case studies on two, three, and four processors. Section 8 concludes the paper with a 
list of future research directions.

2 � Background

Perception in autonomous mobile Cyber-Physical Systems is increasingly being per-
formed using classifiers that are based on Deep Learning. Classifiers that are used in 
this way must be able to make accurate predictions in real time using limited compu-
tational resources. However, in mainstream machine learning research, much current 



351

1 3

Real-Time Systems (2023) 59:348–407	

work relegates timing issues to the background and focuses primarily on improving 
the accuracy of classification. This focus on accuracy rather than timing has resulted 
in very accurate classifiers that take substantial time to process even simple inputs 
that should be straightforward to classify. For example, Wang et al. (2018) showed 
that for a considerable fraction of the ImageNet 2012 benchmark (Russakovsky et al. 
2015), an order-of-magnitude increase in classifier execution time has yielded only 
a negligible improvement in the accuracy of predictions. They suggested a trade-off 
between accuracy and latency, based on the insight that if advanced but slower clas-
sifiers were only used in the more challenging cases, then the time taken to achieve 
successful classification could be reduced on average, without any reduction in 
accuracy.

2.1 � IDK classifier cascades

One approach aimed at achieving appropriate accuracy-latency trade-offs is the use 
of IDK classifiers (Trappenberg and Back 2000; Khani et al. 2016). An IDK classi-
fier is obtained from an existing base classifier by attaching a computationally light-
weight augmenting classifier that enables the IDK classifier to return an auxiliary “I 
Don’t Know” (IDK) class depending on the degree of uncertainty in the predictions 
made by the base classifier1. In other words, an IDK classifier classifies an input 
as being in the IDK class if the base classifier is not able to predict some actual 
class for that input with a level of confidence that exceeds a predefined confidence 
threshold. (In Sect. 4 we describe in detail how to obtain an IDK classifier from a 
base classifier.) We define success for an IDK classifier as the act of outputting a 
non-IDK class. Note that, success only means that the true object class is recognized 
with a sufficiently high probability. It does not imply a complete absence of misclas-
sifications with respect to the ground truth.

In principle, it is possible to generalize the notion of “success” of an IDK clas-
sifier to include meeting additional quality criteria. For example, we might refer 
to a neural network for target detection and classification as “successful” if it not 
only returned a high confidence in the target class but also in the object location. 
In machine learning, such a network (e.g. YOLO) is said to perform both detection 
and classification, however, for the purposes of this paper, we use the term IDK 
classifier.

Multiple different IDK classifiers, with different execution times and probabilities 
of success (i.e. of not outputting IDK), may be devised for the same classification 
problem. Wang et al. (2018) proposed arranging such IDK classifiers into IDK cas-
cades, which are sequences of IDK classifiers designed to work as follows: 

1.	 The first classifier in the IDK cascade is invoked first, for any input that needs to 
be classified.

2.	 If the classifier outputs a real class, rather than IDK, then the IDK cascade ter-
minates and characterizes the input as being of the identified class.

1  This notion is similar to that of classifiers that defer (Madras et al. 2018).
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3.	 Otherwise (i.e. the classifier outputs IDK), the subsequent classifier in the IDK 
cascade is invoked and the process continues from step 2.

If it is a requirement that all inputs be successfully classified, in the sense of suc-
cess defined above, then it must be the case that the last classifier in the cascade 
succeeds. We refer to a classifier that always succeeds as a deterministic classifier. 
There are various forms that the deterministic classifier may take. Wang et al. (2018) 
proposed that all inputs that are not classifiable by the IDK classifiers be pushed up 
to a human expert, who thus takes on the role of the deterministic classifier. In some 
applications, a fully developed Deep Learning Neural Network may be sufficiently 
accurate to take on the role of deterministic classifier; however, its computational 
needs may be so large that it should only be executed when absolutely necessary, 
with other more efficient classifiers used if they can cater for typical inputs. Finally, 
to deal with applications that exhibit high levels of uncertainty, it may be necessary 
to introduce the class unclassifiable that the final arbiter in the cascade, the deter-
ministic classifier, can output if a real class cannot be identified with the required 
level of confidence. Alternatively, a classification threshold may be specified requir-
ing that any IDK cascade employed has an overall probability (long run frequency) 
of success that is no lower than the classification threshold. We return to the concept 
of a classification threshold in Sect. 6.4.

2.2 � The generalized IDK classification problem

Given a collection of several different IDK classifiers for a particular classification 
problem, this paper considers how they should be sequentially ordered for execution 
so as to minimize the expected duration to successfully classify an input, option-
ally subject to guaranteeing to meet a latency constraint on the worst-case execution 
duration of the IDK cascade.

Probabilistic characterization of classifiers Observe that this problem, by 
seeking to minimize expected (i.e. average) duration, implicitly requires a proba-
bilistic characterization of the likelihood of a classifier successfully classifying 
any given input, as opposed to outputting IDK. Obtaining such probabilistic char-
acterizations that are accurate and useful is crucial to the successful solution of 
the problem. In addition to characterizing each classifier individually, the rela-
tionships between different classifiers must also be characterized. Two IDK clas-
sifiers may behave in a manner that is independent of one another. By independ-
ent, we mean that the probability that one classifier will output a real class is 
independent of whether it is run on all inputs or on only those inputs where the 
other classifier outputs IDK. For example, intuitively it is a reasonable hypoth-
esis that an IDK classifier that processes camera images of a scene may perform 
very differently from an IDK classifier that processes radar signals of the same 
scene—these two classifiers may be expected to exhibit behavior that is mutu-
ally independent. Indeed, Madani et al. (2012, 2013) provide ample and persua-
sive experimental evidence that very different sources of information such as text, 
audio, and video features obtained from the same scenario, and hence with the 
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same ground truth, are effectively independent. At the other extreme, two image-
based classifiers that use the same input image scaled to different resolutions (Hu 
et al. 2021) may exhibit behavior that is fully dependent: the less powerful classi-
fier is only able to successfully classify a strict subset of the inputs that the more 
powerful classifier can identify.

Prior research has proposed solutions to the problem of synthesizing IDK 
cascades out of collections of fully independent  (Baruah et  al. 2021) and fully 
dependent  (Baruah et  al. 2022) classifiers, as well as combinations of the 
two  (Baruah et  al. 2022). However, other forms of correlation and dependency 
between classifiers that are more complicated than independence or full depend-
ence can occur and are likely to be more common. For example, this is true for 
the two real-world case studies that we consider in this paper.

This work This paper investigates the problem of optimally synthesizing IDK 
cascades from collections of classifiers that are correlated according to more gen-
eral relationships than independence or full dependence. The main contributions 
are as follows:

–	 Extending the real-time model for IDK classifiers that was presented 
by  Baruah et  al. (2021, 2022) for fully dependent and independent classifi-
ers, by proposing a framework for specifying arbitrary forms of dependence 
between different classifiers.

–	 Extending current practice in the training and testing of classifiers: (i) to 
obtain IDK classifiers from base classifiers, and (ii) to obtain a probabilistic 
characterization of their expected run-time behavior, including their mutual 
dependences.

–	 Proposing algorithms for optimally synthesizing IDK cascades that are so 
characterized, thus extending the algorithmic framework that was initiated 
by Baruah et al. (2021, 2022) for single processors, substantially enhancing its 
practical applicability.

–	 Proving key properties of optimal IDK cascades on multiple processors, and 
proposing algorithms for synthesizing them.

–	 Illustrating all of the contributions listed above —modeling; obtaining proba-
bilistic characterizations; and synthesizing optimal IDK cascades— via two 
real-world case studies. The first case study is from the domain of image-rec-
ognition, which has been the focus of much research on classification using 
Deep Learning. The second case study comes from a Cyber-Physical Systems 
application that seeks to autonomously detect hostile presence in a battlefield 
environment, for use in future military systems.

In common with prior work (Baruah et al. 2021, 2022), this paper considers the 
use of IDK cascades as a single-shot solution to the machine perception prob-
lem. Such solutions are also viable for systems where inputs are generated recur-
rently, i.e. periodically or sporadically, but no account is taken of the input data 
or results from previous time frames, i.e. each machine perception or classifica-
tion job is effectively independent.
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3 � System model: motivation and definitions

We consider a collection of n IDK classifiers K1 , K2 , … ,Kn that are all designed to 
solve a given classification problem. Prior work taking a real-time perspective on 
IDK cascades (Baruah et al. 2021, 2022) has characterized each classifier Ki by a 
pair of parameters (Ci,Pi) , specifying its execution time Ci (assumed by  Baruah 
et  al. (2021, 2022) to be constant) and its success probability Pi . These param-
eters denote that when invoked on an input, the classifier Ki takes Ci time units to 
complete execution and returns a real class, rather than IDK, with probability Pi , 
where 0 < Pi ≤ 1 . In this paper, we employ a more nuanced characterization of 
execution times, with C̄i representing the average-case execution time and Ci rep-
resenting the worst-case execution time of classifier Ki . We discuss how values 
for all of the parameters may be determined in Sect. 4.

Dependences amongst classifiers While the parameters, C̄i , and Pi , character-
ize the expected behavior of each individual classifier, they do not address the 
relationship, i.e.  the mutual dependences, between the behaviors of the different 
classifiers. Baruah et al. (2021) assumed that all the classifiers are pairwise inde-
pendent, while Baruah et al. (2022) additionally considered the case where some 
classifiers are pairwise fully dependent. However, more complex relationships 
also arise in practice, with classifiers exhibiting related behaviors for a variety 
of reasons. Dependences may be induced by the environment (an object that is 
difficult for one classifier to identify may also be difficult for another classifier 
to identify), by the training process (the same data may be used in the training 
of all classifiers), and by common components and algorithms (the same Deep 
Neural Network approach may be applied in a subset of the classifiers). Depend-
ences may also be experienced even among seemingly different modalities such 
as sound and vision. For example, a moving object that gets partially obscured by 
a barrier on an otherwise open plain may be harder to classify using both vision, 
due to occlusion, and acoustics, due to sound reflecting off the barrier thus reduc-
ing the signal volume. These dependences may give rise to observable behavior 
that is to some extent correlated.

Consider a simple example of two classifiers, K1 and K2 . The probability of 
failure (i.e. an output of IDK) from K1 is (1 − P1) ; similarly for K2 it is (1 − P2) . 
Let P(F) denote the observed probability of K1 and K2 both outputting IDK. It is 
evident that 0 ≤ P(F) ≤ 1 −max (P1,P2).

–	 If P(F) = 1 −max (P1,P2) , then the classifiers are fully dependent.
–	 If P(F) = (1 − P1) × (1 − P2) then the classifiers are independent.
–	 If (1 − P1) × (1 − P2) < P(F) < 1 −max (P1,P2) then there is partial depend-

ency resulting from an observed positive correlation.
–	 If 0 ≤ P(F) < (1 − P1) × (1 − P2) then there is partial dependency resulting 

from an observed negative correlation.

Clearly it is best, if possible, for the classifiers developed or selected for use in 
an IDK cascade to behave with a negative correlation. If this is not possible then 
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the closest to independence is desirable. The worst case, giving the highest prob-
ability of failure (i.e. returning IDK), is when the classifiers are fully dependent.

Conceptually, it is convenient to think of the probability space as a Venn Diagram 
partitioned into 2n distinct regions, see Fig. 1 for the case of n = 3 classifiers, with 
each region corresponding to one of the 2n possible combinations of the n individual 
classifiers successfully classifying an input or returning IDK. In Sect. 4 we describe 
how to obtain the actual probabilities associated with each of these regions.

General model: Summarizing the above, a collection of n IDK classifiers K1 , 
K2 , … ,Kn for the same classification problem are characterized by their execution 
times (their C̄i and Ci parameters) and the probability values associated with each 
of the 2n disjoint regions in the Venn Diagram of the probability space. (Note, the 
parameter Pi in the model previously-proposed by Baruah et al. (2021, 2022) is eas-
ily recovered from this model, by simply summing over the 2n−1 disjoint regions that 
lie within the circle of the Venn Diagram representing the IDK classifier Ki.)

The presence of a latency constraint: We also consider a variant of the problem 
in which the objective is to determine the optimal IDK cascade, that minimizes the 
expected duration for successful classification, subject to the worst-case execution 
duration not exceeding a specified latency constraint.

The presence of a classification threshold: We also consider a variant of 
the problem in which the overall probability of successful classification need not 
be guaranteed (i.e.  1), but rather must meet or exceed a specified classification 
threshold.

Reasonable values for n:  The number of IDK classifiers, n, that could be used 
to form an IDK cascade to solve a specific classification problem is application 
dependent, and many different values may be found in the literature on classifier 
ensembles. As noted earlier, diversity comes from having classifiers with different 
types of input, different internal models, and different training data. Even a single 
classifier, such as the image-based example described previously, can have a number 

Fig. 1   The 2n disjoint regions 
in the probability space for 
n = 3 . The blue circle denotes 
the part of the space where K1 is 
successful; the red circle, where 
K2 is successful; and the brown 
circle, where K3 is successful. 
These three circles partition the 
probability space into 23 = 8 
disjoint regions; each of these 
is labeled with a 3-tuple, with 
Ki ( Ki , respectively) denoting 
that the region corresponds to 
the IDK classifier Ki returning 
an actual class (resp. IDK). 
(Note that the entire space can 
be thought of as denoting the 
region in which the determinis-
tic classifier is successful) (K1, K2, K3)

A: (K1, K2, K3)

(K1, K2, K3)

(K1, K2, K3) (K1, K2, K3)

A

(K1, K2, K3)

(K1, K2, K3) (K1, K2, K3)
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of different pixel resolutions defined, and hence give rise to two, three, or more dis-
tinct, though likely fully dependent, classifiers. Combining such ensembles of classi-
fiers can lead to IDK cascades with eight or more components. In practice, however, 
we expect that values of n that are much greater than about 12 are unlikely to be 
commonly encountered in practice. This is important, since our model, comprising 
O(2n) parameters, is of a size exponential in n.

Table  1 provides a glossary of selected terminology along with brief informal 
definitions. These terms are discussed and defined in more detail in Sects. 4 and 5.

4 � Populating the model

Given n different base classifiers for the same classification problem, we now dis-
cuss our methodology for first converting each to an IDK classifier, and subse-
quently determining the model parameters that characterize the expected behavior 
of these IDK classifiers with regards to their execution times ( ̄Ci and Ci ), their prob-
abilities of success ( Pi ) and their mutual dependences. We refer to this step as the 
profiling phase.

Prior to this profiling phase each of the classifiers will have been trained and veri-
fied using representative input data. In many applications this data can then be used 
directly in the profiling phase, i.e.  no further data is required. Where new data is 
required for profiling, for example because the training and verification data is pro-
prietary, then it must of course also be representative of the inputs expected during 
deployment.

Gathering data: During the profiling phase, we test each of the n base classifiers 
on the same N input samples. Each input sample is a data structure that includes 
information collected from all sensing modalities used by the respective classifiers. 
It is expected that each sample comprises information relating to a valid ground-
truth class, i.e. a class that the respective classifiers were trained to identify. There 

Table 1   Glossary of selected terminology

Terminology Informal definition

confidence A base classifier’s self-assessment of the probability that the class it has 
returned is correct.

confidence threshold The minimum confidence required from a base classifier for the IDK classifier 
built upon it to return a real class rather than IDK.

classification threshold The minimum success probability required of an IDK cascade,
latency constraint The maximum permitted execution duration for an IDK cascade.
precision The probability of correct classification (i.e. equating to the ground truth) 

when a real class is returned by an IDK classifier.
precision threshold The minimum precision required of an IDK classifier.
successful classification When an IDK classifier or IDK cascade returns a real class, rather than IDK.
success probability The probability of successful classification for an IDK classifier or an IDK 

cascade.
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is no constraint on the format of the respective modalities, other than being con-
sistent with the input format expected by the respective classifiers. For example, in 
a scenario involving vision, acoustic, and seismic sensing and classification (as in 
Sect. 4.2), a single sample could include an image of a target, a 1 second acoustic 
sound clip of the same target, recorded at 4KHz, and a 1 second seismic time-series 
measurement of the target, recorded at 100Hz. Further, the number of classifiers 
used may be different from the number of modalities present in the input sample. 
For example, a joint acoustic plus seismic classifier would make use of both the 
acoustic and the seismic information within the sample. By contrast, three different 
image classifiers could be used that all act on the same video information, but differ 
in their resolution and execution time.

