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Abstract
With the growth in complexity of real-time embedded systems, there is an increas-
ing need for tools and techniques to understand and compare the observed runtime 
behavior of a system with the expected one. Since many real-time applications 
require periodic interactions with the environment, one of the fundamental problems 
in guaranteeing their temporal correctness is to be able to infer the periodicity of 
certain events in the system. The practicability of a period inference tool, however, 
depends on both its accuracy and robustness (also its resilience) against noise in the 
output trace of the system, e.g., when the system trace is impacted by the presence 
of aperiodic tasks, release jitters, and runtime variations in the execution time of the 
tasks. This work (i) presents the first period inference framework that uses regres-
sion-based machine-learning (RBML) methods, and (ii) thoroughly investigates the 
accuracy and robustness of different families of RBML methods in the presence 
of uncertainties in the system parameters. We show, on both synthetically gener-
ated traces and traces from actual systems, that our solutions can reduce the error of 
period estimation by two to three orders of magnitudes w.r.t. the state of the art.
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1 � Extended version

This paper builds upon and extends the preliminary paper “Robust and Accurate 
Period Inference using Regression-Based Techniques” (Vădineanu and Nasri 2020) 
by: 

	 (i)	 Introducing a more informative type of input data, called quaternary projec-
tion (Sect. 2.2), that includes the intervals during which ‘lower-priority tasks’ 
were occupying the resource. We use this information to derive yet a tighter 
bound on the period (see Sect. 4.2 for the derivation of the bound and Sect. 5.7 
for a comparison of the bounds derived from ternary and quaternary projec-
tions);

	 (ii)	 Tightening the existing upper bounds derived from ternary projections w.r.t. 
Vădineanu and Nasri (2020) (see Sect. 4.1.2 and a comparison between the 
old and the new bound in Sect. 5.8);

	 (iii)	 Introducing a new upper bound for ternary and quaternary projections that 
copes with release jitter of the tasks (see Sect. 4.1.3);

	 (iv)	 Adding extensive experiments to further evaluate the robustness of our solu-
tion when it is applied on (i) different scheduling policies (see Sect. 5.6.5), 
(ii) overloaded systems in which the total utilization is larger than 1 (see 
Sect. 5.4.3), and (iii) tasks that have arbitrary offsets (see Sects. 5.4.4 and 5.9);

	 (v)	 An extensive experiment to evaluate our solution when it is used for non-
preemptive task sets. We studied the impact of the number of tasks, utilization, 
execution time variation, release jitter, and offsets on the performance of our 
solution. We showed that our method still has superior accuracy in comparison 
with the state of the art even for simpler problems such as non-preemptive 
tasks (see Sect. 5.9);

	 (vi)	 Adding more examples and discussions to the space-pruning method (see 
Sect. 4) section and some discussions on how to obtain projections from a 
system in practice (see Sect. 2.3).

2  Introduction

The rapid growth of software size and complexity in real-time embedded systems 
has posed imminent challenges to the ability to debug systems, identify runtime 
deviations from the correct service (Young et al. 2019), and detect (and evade) secu-
rity attacks at runtime (Nasri et  al. 2019). This raises an urge for tools and tech-
niques to understand (or infer) the runtime behavior of a system from its observable 
outputs such as the traces of output messages, task executions, actuations, etc. with-
out impacting the system itself or, in some cases, without being able to access the 
source code or the internal parts of the system.

In this paper, we focus on developing a tool for inferring the timing properties 
of a system. Such a tool can be used to (i) find time-bugs during the development 
phase, for example, to check if activities happen with the expected frequency or 
period, or to act as an automated test oracle (Barr et  al. 2015), (ii) detect timing 
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anomalies and security attacks that leave a trace on the observable timing profile of 
the system during the operation phase (e.g., such as those explained by Nasri et al. 
(2019), Salem et al. (2016), and Iegorov and Fischmeister (2018) to spot anomalies 
in the regularity of an activity in the system), and (iii) diagnosing the system after 
applying a patch or an upgrade during the maintenance phase (e.g., to check if a 
data-consumer application still performs periodically after installing an upgrade on 
the data-producer application).

Since many real-time applications require periodic interactions with the environ-
ment (Akesson et al. 2020), one of the primary use cases of a timing inference tool 
is to infer the periodicity of events from a system’s output traces (Berberidis et al. 
2002; McKilliam et  al. 2014; Puech et  al. 2019). What makes this very first step 
challenging is that the observable timing traces are typically obtained from the com-
ponents’ interfaces and hence are impacted by the internal structure of the applica-
tion, operating system, hardware platform, and their interactions. For instance, con-
sider an execution trace that indicates the time intervals during which a certain task 
has occupied the processor. It is easy to infer the period if the task exclusively runs 
on top of dedicated hardware. It becomes harder if the task is one of the low-prior-
ity tasks in a set of periodic tasks running on top of a real-time operating system 
(RTOS) with a preemptive fixed-priority scheduling (FP) policy because then the 
task’s execution intervals are affected (e.g., preempted) due to the interference from 
the higher-priority periodic tasks. Finally, it becomes much harder if the latter sys-
tem also includes high-priority aperiodic or event-driven activities (such as interrupt 
services), sporadic tasks, release jitters, and deadline misses. A timing inference 
tool, therefore, must be robust against these interferences, dynamic behavior, and 
uncertainties; otherwise, it might not be able to address true challenges faced by real 
systems and hence becomes useless in practice. Furthermore, it must be accurate, 
else it will not be helpful to find time bugs or to detect deviations from the expected 
periodicity.

Related work. Iegorov et al. (2017) are among the few pioneers who proposed a 
solution for the problem of inferring periods from execution traces. They created 
an algorithm which identifies the time intervals between consecutive jobs and com-
puted the period as the mode of the intervals’ distribution. However, their method 
performs poorly when the tasks have runtime execution-time variation and/or the 
true period of the task under analysis does not divide all other smaller periods in the 
task set, i.e., it is not harmonic with the rest of the tasks. Young et al. (2019) use a 
fast Fourier transformation to infer the periodicity of messages sent on a control-
ler area network (CAN) in order to detect security attacks that impact the timing of 
the messages. Their problem, however, is only a subset of ours since CAN applies a 
non-preemptive fixed-priority policy and messages have typically a fixed size with a 
low runtime variation on the message length.

Data-driven methods such as k-nearest neighbors and dynamic time-warping 
algorithms as well as long short-term memory (LSTM) neural networks have been 
used in reverse engineering real-time systems to identify tasks from their runtime 
power traces by Lamichhane et al. (2018) and to reconstruct traces affected by noise 
by Sucholutsky et al. (2019). However, to the best of our knowledge, no study so far 
has utilized regression-based machine learning (RBML) methods to infer the timing 
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properties of real-time systems. We not only provide the first such solution, but also 
extensively investigate the accuracy and robustness of various families of RBML for 
this problem.

Finding the periodicity of a signal is a well-studied problem in signal process-
ing research (Schuster 1898; Berberidis et al. 2002; Vlachos et al. 2005; Li 2012; 
McKilliam et  al. 2014; Malode et  al. 2015; Unnikrishnan and Jothiprakash 2018; 
Puech et al. 2019; Gubner 2006). Periodogram (Schuster 1898) and circular auto-
correlation (Gubner 2006) are among the widely used methods to find a plausible 
set of periods for a signal. However, as we will see in the experimental section, these 
methods perform poorly when used on signals generated from preempted tasks. 
Nonetheless, despite their limitations, we found them to be helpful to generate an 
initial set of candidate periods and hence will use them only in the first step of our 
solution to extract features from execution traces.

This paper. We consider the problem of inferring a task’s period from a timed-
sequence of zeros and ones (called a binary projection) that shows when the task 
was occupying the resource (see Sect. 2). We consider a single processing resource 
(it can be a CPU, a network link, a CAN bus, etc.) that is governed by a work-
conserving job-level fixed-priority (JLFP) scheduling policy. We assume no prior 
knowledge about the number of other tasks in the system and their parameters, exe-
cution model (preemptive or non-preemptive), runtime execution-time variations, 
and release jitters.

Our framework uses two signal-processing techniques, i.e., periodogram and cir-
cular autocorrelation, to extract features from the binary projection, treat and reduce 
the size and the number of features, and then use them to train a set of RBML meth-
ods (in Sect. 3). This work (i) presents the first period inference framework1 that uti-
lizes RBML methods, and (ii) thoroughly investigates the accuracy and robustness 
of different families of RBML methods in the presence of uncertainties in the sys-
tem parameters, noise resulted from aperiodic tasks in the input data or missed jobs.