For each of the N input samples, each classifier outputs an ordered pair 
(class, confidence) , where class is the class that the classifier has determined most 
likely matches the input sample, and confidence is a real number in the range [0, 1] 
that indicates how confident the classifier is that the input sample is indeed of the 
class returned. We store all N of these ordered pairs output by each of the n classifi-
ers for further processing as discussed below. The ground truth, i.e. the actual class, 
for each of the N input samples is also known and stored.

During the profiling phase, we also measure and store the execution time of each 
classifier on each input sample. In this paper, we assume that the execution time 
of each classifier is independent of its actual input, but nevertheless is subject to 
variation due to other factors related to the hardware platform. This is typically the 
case because the neural networks used for such processing run on a dedicated GPU. 
Furthermore, the neural networks generally perform the same computations on each 
input, resulting in an execution time that depends primarily on the neural network 
architecture, input size, and GPU type, but not on the actual data values. In princi-
ple, some optimizations, such as the use of sparse matrix algebra to accelerate pro-
cessing of sparse inputs, e.g. a row of all zeros, can result in shortened execution 
times for some inputs, but the common case of having a dense input has a consistent 
execution time. In the case studies considered in this paper, we use the average exe-
cution time observed for each classifier Ki over the large number of input samples 
used in the profiling phase to determine its average execution time C̄i.

Obtaining IDK classifiers: An IDK classifier Ki is obtained from the i’th base 
classifier, 1 ≤ i ≤ n , by defining a confidence threshold Hi , 0 ≤ Hi ≤ 1 , that is used 
in the following way. Suppose the classifier outputs the ordered pair (X, f) for some 
input sample, denoting that it believes that the input sample belongs to class X with 
a confidence equal to f. If f ≥ Hi then the IDK classifier Ki outputs the class X, 
whereas if f < Hi then it outputs IDK.

It remains to explain how to derive a value for the confidence threshold Hi of each 
classifier Ki . We assume that the application requirements specify a minimum preci-
sion threshold for successful classification. The precision threshold is a lower bound 
on the fraction of a classifier’s non-IDK classification decisions that must be correct. 
For example, a precision threshold of 0.95 indicates that at least 95% of the non-
IDK classification decisions made by a classifier must be correct, i.e. in agreement 
with the ground truth. For each base classifier, we sort the N output pairs by their 
confidence values f, and then choose the lowest value of Hi such that the fraction of 
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samples with f ≥ Hi where the classifier returns the correct class, as determined by 
the ground truth, is no smaller than the precision threshold.

Assigning values to the probability parameters: Once the confidence thresh-
olds have been determined for each of the n IDK classifiers K1,K2,… ,Kn , then 
we are ready to determine the probabilities associated with each of the 2n disjoint 
regions in the Venn diagram representation of the probability space, as illustrated 
by Fig. 1. We do so by processing the data collected during the profiling phase as 
follows: 

1.	 Suppose that on the j’th input sample ( 1 ≤ j ≤ N ), classifier Ki outputs a real class, 
then it is deemed to have been successful on the j’th input sample. Otherwise, Ki 
outputs IDK and is deemed to have been unsuccessful.

2.	 Once we have considered all N inputs samples for all n IDK classifiers, then we 
can determine, for each input sample, which of the n classifiers were successful 
and which were not, thus associating each input sample with exactly one of the 
2n regions in the probability space. We can therefore determine, for each of the 2n 
regions in the probability space, what fraction of the N inputs were successfully 
classified by only those classifiers associated with that region of the probability 
space.

4.1 � ResNet case study as an example

We now illustrate the methodology discussed above for obtaining IDK classifiers 
from base classifiers, and for determining the parameter values that characterize 
their dependences via probabilities, on a case study drawn from the domain of image 
classification. We examined five classifiers, which are all variants of the popular 
ResNet Deep Residual Network (He et al. 2015): ResNet-18, ResNet-34, ResNet-50, 
ResNet-100, and ResNet-152. (The number x in ResNet-x denotes the number of 
layers in the network; larger values of x tend to yield more accurate classifiers that 
have greater execution times.) We tested all five classifiers on a representative data 
set of 50,000 test images drawn from the validation set2 of the ImageNet Large Scale 
Visual Recognition Challenge data set (Russakovsky et al. 2015), and recorded the 
Top-1 correctness (i.e.  the top class to which the classifier matches the input) and 
the associated confidence for each classifier on each of the test images.

Figure 2 shows the observed precision, i.e. the proportion of non-IDK outputs 
that are correct, as a function of the confidence threshold. We use the data sum-
marized in this graph to set the confidence threshold, Hi , by assigning to it the 
minimum value that yields an observed precision that is no lower than the speci-
fied precision threshold. The confidence thresholds determine the probability 
that the IDK classifiers will output a real class rather than IDK. Figure 3 shows 
that as the selected confidence threshold becomes larger, so the IDK classifiers 
tend to output IDK more frequently. Thus we see that there is a clear relationship 

2  The validation and test data for ImageNet includes 200,000 photographs collected from Flickr and 
other search engines, hand labelled with the presence or absence of 1000 object categories. The valida-
tion set is a random subset consisting of 50,000 of these images with labels.
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between precision and success probability for IDK classifiers: the greater the pre-
cision required, the more likely they are to output IDK rather than a real class.

Having set the confidence thresholds, Hi , we can then compute the probabili-
ties associated with each of the 2n disjoint regions of the probability space. These 
probabilities are shown in Table 2; to keep the table and this example to a man-
ageable size, we have omitted ResNet-101 from consideration and so are left with 
four classifiers, and hence 24 = 16 regions of the probability space for which we 
computed the probabilities. Table 2 can be interpreted as follows: The first four 
columns correspond to the four classifiers ResNet-18, ResNet-34, ResNet-50, 
and ResNet152. In each of these columns a 0 indicates that the classifier returns 
IDK, whereas a 1 indicates that it returns a real class. Thus, each of the 16 rows 
of the table represents one of the 16 disjoint regions of the probability space. 
The column entitled “Count” denotes how many of the N = 50,000 input samples 
fall into each of the 16 regions; the entries in the column entitled “Prob-S” are 
obtained by dividing these counts by N. Prob-S therefore denotes the probability 
that exactly the specific pattern of IDK classifiers indicated by 1’s will be able to 
classify an input, and those indicated by 0’s will not and so will return IDK.

Fig. 2   Populating the model: 
Setting the confidence threshold

Fig. 3   Populating the model: 
Percentage of IDKs
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For subsequent use in more efficiently calculating the expected duration of an 
IDK cascade (see Sect. 6) we require a further set of probabilities given in the col-
umn entitled “Prob-A”. Prob-A denotes the probability that at least one of IDK 
classifiers indicated by 1’s will be able to classify an input, and is calculated from 
the Prob-S values. For example, in the fourth row of the table, the IDK classifiers 
denoted by C and D are indicated by a 1. The associated value of Prob-A is there-
fore the sum of all of the Prob-S values where there is a 1 in either column C or D. 
(Obtaining all of the Prob-A values takes a time that is quadratic in the number of 
rows, i.e. in O(22n) = O(4n) time, given that there are 2n rows in the table.)

Table 2 also reports the average-case and worst-case execution time parameters 
( ̄Ci and Ci ) of the classifiers on an NVIDIA Jetson TX2, considering the 50,000 
runs, as well as the confidence thresholds, Hi , set assuming a required precision 
threshold of 0.95. Since the focus of this paper is not on obtaining definitive worst-
case execution times for classifiers, we use the 95-percentile execution time for each 
classifier as a proxy for its worst-case execution time Ci . (Note, this choice does not 
impact the methods subsequently presented; higher values for Ci could be used if 

Table 2   ResNet example

ResNet

− 18 − 34 − 50 − 152 Count Prob-S Prob-A

A B C D

0 0 0 0 15880 0.3176 0
0 0 0 1 3011 0.06022 0.5902
0 0 1 0 1423 0.02846 0.545
0 0 1 1 2465 0.0493 0.64564
0 1 0 0 914 0.01828 0.49216
0 1 0 1 960 0.0192 0.63488
0 1 1 0 545 0.0109 0.60016
0 1 1 1 3382 0.06764 0.66942
1 0 0 0 649 0.01298 0.4284
1 0 0 1 452 0.00904 0.62476
1 0 1 0 304 0.00608 0.5847
1 0 1 1 1208 0.02416 0.66412
1 1 0 0 275 0.0055 0.54442
1 1 0 1 609 0.01218 0.65394
1 1 1 0 500 0.01 0.62218
1 1 1 1 17423 0.34846 0.6824
Totals 50000 1.00

Classifier A B C D E

Hi 0.890 0.895 0.896 0.910 1
C̄i (ms) 16.9 27.8 37 101.1 1000
Ci (ms) 22.6 37.5 49.5 125.1 1000
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a high reliability in meeting latency constraints were required). Table 2 also lists a 
hypothetical deterministic classifier E that always returns a real class, never IDK, 
and that has a significantly larger (arbitrarily assigned) execution time than any of 
the IDK classifiers. In Sect. 6, we use the information presented in Table 2 to syn-
thesize optimal IDK cascades for this case study.

Figure 4 illustrates the execution time distributions for the ResNet classifiers, for 
the 50,000 input samples, normalized to the mean value for each classifier. Observe 
that almost all of the execution times lie between 0.75 and 1.5 times the mean value.

4.2 � Multi‑modal case study as an example

All of the classifiers in the ResNet case study discussed in Sect. 4.1 operate on the 
same type of information: camera images. In this section, we explore another case 
study in which different classifiers use very different kinds of information. Here, it is 
a reasonable hypothesis (Madani et al. 2012, 2013) that some of the classifiers may 
behave independently. The data used in this case study was collected previously by 
Liu et al. (2022) as part of a project that seeks to autonomously detect the presence 
of potentially hostile enemy vehicles in a battlefield environment. Three different 
kinds of sensors were deployed for this purpose: acoustic (a microphone array), seis-
mic (a Raspberry Shake, comprising a Raspberry Pi plus a vertical-axis geophone), 
and vision (a camera). Each sensor is paired with its own neural network, which acts 
as the classifier. All three classifiers have adjustable parameters, in particular, each 
classifier can down-sample to reduce the resolution of the input, thereby trading off 
a fine granularity of information for faster processing times. The manner in which 
the input samples were collected is described by Liu et al. (2022) as follows: 

We deployed our devices on the grounds of the DEVCOM Army Research Lab-
oratory Robotics Research Collaboration Campus [...] and collected seismic 
and acoustic signals, while different ground vehicles were driven around the 
site. Data of three different targets: a Polaris all-terrain vehicle, a Chevrolet 

Fig. 4   Execution time distribu-
tions for the ResNet classifiers 
normalized to the mean
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Silverado, and Warthog UGV were collected. Each target repeatedly passed 
by the sensors. The total length of the experiment was 115 minutes, spread 
roughly equally across the three targets. [...] A camera was employed to simul-
taneously record video of the target.

From the data provided by  Liu et  al. (2022), we considered four classifiers as 
follows:

–	 A: deepsense_both_contras: This classifier used both seismic and acoustic sensor 
data as input, and processed the data using the DeepSense neural network archi-
tecture (Yao et al. 2017a), trained using contrastive learning (Liu et al. 2021).

–	 B: cnn_acoustic: This classifier used only acoustic data, and processed it using a 
standard convolutional neural network.

–	 C: deepsense_seismic: This classifier used only seismic data, and processed it 
using the DeepSense neural network architecture (Yao et al. 2017a).

–	 D: yolov5s-compressed: This classifier used only image data. It was derived 
from the YOLOv5 neural network (small version), after further image compres-
sion using the DeepIoT neural network architecture compression framework (Yao 
et al. 2017b).

We processed the profiling data (class, confidence) outputs for each of the four 
classifiers for each of the 1800 randomly chosen input samples3, as described in 
Sect. 4.1. First, we assumed a required precision of 0.95 and used this value to com-
pute the confidence threshold for each classifier4. Having computed the confidence 
thresholds, we used these values in the construction of the probabilities (Prob-S) 
associated with each of the 2n disjoint regions of the probability space, and subse-
quently the probabilities (Prob-A) that each distinct subset of the IDK classifiers will 
be able to successfully classify an input. These probabilities are shown in Table 3. 
Table 3 also reports the average-case and worst-case execution time parameters ( ̄Ci 
and Ci ) of the classifiers on a Raspberry Pi 4, considering the 1800 runs, as well as 
the (arbitrarily assigned) execution time of a hypothetical deterministic classifier E 
that always returns an actual class. In Sect.  6, we use the information presented in 
Table 3 to synthesize optimal IDK cascades for this case study.

Figure 5 illustrates the execution time distributions for the Multi-Modal classi-
fiers, for the 1800 input samples, normalized to the mean value for each classifier. 
Observe that almost all of the execution times lie between 0.75 and 1.5 times the 
mean value.

3  From each input sample, the different classifiers used as their input the different kinds of information 
that were obtained by the different sensors.
4  The yolov5s-compressed classifier was accurate in all cases where it returned a non-zero confidence 
value, hence an arbitrarily small confidence threshold of 0.01 was set.
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4.3 � Characterizing classifier dependences

With the data that is available in the profiling phase it is possible to estimate the 
level of dependence, i.e.  the degree of correlation, between the behavior of the 

Table 3   MultiModal example A: deepsense_both_contras; B: cnn_acoustic; C: deepsense_seismic; D: 
yolov5s-compressed

A B C D Count Prob-S Prob-A

0 0 0 0 56 0.031111111 0
0 0 0 1 33 0.018333333 0.298333333
0 0 1 0 35 0.019444444 0.736111111
0 0 1 1 18 0.01 0.816666667
0 1 0 0 11 0.006111111 0.221666667
0 1 0 1 5 0.002777778 0.461111111
0 1 1 0 5 0.002777778 0.807777778
0 1 1 1 4 0.002222222 0.868333333
1 0 0 0 181 0.100555556 0.907222222
1 0 0 1 76 0.042222222 0.940555556
1 0 1 0 698 0.387777778 0.941666667
1 0 1 1 304 0.168888889 0.962777778
1 1 0 0 82 0.045555556 0.921111111
1 1 0 1 31 0.017222222 0.949444444
1 1 1 0 195 0.108333333 0.950555556
1 1 1 1 66 0.036666667 0.968888889
Totals 1800 1.00

Classifier A B C D E

Hi 0.705 0.543 0.86 0.01 1
C̄i (ms) 17.0 3.9 11.4 1440.8 5000
Ci (ms) 19.6 5.3 13.7 1613.2 5000

Fig. 5   Execution time distribu-
tions for the Multi-Modal classi-
fiers normalized to the mean
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different classifiers. This can be characterized in a number of different ways. First, 
Pearson’s correlation coefficient5 can be calculated for each pair of classifiers. This 
coefficient r is given by:

where xi and yi are the paired results for the two classifiers on input sample 
i = 1…N , while x and y are the respective means of the N results.

Pearson’s correlation coefficient r can take values in the range [−1,+1] , with 
r = 0 implying no correlation, and hence possibly independence.6 The value r = +1 
implies identical behavior, and at the other extreme r = −1 implies exactly opposite 
behavior.

For the purposes of assessing correlations, the results for each classifier were con-
verted into binary form, with 1 indicating a non-IDK output and 0 indicating IDK. 
Tables 4 and 5 show the coefficients computed for the ResNet and Multi-Modal case 
studies respectively, color-coded by the degree of correlation between distinct clas-
sifiers: red indicating a strong degree of correlation ( abs(r) > 0.5 ), orange a moder-
ate degree of correlation ( 0.1 < abs(r) ≤ 0.5 ), yellow a weak degree of correlation 
( 0.05 < abs(r) ≤ 0.1 ), and green a very weak degree of correlation ( abs(r) ≤ 0.05).

As expected, the classifiers in the ResNet case study show a consistent strong 
positive correlation of between 0.579 and 0.686 between each pair. By compari-
son the classifiers in the Multi-Modal case study, with its different types of infor-
mation (acoustic, seismic, and camera), demonstrate lower levels of correlation. 
Here. classifiers A and C (i.e. deepsense_both_contras and deepsense_seismic) 
show a moderate degree of positive correlation of 0.265, whereas the other pairs 

r =

∑N

i=1
(xi − x)(yi − y)

�∑N

i=1
(xi − x)2

�∑N

i=1
(yi − y)2

Table 4   ResNet classification: Pearson correlation coefficients
A B C D

A 1 0.668 0.630 0.579
B 0.668 1 0.678 0.639
C 0.630 0.678 1 0.686
D 0.579 0.639 0.686 1

Table 5   Multi-modal classification: Pearson correlation coefficients
A B C D

A 1 0.055 0.265 -0.042
B 0.055 1 -0.071 -0.037
C 0.265 -0.071 1 -0.009
D -0.042 -0.037 -0.009 1

5  See https://​en.​wikip​edia.​org/​wiki/​Pears​on_​corre​lation_​coeff​icient
6  Although independence implies a correlation of zero, a correlation of zero does not necessarily imply 
independence.

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient


365

1 3

Real-Time Systems (2023) 59:348–407	

of classifiers have either weak degrees of correlation ( 0.05 < abs(r) ≤ 0.1 ), or 
very weak degrees of correlation ( abs(r) ≤ 0.05 ). Interestingly, although close to 
0 a number of the correlations are negative implying slightly better than inde-
pendent performance.

Another method of assessing dependences is to compare the probability that all 
of the IDK classifiers return IDK as obtained from the profiling data, with the prob-
ability computed assuming: (i) that all of the classifiers are independent, and (ii) 
that all of the classifiers are fully dependent. These values for the two case studies 
are shown in Table 6. With the ResNet case study the failure rate computed for arbi-
trary dependences is somewhat closer to fully dependent behavior than independent 
behavior. By contrast, with the Multi-Modal case study the failure rate computed for 
arbitrary dependences is at an intermediate level between the values expected if the 
IDK classifiers were independent or fully dependent.

The fact that the classifiers comprising the case studies are neither independent 
nor fully dependent, means that prior approaches (Baruah et al. 2021, 2022) based 
on those assumptions cannot be used to synthesize optimal IDK cascades.

The above analysis examines dependences between the behavior of the classifiers 
in terms of successfully classifying an input or returning IDK. We also examined the 
dependencies between the execution times of the classifiers. For each of the N input 
samples, we recorded the execution time of each classifier and categorized these 
execution times as either: 1 indicating above the median value or 0 indicating equal 
to or below the median value. We then computed Pearson’s correlation coefficient 
for each pair of classifiers based on this binary data. Recall that the coefficients can 
range from −1 to +1 , with a value of 0 implying no correlation. Tables 7 and 8 show 
these coefficients for the ResNet and Multi-Modal case studies respectively.

Table 6   Probability of failure Case study Independent Fully dependent Arbitrary

ResNet 0.054125569 0.4098 0.3176
Multi-Modal 0.013371 0.092778 0.031111

Table 7   ResNet execution times: Pearson correlation coefficients
A B C D

A 1 -0.003 -0.005 0.007
B -0.003 1 0.040 0.039
C -0.005 0.040 1 0.018
D 0.007 0.039 0.018 1

Table 8   Multi-modal execution times: Pearson correlation coefficients
A B C D

A 1 -0.013 0.024 0.013
B -0.013 1 0.062 -0.044
C 0.024 0.062 1 -0.013
D 0.013 -0.044 -0.013 1
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Observe that for the ResNet classifiers, the correlation coefficients in Table  7 
for all pairs of distinct classifiers indicate very weak correlation ( abs(r) ≤ 0.05 ). 
Similarly, for the Multi-Modal classifiers, the correlation coefficients in Table  8 
indicate either weak correlation ( 0.05 < abs(r) ≤ 0.1 ) or very weak correlation 
( abs(r) ≤ 0.05).

Applying a Chi-squared test of independence on such a large sample size, 
e.g.  either 50,000 or 1800 samples, means that the test will deem significant 
( p < 0.05 ) even small deviations from perfectly independent behavior. Despite 
this sensitivity, for some pairs of classifiers there was no evidence against a null 
hypothesis of independence, i.e. the observed variability had a probability p > 0.05 
of occurring by chance. For other pairs of classifiers there was evidence against a 
hypothesis of independence. The weak degree of correlation observed in both case 
studies implies that the majority of the execution time of each classifier is effec-
tively independent of the execution time of other classifiers, with a small effect size 
of less than 7% that is dependent. Hence regarding the execution time behavior of 
the classifiers as independent is a reasonable approximation. In the analysis derived 
in the following sections we assume that the execution times of the classifiers are 
independent.7

5 � Synthesizing optimal IDK cascades on a single processor

Once the mutual dependences among the classifiers have been characterized via the 
tables of probabilities as detailed in Sect.  4 and illustrated in Tables  2 and  3, we 
proceed to use this information to determine the optimal IDK cascade: the one with 
the minimum expected duration, optionally subject to a latency constraint that the 
worst-case execution duration of the IDK cascade is not permitted to exceed. Ini-
tially, we assume a single processor system. The synthesis of optimal IDK cascades 
for systems with multiple processors is addressed later in Sect. 7.

Recall that we we have a collection of n IDK classifiers K1,K2,… ,Kn that solve 
the same classification problem. In addition, we may also have a single determin-
istic classifier denoted by Kd that also solves the problem, and which if employed 
will always be the last classifier in the IDK cascade to complete execution. Initially, 
we assume that such a deterministic classifier is both available and must be used, 
i.e. successful classification is a prerequisite. Subsequently, we relax this limitation 
and require instead that a specified classification threshold must be met. In other 
words, only IDK cascades with an overall probability of successful classification 
that meets or exceeds the classification threshold can provide feasible solutions. 
Before describing the solution, we first introduce some notation and preliminary 
computations.

7  This assumption is implicit in the way in which the average execution times are summed together 
weighted by probabilities.
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Definition 1  For any subset S of the collection of IDK classifiers, P̂[S] denotes the 
probability that at least one of the classifiers in S is successful, i.e. does not return 
IDK.

In terms of the Venn diagram representation of the probability space, P̂[S] denotes 
the probability measure inside the union of the circles corresponding to each of the 
classifiers in S. Hence P̂[�] = 0.0 , while for sets containing only a single classifier, Ki , 
we have P̂[{Ki}] = Pi , i.e. the probability that Ki returns a real classification, and not 
IDK. Note that the P̂[S] values depend only on the members of the set S, and not on 
their order. For efficiency we pre-compute the values of P̂[S] for each of the 2n distinct 
subsets S of the IDK classifiers; these are the Prob-A values shown in Tables 2 and 3.

Now consider any given cascade of classifiers

for some n′ ≤ n . The first classifier in this cascade will execute on each input sam-
ple. However, the second classifier, K′

2
 , will only execute in the event that the first 

classifier outputs IDK, the third classifier K′
3
 will only execute in the event that the 

first two classifiers both output IDK, and so on. Letting C̄′
i
 denote the average execu-

tion time of classifier K′
i
 , the expected duration of the IDK cascade is therefore equal 

to:

Hence determining the expected duration of any given IDK cascade is a straightfor-
ward operation; simply apply (2), looking up the required probability values P̂[S] in 
the table.

Unfortunately, the number of possible IDK cascades that need to be considered 
grows very rapidly with the number of available IDK classifiers k. We can obtain an 
upper bound of the number of IDK cascades as follows. Since the number of r-permu-
tations of k distinct objects is k!

(k−r)!
 , it follows that for each r, 0 ≤ r ≤ k , there are k!

(k−r)!
 

possible distinct IDK cascades comprising r IDK classifiers followed by the determin-
istic classifier. Hence the total number of IDK cascades that we need to consider is 
given by

5.1 � DAG‑based representation and algorithm

To avoid having to evaluate every permutation and thus incur complexity that is fac-
torial in the number of classifiers, we employ a graph-based representation in the 

(1)
⟨
K�
1
,K�

2
,… ,K�

n�
,Kd

⟩

(2)

n�∑

i=1

(
C̄�
i
×
(
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1
,K�
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i−1
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+ C̄d ×
(
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)

(3)
k∑

r=0
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form of a Directed Acyclic Graph (DAG). Each vertex in the graph corresponds to 
a unique subset of the IDK classifiers. There are 2n − 1 such subsets of n IDK clas-
sifiers and hence 2n − 1 such vertices. In addition, there is start vertex, denoted by 
X, that represents the empty set of classifiers, and an exit vertex, denoted by E. The 
vertices are connected via directed edges. A directed edge connects each vertex rep-
resenting a subset of IDK classifiers with each of the vertices that represents the 
same subset extended via the addition of exactly one further classifier. For example, 
with four IDK classifiers A, B, C, and D, there is a directed edge from the vertex 
AB to each of the vertices ABC and ABD. In addition to this there is a directed edge 
from all other vertices to the exit vertex E.

Figure 6 illustrates the DAG representation for the case of four IDK classifiers 
A, B, C, and D. When a deterministic classifier is considered, then it is represented 
by the exit vertex E, since all possible IDK cascades end with the deterministic 
classifier.

Observe that each unique permutation forming an IDK cascade corre-
sponds to a unique path through the DAG, from start to exit. On a given path 
the corresponding IDK cascade can be recovered by collecting the classi-
fiers that are added in moving from one vertex to the next. For example the 
path X → A → AC → ACD → ABCD → E corresponds to the IDK cascade 
⟨A,C,D,B,E⟩ . (Note that when a deterministic classifier is not used, then the exit 
vertex and the graph remain the same, however E is not included in the correspond-
ing IDK cascade).

Fig. 6   DAG representation of 
the subsets of IDK classifiers 
(vertices), with arrows (directed 
edges) representing the addi-
tion of a further classifier and 
the associated increase in the 
expected execution duration

X

A B C D

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCD

E

Edges from all other vertices
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Recall that the directed edge from a vertex corresponding to a subset S of IDK 
classifiers to another vertex corresponding to a subset S′ represents the addition of a 
single classifier, K�

i
= S� − S . Moreover, that edge represents the addition of classi-

fier K′
i
 to any of the sub-paths (sub-sequences) of IDK classifiers that are permuta-

tions of S. Further, the increase in expected execution duration by adding classifier 
K′
i
 to any sub-sequence formed from all of the classifiers in S is given by 

C̄�
i
×
(
1 − �P[S]

)
 . For example, the directed edge from ACD to ABCD in Fig. 6 repre-

sents the addition of IDK classifier B, and the increase in expected execution dura-
tion (cost) is given by C̄B ×

(
1 − �P[{A,C,D}]

)
 . This is the case irrespective of 

which one of the 6 possible paths is taken to reach vertex ACD from the start vertex 
X. The additional cost depends only on the set of classifiers, and not on their order. 
This is the crucial point that facilitates constructing an algorithm with lower com-
plexity. We therefore annotate the DAG with the cost associated with each edge. 
(Note, when a deterministic classifier is not used, then the cost associated with each 
of the incoming edges of the exit vertex is zero).

Now the problem of determining the IDK cascade with minimum expected exe-
cution duration is reduced to finding the shortest path from the start to the end of 
the DAG. This is a standard problem in graph traversal. Since there is a single start 
vertex, the problem can be solved using a standard topological ordering algorithm8, 
in time that is linear in the number of edges plus vertices. Since there are 2n vertices, 
not counting the exit vertex, and each vertex can have at most n outgoing edges, 
the number of edges is upper bounded by n2n . Hence, once the graph has been con-
structed, finding the optimal IDK cascade has O(n2n) complexity.

Considering the overall complexity starting from the results of profiling, deriving 
the Prob-A (i.e. P̂[S] ) values can be achieved in O(4n) time9, while construction of 
the DAG and computation of the optimal IDK cascade can then be done in O(n2n) 
time. Thus the overall complexity is O(4n) . Recall that we do not expect practical 
applications to require more than approximately 12 distinct classifiers running in 
sequence to solve the same classification problem. By comparison, the DAG-based 
approach introduced in this section is viable for up to n = 20 , requiring less than 20 
minutes processing time on a single core of an Intel i5-8265U 1.6 GHz laptop com-
puter, see Sect. 7.4 for further details of our proof-of-concept implementation.

The DAG-based representation can be adapted to cater for both a latency con-
straint on the worst-case execution duration, and a classification threshold denot-
ing the minimum required overall probability of successful classification. This is 
achieved by first pruning away vertices and edges that are only present on infeasible 
paths corresponding to IDK cascades that do not meet those requirements, and then 
running the topological ordering algorithm to determine the optimal IDK cascade.

To cater for a latency constraint, for each vertex (except for the exit) we first sum 
up the worst-case execution duration for the corresponding set of classifiers plus 
the deterministic classifier if there is one. Any vertices with a worst-case execution 

8  See https://​en.​wikip​edia.​org/​wiki/​Topol​ogical_​sorti​ng
9  Assuming that logical (bit-wise) AND operations can be performed on n-bit values in O(1) time, which 
is certainly possible for n ≤ 64.

https://en.wikipedia.org/wiki/Topological_sorting
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duration that exceeds the latency constraint are then deleted from the graph along 
with their incoming and outgoing edges. The crucial point here is that any path 
which passes through such a deleted vertex cannot comply with the latency con-
straint, since the worst-case execution duration is a property of the set of classifiers, 
irrespective of their order.

To cater for a classification threshold L (without a deterministic classifier), for 
each vertex and corresponding subset of classifiers S we evaluate the total probabil-
ity of successful classification given by P̂[S] . If this probability is less than the clas-
sification threshold, i.e. �P[S] < L , then we delete the edge from that vertex to the 
exit vertex. Again, the crucial point is that any path that traverses such a deleted 
edge cannot comply with the threshold, since the total probability of successful clas-
sification depends on the set of classifiers in S irrespective of their order. Alterna-
tively, to cater for a classification threshold with a deterministic classifier, we simply 
treat the deterministic classifier as if it were another IDK classifier, and do not rep-
resent it by the exit vertex. Edges are then deleted as described above, thus ensuring 
that any path that reaches the exit vertex complies with the classification threshold, 
irrespective of whether or not it includes the deterministic classifier.

We note that if following deletion of vertices and edges to ensure compliance 
with the latency constraint and classification threshold, no complete paths remain 
from the start to the exit vertex, then this means that no feasible solution to the prob-
lem exists.