Our results show that RBML methods infer tasks’ periods with an average error 
of 0.4% (for periodic tasks with or without execution-time variation), 1.1% (for peri-
odic tasks with release jitter), and 0.4% (for task sets with a mixture of periodic, 
sporadic, and aperiodic tasks) while the state of the art (Iegorov and Fischmeister 
2018) has an average error of 1160%, 1950%, and 156%, respectively. On case stud-
ies from actual systems (Lee et  al. 2017; Seo et  al. 2018), the error of our (best) 
solution was below 1.7%. Sect. 6 provides insight on the strengths and weaknesses 
of different families of RBML methods for the problem of period inference.

1  Available at: https://​github.​com/​Serba​nVadi​neanu/​period_​infer​ence.

https://github.com/SerbanVadineanu/period_inference
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3 � System model and problem definition

3.1 � System model

We assume a system with a single (processing) resource (such as a CPU core, I/O 
or CAN bus, or a link on the network). The resource can be occupied/used by a 
set of tasks � = {�1, �2,… , �n} , scheduled by a work-conserving job-level fixed-
priority (JLFP) scheduling policy on the resource, i.e., only the highest-priority 
job among the ready jobs can be dispatched on the resource, where a job is an 
instance of a task in � . JLFP policies include widely implemented/used schedul-
ing algorithms in real-time systems such as the earlier-deadline first (EDF), fixed-
priority (FP), and first-in-first-out (FIFO) scheduling policies. A work-conserving 
scheduling policy is the one that does not leave the resource idle if there is a task 
that is ready to occupy the resource. Furthermore, we assume no restriction on 
whether each task executes preemptively or non-preemptively.

A task in � can be activated periodically, sporadically, or aperiodically. A 
periodic or sporadic task is identified by �i = (Cmin

i
,Cmax

i
, Ti,Di, �i) , where Cmin

i
 

and Cmax
i

 are the best-case and worst-case execution times (BCET and WCET), 
Ti is the period, Di is the relative deadline (which is assumed to be equal to the 
period), and �i is the maximum release jitter of the task. Following Audsley’s 
convention (Audsley et  al. 1993), we assume positive release jitter, i.e., the 
kth ≥ 1 job of a periodic task �i is supposed to be released during the interval 
[(k − 1)Ti, (k − 1)Ti + �i] and its deadline is at (k − 1)Ti + Di.

If the task is sporadic, its period indicates the minimum-inter arrival time 
between its activations. An aperiodic task is identified by a 3-tuple 
�j = (Cmin

j
,Cmax

j
,Dj) , where Cmin

j
 and Cmax

j
 are the BCET and WCET and Dj is the 

relative deadline of the task, respectively.
We further assume that all timing parameters are positive integer values in ℕ+ 

with the exception of Cmin
i

 and �i that can be 0. The total utilization of the system 
is denoted by U and is the sum of the utilization of all periodic and sporadic 
tasks, i.e., U =

∑
ui , where ui = Cmax

i
∕Ti . The hyperperiod of a task set, denoted 

by H, is the least common multiple of the periods.
A task �i generates an infinite number of instances, called jobs, during the life-

time of the system. We use Ji,j to denote the j-th job of a task �i . The priority of a 
job Ji,j is denoted by pi,j and is determined by the scheduling policy. We assume 
that at any time instant t, either one of the tasks in � or the idle task, denoted by 
�0 , is running on the resource.

A trace T = ([ts, te], ⟨�1, �2,… , �N⟩) is a time-ordered sequence of symbols that 
represents a schedule generated by the JLFP scheduler for the task set � ∪ {�0} 
from the time ts to te . Each symbol �i in the trace T  is an identifier (index) of a 
task that was occupying the resource at time i, where i ∈ {ts, ts+1,… , te} . Hence, 
�i ∈ {0, 1,… , n} . The length of a trace is |T| = te − ts.

Figure 1a and b show a schedule of a task set with 4 tasks and the equivalent trace 
of that schedule.
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3.2 � Problem definition

To formally define the problems considered in the paper, we need to introduce 
three other notions that are tied to a trace: binary projection, ternary projection, 
and quaternary projection (shown in Fig. 1c to e).

A binary projection for a task �i is a sequence of zeros and ones that represents 
the times at which a job of the task under observation was occupying the resource 
in the trace. Figure 1c shows the binary projection of the task �3.

Definition 1  A binary projection of a trace T  for a task �i , denoted by 
PB
i
= ⟨p1, p2,… , p�T�⟩ , is a time-ordered sequence of elements pk , where

Fig. 1   A task set with one aperiodic task ( �
1
 with Cmax

1
= 2 ), two sporadic tasks ( �

2
 and �

4
 with Cmax

2
= 1 

and Cmax
4

= 2 ) and one periodic task ( �
3
 with Cmax

3
= 4 and T

3
= 10 ) with release jitter scheduled by a 

FP policy (assuming pi = i ). a Shows a schedule, b shows the trace of the schedule, and c–e show the 
binary, ternary, and quaternary projections of task �

3
 in the task set
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A ternary projection (Fig. 1d) for a task contains resource-idle intervals in addi-
tion to what is stored in a binary projection.

Definition 2  A ternary projection of a trace T  for a task �i , denoted by 
PT
i
= ⟨p1, p2,… , p�T�⟩ , is a time-ordered sequence of elements pk , where

A quaternary projection of a task �i is similar to the ternary projection except that 
it also includes the intervals in which a job of a lower-priority task than �i is occupy-
ing the resource. Namely, quaternary projections can be derived for FP scheduling 
policy (and not EDF).

Definition 3  A quaternary projection of a trace T  for a task �i , denoted by 
P
Q

i
= ⟨p1, p2,… , p�T�⟩ , is a time-ordered sequence of elements pk , where

where lp(T, i, k, �k) returns true only if it is possible to verify that the job of ��k that 
occupies the resource at time k has a lower priority than the latest released job of �i 
at time k.

Figure 1e shows the quaternary projection of the task �3 . As it can be seen, a low-
priority task ( �4 ) creates two time intervals, i.e., [10, 11) and [17, 18), with the label 
“low” in the quaternary projection of �3 . Note that quaternary projections do not 
distinguish low-priority tasks from each other (namely, “low” can represent “any” of 
the low-priority tasks).

We conclude this section by defining three versions of the period inference (PI) 
problem:

Problem 1  Find the period of �i from its projection PB
i
.

Problem 2  Find the period of �i from its projection PT
i
 provided that PT

i
 does not 

include a deadline miss from �i.

Problem 3  Find the period of �i from its projection PQ

i
 provided that PQ

i
 does not 

include a deadline miss from �i.

(1)pk =

{
1 �k = i

0 otherwise
.

(2)pk =

⎧
⎪⎨⎪⎩

1, �k = i

idle, �k = 0

0, otherwise

(3)pk =

⎧
⎪⎨⎪⎩

1, �k = i

idle, �k = 0

low, lp(T, i, k, �k)

0, otherwise

,
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It is worth noting that the only input to the Problems 1, 2, and 3 is a projection. 
Since a projection is just a sequence of limited symbols (‘0’, ‘1’, ‘idle’, and ‘low’), 
it does not contain any information about the scheduling policy or tasks’ parameters 
(such as the execution times, release jitter, periods, etc.). Moreover, the projections 
themselves do not contain information about whether or not there are tardy jobs (i.e., 
jobs that have completed after their deadline) in the original trace.

3.3 � Obtaining projections

In practice, one may utilize operating system commands such as top and trace com-
mands or the Linux trace toolkit to obtain a trace of a certain task. There is no need 
to distinguish or annotate preemptions, start of a new job, blocking times by lower-
priority jobs, or self-suspensions because that is the part that the period inference 
problem answers. It is also fine if the information gathered in a projection is incom-
plete (namely, misses some jobs of the task or some of its execution intervals).

In the context of a network resource, for example, on a CAN bus, one can obtain 
projections by observing the messages transferred on the bus to form a trace or to 
just use the outputs of the message filters of the CAN controller to get a binary, ter-
nary, or quaternary projection for the message ID of interest.

Ternary and quaternary projections require slightly more detailed observations 
from the system. Still, the same tools mentioned above can be used to derive ternary 
projections (as the only added information in a ternary projection is the moments in 
which the resource is idle).

Quaternary projections are helpful only if there are “tasks” with a lower prior-
ity than the one being observed in the system (namely, the scheduling policy is not 
EDF). In our paper, we do not need to include information of all lower-priority tasks 
in a quaternary projection, i.e., only a partial observation would suffice (for exam-
ple, only some of the lower-priority tasks can be observed but not all). The more 
information (about the lower-priority tasks) can be added to a quaternary projection, 
the better would be the period bounds that we will derive from the quaternary pro-
jections in Sect. 4.2.

In some cases, a task may roughly know the execution window of other higher- 
or lower-priority tasks if it collaborates with them, e.g., when it sends messages 
to them and waits until it receives an acknowledgement or response. However, 
when tasks are independent or isolated from other tasks, they may not be able to 
obtain information needed for quaternary projections without the help of an oper-
ating system. This may then restrict the applicability of quaternary projections to 
cases where the operating system also takes part in the safety-monitoring activity. 
For example, consider a case where a system is equipped with a safety-monitoring 
component whose goal is to ensure that certain activities happen periodically within 
an expected period range. To improve monitoring accuracy, the architect may even 
equip the operating system with extra functions/APIs that gather binary, ternary, or 
quaternary projections and feed them to the safety-monitoring component.

When the period inference is used in runtime monitoring tools or time-debugger 
tools designed for a special system with known parameters, it is typically possible 
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to obtain richer projection types such as ternary and quaternary projections as we 
explained earlier. We will later (in Sect. 4) investigate how the extra information in 
these projections can be used to improve the accuracy of the period inference Prob-
lems 2 and 3.

4 � Regression‑based period mining

This section first introduces the challenges of the period inference (PI) problem and 
then presents our solution framework.

Challenges. As mentioned earlier, the PI problem has a long history in signal pro-
cessing. Methods such as periodogram (Schuster 1898) and circular autocorrelation 
(or autocorrelation for short) (Gubner 2006) have been applied to infer periodicity 
of a signal and shown to work well in the presence of small (or standard) noise. 
However, they do not perform well (see Sect.  5) when applied to the PI problem 
because: (i) they may generate many period candidates most of which are irrelevant, 
(ii) although they assign a weight (called power) to each candidate, there is no direct 
relation between the weight and the true period, (iii) they cannot cope with preemp-
tions well because they perceive each preemption as a new occurrence of the event 
under analysis (which adds a significant amount of noise to their inputs), and (iv) 
the true period is not necessarily among their generated candidates (specially in the 
autocorrelation method).

We then decided to look into the learning-based methods that could work well 
on the PI problem. We specially focused on those whose decision logic is explain-
able and traceable by a human. Therefore, we deliberately avoided using deep neu-
ral networks for the problem or for the feature extraction. However, this raised the 
next challenge: how to extract meaningful and helpful features from a projection? 
A starting point could be to use the whole binary projection as a feature and let 
the machine-learning method figure out the period. However, that could lead to two 
major issues: (i) dimensionality problems with the feature space, and (ii) having 
inputs with varying-length.

High-dimensional feature spaces typically lead to sparse data which in turn 
reduces the efficiency and increases the runtime of model learning (Bellman 1961). 
Moreover, most machine-learning methods require a fixed input size which implies 
that the input projection must be cut (unanimously for all projections of all training 
and testing task sets). However, since task sets have different hyperperiods, putting 
a predetermined cut-off threshold could either lead to low accuracy (if the cut-off is 
too short) or to a huge runtime and low efficiency in learning the model (if the cut-
off is too long).

Solution highlights. The framework we propose to solve the period inference 
problem suggests a four-stage pipeline where Stage 0 extracts features and Stages 1 
to 3 are for accuracy improvement of period estimation. Figure 2 shows the pipeline 
and the stages.

In Stage 0, we extract a fixed set of features from the top k highest-rank candi-
dates of the periodogram and autocorrelation methods (see Sect. 3.1). In Stage 1, we 
use supervised-learning methods, and in particular, the regression-based machine 
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learning (RBML) methods, to determine the relationship between our feature vec-
tors and the target output, i.e., task period (see Sect. 3.2). RBML methods are com-
monly used when the goal is to predict a continuous output that takes order into con-
sideration (in our case, the period). We call our RBML solution regression-based 
period miner (RPM). In Stage 2, we further adjust the predictions of RPM according 
to a set of high-ranked candidates from periodogram and autocorrelation. This aims 
to use RPM as a referee whose purpose is to highlight the most accurate peak from 
the two signal-processing methods (see Sect. 3.3). Finally, Stage 3 introduces some 
pruning rules using the extra information provided in ternary (Sect. 4.1) and quater-
nary (Sect. 4.2) projections to further restrict the number of candidates.

4.1 � Feature extraction

Next, we explain our feature extraction and briefly introduce the periodogram and 
autocorrelation methods.

Periodogram (Schuster 1898). Consider the binary projection as a sequence PB
i
 

(where pn is the nth item of the projection) and its discrete Fourier transform X(f). 
The periodogram P gives an estimation of the spectral density of the discrete signal 
PB
i
 and is obtained from the squared magnitude of the Fourier coefficients X(f), as 

presented in Leondes (1996):

where N = |PB
i
| is the sequence length and P(f ) is the power of frequency  f. The 

Fourier coefficients X(f) can be obtained from the sequence PB
i
 as follows

The norm of a Fourier coefficient is the magnitude of that coefficient, namely, 
‖X(f )‖ =

√
Re{X(f )}2 + Im{X(f )}2 , where Re{X(f )} and Im{X(f )} are the real and 

imaginary coefficients for each frequency f, respectively.
Figure  3a and b show two periodograms obtained for two periodic tasks with 

period 1000 and 5000 from a task set with four tasks scheduled by rate monotonic 

(4)P(f ) =
1

N
‖X(f )‖2,

(5)X(f ) =

N∑
m=1

pm ⋅ e−j⋅2⋅�⋅f ⋅m.

Fig. 2   Our period inference framework. The edges denote the information flow between our algorithms
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scheduling policy. The horizontal axis shows the frequency values f and the vertical 
axis shows the power of each frequency, i.e., P(f ).

As can be seen in Fig. 3a, the highest peak in this example (here, peak refers to a 
jump in the diagram) of the periodogram indicates the true period of the task, i.e., 
1000. However, for the task with period 5000, this observation does not hold; the 
true period of this task is not the highest-peak but the 5th highest peak. The lower 
the priority of a task, the higher is the amount of interference it will have in its 
schedule. These interferences make the projections less regular and hence result in a 
more irregular periodogram that has many peaks.

Circular Autocorrelation (Gubner 2006). It is a metric that describes how similar 
is a sequence to its past values for different circular phase shifts. We use Vlachos 
et al. (2005) method to compute the circular autocorrelation:

Fig. 3   Periodogram and circular autocorrelation methods applied on task projections for a task with a 
period 1000, and b period 5000 from a system containing 4 tasks, with a total utilization of 30% sched-
uled by rate monotonic. The other two tasks have a period of 2000 and 10000, respectively
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where N is the sequence length and w is the phase shift. In the case of period infer-
ence problem, we would expect that the highest value of the autocorrelation function 
would be at a lag w equal to the true period.

A practical way to compute the ACF  is to translate the operations into the fre-
quency domain. Since (6) is a convolution, one can compute it with the dot product 
between the Fourier coefficients of the sequence and their complex conjugates (Vla-
chos et al. 2005):

In this paper, we apply the discrete Fourier transform on the projection and extract 
the Fourier coefficients using (5). Furthermore, we perform the dot product between 
the coefficients and their complex conjugates and apply the inverse Fourier trans-
form on the result to obtain the autocorrelation. An implementation of our method 
can be found on github2, along with the rest of the framework.

Figure 3a and b illustrate the usage of autocorrelation when the input is a pro-
jected trace. Firstly, we notice that the highest value that this technique exhibits is 
for a lag (period) of w = 0 . This behavior is normal, since the highest similarity 
between a signal and itself is present when the two signals perfectly overlap with 
each other, e.g., at time 0 (see Eq.  6). Hence, the peak at 0 is excluded from the 
examination. The other observation is that, similar to the periodogram, the autocor-
relation method is able to discover the true period only in the case from Fig.  3a, 
while for the second period, its top peak indicates an erroneous value. Moreover, we 
observe that the autocorrelation is sensitive to low utilization values.

In Fig. 3b, we see that the start time of the task with period 5000 is not at integer 
multiples of 5000 and varies a bit due to the interference caused by other high-prior-
ity tasks in the system. However, even though this task has not been preempted, we 
see that the projection does not have any overlap with itself when is shifted by the 
true period of 5000 (i.e., at w = 5000 ). As a result, the autocorrelation method could 
not detect the actual periodic behavior. However, it could observe two smaller peaks 
slightly shorter and slightly larger than 5000 at 4635 and 5365, respectively.