6 � Case studies: synthesizing optimal IDK cascades

In this section, we revisit the two case studies, previously examined in Sects.  4.1 
and 4.2, for which we obtained probabilistic models, summarized in Tables 2 and 3. 
For each case study, we use these probabilistic models to synthesize optimal IDK 
cascades with the minimum expected execution duration. First, in Sects. 6.1 and 6.2, 
we consider the case where a deterministic classifier is available, and there is no 
latency constraint on the worst-case execution duration of the IDK cascades. Sec-
ond, in Sect. 6.3, we introduce such a latency constraint, Finally, in Sect. 6.4, we 
relax the limitation of having a deterministic classifier and instead specify a clas-
sification threshold, i.e.  a minimum required overall probability of successful 
classification.

6.1 � The ResNet case study

In Sect. 4.1, we described how the profiling data was processed for several instan-
tiations of the ResNet Deep Residual Network  (He et al. 2015) to: (i) define IDK 
variants of the base classifiers; and (ii) obtain a probabilistic characterization of 
the effectiveness of these IDK classifiers, summarized for four IDK classifiers in 
Table  2. We now discuss how to use this probabilistic characterization to obtain, 
via the algorithm described in Sect. 5, an optimal IDK cascade with the minimum 
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expected execution duration from these four IDK classifiers (labelled A, B, C, and 
D) and a deterministic classifier, E.

Since k = 4 , by (3) there are 65 potential IDK cascades, each ending with the 
deterministic classifier. We computed the expected duration for each of these 65 
IDK cascades using (2); these values are depicted in Fig.  7. Note, the results are 
arranged left to right grouped and color-coded according to the number of classifiers 
in the IDK cascade, and in lexicographic order within each such group.

The expected durations ranged from a high of 1 second for the default IDK cas-
cade ⟨E⟩ comprising only the deterministic classifier, to a low of 405.39ms, depicted 
in green and highlighted by a red arrow in Fig. 7, for ⟨A,C,B,D,E⟩, which is the 
optimal IDK cascade, as determined by the DAG-based algorithm described in 
Sect.  5. That is, the expected execution duration is minimized when we call the 
ResNet-18, ResNet-50, ResNet-34, and ResNet-152 IDK classifiers followed by the 
deterministic classifier.

Making an unfounded assumption that the IDK classifiers are independent and 
using the optimal algorithm defined by Baruah et al. (2021, 2022) for such cases, 
would result in the selection of IDK cascade ⟨A,B,C,D,E⟩, which is not optimal 
in this case. Further, relying on the basic probability values, Pi , and computations 
assuming independence would underestimate the expected duration of that IDK cas-
cade at 111ms rather than 405.44ms. Alternatively, making an unfounded assump-
tion that the IDK classifiers are fully dependent and using the optimal algorithm 

Fig. 7   ResNet: Expected dura-
tion for all 65 possible IDK 
Cascades
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Table 9   ResNet: the optimal 
IDK cascade is different for 
deterministic classifiers with 
different execution times

C̄d
     IDK cascade Expected 

duration 
(ms)

2000 ⟨A,C,B,D,E⟩ 722.99
1000 ⟨A,C,B,D,E⟩ 405.39
500 ⟨A,C,B,E⟩ 238.50
250 ⟨A,C,E⟩ 141.87
100 ⟨A,E⟩ 74.06
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defined by Baruah et al. (2022) for such cases, would result in the selection of IDK 
cascade ⟨A,D,E⟩, which is also not optimal. Further, relying on the basic probabil-
ity values, Pi , and computations assuming full dependence would overestimate the 
expected duration of that IDK cascade at 484.49ms rather than 449.93ms.

The optimal IDK cascade depends on the execution time, C̄d , of the deterministic 
classifier. Here, smaller values of C̄d may reduce the need to execute the IDK clas-
sifiers, as illustrated in Table 9. Note, an approach based on an assumption of inde-
pendence would not select the optimal IDK cascade for any of the values of C̄d in 
the table. Similarly, an approach based on an assumption of full dependence would 
not select the optimal IDK cascade for any of the values of C̄d in the table, with the 
exception of C̄d = 100.

6.2 � Multi‑modal case study

We repeated the process described in Sect.  6.1 on the Multi-Modal case study. 
Recall that this case study is notable in that the same input samples are classified 
by different classifiers that use information obtained from different sensors (acous-
tic, seismic, and camera), and hence the classifiers have substantially lower mutual 
dependence (see Sect. 4.3). The model that we constructed from the profiling data 
(as described in Sect. 4.2) is summarized in Table 3. Once again we have k = 4 , and 
therefore a total of 65 possible IDK cascades. We again used (2) to compute the 
expected duration for each of these 65 IDK cascades, as depicted in Fig. 8. Observe 
that in this case, there is a much larger variation in the expected duration of different 
IDK cascades, this is due to the larger differences in the execution times of the IDK 
classifiers used in this case study (see Table  3). The expected durations ranged from 
a high of 5000ms for the default IDK cascade ⟨E⟩ , comprising only the deterministic 
classifier, to a low of 242.5ms for the IDK cascade ⟨C,B,A,D,E⟩, which is the opti-
mal IDK cascade, as determined by the DAG-based algorithm described in Sect. 5.

Making an unfounded assumption that the IDK classifiers are independent and 
using the optimal algorithm defined by Baruah et al. (2021, 2022) for such cases, 
would also result in the selection of IDK cascade ⟨C,B,A,D,E⟩ in this particular 

Fig. 8   Multi-modal: Expected 
duration for all 65 possible IDK 
Cascades
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case. However, relying on the basic probability values, Pi , and computations assum-
ing independence would underestimate the expected duration of that IDK cascade at 
110.2ms rather than 242.5ms.

As with the ResNet case study in Sect. 6.1, the structure of the optimal IDK cas-
cade depends on the execution time, C̄d , of the deterministic classifier, as illustrated 
in Table 10. An approach based on an assumption of independence would not select 
the optimal IDK cascade for C̄d = 4000 , but rather would select ⟨C,B,A,E⟩ instead. 
Similarly, an approach based on an assumption of full dependence would not select 
the optimal IDK cascade for any of the values of C̄d in the table, but rather would 
select ⟨C,A,E⟩ instead.

As we have seen, approaches based on assumptions of independent or fully 
dependent behavior do not result in optimal or correct results for IDK classifiers 
with arbitrary dependences. In particular, relying on the basic probability values, Pi , 
and computations assuming independence or full dependence can greatly underesti-
mate or overestimate the expected duration of IDK cascades. In the remainder of this 
paper we therefore make no further comparisons with these techniques. They are not 
appropriate when the underpinning assumptions of independence or full dependence 
do not hold, and should not be used in those circumstances.

6.3 � When a latency constraint is specified

As mentioned in Sect. 5, a specified latency constraint rules out from consideration 
those IDK cascades whose worst-case execution duration exceeds the constraint. 
Consider, for example, the ResNet case study from Sect.  6.1, with C̄d = 1000 ms 
as specified in Table 2. In the absence of a latency constraint there were 65 feasi-
ble IDK cascades, with expected execution durations as depicted in Fig. 7. When 
a latency constraint of 1100ms is specified, then the DAG representation described 
in Fig. 6 in Sect. 5 is modified by deleting all of those vertices, and the edges con-
nected to them, where the sum of the worst-case execution times of the correspond-
ing IDK classifiers plus the deterministic classifier exceeds 1100ms. The result is 
that only vertices X, A, B, C, AB, BC, AC, and E remain and hence only 10 of the 65 
possible IDK cascades remain feasible, i.e.  are guaranteed to complete within the 
constraint. The IDK cascade ⟨A,C,B,D,E⟩ , which was optimal in the absence of a 
latency constraint, is not one of them; instead, the IDK cascade ⟨B,C,E⟩ , with an 
expected duration of 446.43ms becomes the optimal one. Similar observations can 
be made about the multi-modal case study: the added latency constraint may render 

Table 10   Multi-Modal:The 
optimal IDK cascade is different 
for deterministic classifiers with 
different execution times

C̄d
    Cascade Expected 

duration 
(ms)

5000 ⟨C,B,A,D,E⟩ 242.5
4000 ⟨C,B,A,D,E⟩ 211.4
3000 ⟨C,B,A,E⟩ 164.0
2000 ⟨C,B,A,E⟩ 114.6
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Fig. 9   ResNet: Pareto Front 
giving the expected duration in 
ms (y-axis) of the optimal IDK 
cascade for increasing latency 
constraints (x-axis)
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Table 11   ResNet: Pareto 
optimal IDK cascades

IDK Cascade Worst-case (ms) Expected 
duration 
(ms)

⟨E⟩ 1000 1000
⟨A,E⟩ 1022.64 588.5
⟨B,E⟩ 1037.52 535.64
⟨C,E⟩ 1049.45 492
⟨A,B,E⟩ 1060.16 488.37
⟨A,C,E⟩ 1072.09 453.34
⟨B,C,E⟩ 1086.97 446.43
⟨A,C,B,E⟩ 1109.61 427.41
⟨A,B,D,E⟩ 1185.24 424.91
⟨A,C,D,E⟩ 1197.17 415.92
⟨A,C,B,D,E⟩ 1234.69 405.39

Fig. 10   Multi-modal: Pareto 
Front giving the expected dura-
tion in ms (y-axis) of the opti-
mal IDK cascade for increasing 
latency constraint (x-axis)
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some of the 65 IDK cascades, whose expected execution durations are shown in 
Fig. 8, infeasible. How the expected duration of the optimal (feasible) IDK cascade 
varies with the latency constraint specified is represented graphically in Fig. 9 for 
the ResNet case study, and Fig. 10 for the Multi-Modal case study.

In these graphs of the Pareto Front, the x co-ordinate represents the speci-
fied latency constraint, while the y co-ordinate represents the expected duration of 
the optimal IDK cascade. In Fig. 9, observe that there are steps in the graph after 
x = 1100ms. It is the presence of these steps that are responsible for the optimal 
IDK cascade for a latency constraint of 1100ms being different from that for no 
latency constraint or a larger latency constraint. Further, for a specified latency con-
straint of 1050ms, the optimal IDK cascade is ⟨C,E⟩ , with an expected duration of 
492ms. In fact, for the ResNet case study there are 11 Pareto optimal IDK cascades 
as detailed in Table 11. Similarly, for the Multi-Modal case study, there are 9 Pareto 
optimal IDK cascades as detailed in Table 12. Both Pareto graphs illustrate an inter-
esting property of the proposed framework. The larger the latency that is permitted, 
the larger the worst-case duration can be, and hence the smaller the expected dura-
tion of the optimal IDK cascade, providing a clear trade-off between worst-case and 
average-case behavior.

6.4 � When a classification threshold is specified

So far, we have assumed that in the event that all of the IDK classifiers in a cascade 
returned IDK, then a deterministic classifier would be called; however, it may not 
always be possible to have such an ultimate arbiter of all inputs. As an alternative, a 
classification threshold L, e.g. 0.925, can be specified, such that in the long run any 
IDK cascade employed must be able to successfully classify at least 92.5% of its 
inputs. The classification threshold thus acts as a constraint on the subsets of IDK 
classifiers that can form feasible IDK cascades, i.e. that meet all of the constraints.

Recall that when a classification threshold is used instead of a deterministic 
classifier, then the DAG representation described in Sect.  5 is modified as fol-
lows. Firstly, since there is no deterministic classifier, all incoming edges to the 

Table 12   Multi-Modal: Pareto 
optimal IDK cascades

IDK Cascade Worst-case (ms) Expected 
duration 
(ms)

⟨E⟩ 5000 5000
⟨B,E⟩ 5005.3 3895.567
⟨C,E⟩ 5013.7 1330.844
⟨C,B,E⟩ 5019 973.540
⟨A,E⟩ 5019.6 480.889
⟨B,A,E⟩ 5024.9 411.576
⟨C,A,E⟩ 5033.3 307.553
⟨C,B,A,E⟩ 5038.6 262.919
⟨C,B,A,D,E⟩ 6651.8 242.492
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exit vertex are labelled with a cost of zero. Secondly, all edges to the exit vertex 
from vertices corresponding to some subset S of IDK classifiers where �P[S] < L 
are removed.

With the ResNet case study, setting a classification threshold of 0.65 implies that 
the subset S of IDK classifiers used must be one of: {B,C,D} , {A,C,D} , {A,B,D} , 
or {A,B,C,D} , since these are the only ones where the P̂[S] (i.e. Prob-A) values in 
Table 2 exceed the threshold. Hence the edges between all other vertices and the exit 
vertex are deleted. Subject to this threshold, the optimal IDK cascade is ⟨A,B,D⟩ 
with an expected duration of 788.5ms and a probability of successful classification 
of 0.65394.

With the Multi-Modal case study, setting a classification threshold of 0.925 
implies that the subset S of IDK classifiers used must be one of: {A,D} , {A,C} , 
{A,C,D} , {A,B,D} , {A,B,C} , or {A,B,C,D} , since these are the only ones where 
the P̂[S] (i.e. Prob-A) values in Table 3 exceed the threshold. Subject to this thresh-
old, the optimal IDK cascade is ⟨C,B,A⟩ with an expected duration of just 15.697ms 
and a probability of successful classification of 0.951. Fig. 11 shows the Pareto front 
illustrating how the expected duration of the optimal IDK cascade increases with an 
increasing classification threshold for the Multi-Modal case study, considering only 
IDK classifiers A, B, C, and D.

6.5 � Validation

We validated the performance of the optimal IDK cascade ⟨A,B,D⟩ (i.e. ResNet-18, 
ResNet-32, and ResNet-152), along with three other plausible IDK cascades 
{A,C,D} , {B,C,D} , and {A,B,C,D} from the ResNet case study on 10,000 images 
from the “TopImages” version of the ImageNetV2 data set. (Recall that 50,000 
images from the ImageNet Large Scale Visual Recognition Challenge data set (Rus-
sakovsky et al. 2015) were used for profiling). The results are shown in Table 13. 
Observe that in each case, the actual average execution duration was between 2.24% 
and 2.82% lower that expected, and the actual frequency of successful classification 
was between 2.73% and 3.65% lower than the probability computed. This is a strong 

Fig. 11   Multi-modal: Pareto 
front giving the expected dura-
tion (x-axis) of the optimal IDK 
cascade for increasing values 
of the classification threshold 
(y-axis)
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validation result given the disparate data sets used for profiling and validation. We 
were unable to validate the Multi-Modal case study on a separate data set, since no 
such additional compatible data set exists. The alternative of dividing up the limited 
number of samples available would potentially compromise the 2n probability values 
computed from that data.

We note that in practice it is necessary to have sufficient input samples to pop-
ulate the probability table, i.e. Tables 2 and 3, created during the profiling phase. 
Since there are 2n probabilities characterizing the model, ideally at least 100 × 2n 
representative input samples would be used for profiling. With n = 4 IDK classifiers, 
there are 16 distinct regions in the probability space and hence 16 rows in the prob-
ability table. Since the ResNet and Multi-Modal case studies have 50,000 and 1800 
input samples respectively, they fulfill this criteria when four IDK classifiers are 
considered. For larger numbers of classifiers, as in the complete Multi-Modal case 
study discussed below, then having a relatively small number of input samples could 
impact the accuracy with which the dependences between the behaviors of different 
classifiers can be determined and represented.

6.6 � The complete multi‑modal case study

In order to illustrate the proposed approach in full detail, so far we have limited the 
number of IDK classifiers in the case study examples to four. However, the Multi-
Modal case study has nine different IDK classifiers that could be used. We recognize 
that considering all nine classifiers stretches the 1800 available input samples over 
29 = 512 regions of the probability space, which means there are fewer input sam-
ples used in construction of the probability table than would ideally the case. Never-
theless, considering all nine classifiers provides a useful proof-of-concept in apply-
ing the method to larger numbers of classifiers. We note that the number of input 
samples is sufficient to assess the correlations between the behaviors and execution 
times of the nine classifiers, see below.