It is worth noting that, both periodogram and autocorrelation methods have an 
O(N logN) time complexity, where N is the length of the projection.

Extracting fixed-size features. Our fixed-size candidate list is constructed from 
the top k = 3 peaks of the outputs of the two methods, namely, we gather k-highest 
peaks from periodogram and k-highest peaks from the autocorrelation methods. It 
is worth noting that the width of a peak is correlated with the position of the peak 
in periodogram (the further from the origin the larger the width). Thus, it does not 
provide enough information to be considered as a feature for regression.

(6)ACF(w) =
1

N

N−1∑
n=0

pw ⋅ pn+w,

(7)ACF = DFT
−1X ⋅ X∗,

2  https://​github.​com/​Serba​nVadi​neanu/​period_​infer​ence.

https://github.com/SerbanVadineanu/period_inference
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Having a feature set of size k = 6 allows us to work on a much smaller dimension 
for the input-data and have fixed input size to use with our regression-based solu-
tion. For the cases when there are fewer than k peaks for a method, the number of 
features is completed by appending the highest peak of that method until we reach 
the desired k. The choice on the number of features, i.e., k = 3 , was made after eval-
uating the impact of k on various scenarios and finding out the suitable value that 
results in a high accuracy without increasing the dimensions of the feature space 
(Fig. 7b in Sect. 5 compares different choices).

4.2 � Regression methods

Regression analysis is a method originating from statistics, whose purpose is to esti-
mate the relationship between a dependent variable (or ”outcome“) denoted by Y 
and one or more independent variables (or ”features“) denoted by X. In machine 
learning, regression is employed when the aim is to predict a continuous output, 
which takes order into consideration. A regression model is formally described by

where Yi is the outcome variable, Xi is a feature vector, � represents unknown param-
eters, and ei is an additive error term (residual) associated with the prediction.

Since we try to estimate the period from a projection, in our regression scenario, 
the dependent variable Yi is the task’s period Ti . The independent variables Xi con-
tain the features we extracted at the previous step, while the function f comes from 
the choice of a regression algorithm, whose parameters � need to be estimated dur-
ing the training phase.

In other words, our goal is to choose the form of function f and to compute the 
estimates of the parameters 𝛽  such that the function has the best fit on the data. 
In order to assess how well the model fits the data, the predicted outcome, i.e., 
Ŷi = f (Xi, 𝛽) , is compared against the true dependent variable. The comparison is 
present in the shape of a loss function L

[
Y , f

(
X, 𝛽

)]
 , where Y is a vector contain-

ing the outcome variables and X includes all vectors of independent variables. For 
instance, the most commonly used loss function is the mean square error (MSE) 
(also used in our paper):

(8)Yi = f (Xi, �) + ei,

Table 1   Overview of best performing families of regression algorithms and for each family the best 
model (Delgado et al. 2019)

Algorithm Nickname Category

Cubist Regression (Quinlan 1992, 1993, 2014) cubist Rule-based
Generalized Boosting Regression (Friedman 2002) gbm Boosting
Averaged Neural Network (Ripley 2007) avNNet Neural Networks
Extremely Randomized Regression Trees (Geurts et al. 2006) extraTrees Random Forests
Bayesian Additive Regression Tree (Chipman et al. 2010) bartMachine Bayesian Models
Support Vector Regression (Cortes and Vapnik 1995) svr Support Vector Machines
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where N is the total number of observations.
The choice of regression methods. Table 1 lists the overall best performing fami-

lies of regression algorithms and for each family the best model, as suggested by 
Delgado et al. (2019) in their extensive recent survey on the performance and effec-
tiveness of regression methods. These methods present distinctive characteristics in 
their implementation, namely, they do not theoretically dominate each other. Hence, 
in order to answer the question “which regression method performs best for the 
period-inference problem”, we implemented and investigated all of these methods to 
gather insights about their performance on our particular problem.

We, however, anticipate to see that the tree-based solutions (cubist, gbm, 
extraTrees, bartMachine) have a better performance than svm and avNNet because 
we expect the transition from a set of candidate periods (the features) to the true 
period to be better approximated by a set of rules and/or comparisons rather than a 
linear or non-linear combination of these features as in svr and avNNet, respectively.

Regression trees. A majority of the RBML methods in Table 1 are variations of 
regression trees. A regression tree (Breiman et al. 1984) recursively partitions the 
feature space of the data into smaller regions until the final sub-divisions are similar 
enough to be summarized by a simple model in a leaf. This model can be simply the 
average of the outcomes from that sub-division.

Figure 4 shows the rules generated by a regression tree that was trained on the 
automotive task sets with four periodic tasks and 30% utilization (see details of 
the task set generation in Sect. 5.1). The features used for training are the three 
highest peaks from the periodogram (denoted by P1, P2, and P3) and autocor-
relation (denoted by A1, A2, and A3) methods. The non-terminal nodes represent 

(9)MSE =

∑N

j=1
(Yj − Ŷj)

2

N
,

Fig. 4   A simple regression tree fitted on a data set with 4 tasks and a total utilization of 30% (see details 
in Sect. 5.1 for automotive tasks)
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the rules that will be used to guide the inference process by narrowing down the 
period estimate of a new task.

To make it more tangible, we explain how to use the regression tree in Fig. 4 
to estimate the period of the two tasks in Fig. 3a and b. In the first step, we derive 
the three highest peaks of the periodogram and autocorrelation methods to build 
the feature vectors X1 and X2 for the first and second tasks, respectively. Here, 
X1 = ⟨P1=1000, P2=500, P3=333, A1=1000, A2=2000, A3=3000⟩ and X2 = ⟨P1
=769, P2=666, P3=5000, A1=4635, A2=10000, A3=5365⟩ . Next, we traverse 
the tree by evaluating the rules starting from the root node. For example, for the 
first task, P1 = 1000 and hence the condition in the root node (i.e., P1 ≤ 60000 ) 
is satisfied. Thus, we go to the right branch and repeat the process until we reach 
to a leaf. The value in the leaf is the period estimate. In this example, the trained 
model can accurately estimate both tasks’ period.

An interesting observation in Fig. 4 is the exclusion of A2 and A3 in the tree’s 
rules which basically means that these two features had no impact on the final 
period estimate. With a further investigation, we observed that typically in task 
sets with low utilization, the trained regression trees tend to be smaller and rules 
contain fewer features because there are less preemptions (and hence, less noise) 
in the input. However, with an increase in utilization, the tree is forced to con-
sider more features and even become deeper to keep the estimation error low.

Training a regression tree can be done in O(m ⋅ N ⋅ logN) , where m is the num-
ber of features (in our case it is a constant value equal to 6) and N is the number 
of samples (projections) used for training. Later in Sect. 5, we provide an evalua-
tion on the runtime and memory consumption of various RBML methods.

Understanding how a simple regression tree works, we can now discuss the 
actual RBML methods used in our work according to the suggestions of Del-
gado et al. (2019). Note that four of these methods are extended variations of the 
regression trees but none is as simple as the tree shown in Fig. 4.

Cubist Regression (cubist).  Kuhn and Quinlan 2020; Quinlan 1992, 1993, 
2014). It is a regression tree whose leaves embed linear regression models instead 
of simple ‘estimates of the output’. The tree can be further reduced by combining 
or pruning the rules via collapsing the nodes of the trees into rules.

By training a cubist regression model on the same data-set as in Fig.  4, we 
obtain the following rules: 

1.	 If   ( A1 ≤ 2000 )   then   return P1,
2.	 If   ( P1 ≤ 1250 ∧ A1 > 2000 )   then   return 5000,
3.	 If   ( P1 > 1250 )  then   return P1.

In this example, we observe that while the rules and outputs rely on the top can-
didates of the periodogram, they are not limited to them. For example, rule 2 out-
puts the period 5000 which is not among the three top features of periodogram. 
The cubist regression uses these rules to compensate for projections where the 
periodogram is wrong.
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Cubist regression consumes notably less memory than the regression trees 
(see Sect.  5) and hence it is a better choice when the solution must have low 
memory consumption and runtime. However, we also noticed a growth in the 
number of rules when it is trained on task sets with high utilization because 
then the underlying regression tree from which the cubist regression rules are 
obtained gets larger and deeper when the number of preemptions increases.