The initial characterization of the nine Multi-Modal IDK classifiers is given in 
Table 14.

The confidence thresholds for each classifier were set so as to meet a required 
precision threshold of 0.95. (Recall that the precision threshold is a lower bound 

Table 13   ResNet: validation

IDK cascade ⟨A,B,D⟩ ⟨A,C,D⟩ ⟨B,C,D⟩ ⟨A,B,C,D⟩

Expected Duration (ms) 788.50 800.36 870.14 878.45
Average Duration (ms) 766.32 782.44 850.41 853.70
Percentage Difference 2.81% 2.24% 2.27% 2.82%
Probability of Classification 0.65394 0.66412 0.66942 0.6824
Frequency of Classification 0.6266 0.6322 0.6379 0.6459
Difference 2.73% 3.19% 3.15% 3.65%
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on the fraction of a classifier’s non-IDK classification decisions that must be cor-
rect, i.e. match the ground truth). Such a precision threshold of 0.95, combined 
with a classification threshold of 0.95, ensures an overall accuracy for feasible 
IDK cascades of at least 0.95 × 0.95 ≈ 0.9 or 90%. Meaning that a minimum of 
90% of all input samples will be correctly classified as defined by the ground 
truth, with approximately 5% of those remaining unclassified (i.e.  IDK returned 
by the final classifier in the IDK cascade) and approximately 5% incorrectly 
classified.

With the classifications thresholds set as shown in Table  14, we examined 
the correlation between the categorized behaviors ( 1 = non-IDK, 0 = IDK) 
of each distinct pair of the nine classifiers using Pearson’s correlation coef-
ficient, r. Recall that this coefficient r takes values in the range [−1,+1] , with 
r = 0 implying no correlation, and r = +1 implying perfect positive correla-
tion. The results are shown in Table   15, color-coded by the degree of correla-
tion between distinct classifiers: red indicating a strong degree of correlation 
( abs(r) > 0.5 ), orange a moderate degree of correlation ( 0.1 < abs(r) ≤ 0.5 ), yel-
low a weak degree of correlation ( 0.05 < abs(r) ≤ 0.1 ), and green a very weak 
degree of correlation ( abs(r) ≤ 0.05 ). Observe that there is a wide range of 

Table 14   Multi-Modal: characterization of all nine IDK classifiers

Name Index Execution time 
(ms)

Confidence 
threshold

Success probability

deepsense_both A 17.5 0.66 0.899444
deepsense_both_contras B 17.0 0.705 0.907222
deepsense_acoustic C 11.7 0.715 0.213333
deepsense_seismic D 11.4 0.86 0.736111
cnn_both E 4.0 0.649 0.595556
cnn_acoustic F 3.9 0.5433 0.220556
cnn_seismic G 3.7 0.752 0.327222
yolov5s H 3145.9 0.1 0.298889
yolov5s-compressed I 1440.8 0.1 0.298333

Table 15   Multi-modal classification: Pearson correlation coefficient
A B C D E F G H I

A 1 0.377 0.111 0.282 0.177 0.080 0.143 0.052 0.048
B 0.377 1 0.059 0.265 0.209 0.055 0.121 -0.043 -0.043
C 0.111 0.059 1 -0.067 0.219 0.701 -0.103 -0.028 -0.030
D 0.282 0.265 -0.067 1 0.127 -0.071 0.219 -0.005 -0.008
E 0.177 0.209 0.219 0.127 1 0.231 0.326 0.035 0.037
F 0.080 0.055 0.701 -0.071 0.231 1 -0.066 -0.036 -0.035
G 0.143 0.121 -0.103 0.219 0.326 -0.066 1 0.155 0.151
H 0.052 -0.043 -0.028 -0.005 0.035 -0.036 0.155 1 0.988
I 0.048 -0.043 -0.030 -0.008 0.037 -0.035 0.151 0.988 1
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different degrees of correlation between the behaviors of the different pairs of 
classifiers. For example, classifiers H (yolov5s) and I (yolov5s-compressed) are 
very strongly correlated ( r = 0.998 ), since they apply essentially the same clas-
sifier on uncompressed and compressed video data. At the other extreme, classi-
fiers D (deepsense_seismic) and I (yolov5s-compressed) are almost completely 
uncorrelated ( r = 0.008 ), since they use different classifiers on different types 
of data. Between these extremes, there are many pairs of classifiers with weak 
degrees of correlation ( 0.05 < abs(r) ≤ 0.1 ), as well as pairs of classifiers such as 
A paired with either B, C, D, E, or G that have moderate degrees of correlation 
( 0.1 < abs(r) ≤ 0.5 ), while classifiers C (deepsense_acoustic) and F (cnn_acous-
tic) have a strong degree of correlation ( r = 0.701 ), since both operate on the 
same type of data.

We also examined the correlation between the categorized execution times ( 1 = 
above the median, 0 = equal to or below the median) of all distinct pairs of the nine 
classifiers. The results are shown in Table 16. In stark contrast to the classification 
behavior, the classifier execution times exhibit either very weak ( abs(r) < 0.05 ) or 
weak ( 0.05 < abs(r) ≤ 0.1 ) degrees of correlation. This indicates that the assump-
tion that execution times are independent continues to be a reasonable approxima-
tion when all nine classifiers are considered.

Applying the DAG-based algorithm described in Sect.  5, considering all nine 
classifiers and assuming a required classification threshold of 0.95, yields ⟨E,D,B⟩ 
as the optimal IDK cascade, with an expected duration of 10.8962ms, a worst-case 
duration of 38.1ms (on a Raspberry Pi 4), and an overall success probability of 
0.956667. Computing this optimal IDK cascade from the initial profiling data took 
less than 10ms on a single core of an Intel i5-8265U 1.6 GHz laptop computer.

Table  17 illustrates how the optimal IDK cascade changes as the classification 
threshold increases. Observe that while increasing the required classification thresh-
old increases the minimum expected duration, this does not necessarily imply that 
the worst-case duration of the optimal IDK cascade also increases. For example, 
⟨E,D,F,G,C⟩ , which is the optimal IDK cascade for a classification threshold of 
0.9, has a larger worst-case duration than ⟨E,D,B⟩ , which is the optimal IDK cas-
cade for a classification threshold of 0.95.

Table 16   Multi-modal execution times: Pearson correlation coefficient
A B C D E F G H I

A 1 0.031 0.036 -0.011 -0.027 -0.009 0.022 0.007 0.004
B 0.031 1 0.009 0.024 -0.040 -0.013 -0.024 -0.011 0.013
C 0.036 0.009 1 0.000 0.029 -0.004 0.031 -0.002 0.049
D -0.011 0.024 0.000 1 -0.020 0.062 -0.058 0.020 -0.013
E -0.027 -0.040 0.029 -0.020 1 -0.007 0.076 -0.018 0.007
F -0.009 -0.013 -0.004 0.062 -0.007 1 0.024 -0.009 -0.044
G 0.022 -0.024 0.031 -0.058 0.076 0.024 1 -0.011 0.024
H 0.007 -0.011 -0.002 0.020 -0.018 -0.009 -0.011 1 -0.013
I 0.004 0.013 0.049 -0.013 0.007 -0.044 0.024 -0.013 1
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We note that the optimal IDK cascades shown in Table 17 are non-trivial to find, 
in particular ⟨E,D,A,B⟩ matches none of the plausible heuristics such as ordering 
IDK classifiers by their average execution time C̄i , their probability of success Pi , or 
by the ratio of these two values, C̄i∕Pi.

7 � Multiprocessor IDK cascades

In this section, we extend the model and synthesis of optimal IDK cascades to mul-
tiple processors.

As noted by Liu (1969) real-time scheduling on multiple processors is intrinsi-
cally a much more difficult problem than single processor scheduling:

Few of the results obtained for a single processor generalize directly to the 
multiple processor case; bringing in additional processors adds a new dimen-
sion to the scheduling problem. The simple fact that a task can use only one 
processor even when several processors are free at the same time adds a sur-
prising amount of difficulty to the scheduling of multiple processors.

Even with non-preemptive execution, the scheduling problem on multiple proces-
sors is significantly more complex than on a single processor. The reason for this 
is that both the allocation of classifiers to processors, and the scheduling of classi-
fiers on each processor needs to be determined. Further, with multiple processors, 
the order in which classifiers finish executing does not necessarily match the order 
in which they start executing. This impacts allocation and scheduling, while also 
requiring a revised analysis.

In this first investigation of optimal IDK cascades on multiple processors, we 
reduce the difficulty of the problem by making the following simplifying assump-
tion. We assume that the execution time of each classifier can be represented by 
a single value Ci . In other words that each classifier takes a near constant time to 
execute, or at least holds the processor for a near constant time. In this section, we 
therefore assume that Ci = C̄i , and leave removing this assumption to future work. 
Further, we assume non-preemptive and therefore partitioned scheduling on a sys-
tem with multiple processors that are fully isolated from one another, in other words 
where there is no inter-processor interference caused by shared hardware resources.

Table 17   Multi-modal: optimal IDK cascades considering all 9 IDK classifiers

Classification 
threshold

IDK cascade Expected dura-
tion (ms)

Worst-case dura-
tion (ms)

Probability of 
classification

0.85 ⟨E,D⟩ 8.61067 18.5 0.865556
0.9 ⟨E,D,F,G,C⟩ 10.8212 42.8 0.9
0.925 ⟨E,B⟩ 10.8756 24.4 0.932778
0.95 ⟨E,D,B⟩ 10.8962 38.1 0.956667
0.975 ⟨E,D,A,B⟩ 11.6546 59.5 0.981111
1 ⟨E,D,B,A,G,F,C,X⟩ 89.7576 5083.8 1
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In Sect. 7.1, we discuss the properties of optimal IDK cascades on multiple pro-
cessors, and provide some theorems and proofs concerning their key characteris-
tics. This analysis informs an exhaustive solution that involves considering every 
possible sequential ordering (i.e.  permutation) of the n classifiers, converted into 
an allocation and schedule on multiple processors via a list scheduler. Second, in 
Sect. 7.2, to avoid having to evaluate every permutation and thus incur complexity 
that is factorial in n, we again employ a graph-based representation in the form of a 
Directed Acyclic Graph (DAG) that can be used to determine the optimal IDK cas-
cade for multiple processors via standard topological ordering algorithms for graph 
traversal. The DAG-based approach has complexity that is exponential in n, which 
is to be expected given that the problem is NP-complete, as shown in the Appendix. 
Finally, Sect. 7.3 extends the Multi-Modal case study to multiple processors, while 
Sect. 7.4 outlines our implementation of the DAG-based algorithm and explores its 
scalability.

7.1 � Multiprocessor model and analysis

Instead of a single processor running the IDK classifiers in sequence, we assume 
that there are m processors that can run up to m IDK classifiers in parallel10.

Each IDK classifier Ki is assumed to take the same execution time C̄i , and to have 
the same probability Pi of successful classification, irrespective of which processor 
it executes on.

In the context of multiple processors, an IDK cascade is conceptually defined by 
a static allocation of classifiers to processors and an order in which each proces-
sor should run the classifiers allocated to it. Classifiers are assumed to execute non-
preemptively on their allocated processor. As we will see, a more compact defini-
tion is also possible based on the concept of list scheduling. With list scheduling, 
whenever a processor becomes available, it simply runs the next classifier in the list. 
Since each classifier Ki is assumed to occupy a processor for a fixed duration11 equal 
to its execution time C̄i , in the case of list scheduling a single global list suffices to 
define both the allocation of classifiers to processors and the running order of classi-
fiers on each processor.

Similar to the single processor case, the problem is to determine the optimal IDK 
cascade, that is the allocation and running order of classifiers that minimizes the 
expected duration, meaning the elapsed time to successful classification, optionally 
subject to a maximum permitted latency constraint.

For a given IDK cascade, let f ′
1
 denote the finish time of the classifier that fin-

ishes first, f ′
i
 denote the finish time of the i-th classifier to finish, and f ′

n
 denote the 

10  Recall that we use the term processor with the broad meaning of an independent processing unit. 
Given that classifiers often make use of hardware accelerators such as GPUs, such a processing unit may 
include both a CPU and a GPU. In this section, we assume that m such independent processing units can 
run up to m classifiers in parallel.
11  This is a necessary assumption for list scheduling to produce a consistent schedule on multiple pro-
cessors. Permitting a classifier to release a processor early could otherwise lead to a different sched-
ule, resulting in timing anomalies, where early completion of one classifier results in a longer overall 
expected duration.
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finish time of the n-th and last classifier to finish, assuming that all n classifiers are 
executed. Thus (f �

1
, f �
2
,… fi,… f �

n−1
, f �
n
) is an ordered list of classifier finish times, 

with (K�
1
,K�

2
,…Ki,…K�

n−1
,K�

n
) denoting the corresponding classifiers that finish at 

those times. (Note, for completeness, if two classifiers Kj and Kk , with j < k , finish 
at the same time, then they are ordered according to their indices, i.e. K�

i
= Kj and 

K�
i+1

= Kk and f �
i
= f �

i+1
).

The expected duration of an IDK cascade depends only on the classifiers and their 
finish times, irrespective of how many processors are used and whether or not the 
schedules on each processor are work conserving or not. Once classifiers in the set 
{K�

1
,K�

2
,…K�

i
} have finished executing at time f ′

i
 , then the probability of successful 

classification is given by P̂[{K�
1
,… ,K�

i
}] (see Definition 1), where P̂[S] denotes the 

probability that at least one of the classifiers in the set S is successful, i.e. does not 
return IDK. The expected duration is therefore given by:

If a deterministic classifier is employed, then as soon as it finishes and is therefore 
included in the set S of classifiers that have completed, then P̂[S] = 1 and so no fur-
ther terms contribute to the expected duration. (Note that such a deterministic classi-
fier may or may not be the last classifier to finish).

Also, if two classifiers K�
i+1

 and K′
i
 finish at the same time f �

i+1
= f �

i
 then there is 

no change to the expected duration when considering the second of those two clas-
sifiers K�

i+1
 , since f �

i+1
− f �

i
= 0 ; however, the probability P̂[S] considered for subse-

quent classifiers that finish later than f �
i+1

 accounts for the fact that both K�
i+1

 and K′
i
 

have finished.
The expected duration of an IDK cascade Q can also be expressed as follows:

where t is measured in integer time units (e.g.  clock cycles), F(Q) is the last fin-
ish time of any classifier, S(t, Q) is the set of classifiers that finish strictly before 
time t, and P̂[S(t,Q)] denotes the probability that at least one of the classifiers in the 
set S(t, Q) is successful. This formulation is not intended for use in computing the 
expected duration, rather it is helpful in reasoning about optimal IDK cascades.

Lemma 1  An IDK cascade, meaning an allocation of classifiers to processors and a 
schedule of classifiers on each processor, exists that is optimal and is locally work 
conserving, i.e. no processor becomes idle until all classifiers allocated to it have 
finished.