Generalized Boosting Regression (gbm) (Greenwell et  al. 2019; Friedman 
2002). This algorithm is a regression tree-based solution which uses a commit-
tee of regression trees of fixed size. The initial prediction of the algorithm starts 
from a leaf, which contains the average value of the outcome variables (i.e., 
the periods). The next step is to compute the residuals of this initial prediction 
against the true output (true period). Next, a regression tree is fitted on the data, 
but having the previously computed residuals as the outcome variables.

In order to preserve the generalization capabilities of the model, the results 
from the tree are multiplied by a constant value. Afterwards, the output from the 
tree is added to the initial leaf to obtain a new set of predictions, which are again 
used to compute residuals. The process is repeated until a maximum number of 
trees is reached.

Extremely Randomized Regression Trees (extraTrees) (Simm et  al. 2014; 
Geurts et al. 2006). The algorithm relies on a committee of regression trees for 
its predictions. When building the trees, this method randomly picks a rule for 
each feature (instead of searching for a rule that minimizes the error) and then 
chooses the one that provides the lowest error. Hence, a randomized regression 
tree is much faster to build than a regular regression tree.

Bayesian Additive Regression Tree (bartMachine) (Kapelner and Bleich 2016; 
Chipman et  al. 2010). Similar to gbm, this method also relies on a group of 
trees, where each tree is fit on the residuals of the predictions from a previous 
tree. The major difference is that bartMachine is based on a probability model 
containing a set of priors for the tree structure and a likelihood for the leaves’ 
values. extraTrees, gbm, and bartMachine stop building the model when a given 
(maximum) number of trees is achieved.

Averaged Neural Network (avNNet) (Kuhn 2020; Ripley 2007). The technique 
involves a committee of five multilayer perceptrons having the same size, but 
trained using different random seeds. The network is set to have linear output 
neurons, which makes it suitable for regression. Finally, the predictions from the 
five networks are averaged to provide the final estimate.

Support Vector Regression (svm) (Meyer et  al. 2019; Cortes and Vapnik 
1995). The goal of svr is to find a line or a hyperplane that is able to fit the most 
data points within a certain margin from it. Moreover, it can accommodate non-
linear trends by fitting the line in a transformed feature space using a kernel 
function.

Sections  5 and 6 provide further insights on the performance of the RBML 
methods.
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4.3 � Candidate selection

As the example in Fig. 3 shows, the true period is among one of the peaks of the 
periodogram and autocorrelation, although not always is the highest peak. After fur-
ther investigations, we observed that on the one hand, in a majority of projections, 
the true period is indeed among the peaks of periodogram and autocorrelation. How-
ever, it is hard to know which of those peaks just by looking at their power or rank. 
On the other hand, the RBML methods typically predict only an approximation of 
the real period which is not always equal to the true one (resulting in non-zero errors 
in most cases). Thus, we introduce a further pruning phase on the output of our 
RPM method and create a method called RPM with period adjustment (RPMPA).

RPMPA treats the RPM method as a referee which chooses the right period from 
a set of candidates. Namely, it first calculates the period estimate using the RPM 
method and then finds the closest period to this estimate from a fixed set of values 
gathered from the 20 highest peaks of each of the periodogram and autocorrelation 
(hence, 40 candidates in total). The number of candidates (i.e., 40) is a hand-tuned 
value and comes from experimenting on many task sets (see Sect. 5.2).

5 � Deriving period bounds to improve accuracy

Why. As it will be shown in our experiments, despite the success of the RPMPA 
method to improve accuracy, in some scenarios, the “adjustment” step increases the 
error instead of reducing it (see Sect.  5). Those cases happen when the underly-
ing regression algorithm (as a part of the RPM method) produces an output that 
significantly deviates from the true period. As a result, when the RPMPA chooses 
a candidate, it introduces more error. To reduce the chance of deviating from the 
true period, this section presents methods to derive upper and lower bounds on the 
period directly from the input projections so that the search space for RPMPA is fur-
ther narrowed down and its final error is reduced.

What. We present a space-pruning method (SPM) whose goal is to derive a lower 
and an upper bound on the possible set of period values by looking at the higher-
order projections such as ternary and quaternary projections. These bounds are 
meant to remove the impossible period values from the candidate set generated from 
the highest 20 peaks of each of the periodogram and autocorrelation methods before 
they are fed to the RPMPA (recall Fig. 2).

It is worth noting that if applying the lower and upper bounds on the 40 period 
candidates results in an empty set (i.e., all 40 candidates are outside of the bounds), 
we suggest to just use the upper bound as the period estimate. Later in Sect.  5.3 
(Fig. 9), we show that choosing the upper bound results in higher accuracy than just 
using the output of the RPM (regression) method.

How. Ternary and quaternary projections include information about the idle times 
and the execution of lower-priority tasks, respectively. These information together 
with some basic knowledge about the scheduling policy can help deriving upper and 
lower bounds on the actual periods. For example, under a work-conserving schedul-
ing policy, we can deduce that “if a task has accessed the resource between two idle 
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times in a ternary projection, then it must have released a job somewhere between 
those idle times”. In the example shown in Fig. 1d, at least one job of �3 must have 
been released in the interval [10, 19) since there is at least a ‘1’ in the ternary pro-
jection of �3 during this interval. Similarly, another job must have been released in 
the interval [20, 25). An upper bound on the period of this task can be derived from 
the largest inter-arrival times observed in the projection. In Sects. 4.1.2 and 4.1.3, 
we will elaborate on how to derive such upper bound when tasks do not have or have 
release jitter, respectively.

5.1 � Improving the accuracy for ternary projections

Our key idea to derive an upper bound on the task’s period is to traverse the ternary 
projection to find pairs of consecutive intervals separated by idle times in which the 
task has occupied the resource. We call them effective intervals. Then by looking at 
every three consecutive effective intervals, we can obtain one upper bound on the 
task’s period. After traversing the whole projection, the smallest upper bound found 
is the bound we use to prune the period candidates obtained from the peaks of peri-
odogram and autocorrelation.

In the rest of this section, we first discuss how to obtain the effective intervals 
(see Sect.  4.1.1), and then how to derive upper bounds for tasks with no release 
jitter (see Sect. 4.1.2) and with bounded release jitter (see Sect. 4.1.3). It is worth 
noting that our upper bounds for the period are tighter than that of Vădineanu and 
Nasri (2020). Finally, in Sect. 4.1.4, we show how to calculate a lower bound on the 
period.

5.1.1 � Extracting effective intervals from ternary projections

Assumptions (to derive the upper bounds). Before we explain how to obtain the 
upper bounds, we summarize the required assumptions: (A1) the scheduling policy 
is work-conserving and (A2) the task under analysis does neither skips a job (the 
BCET of the task is not zero) nor suspends itself. If these assumptions do not hold, 
then the upper bound is ∞ . In practice, it is easy to check if the scheduling policy 
that governs the resource is work-conserving. Most well-known scheduling policies 
implemented by operating systems are work conserving, for example, EDF, fixed-
priority scheduling, FIFO scheduling, etc. To check if the assumption A2 holds, one 
may use a separate monitoring tool that checks whether each instance of the task has 
been completed. If the code of the task is available, an easier solution is to instru-
ment the task so that it sends a signal whenever it finishes. If no ‘missed’ job occurs 
during the time the projection is being stored, then the upper bounds that we derive 
in Sects. 4.1.2 and 4.1.3 can be used.

Let PT
i
 be a ternary projection and x be a time instant at which px = 1 and ∃z < x 

in the ternary projection such that pz = idle . Then, the beginning of the effec-
tive interval that contains the time instant x, called the effective point (denoted by 
Is(x, z) ), is a function that returns the latest idle-time prior to the execution of �i , 
namely,
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Note that the effective points are only defined for time slots x in which px = 1 . By 
traversing through the projection once, one can obtain the starting points of all effec-
tive intervals.

In the example shown in Fig.  5a and b, the effective points are 
Is = ⟨9, 14, 18, 28, 33, 39⟩ . Note that when calculating Is(31, 18) , the idle slot at 
time 26 does not have the conditions of Eq. (10) because there exists another idle 
slot in a later time than 26, i.e., at time 28. If it is not certain that the starting 
point of the ternary projection was aligned with an idea time, the first idle slot in 
the projection will be considered as the first effective point.

Effective intervals are obtained by considering consecutive pairs of items in Is , 
namely, [Is

1
, Is

2
) , [Is

2
, Is

3
) , [Is

4
, Is

5
) , etc.

(10)Is(x, z) = max{k| z ≤ k < x ∧ pk = idle ∧ ∀py, k < y < x, py ≠ idle}.

Fig. 5   Observation from the execution of a periodic task �i with no release jitter, Ti = 5 , and Cmin
i

= 1 and 
Cmax
i

= 2 . a Ternary and quaternary projections, b, c effective intervals and upper bound calculation from 
ternary projections, d effective intervals and upper bound calculation from quaternary projections
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5.1.2 � Deriving an upper bound for tasks with no release jitter

We start with a case where the task under analysis does not have release jitter. Later 
(in Sect. 4.1.3), we will extend our discussions to tasks with bounded release jitter.

Let Is
j−1

, Is
j
, Is

j+1
∈ Is be three consecutive effective points in the ternary projection 

PT
i
 . In order to obtain an upper bound on the period, we calculate the largest possi-

ble distance between the release of two consecutive jobs of the task that have been 
released in the intervals [Is

j−1
, Is

j
) and [Is

j
, Is

j+1
) . To achieve this goal, we will calculate 

the earliest possible release (denoted by e(Is
j−1

, Is
j
) ) of a job of �i that is released in 

the interval [Is
j−1

, Is
j
) and the latest release time of the first job of �i that is released in 

the interval [Is
j
, Is

j+1
) (denoted by l(Is

j
, Is

j+1
)).

Since the ternary projections do not include any special information that allows 
us to distinguish two jobs of the same task from each other, and since we have no 
knowledge about the execution time of the task, apart from that the BCET is not 
zero (i.e., the task does not skip a job), the earliest time at which a job of �i might 
have been released in the interval [Is

j−1
, Is

j
) is:

To obtain the l(Is
j
, Is

j+1
) , we find the earliest time at which a job of task �i has occu-

pied the resource in the interval [Is
j
, Is

j+1
) . Namely,

Note that there might be more than two jobs that have been released in the interval 
from [Is

j−1
, Is

j
) . For example, in Fig. 5a and b, the interval [18, 28) contains two actual 

jobs of �i (released at time instants 20 and 25) but we assume there is only one 
(which is released at time e(18, 28) = 19 ) since we have no evidence in the projec-
tion that suggests that the occupation of the resource at the time slot 25 belongs to a 
new job of �i.

The next step is to obtain an upper bound on Ti using the difference between 
e(Is

j−1
, Is

j
) and l(Is

j
, Is

j+1
):

The following theorem proves that Eq. (13) is a sound upper bound for the period.

Theorem  1  Given two consecutive effective intervals Ij−1 = [Is
j−1

 , Is
j
) and 

Ij = [Is
j
, Is

j+1
) for a task �i that does not have release jitter, Eq. (13) provides a safe 

upper bound on the period of the task.

Proof  The proof is trivial. By the definition of effective points, we know that there is 
at least one time instant in each of the intervals Ij−1 and Ij at which task �i has occu-
pied the resource. Since the scheduling policy is work conserving and at time Is

j−1
 

the resource was idle, the earliest time at which a job of task �i could have been 
released in the interval Ij−1 is at Is

j−1
+ 1 (calculated by Eq.  11). Moreover, from 

(11)e(Is
j−1

, Is
j
) = Is

j−1
+ 1.

(12)l(Is
j
, Is

j+1
) = min{k | Is

j
< k < Is

j+1
∧ pk = 1}.

(13)Ti ≤ l(Is
j
, Is

j+1
) − e(Is

j−1
, Is

j
).
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Eq. (12), we know that l(Is
j
, Is

j+1
) is the earliest instant at which the task has occupied 

the resource within the interval Ij . Hence, the latest release of the first job of the task 
within this interval must have been at or before l(Is

j
, Is

j+1
) . Consequently, the distance 

between two releases of the task �i in the intervals Ij−1 and Ij cannot be larger than 
l(Is

j
, Is

j+1
) − e(Is

j−1
, Is

j
) . Hence, Eq. (13) provides a safe upper bound on the period of 

�i . 	�  ◻

Figure 5c shows how to calculate four upper bounds for Ti from different sets 
of effective intervals in the example shown in Fig.  5a. These upper bounds are 
6, 7, 12, and 6. Thus, Ti ≤ 6 is the tightest upper bound that our SPM method 
obtains from the ternary projections for this example.

It is worth noting that the difference between the upper bound in the current 
paper and in our prior work (Vădineanu and Nasri 2020) is that here, we calculate 
the latest arrival time of the first job of the task in the interval [Ij, Ij+1) but in our 
prior work, we calculated the last arrival time of a job of the task in the interval 
[Ij, Ij+1) . This has been captured by Eq. (10) in Vădineanu and Nasri (2020) as fol-
lows fin(Ij, Ij+1) = max{k | Is

j
< k < Is

j+1
∧ pk = 1 ∧ ∀py, k < y < Is

j+1
, py ≠ 1}.

Fig. 6   Observation from the execution of a periodic task �i with release jitter, Ti = 5 , �i = 2 , and Cmin
i

= 1 
and Cmax

i
= 2 . a Ternary and quaternary projections, b, c effective intervals and upper bound calculation 

from ternary projections, d effective intervals and upper bound calculation from quaternary projections
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As it can be seen, fin(Ij, Ij+1) produces a value that is always larger than or equal 
to l(Ij, Ij+1) (defined in Eq. 12). Hence, the new upper bound in Theorem 1 is always 
smaller than or equal to the upper bound in Vădineanu and Nasri (2020).

5.1.3 � Deriving an upper bound for tasks with bounded release jitter

When a task has release jitter, Eq.  (13) may not hold anymore. For example, by 
applying Eq.  (13) on the intervals [30, 34) and [34, 39) in the example shown in 
Fig. 6a (which represents a periodic task with at most two units of positive release 
jitter, i.e., �i = 2 ), one may mistakenly conclude that the period must be smaller than 
or equal to 4 because e(30, 34) = 31 and l(34, 39) = 35 . However, by looking at the 
actual release times of the task, we see that the idle slot at time 30 is caused by the 
release jitter of a job of �i that has been released at time 32 instead of 30.

Assumptions and requirements. To be able to derive an upper bound on the period 
of a task that has release jitter, we would need to know the maximum amount of the 
release jitter that the task may suffer (i.e., �i ). Such information is typically available 
when the period inference framework is used for runtime monitoring of a known 
system. If the exact value of �i is not know, it is fine to use a safe upper bound on it, 
if available.

If no safe upper bound on the maximum release jitter can be provided, then only 
RPM and RPMPA (but not the SPM) solutions can be used to estimate the period. 
As we will see later in Sect.  5.3, these two solutions can accurately predict the 
period even when there is release jitter.

Solution idea. Deriving an upper bound for Ti requires finding an upper bound on 
the largest distance between arrival times of two consecutive jobs of the task, where 
the arrival time is the expected release time when there is no release jitter3. We will 
derive the latter upper bound by calculating a lower bound on the arrival time of a 
job released in the effective interval Ij−1 and an upper bound on the arrival time of 
the next job released in the effective interval Ij.

From the definition of the effective intervals, we know that the task has occupied 
the resource during the interval [Is

j−i
, Is

j
) . The earliest time at which a job of the task 

could actually be released in this interval is at Is
j−1

+ 1 (since the resource was idle at 
Is
j−1

 ). However, in the presence of release jitter, the arrival time of that job could be 
earlier than Is

j−1
+ 1 . By reducing the maximum value of release jitter, i.e., �i , from 

the release time, we will have a safe lower bound on the earliest possible arrival 
time of that job at Is

j−1
+ 1 − �i.

Since we consider positive release jitter, the actual release time of a job is already 
an upper bound on the arrival time of that job. Hence, we can use Eq. (12) to obtain 
an upper bound on the arrival time of the “next” job of the task (in the effective 
interval [Ij, Ij+1) ). Hence, the new upper bound on the period of a task with at most �i 
units of release jitter is

3  We follow Audsley’s definition for arrival time. Please have a look at Sect. 2.1 for details.
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Theorem  2  Given two consecutive effective intervals Ij−1 = [Is
j−1

 , Is
j
) and 

Ij = [Is
j
, Is

j+1
) for a task �i that has at most �i units of positive release jitter, Eq. (14) 

provides a safe upper bound on the period of the task.

Proof  The proof is trivial and follows from the above discussion. 	�  ◻

Fig.  6c shows the calculations of the upper bound for the example shown in 
Fig. 6a. As it can be seen, there are four upper bounds for Ti and the tightest one is 6.