Proof  We assume for contradiction that there is no such optimal IDK cascade, and 
instead there is an optimal IDK cascade Q such that some processor or processors 
have a schedule that is not work-conserving, i.e. the schedule contains inserted idle 
time between the execution of classifiers, or at the start. We modify the schedule for 

(4)f �
1
+

n−1∑

i=1

(f �
i+1

− f �
i
)(1 − P̂[{K�

1
,… ,K�

i
}])

(5)
F(Q)∑

t=1

(1 − P̂[S(t,Q)])
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each such processor so that it is work-conserving by removing all of the inserted idle 
time, while retaining the order in which the classifiers on each processor execute. 
We refer to the transformed IDK cascade as V. Since the start and finish times of 
every classifier in IDK cascade V are no later than in IDK cascade Q, it follows that 
∀t S(t,Q) ⊆ S(t,V) and hence ∀t P̂[S(t,Q)] ≤ P̂[S(t,V)] , and further that IDK cas-
cade V finishes no later than IDK cascade Q, i.e. F(Q) ≥ F(V) . It follows from (5) 
that the expected duration of IDK cascade V is no greater than that of IDK cascade 
Q, hence V must also be an optimal IDK cascade 	�  ◻

Lemma 2  An optimal IDK cascade exists that leaves no processor idle when there is 
a classifier to run, i.e. the global schedule is work-conserving.

Proof  We assume for contradiction that there is no such optimal IDK cascade, and 
instead there is an optimal IDK cascade Q that results in at least one processor being 
idle when there is at least one as yet un-started classifier allocated to some other 
processor. We first denote IDK cascade Q by V1 and then iteratively transform IDK 
cascade Vi into Vi+1 for i = 1… z until IDK cascade Vz has a global schedule that is 
work-conserving. On each iteration, we show that the transformation is such that the 
new IDK cascade Vi+1 must also be optimal, given that Vi is optimal.

Base step: V1 = Q . By definition of Q, V1 is an optimal IDK cascade for which 
there exists some processor x and some time t at which processor x is idle from time 
t to time t + 1 and there is at least one classifier allocated to some other processor 
that does not start until time t + 1 or later.

Iterative step: From IDK cascade Vi we select the processor x which becomes idle 
at the earliest time t such that at time t + 1 there is un-started classifier allocated to 
some other processor. From Lemma 1, the local schedule for processor x must nec-
essarily be work-conserving and hence processor x has no more classifiers to execute 
in IDK cascade Vi after time t. We make a new IDK cascade Vi+1 by copying IDK 
cascade Vi . We then remove classifier Kj that has the latest start time of any classifier 
from its currently allocated processor, which cannot be x, and append it to the sched-
ule for processor x, so that Kj starts at time t. Comparing IDK cascades Vi+1 and Vi , 
all classifiers except Kj have unchanged start and finish times; however classifier Kj 
starts and finishes earlier in Vi+1 than in Vi . It follows that ∀t S(t,Vi) ⊆ S(t,Vi+1) and 
hence ∀t P̂[S(t,Vi)] ≤ P̂[S(t,Vi+1)] , and further that F(Vi) ≥ F(Vi+1) . Hence from 
(5), the expected duration of IDK cascade Vi+1 is no greater than that of Vi , and 
so Vi+1 must also be an optimal IDK cascade, given that Vi is optimal. If Vi+1 has a 
globally work-conserving schedule then iteration terminates, otherwise it continues.

Termination: Iteration must terminate within a finite number of steps z since on 
each iteration the start time of one classifier ( Kj ) is reduced by at least 1 time unit, 
which cannot continue to happen indefinitely without the overall schedule becoming 
globally work-conserving 	� ◻

Theorem 1  List scheduling of an appropriate ordered list of classifiers suffices to 
provide an optimal IDK cascade.
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Proof  Lemmas 1 and 2 show that the optimal IDK cascade implies a globally work-
conserving schedule. Since the duration for which each classifier Ki occupies a pro-
cessor is fixed at C̄i , and all classifiers are non-preemptable, it follows that list sched-
uling applied to all distinct ordered lists of the n classifiers generates all possible 
distinct globally work-conserving schedules, at least one of which must therefore be 
optimal 	� ◻

Theorem 1 suggests an exhaustive approach to determining an optimal IDK cas-
cade for a system with m processors as follows:

–	 Create a list corresponding to each of the n! permutations of the n classifiers. 
These n! lists represent all possible IDK cascades.

–	 For each list (permutation) construct the schedules for all m processors, and 
hence determine the ordered list of classifier finish times (f �

1
, f �
2
,… f �

i
,… f �

n−1
, f �
n
) 

and the corresponding ordered list of classifiers (K�
1
,K�

2
,…K�

i
,…K�

n−1
,K�

n
) . 

From these two lists compute the expected duration of the IDK cascade. Option-
ally, in the case of a maximum permitted latency constraint, then the feasibility 
of the corresponding IDK cascade is determined by comparing the finish time of 
the deterministic classifier with the latency constraint.

–	 Record the feasible IDK cascade with the minimum expected duration. This is an 
optimal IDK cascade.

To cater for a classification threshold L (see Sect. 6.4) that negates the need for a 
deterministic classifier, the above algorithm is modified as follows: The summa-
tion over values of i in the formula for the expected duration (4) terminates when 
P̂[{K�

1
,… ,K�

i+1
}] ≥ L . In other words, the IDK cascade terminates once it achieves 

a success probability that meets the classification threshold L. Note, this happens 
after classifier K�

i+1
 completes a time f �

i+1
 . Further, in the case of a maximum per-

mitted latency constraint, the feasibility of the corresponding IDK cascade is deter-
mined by comparing the finish time f �

i+1
 of classifier K�

i+1
 with the latency constraint.

With the exhaustive approach described above, n! lists (IDK cascades) are con-
sidered. Further, the calculation required to determine the schedule on the m proces-
sors and hence the total expected duration for each IDK cascade takes O(nm) time. 
Hence, once the table of 2n P̂[S] probability values has been computed during the 
profiling stage in O(4n) time, then finding the optimal IDK cascade has O(n!nm) 
complexity.

7.2 � DAG‑based algorithm for multiple processors

To improve upon the exhaustive approach, which has factorial complexity, we 
developed a graph-based representation in the form of a DAG that can be used to 
determine the optimal IDK cascade for multiple processors via standard topological 
ordering algorithms for graph traversal. We first discuss the fundamental difference 
between classifier schedules on single and multiple processors that necessitates a 
more nuanced representation in the latter case. We then describe the representation 
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used for vertices and edges along with how the DAG is constructed, how the costs 
associated with each edge are calculated, and finally how the DAG may be used to 
determine the optimal IDK cascade.

Throughout, we make use of a running example to aid understanding. This 
example considers two processors and five IDK classifiers A, B, C, D, and E, with 
execution times of 40, 60, 50, 20, and 15 respectively. Figure  12 illustrates the 
global work-conserving schedule for four different IDK cascades: ⟨A,B,C,D,E⟩ , 
⟨A,D,B,C,E⟩ , ⟨A,D,E,B,C⟩ , and ⟨A,E,D,B,C, ⟩ on the two processors. In each 
schedule, the finish times of the first to fifth classifier to complete are indicated by 
f ′
1
 to f ′

5
.

In order to compute the expected execution duration of an IDK cascade, we 
need to consider the finishing time of each classifier. In the single processor case, 
the classifiers run sequentially and so the order in which they are specified in the 
IDK cascade determines not only the order in which they start, but also the order in 
which they finish. This means that the cost calculations can proceed directly as each 
classifier in the IDK cascade is considered in sequence. By contrast, in the multiple 
processor case, the classifiers can run in parallel, and so the order in which they are 
specified in the IDK cascade determines only the order in which they start; the order 
in which they finish may be different. This means that the cost calculation cannot 
proceed directly as each classifier in the IDK cascade is considered in sequence. 
Rather, it can only proceed as far as the current minimum makespan of the m pro-
cessors, where the makespan of a processor is the total execution duration of the 
classifiers allocated to it so far. Since list scheduling is employed, when x classifiers 
are considered on m processors, the minimum makespan corresponds to the finish 

Fig. 12   Processor allocation and 
schedule for the following four 
IDK cascades: ⟨A,B,C,D,E⟩ , 
⟨A,D,B,C,E⟩ , ⟨A,D,E,B,C⟩ , 
and ⟨A,E,D,B,C, ⟩ on two 
processors. In each schedule, 
the finish times of the first to 
fifth classifier to complete are 
indicated by f �

1
… f �

5

A C

0 f ′
1 = 40 f ′

4 = 90

B D E

0 f ′
2 = 60 f ′

3 = 80 f ′
5 = 95

A C

0 f ′
2 = 40 f ′

4 = 90

D B E

0 f ′
1 = 20 f ′

3 = 80 f ′
5 = 95

A C

0 f ′
3 = 40 f ′

4 = 90

D E B

0 f ′
1 = 20 f ′

2 = 35 f ′
5 = 95

A C

0 f ′
3 = 40 f ′

4 = 90

E D B

0 f ′
1 = 15 f ′

2 = 35 f ′
5 = 95
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time of the (x − (m − 1))-th classifier to finish, or zero when x < m . The reason for 
this is that there can be at most m − 1 unfinished, i.e. running, classifiers when a new 
one is added.

As an example, the first schedule at the top of Fig.  12 is for the IDK cascade 
⟨A,B,C,D,E⟩ running on two processors. Notice that although the classifiers start 
in the order: A, B, C, D, E, they finish in a different order: A, B, D, C, E. Once clas-
sifiers A, B, and C have been added, then the costs can only be calculated up to the 
minimum makespan considering those three classifiers. This minimum makespan 
equates to the finish time f ′

2
 of the second classifier to complete, i.e. B. It is not until 

the fifth classifier, E, is added that we can calculate the costs up to the finish time f ′
4
 

of classifier C, which was the third classifier added, but the fourth to finish.
Constructing the DAG: In the case of multiple processors, in order to perform 

the necessary cost calculations, we need to distinguish between the set of classifiers 
that have finished executing on a given processor, referred to as its completed set, 
and the last classifier that was added to that processor, referred to as its running set. 
Each vertex in the DAG therefore corresponds to 2m sets of classifiers, comprising 
one completed set and one running set for each of the m processors. Each of the n 
classifiers may appear in at most one of these 2m sets. Further, at most one classifier 
may appear in each of the m running sets, and each running set may contain at most 
one classifier.

Each vertex records:

–	 The contents of each of the m completed sets.
–	 The contents of each of the m running sets.
–	 A finishing time f ′

i
 that equates to the minimum makespan of the m processors 

taking into account the classifiers in the completed sets and the running sets.
–	 The set S containing all classifiers that are in the completed sets, and the sin-

gle classifier in the running set of the processor selected as having the minimum 
makespan.12

–	 The overall success probability P̂[S] . The P̂[S] values are found via table lookup 
from the table of values determined during the profiling phase, see Sect. 4; these 
are the Prob-A values illustrated in Tables 2 and 3.

Directed edges join two vertices. We refer to the vertex where the edge is outgoing as the 
previous vertex, and the vertex where the edge is incoming as the next vertex. The DAG is 
constructed beginning with a single start vertex that has empty completed sets and empty 
running sets. Construction proceeds recursively, adding only those edges that are permitted 
by the rules set out below and the vertices that they lead to, or by linking to vertices that 
already exist.

With list scheduling, the first m classifiers in an IDK cascade are allocated to dif-
ferent processors, hence the DAG is bootstrapped by adding a first layer of vertices 

12  When two processors have the same makespan, then the processor with the lowest index value is 
selected.
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that account for all combinations13 of m classifiers chosen from the n classifiers that 
are initially unused. Each vertex in the first layer therefore has one classifier in each 
of its m running sets, and is linked to by an incoming edge from the start vertex.

After the first layer of vertices have been constructed in the bootstrapping phase, 
the only normal edges that are permitted are those that add an as yet unused classi-
fier to the processor that currently has the minimum makespan, with ties broken in 
favor of the processor with the lowest index.14 Adding solely to the processor with 
the minimum makespan ensures that only those allocations that result in a globally 
work-conserving schedule can be generated, and that all such distinct schedules can 
be generated from the DAG.15 Stated otherwise, along a normal edge joining a pre-
vious vertex v to a next vertex w, an unused classifier is added to the selected pro-
cessor with the minimum makespan. The next vertex w thus equates to the previous 
vertex v with the classifier in the running set of the selected processor first moved 
into the corresponding completed set, and then the new classifier added to the run-
ning set.

The number of outgoing normal edges from a vertex equates to the number of 
unused classifiers, i.e. the number of classifiers that are not in the completed or run-
ning sets of that vertex. Hence, vertices that contain all n classifiers have no outgo-
ing normal edges. Rather, they may have outgoing special edges that represent the 
transfer of a classifier from the running set of a processor into its corresponding 
completed set.

Normal edges are used to handle cost calculations up to and including the 
(n − (m − 1))-th classifier to finish, while special edges are used to handle the 
remaining cost calculations for the final m − 1 classifiers to finish. We return to 
special edges after illustrating the basic construction of the DAG via the running 
example.

Recall that the running example assumes two processors and five IDK classifiers 
A, B, C, D, and E, with execution times of 40, 60, 50, 20, and 15 respectively. As a 
compact notation, we use ∅ to mean the empty set, and append the subset contents 
together separated by a colon and a vertical line. Thus AB:D|C:E indicates that clas-
sifiers A and B are in the completed set of processor 1 and classifier D is in its run-
ning set, while classifier C is in the completed set of processor 2, with classifier E in 
its running set. The start vertex is indicated by ∅:∅|∅:∅ , with no classifiers in any of 
its completed or running sets.

Figure 13 illustrates part of the DAG representation for this example. Note, the 
graph is incomplete and shows only those vertices and edges that are referred to in 
the text. Each edge is labelled with an identifier to aid discussion. A path from the 
start vertex to an exit vertex of the DAG corresponds to an IDK cascade, with the 
order in which the classifiers appear in the IDK cascade recoverable via the edges 

13  It is sufficient to cover all combinations, rather than all permutations, since that avoids duplication 
where two vertices can be made equivalent by switching the processor numbering.
14  This consistent tie-breaking avoids some of the duplication inherent in cases where two vertices can 
be made equivalent by switching the processor numbering.
15  By distinct schedules, we mean schedules that cannot be made equivalent by switching the processor 
numbering.
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and vertices visited. The path on the left hand side of the DAG, via edges 1a, 2a, 3a, 
4a, and 5a, represents the IDK cascade ⟨A,B,C,D,E⟩ ; the path to the left of centre, 
via edges 1b, 2b, 3b, 4b, and 5a, represents the IDK cascade ⟨A,D,B,C,E⟩ ; the path 
to the right of centre, via edges 1b, 2c, 3c, 4c, and 5b, represents the IDK cascade 
⟨A,D,E,B,C⟩ ; and finally the path on the right hand side, via edges 1c, 2d, 3d, 4c, 
and 5b, represents the IDK cascade ⟨A,E,D,B,C, ⟩ . The schedules for these four 
IDK cascades are illustrated in Fig. 12.

Initially, the first layer of vertices are created containing all combinations of 
m = 2 classifiers chosen from the n = 5 that are available. Note, only three of these 
vertices are shown in Fig. 13. Following the path on the left hand side of the graph, 
edge 1a, from the start vertex, adds classifiers A and B to the running sets. Recall 
that after the first layer, it is only permitted to add a classifier to the processor with 
the minimum makespan, hence at edge 2a, classifier C is added to processor 1, since 
at the previous vertex the two processors have makespans of 40 and 60 respectively. 
The converse is true for edge 2b, with the two processors having makespans of 40 
and 20, and so in that case classifier B is added to processor 2. Observe that edges 
4a and 4b have the same next vertex, even though the order in which classifiers B 
and D are added on the two paths that join at that vertex are different. Edge 5a is a 
special edge as the previous vertex already includes all n classifiers. Edge 5a links to 
the only special vertex on this path, which is also an exit vertex. It moves classifier 
C from the running set to the completed set of processor 1, since that processor has 
the minimum makespan of the processors that have classifiers in their running sets.