5.1.4 � Calculating a lower bound for period

Assumptions. To obtain a lower bound, we would need the following assumptions: 
(A1) the scheduling policy is work-conserving, (A2) the task under analysis does not 
skip a job (e.g., there is no execution path in the task that has zero execution time 
and the activation of this task is not conditional to some external events) and the 
task does not self-suspend, (A3) the task has a constrained deadline and the projec-
tion does not contain any deadline misses.

If any of these assumptions do not hold, the lower bound on the period will be 0. 
Note that A3 can be known, for example, in systems that are equipped with separate 
monitoring tools that report any deadline miss or dropped jobs to the period-infer-
ence tool.

Key idea. To obtain a lower bound on period, we extract the largest interval with 
length L in which the task �i does not occupy the resource. This can be obtained as 
follows

Equation  (15) finds the largest interval [a,  b] in the projection between two time 
instants a and b, such that the task under analysis has occupied the resource at time 
a and b but not between them, i.e., pa = pb = 1 and ∀j, a < j < b, pj ≠ 1.

Under assumptions A1, A2, and A3, the length of the largest interval dur-
ing which no job of the task �i has occupied the resource is upper bounded by 
|L| ≤ 2 ⋅ Ti . The reason is that in the worst case, the largest interval during which the 
task does not occupy the resource happens when one job of the task is executed right 
after its arrival time and the next job completes right before its deadline, resulting in 
a value slightly smaller than 2Ti . Given that periodogram can contain many peaks at 
small periods, having a lower bound can help reducing the error efficiently. Note that 
this bound holds whether the task has release jitter or not:

(14)Ti ≤ l(Is
j
, Is

j+1
) − e(Is

j−1
, Is

j
) + �i.

(15)
L =max{b − a − 1 | 0 ≤ a < b ≤ |PT

i
| ∧

pa =pb = 1 ∧ ∀j, a < j < b, pj ≠ 1}.

(16)Ti > 0.5 L.
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Theorem 3  Given an interval g = (a, b) during which �i is not present on the projec-
tion, i.e., pa−1 = pb = 1 ∧ ∀j, a ≤ j < b, pj ≠ 1 , if assumptions A1, A2, and A3 in 
Sect. 4.1.4 hold, then Ti > 0.5 |g| is a safe lower bound on the period of the task.

Proof  The proof is trivial and follows the above discussion. According to A2 and 
A3, the task under analysis does not miss a job and does not have a tardy job, hence, 
its earliest finish time is when it starts its execution right at its arrival time and it has 
at most one unit of execution. From A3, we know that the latest theoretical upper 
bound on the completion time of a job is when it completes at its deadline. Since A3 
assumes a constrained deadline, an upper bound on the deadline is the period of the 
task.

Now putting these two facts together, the largest interval during which a job of 
the task does not appear on the projection happens when one job completes as early 
as possible, i.e., if it is supposed to arrive at t1 , it completes at t1 + 1 and the ‘next’ 
job completes as late as possible, i.e., at t2 = (t1 + Ti) + Ti . Consequently, the larg-
est interval during which the task is not executing is upper bounded by t2 − t1 = 2Ti , 
in the worst case. Hence, if an interval g is found during which the task does not 
occupy the resource, |g| < 2Ti because otherwise the task must have had a deadline 
miss (which would violate A3). 	�  ◻

It is worth noting that any interval g = (a, b) that is consistent with Theorem 3 can 
be used to derive a lower bound on Ti regardless of what has occupied the resource 
during that interval (i.e., the resource might be idle or executing some tasks other 
than �i ). However, such a lower bound might be too small (and hence ineffective). 
For example, one lower bound that can be obtained from Fig. 6a is for the interval 
[36, 37) which will result in Ti > 0.5 . Obviously, it is less effective than the lower 
bound that is obtained from interval [26, 32) which results in Ti > 2.5.

Since both the lower bound and the upper bound can be calculated at the same 
time (by passing through the projection only once), they have a linear time complex-
ity w.r.t. the projection length.

5.2 � Improving the accuracy for quaternary projections

Key idea. Quaternary projections contain information about the intervals during 
which the lower-priority tasks were occupying the resource. Under a fixed-priority 
scheduling policy, we know that if a lower-priority task is executing, then the task 
under the analysis must have been completed (otherwise, the assumption about the 
scheduling policy will be violated). As a result, we can treat the moments/intervals 
during which a lower-priority task has occupied the resource as “idle instants” when 
calculating the upper bound on the period.

More formally, when obtaining the upper bound on the period of a task, it is pos-
sible to create an augmented ternary projection PT ′

i
 from a quaternary projection PQ

i
 

using filter f that converts the ‘low’ symbols in the quaternary projection to ‘idle’ 
symbols in the augmented ternary projection, defined as follows:
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Definition 4  An augmented ternary projection PT ′

i
 derived from a quaternary pro-

jection PQ

i
 for task �i is defined as PT �

i
= ⟨f (pj) � ∀j, 1 ≤ j ≤ �PQ

i
�⟩ , where f (pj) is 

obtained from Eq. (17).

To use quaternary projections to derive an upper bound on the period, we need 
the following assumptions: (A1) the scheduling policy is work-conserving, (A2) the 
task under analysis does not skip a job (the BCET of the task is not zero) or self-
suspend, and (A3) the system is scheduled by a preemptive fixed-priority scheduling 
policy.

Lemma 1  Under the assumptions A1, A2, and A3 (Sect.  4.2), at any time slot at 
which the processor is idle or a task with a lower priority than �i has occupied the 
resource, the task �i cannot have a pending job.

Proof  The proof is a direct conclusion of scheduling the task set with a work-con-
serving preemptive fixed-priority scheduling policy and the fact that the task under 
analysis does not suspend itself and does not skip a job. Namely, whenever it is 
released, no other low-priority task can occupy the resource. Hence, if a low-priority 
task has occupied the resource, the task under analysis must not have a job in the 
ready queue (a job that has been released but has not completed). 	�  ◻

Lemma 1 allows us to treat augmented ternary projections (Definition 4) as a nor-
mal ternary projection when deriving the effective intervals.

Figures 5d and 6d show the effective points obtained from the augmented ternary 
projections and their impact on tightening the upper bound on the period. Later in 
Sect. 5.7 we will empirically compare the bounds obtained from ternary and quater-
nary projections.

6 � Empirical results

We performed a set of experiments to answer the following questions: (i) Does our 
framework improve the accuracy w.r.t. the state of the art? (ii) How do various fami-
lies of RBML methods compare against each other? (iii) How robust is our solu-
tion against uncertainties and non-deterministic events? (iv) What are the tradeoffs 
between the accuracy, runtime, and the memory requirements of various RBML 
methods? and (v) How good our solution generalizes to systems that are widely dif-
ferent from those on which it trained? Questions (i) and (ii) are addressed throughout 

(17)f (pj) =

⎧
⎪⎨⎪⎩

1, pj = 1

idle, pj = idle ∨ pj = low

0, otherwise

.
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the evaluation section. Question (iii) is answered in Sect. 5.4, and finally, Sect. 5.6 
focuses on questions (iv) and (v).

We divided our task systems into three groups: periodic task systems where 
every task is periodic but tasks might have release jitter or execution time varia-
tion (Sects. 5.3 and 5.6), non-periodic task systems, where the task under analysis is 
periodic but the rest of the system might not be periodic (Sect. 5.4), and case studies 
from actual systems (Sect. 5.5). The source code and our evaluation framework for 
these experiments are both available on github (Vădineanu 2020).

6.1 � Experimental setup

For the experiments in Sects.  5.3, 5.4, and 5.6, we considered two types of task 
sets: automotive benchmark application and synthetic task sets. For the automotive 
benchmark applications, we adopted the model proposed by Kramer et al. (2015) for 
task sets used in automotive industry, where task periods are chosen randomly from 
{1, 2, 5, 10, 20, 50, 100, 200, 1000}ms with a non-uniform distribution provided by 
Kramer et al. (2015). For simplicity, we refer to the traces of these task sets as auto-
motive traces.

Our synthetic task sets are comprised of non-harmonic periods. In order to ensure 
that the chosen periods cover evenly all magnitudes, we used a log-uniform distribu-
tion as suggested and described by Emberson et al. (2010). The periods are thereby 
generated for the range [100, 10000] with a base period of 100ms. For simplicity, 
we refer to the traces of these task sets as log-uniform traces. We use Stafford’s 
Randfixedsum algorithm which is also used by Emberson et al. (2010) to generate 
random utilization values for the tasks and then use the utilization and the period to 
calculate the WCET of each task.