We now return to the construction of special edges and special vertices. Recall 
that special edges are used to handle the cost calculations for the final m − 1 clas-
sifiers to finish. Special edges are therefore added to each vertex that includes 
all n classifiers and has more than one running set with a classifier in it. Along a 

Fig. 13   DAG representation of 
the 2m subsets of IDK classifiers 
(vertices), with arrows (directed 
edges) representing the cost 
(contribution to the expected 
execution duration). Special 
edges are shown as dashed lines, 
and link to special vertices. 
Note, this DAG is incomplete 
and shows only the vertices and 
edges described in the text
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3a 3b 3c 3d
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special edge joining a previous vertex v to a next vertex w, of the processors with 
running sets that contain classifiers at vertex v, the one with the minimum makes-
pan is selected, and the classifier in the running set of that processor is transferred 
to the corresponding completed set. Stated otherwise, the next vertex w equates to 
the previous vertex v with the classifier in the running set of the selected proces-
sor moved into the corresponding completed set, and that running set thus empty. 
It follows that traversing a chain of special edges moves m − 1 classifiers, one by 
one, from the running sets into the corresponding completed sets, finally reaching 
an exit vertex that includes all n classifiers and has only one running set with a 
classifier in it. Exit vertices have no outgoing edges.

A vertex is referred to as special if its incoming edge(s) are special. Each spe-
cial vertex records:

–	 The contents of each of the m completed sets.
–	 The contents of each of the m running sets.
–	 A finishing time f ′

i
 that equates to the minimum makespan of the processors 

with a classifier in their running set, taking into account the classifiers in both 
the completed sets and the running sets of those processors.

–	 The set S containing all classifiers that are in the completed sets, and the sin-
gle classifier in the running set of the processor selected as having the mini-
mum makespan of those processors with a classifier in their running set.

–	 The overall success probability P̂[S].

Cost calculations on edges: Each edge represents an increase in the expected 
execution duration (cost) for all paths (IDK cascades) that include it. Edges 
represent the cost increase as the time considered moves on from the minimum 
makespan computed at the previous vertex, equating to the finish time f ′

i
 of some 

classifier or f �
0
= 0 in the case of the start vertex, to the minimum makespan com-

puted at the next vertex, equating to the finish time f �
i+1

 of the next classifier to 
complete.

The cost of an edge is given by:

where P̂[S] is the overall success probability recorded for the previous vertex, with 
S defined as the set of all classifiers that are in any of the completed sets and the 
classifier in the running set of the single processor selected as having the minimum 
makespan at that vertex. Due to the way in which the graph is constructed by only 
ever adding classifiers to the processor with the minimum makespan, it follows that 
all of the classifiers in S are guaranteed to be finished by f ′

i
.

Returning to the example in Fig. 13, traversing edge 1a, the minimum makes-
pan increases from 0 to 40 (i.e.  f �

1
= 40 ) and the set S at the previous (i.e. start) 

vertex contains no classifiers, and so the cost of this edge is 40. Traversing edge 
2a, the minimum makespan increases from 40 to 60 (i.e.  f �

2
= 60 ) and classifier A 

is added to the completed set for processor 1. The set S at the previous vertex 
contains only classifier A, and hence the cost of this edge is given by 

(6)(f �
i+1

− f �
i
) ×

(
1 − P̂[S]

)
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20 ×
(
1 − P̂[{A}]

)
 . Traversing edge 3a, the minimum makespan increases from 

60 to 80 (i.e.  f �
3
= 80 ) and classifier B is added to the completed set for processor 

2. The set S at the previous vertex now contains classifiers A and B, hence the 
cost of this edge is given by 20 ×

(
1 − P̂[{A,B}]

)
 . Further, traversing edge 4a, the 

minimum makespan increases from 80 to 90 (i.e.  f �
4
= 90 ) and classifier D is 

added to the completed set for processor 2. The set S at the previous vertex now 
contains classifiers A, B, and D, hence the cost of this edge is given by 
10 ×

(
1 − P̂[{A,B,D}]

)
.

Observe that on any path reaching the layer of vertices that have all n clas-
sifiers allocated (i.e.  the next vertices to edges 4a, 4b, and 4c), costs have been 
calculated as far as the minimum makespan of the m processors when all n classi-
fiers are considered. However, this means that there are still some additional costs 
to be incurred as the classifiers in the running sets of each of the remaining m − 1 
processors, that were not yet selected as having the minimum makespan, finish. 
This is taken care of via the cost calculation for the special edges that link to the 
special vertices.

Continuing with the example, traversing special edge 5a, processor 1 is 
selected as having the minimum makespan of 90, compared to 95 for processor 2, 
and hence for the next vertex, classifier C is removed from the running set of pro-
cessor 1 and placed in the corresponding completed set. Since the next vertex of 
edge 5a is special, the minimum makespan increases from 90 to 95 (i.e.  f �

5
= 95 ). 

(Recall that for special vertices, the minimum makespan excludes those proces-
sors with empty running sets). The set S at the previous vertex now contains clas-
sifiers A, B, C, and D, hence the cost of this edge is given by 
5 ×

(
1 − P̂[{A,B,C,D}]

)
 . Finally, the exit vertex, in the final layer, records the 

overall success probability P̂[S] where S now contains all of the classifiers.
Note that since this example is for two processors, the first special vertices on 

any path are also exit vertices. With more processors additional special edges and 
special vertices would move further classifiers into the completed sets, and hence 
complete the calculations.

Observe that on the path on the left hand side of the graph in Fig.  13, even 
though classifier C is added to the corresponding IDK cascade at edge 2a, we 
cannot complete all of the cost calculations up to the finish time of classifier C 
until later in the graph at edge 4a. This is a consequence of the fact that the start 
and finish times of classifiers are interleaved due to parallel execution, and is why 
we need to separately keep track of the classifiers in the completed sets and the 
running sets.

Finally, the two paths on the right hand side of the graph in Fig. 13 and the cor-
responding two schedules at the bottom of Fig.  12 illustrate how the DAG-based 
representation gains over examining all possible permutations. When two paths join 
because the sets of completed and running classifiers have become the same even 
though the classifiers did not execute in the same order, for example via edges 3c 
and 3d, then the subsequent evolution of these paths and the calculations required 
are identical and do not need to be duplicated.
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Note that different to the DAG-based algorithm presented for a single processor 
in Sect. 5.1, in the case of multiple processors we make no distinction regarding the 
deterministic classifier if any. It is treated exactly the same as any other classifier.

Finding the optimal IDK cascade: The problem of finding the optimal IDK cas-
cade is characterized by a latency constraint, which is assumed to be infinite if there 
is no such constraint, and a classification threshold, which is assumed to be 1 if suc-
cessful classification has to be guaranteed. For there to be any feasible solutions, 
then the overall success probability considering the complete set of n classifiers 
must not be less than the classification threshold. Assuming that a feasible solution 
exits, then an optimal IDK cascade can be found as follows.

Firstly, vertices and the edges to and from them are omitted from the DAG if their 
recorded finish time exceeds the latency constraint. Since the finish time of succes-
sor vertices is monotonically non-decreasing on any path through the DAG, this is 
done as the graph is constructed, i.e. all successor vertices of a vertex that breaks a 
latency constraint must also break that constraint and are therefore not required. Fur-
ther, the remaining vertices are marked as qualifying if their recorded overall suc-
cess probability meets or exceeds the classification threshold. The problem of deter-
mining the optimal IDK cascade, subject to a latency constraint and classification 
threshold, then amounts to finding the minimum cost path through the DAG from 
the single start vertex to any one of the qualifying vertices. This is a well-known 
problem in graph traversal. Since there is a single start vertex, the problem can be 
solved using a standard topological ordering algorithm, in time that is linear in the 
number of vertices plus edges. The complexity of the DAG-based algorithm hence 
depends on the number of vertices and edges and the operations involved in con-
structing them. The complexity of the problem and the DAG-based algorithm are 
discussed further in the Appendix. We note that if after catering for the latency con-
straint and classification threshold, no qualifying vertices remain, then this means 
that there is no feasible solution to the problem.

7.3 � Complete multi‑modal case study on multiple processors

In order to illustrate the proposed approach for multiple processors, we consider the 
complete Multi-Modal case study with all nine IDK classifiers as characterized in 
Table 14. For comparison purposes, Table 18 first sets out the equivalent results for 
the case of a single processor.

Assuming a required classification threshold of 0.95, and considering all nine 
classifiers A to I, yields ⟨E,D,F,G,B⟩ as the optimal IDK cascade for a two proces-
sor system, with an expected duration of 8.16333ms, a worst-case duration of 21ms, 
and an overall success probability of 0.963889. Table 19 illustrates how, for a two 
processor system, the optimal IDK cascade changes as the classification threshold 
increases. The final row in the table sets the classification threshold to 1.0 and also 
includes a hypothetical deterministic classifier X with an assigned execution time of 
5000ms. In this case the optimal IDK cascade is ⟨E,G,D,F,B,A,C, I,H,X⟩ with 
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classifiers ⟨E,G,B,X⟩ running on the first processor and classifiers ⟨D,F,A,C, I,H⟩ 
running on the second processor. The expected duration is 70.4877ms and the worst-
case duration is 5024.7ms. It is interesting to note that the previous rows in the table 
remain unaltered by the addition of such a deterministic classifier, since it is more 
efficient to rely upon a selection of IDK classifiers to reach the required classifica-
tion thresholds, rather than use the deterministic classifier.

Tables 20 and 21 for three and four processors respectively, similarly illustrate 
how the optimal IDK cascade changes as the classification threshold increases. 
Tables 19,  20, and 21 for two, three, and four processors respectively, are directly 
comparable to Table 18 for a single processor.16

Assuming a classification threshold of 0.95, then by using two processors the 
expected duration is reduced to 74.9% of that required using a single processor 
(8.16333 ms vs. 10.8962 ms) and the worst-case duration is reduced to 64.8% (21 
ms vs. 32.4 ms). Using three processors the expected duration is reduced to 67.3% 

Table 18   Multi-modal: optimal IDK cascades for a single processor considering all 9 IDK classifiers and 
a deterministic classifier

Classification 
threshold

IDK cascade Expected dura-
tion (ms)

Worst-case dura-
tion (ms)

Probability of 
classification

0.85 ⟨E,D⟩ 8.61067 15.4 0.865556
0.9 ⟨E,D,F,G,C⟩ 10.8212 34.7 0.9
0.925 ⟨E,B⟩ 10.8756 21 0.932778
0.95 ⟨E,D,B⟩ 10.8962 32.4 0.956667
0.975 ⟨E,D,B,A⟩ 11.6546 49.9 0.981111
1 ⟨E,D,B,A,G,F,C,X⟩ 89.7576 5069.2 1

Table 19   Multi-modal: optimal IDK cascades for a dual processor considering all 9 IDK classifiers and a 
deterministic classifier

Clas-
sification 
threshold

IDK cascade Processor 1 Processor 2 Expected 
duration 
(ms)

Worst-case 
duration 
(ms)

Probability of 
classification

0.85 ⟨E,G,D⟩ ⟨E,G⟩ ⟨D⟩ 6.77911 11.4 0.876667
0.9 ⟨E,G,D,F,C⟩ ⟨E,G,C⟩ ⟨D,F⟩ 7.69972 19.4 0.9
0.925 ⟨E,D,F,G,B⟩ ⟨E,B⟩ ⟨D,F,G⟩ 8.16333 21 0.963889
0.95 ⟨E,D,F,G,B⟩ ⟨E,B⟩ ⟨D,F,G⟩ 8.16333 21 0.963889
0.975 ⟨E,G,D,F,B,A⟩ ⟨E,G,B⟩ ⟨D,F,A⟩ 8.5605 32.8 0.983889
1 ⟨E,G,D,F,B,

A,C, I,H,X⟩
⟨E,G,B,X⟩ ⟨D,F,A,C, I,H⟩ 70.4877 5024.7 1

16  Note that in computing Table 18, we made the same simplifying assumption about classifier execution 
times that was used in the analysis of multiple processors. For that reason, the worst-case durations differ 
from those given in Table 17 in Sect. 6.6.
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of that required using a single processor (7.33195 ms vs. 10.8962 ms) and the worst-
case duration is reduced to 63.9% (20.7 ms vs. 32.4 ms). Finally, using four proces-
sors the expected duration is reduced to 63.5% of that required using a single proces-
sor (6.92311 ms vs. 10.8962 ms) and the worst-case duration is reduced to 52.5% 
(17 ms vs. 32.4 ms).

The above results and comparisons assume that the execution times for the clas-
sifiers are unchanged when the classifiers are run in parallel on multiple proces-
sors rather than serially on a single processor, i.e. assuming no interference effects 
between the processors. A consideration of any such effects is beyond the scope of 
this paper.

7.4 � Proof of concept implementation

We implemented the DAG-based algorithm, described in Sect.  7.2, in C++. The 
implementation built upon the algorithmic description in the following ways:

–	 Data structures were used to represent the DAG and each vertex.
–	 The DAG data structure recorded the input parameters, i.e.  the number of pro-

cessors, the number of classifiers and their execution times, and provided access 
to the pre-computed table of P̂[S] probability values. Further, it provided access 
to the layers of vertices as they were created, and also recorded, as construction 
progressed, the lowest cost qualifying vertex that complied with the latency con-
straint and the classification threshold.

–	 The vertex data structure contained all of the information detailed in the algo-
rithmic description, as well as fields to record the cost for the vertex (i.e. the total 
cost up to and including the vertex along the lowest cost path to it), and a pointer 
to the vertex in the previous layer on that lowest cost path.

–	 The cost for each vertex was computed on-the-fly as the DAG was constructed, 
i.e. as vertices were added, layer by layer. This had the advantage that no lasting 
representation of edges was required. Instead, each vertex required only a single 
pointer back to the vertex in the previous layer that was on the lowest cost path 
to it. Once the DAG was complete, this enabled the optimal IDK cascade to be 
recovered from the path back to the start vertex from the minimum cost vertex 
that complied with the latency constraint and the classification threshold.

–	 A large hash table was used to eliminate equivalent vertices that could otherwise 
occur in each layer. A 32-bit CRC was obtained from a binary representation of 
the completed sets and the running sets of each vertex.17 The bottom 26 bits of 
the CRC was then used as a hash key into a hash table of size 226 . On removing 
an equivalent vertex, the remaining vertex was given the minimum cost of the 
pair and its pointer back to the vertex in the previous layer was updated to cor-
respond to the lowest cost path.

–	 Effective pruning of vertices was achieved by avoiding construction of unneces-
sary vertices in the first place. Any vertex exceeding the latency constraint was 

17  Recall that vertices are effectively equivalent if their running sets and completed sets are the same.
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marked as a stopping point and was not extended to further vertices in the subse-
quent layer. Similarly, qualifying vertices that already complied with the latency 
constraint and the classification threshold were not extended, since they represent 
better solutions than any of their successors.

A simplified algorithm was also implemented for the single processor case, based on 
the DAG-based algorithm described in Sect. 5.1. In this case the hash key used was 
simply the bottom 20-bits of the binary representation of the allocated classifiers, 
with a hash table of size 220.

Our DAG-based implementations were run on one core of a mid-range laptop PC 
(a Lenovo ThinkPad with an Intel Core i5-8265U CPU clocked at 1.60 GHz to 1.80 
GHz, with 16 GBytes of RAM, running Microsoft Windows 10). A separate run was 
made to create each row in Tables 18, 19, 20, and 21. The longest run-time in each 
case was for the final row in the table, with a classification threshold of 1.0. The 

Fig. 14   Number of non-dupli-
cated vertices created for m 
processors and n classifiers
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run-times measured using the C++ clock() function were approximately: 7ms, 
521ms, 568ms, and 555ms, for one, two, three, and four processors respectively. 
(Note, that in each case the run-time was dominated by the initialization of the hash 
table for each layer of vertices). Similarly, the numbers of non-equivalent vertices 
created (not counting the start vertex) were: 1023, 83870, 221874, and 197975 
respectively. The above run-times cover only the code used to determine the opti-
mal IDK cascade using the DAG-based algorithms. The additional pre-processing 
needed to set up the table of 210 = 1024 P̂[S] values took less than 1ms, and was the 
same in each case.

The Multi-modal case study with 9 IDK classifiers and a deterministic classifier 
presents only a limited computational challenge. To investigate the scalability of our 
DAG-based implementations, we devised a test based on n classifiers that all had the 
same execution duration, with disjoint probabilities of success each equating to 1/n. 
Further, no latency constraint was specified. We selected these settings since a set of 
classifiers that all have the same execution duration maximizes the number of dif-
ferent work-conserving schedules, and hence the number of non-equivalent vertices 
created. Further, the disjoint probabilities of success meant that all n classifiers were 
required to meet a classification threshold of 1.0, so all vertices, with the exception 
of the exit vertices in the final layer, needed to be extended to vertices in the next 
layer.

Figure 14 shows the number of non-equivalent vertices that were created by our 
DAG-based implementations in solving the optimal IDK cascade problem for m = 1 
to 6 processors and n = 6 to 20 classifiers. Where the lines stop before 20 classifiers, 
this indicates that more than 24 GBytes of memory would be required to store the 
vertices required for the next point. For m = 1 , the simpler algorithm was employed 
and the number of vertices (not counting the start vertex) is given by 2n − 1 . For 
m = 2 to 6, the more complex algorithm was employed. Observe that in this case the 
number of vertices grows faster (i.e. the lines have a steeper slope) for larger num-
bers of processors, but those lines start at a lower value. For example, with m = 6 
processors and n = 6 classifiers the problem is trivial, there is only one vertex in the 
first layer and one special vertex in each of the five subsequent layers for 6 vertices 
in all, whereas with m = 2 processors and n = 6 classifiers there are far more dis-
tinct possibilities, leading to 699 vertices in all, not counting the start vertex. As the 
number of classifiers increases to 12 or more, so the number of distinct possibilities 
on m = 6 processors becomes greater than that on m = 2 processors and so the lines 
cross.

Figure 15 illustrates the corresponding run-times of our DAG-based implemen-
tations in solving the optimal IDK cascade problem for m = 1 to 6 processors and 
n = 6 to 20 classifiers, when run on one core of a laptop PC. For n = 6 to 10 classi-
fiers, the run-times were dominated by the time taken to initialize the hash table for 
each layer of vertices. Recall that for the single processor case a much smaller hash 
table is used and this accounts for most of the difference between the single and 
multiple processor run-times for smaller values of n. Observe also that in each case, 
the run-time for 7 classifiers is lower than that for 6 classifiers; this is an artefact of 
cache warm-up. For more than n = 10 classifiers, the run-times reflect the number 
of non-equivalent vertices, shown in Fig.  14. Also shown in Fig.  15 is the O(4n) 
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run-time required to set up the table of 2n P̂[S] i.e. Prob-A values from the table of 
2n Prob-S values. The run-time of this preliminary processing is independent of the 
number of processors. It is the dominant factor in the overall run-time when consid-
ering problems on a single processor ( m = 1 ), but effectively negligible when con-
sidering problems on two or more processors ( m > 1).

Within the limits of approximately 1200 seconds (20 minutes) run-time and 24 
GBytes of (potentially paged) memory usage, the maximum number of classifiers 
that could be catered for by our implementation of the DAG-based algorithm for 
multiple processors was 16 classifiers for m = 2 and 13 classifiers for m > 2 . Assum-
ing a single processor, the maximum number of classifiers that could be catered for 
was at least 20, with the construction of the table of P̂[S] probability values dominat-
ing the overall run-time in that case.

8 � Conclusions and future research

The increasing use of machine perception in many forms of Cyber-Physical Systems 
(CPS) is leading to the application of a wide range of Deep Learning components 
whose role is to classify input data and thereby ensure the safe and effective behav-
ior of the system. To achieve the levels of fidelity and reliability required, it is nec-
essary to employ a collection of diverse classifiers. One method of managing this 
collection is to convert each classifier into an IDK classifier and to organize their 
execution into an IDK cascade that can perform the necessary classification.

Previous work showed how such IDK cascades can be analyzed and optimized, 
but made the unrealistic assumption that the behaviors of the classifiers, in terms of 
their probabilities of successful classification, are either completely independent or 
fully dependent. In this paper we removed this assumption and showed how repre-
sentative profiling data can be used to characterize the level of mutual dependence 
exhibited by the classifiers, via a probabilistic representation that caters for arbitrary 
dependences. This probabilistic representation was then used in the synthesis of 
optimal IDK cascades that have the minimum expected duration, with or without a 
latency constraint on the overall worst-case execution duration.

Previous work also relied on the concept of a deterministic classifier that is guar-
anteed to always make a successful classification. In this paper, we recognized that 
such a construct may not always be viable in practice, and therefore also provided 
solutions based on a classification threshold, equating to the minimum overall prob-
ability (long run frequency) of successful classification that is deemed acceptable.

Further, we developed solutions for both single processors and multiple proces-
sors that use DAG-based representations and topological ordering algorithms. The 
effectiveness of our proposed solution was demonstrated via two real-world case 
studies, using a variety of classifiers with inputs including image, seismic, and 
acoustic data.

Finally, our analysis of the behaviors of the classifiers from these case studies 
indicated a whole range of strong, moderate, and weak correlations between differ-
ent pairs of classifiers. Thus demonstrating that assumptions of independence or full 
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dependence do not in general hold. Rather the approach taken in this paper, catering 
for arbitrary dependences, is necessary in order to solve the optimal IDK cascade 
problem in practice.

There are a number of interesting directions for future work in this area: 

1.	 Removing the simplifying assumption that each classifier holds a processor for 
a constant time, used in the analysis of optimal IDK cascades for the multiple 
processor case.

2.	 Considering the impact of the environment on the probability of success of each 
classifier, and deriving optimal IDK cascades that are sensitive to the current 
mode of the environment (e.g. daylight or darkness).

3.	 Allowing the permitted latency on the overall execution duration to be set dynami-
cally, and hence facilitate switching between a collection of statically “optimal” 
IDK cascades at run-time.

4.	 Allowing the actual execution time of each IDK classifier to influence subsequent 
(dynamic) choices of which IDK classifier to run next, when there is a latency 
constraint.

5.	 Allowing the confidence threshold to have a mixed-criticality perspective 
(i.e. lower-criticality requirements having a lower threshold than higher-criticality 
ones).

6.	 Verifying that representative input data sets, used to provide the profiling data, 
properly capture the arbitrary dependences between the classifiers.

7.	 Considering the optimal order of execution of classifiers when some subsets of 
classifiers may be executed in parallel on the same GPU.

8.	 Considering the scheduling of classifiers when the input data is recurrent, 
i.e. forming a time-series, and the classifiers are executed periodically. In this case 
classification performance may be improved via knowledge of the input samples 
and confidence in the identification of the same object in prior time frames.

Appendix

In this appendix we discuss the complexity of the DAG-based algorithm for the opti-
mal IDK cascade problem on multiple processors.

Complexity of the algorithm

In the DAG-based algorithm, described in Sect. 7.2, considering the m completed 
sets of a vertex, each classifier has m + 1 possible states, it is either in none of the m 
completed sets or it is in exactly one of them. Hence an upper bound on the number 
of different variations for the m completed sets is (m + 1)n . Considering the m run-
ning sets of a vertex, each running set has n + 1 possible states, it is either empty or 
contains exactly one of the n classifiers. Hence an upper bound on the number of 
different variations for the m running sets is (n + 1)m . It follows that the total num-
ber of different variations encompassing both completed sets and running sets is 
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(m + 1)n(n + 1)m , which provides a simple upper bound on the number of vertices 
in the DAG.

The total number of edges per vertex is bounded by n as follows. Vertices in the 
first layer have n − m outgoing edges, one for each unused classifier, as well as one 
incoming edge from the start vertex. Subsequent layers of normal vertices have at 
most n − (m − 1) − x outgoing edges, where x is the number of the layer from 2 to 
n − m . Finally, vertices with a full allocation of all n classifiers have at most one out-
going special edge, while exit vertices have no outgoing edges. The total number of 
edges is therefore upper bounded by n(m + 1)n(n + 1)m.

The amount of computation required for each vertex is O(m). This comprises 
determining the minimum makespan of the m processors, and looking up the total 
success probability for the classifiers in the set S.18 The amount of computation 
required for each edge is O(1) based on the information available at the previous and 
next vertex.

It follows that, once the table of 2n P̂[S] probability values has been computed 
during the profiling stage in O(4n) time, then finding the optimal IDK cascade by 
constructing the DAG and then applying a standard topological ordering algorithm 
has at most O((n + m)(m + 1)n(n + 1)m) complexity.

This exponential upper bound is far from tight, since some variations included 
in the vertex count are not permitted or cannot be generated as part of the DAG 
construction. These include variations where the same classifier appears in two run-
ning sets which is not permitted, and allocations that do not correspond to global 
work-conserving schedules and so cannot be generated, for example where one or 
more processors are unused. The bound does however suffice to show that for a 
fixed number of processors m, the complexity of finding the optimal IDK cascade is 
bounded by an exponential in n rather than a factorial in n.

A more accurate complexity bound can be obtained by explicitly counting the 
maximum number of vertices and edges in each layer. The number of vertices can be 
counted as follows:

–	 There is one start vertex.
–	 There are n − (m − 1) layers of normal vertices. Let i, from i = 1 to 

i = n − (m − 1) , be the layer index for these vertices. Vertices in these layers have 
a classifier in each of the m running sets and i − 1 classifiers in the completed 

sets. Hence there are 
(

n

m

)
= n!∕(n − m)!m! ways of choosing the running sets, 

(
n − m

i − 1

)
= (n − m)!∕((n − (m − 1) − i)!(i − 1)!) ways of choosing the i − 1 

classifiers that are in any of the completed sets, and m(i−1) ways of assigning 
those i − 1 classifiers to the m completed sets. Hence the maximum number of 
normal vertices in layer i is given by: m(i−1)n!∕((n − (m − 1) − i)!(i − 1)!).

18  Set membership can be encoded as a bit map, with set union operations taking linear time at least up 
to n = 64 . From a bit-map representation of S, lookup of the corresponding P̂[S] probability value also 
takes linear time.
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–	 There are m − 1 layers of special vertices. Each special vertex is linked to by a 
single special edge from a single vertex in the layer above. The maximum num-
ber of special vertices in any layer is therefore given by the number of normal 
vertices in layer i = n − (m − 1) , which equates to m(n−m)n!∕(n − m)! . (Note the 
final layer of special vertices are exit vertices).

Further, the number of edges can be counted as follows:

–	 The start vertex has 
(

n

m

)
= n!∕(n − m)!m! outgoing edges.

–	 Each normal vertex in layer i, from i = 1 to i = n − (m − 1) , has n − (m − 1) − i 
outgoing normal edges. (Note, each vertex in the last of these layers has no out-
going normal edges, but rather has a single outgoing special edge that is counted 
below).

–	 Each special vertex in layer i, from i = n − (m − 1) + 1 to i = n , has one incom-
ing special edge.

The complexity measure is then given by the total number of edges plus m times 
the total number of vertices, since O(m) operations are required at each vertex to 
determine the minimum makespan. The count obtained using the explicit method set 
out above is, however, an overestimate as it includes assignments of classifiers to the 
completed sets that do not represent globally work-conserving schedules.

Figure 16 shows the complexity measure for the optimal IDK cascade problem as 
given by the factorial, exponential, and counting bounds for m = 2, 3, 4 processors 
and n = 3… 24 classifiers. Also shown is the exponential bound, O(n2n) , for the sin-
gle processor case, m = 1.

For multiple processors, finding an optimal solution has exponential complex-
ity, since the problem of deciding if there is any IDK cascade that meets both a 
maximum latency constraint and a classification threshold is NP-complete, as shown 
below.

Fig. 16   Complexity measure for 
m processors and n classifiers
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An NP‑complete problem

We now show that the IDK cascade decision problem for m > 1 processors, with a 
fixed value of m, is NP-complete via reduction (Karp 1972) from the BIN PACKING 
decision problem, which is known to be NP-complete.

The IDK cascade decision problem involves determining if there is an IDK cas-
cade comprising up to n specified classifiers that when run on m processors meets a 
required classification threshold on the overall probability of successful classification 
and a maximum latency constraint on the overall elapsed time. Note the IDK decision 
problem can be solved by any algorithm that determines the optimal IDK cascade.

The BIN PACKING decision problem is characterized as follows: There is a finite 
set I of items with sizes gi ∈ ℤ

+ , an integer bin capacity B, and an integer K > 1 . The 
question is, is there a partition of I into disjoint sets I1,… , IK such that the sum of the 
sizes of the items in each Ij is B or less?

Theorem 2  Given a set of n classifiers and m > 1 processors, determining if an IDK 
cascade exists that complies with a maximum latency constraint D and a classification 
threshold L is NP-complete.

Proof  First, we note that the feasibility of a solution to the IDK cascade decision prob-
lem for multiple processors may be trivially checked by a deterministic algorithm in 
polynomial time by constructing the processor allocation and schedule from the IDK 
cascade, determining the finish time of each classifier, and computing the overall suc-
cess probability from the table of pre-computed P̂[S] values. Hence deciding if there 
is a feasible IDK cascade that complies with a maximum latency constraint D and a 
classification threshold L is therefore in the NP complexity class.

Given an instance of the BIN PACKING problem, we construct an instance of the 
IDK cascade decision problem for multiple processors as follows. The number of clas-
sifiers n equates to the number of elements in the set I, with the execution time of each 
classifier given by the size of each item in the set, i.e. C̄i = gi . The maximum latency 
constraint equates to the size of the bins, D = B , and the number of processors equates 
to the number of partitions (bins), m = K . Further, the probability of success for each 
of the n classifiers is disjoint and set to L/n. Thus the success probability for any subset 
of q classifiers is qL/n, and so execution of all n classifiers is necessary to meet the 
required classification threshold L.

Now assume that we have a black box that can solve the IDK cascade decision 
problem for multiple processors. Via the above construction, we may use this black 
box to solve the BIN PACKING decision problem. Correctness of this approach needs 
to be shown for both if and only if cases.

If case: For an instance of the BIN PACKING decision problem for which the 
answer is yes, there exists an IDK cascade that provides an allocation and schedule 
that executes all n classifiers on m processors within the latency constraint D. The 
black box, which can solve all IDK cascade decision problems for multiple processors, 
therefore gives the answer yes.

Only if case: If the black box returns yes, then there exists an IDK cascade that 
provides an allocation and schedule that executes all n classifiers on m processors 
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within the latency constraint D. This implies that there is an equivalent partition of I 
into K subsets such that the sum of the sizes of the items in each of the disjoint sets 
I1,… , IK does not exceed B.

We have shown that our algorithm solves the BIN PACKING problem using the 
black box for the IDK cascade decision problem. Since the construction takes poly-
nomial time, and we have shown that the IDK cascade decision problem is in the NP 
complexity class, we conclude that the IDK cascade decision problem for multiple 
processors is NP-complete. 	�  ◻
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