To generate the traces, we use Simso (Chéramy et al. 2014), an open source and 
flexible simulation tool that generates schedules under various scheduling policies 
and setups.

Evaluation strategy. The data set used for training the regression models is com-
posed of the projections from 2000 traces (we saw no benefit in increasing the data 
set size in our preliminary experiment). The length of a trace is set to be either six 
hyperperiods (traces without random variations) and ten hyperperiods (when there 
is execution time variation or release jitter) for the experiments in Sects. 5.3 to 5.5. 
The same trace lengths are used for the testing to capture enough random behavior. 
In Sect. 5.6, we specifically investigate the impact of trace length on the accuracy of 
testing.

Metric. The metric we use to evaluate the accuracy is the average error, which 
is the mean of the individual errors a method makes for every period in a test set 
unless it is explicitly stated that the error has been obtained for only one task in the 
task set. Furthermore, we calculate the error of one experiment (that includes 2000 
task sets) by using fivefold cross-validation. Namely, we divide the data set into five 
randomly chosen subsets of equal size. Out of the five subsets, four are used for 
training and one is used for testing. We measure the error of the testing and repeat 
the process until all five subsets have been used once for testing.
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Baselines. We considered three baselines: (i) PeTaMi, a mining algorithm for 
periodic tasks (Iegorov et al. 2017), (ii) periodogram (Schuster 1898), and (iii) auto-
correlation (Gubner 2006). PeTaMi represents the state of the art on period infer-
ence in the real-time systems community, while the other two represent widely used 
solutions from the signal-processing literature. These two were chosen to evaluate 
the improvements made by our RPM and RPMPA over solutions that are (only) 
based on signal-processing techniques.

We compare the RBML methods mentioned in Table 1, denoted by cubist (Quin-
lan 2014), gbm (Friedman 2002), avNNet (Ripley 2007), extraTrees (Geurts et  al. 
2006), bartMachine (Chipman et  al. 2010), and svr (Cortes and Vapnik 1995). 
Each of these methods is defined by a set of hyperparameters that require tuning 
for improving the model’s fit on the data. Hence, we performed an additional tuning 
phase using random search on the parameter’s space. This step was integrated in the 
cross-validation process such that every training set comprised of the four subsets, is 
further split into a training and validation set. The parameters are varied while being 
trained on the training set and the model’s performance is estimated on the valida-
tion set. The purpose of doing one more split is to avoid bias by not involving the 
test set into the parameter choice.

To be able to focus on the accuracy of the RBML methods, we only show the 
results of RPM method in Figs. 7, 8a to o, 12, and 15. We compare the accuracy of 
RPM with RPMPA in Figs. 8p to r and 9; Tables 2 and 4. We performed our evalu-
ation on a Dutch supercomputer based in the cloud. We used thin nodes with 2 × 16

-core 2.6GHz Intel Xeon E5-2697A v4 (Broadwell) and 64GB of memory.

6.2 � Parameter tuning

Before evaluating our solutions, we need to determine their parameters, i.e., the 
number of features for RPM and the number of candidates for RPMPA, since they 
impact the solution’s accuracy. The evaluation from Fig. 7a was performed on an 
aggregated data set, containing automotive traces with four levels of utilization (0.3, 
0.5, 0.7, and 0.9). Similarly, for the second experiment from Fig. 7b, we used data 

Fig. 7   The impact of the number of features (for RPM) and the number of candidates (for RPMPA) on 
the solution’s accuracy. Note that the shade around the curves represents the confidence intervals for 0.95 
confidence level
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sets incorporating the four utilization values and we also kept 20% execution time 
variation for the tasks in both data sets. We picked extraTrees, since it is a repre-
sentative member of tree-based algorithms and is less affected by the increase in 
the number of its features in terms of runtime. The experiments were conducted by 

Fig. 8   Experimental results for periodic and preemptive systems



341

1 3

Real-Time Systems (2022) 58:313–357	

generating 20 random splits of the data set into training and testing sets (for every 
parameter value). The model would then be fit on the training data and the average 
error measured on the test data.

Figure 7a shows how the error for extraTrees decreases when we include more 
features. The gain in accuracy becomes insignificant after adding more than three 
features from periodogram and autocorrelation. Thus, we kept three features from 
each of the periodogram and autocorrelation (i.e., six in total). We further analyzed 
the impact of the number of candidates for RPMPA method on accuracy. As shown 
in Fig. 7b, a relatively small number of candidates is required in order to achieve a 
low error until it reaches saturation.

6.3 � Assessing accuracy in periodic systems

Impact of system utilization. Figure 8a and b show the average error as a function 
of the total utilization for task sets with 8 tasks. The error of the regression models 
increase with the increase in the utilization (which in-turn increases the number of 
preemptions). Furthermore, we observe a dramatic reduction in PeTaMi’s accuracy 
when it is applied on log-uniform traces. This decrease is a result of having non-
harmonic periods in log-uniform traces. In contrast, we see that the accuracy of our 
regression-based solutions has not been negatively affected when applied on non-
harmonic periods.

Impact of the number of tasks. Figure 8c and d shows that the error reduces when 
there are more tasks in log-uniform traces for some of the tree-based solutions such 
as gbm. It is due to the decrease in the individual task utilization. Thus, although the 
system is as congested, the individual projection of a task contains larger idle inter-
vals and shorter execution times that are likely not preempted much. This enables 
the periodogram to extract more meaningful features. However, in automotive task 
sets, the algorithms are rather unaffected by the number of tasks in the trace since 
they already have a good performance even for lower number of tasks.

Impact of execution time variations. From Fig. 8e and f, we observe that the 
regression-based methods are more robust to runtime execution-time variations 
than the baselines, showing a similar trend for both types of traces to the case 
with constant execution time. Also, with an increase in the execution time var-
iation in Fig.  8g and h, we notice that most of the RBML methods are robust 

Fig. 9   Space-pruning for traces with jitter
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(w.r.t. to this variation) for automotive traces, while for log-uniform traces, the 
error decreases with the increase in the execution-time variation. This behavior 
is due to the reduction in the average execution time for individual tasks. Since 
the execution time for a job is drawn from a uniform distribution in the range 
[(1 − �) ×WCET ,WCET] , the wider the interval becomes the lower is the average 
execution time. Having smaller execution time is associated with lower utiliza-
tion for the system and we previously observed that the methods perform better in 
lower utilization values.

Impact of release jitter. Figure 8i and j show that the release jitter has a much 
bigger impact on the error than the execution-time variation. One possible expla-
nation is that the periodogram, which provides most of the information to the 
algorithms, is negatively impacted by jitter, thus, it produces less useful fea-
tures for training. However, we observe that some regression algorithms such as 
extraTrees and cubist are still able to keep a low error even for this challenging 
scenario.

Impact of candidate adjustment method (RPMPA). Figure 8p and q show that 
RPMPA has about 50% less error than RPM for most RBML methods when used 
for cases with execution time variation and, implicitly, on ideal traces too (i.e., 
traces that do not have variations in the execution time or release time of the 
tasks). However, when the signal-processing techniques (periodogram and auto-
correlation) are disturbed, as is the case for release jitter, the period adjustment 
step has a negative impact on the accuracy. Later in Table 4, we see a similar pat-
tern for systems scheduled by non-preemptive scheduling policies.

Impact of space-pruning method (SPM). By analyzing Fig. 8r we observe that 
the inclusion of an upper and a lower bound for SPM contributes to reducing the 
error even further, proving that the regression is still prone to mistakes even when 
choosing candidates. However, this solution is expected to show little benefits for 
systems with large utilization, when fewer intervals of idle-time will be present. 
The reason is that in that case, SPM will provide upper bounds that are so large 
that they will not contribute much to filtering infeasible candidates. As we will 
show in Sect.  5.7, using quaternary projections can significantly reduce these 
period bounds for the SPM method.

While conducting this experiment, we noticed that under specific setups there 
can be cases where no candidates are left after the pruning phase. This situa-
tion occurs most frequently when the release time of the jobs is affected by jitter 
so much that the signal processing techniques only generate useless candidates 
that fall outside of the valid period bounds. As a consequence, when analyzing 
the effect of release jitter, we defined two criteria to provide a period estimate 
when no candidate is available. Namely, we either select the output of regression 
(SPM-R) or we select the upper bound (SPM-UB). Figure 9 shows the results for 
SPM on traces with jitter. In all cases, both versions of SPM succeed in reducing 
the error of RPMPA by 45% points. Also, SPM-UB is able to achieve an aver-
age error below RPM for cubist, gbm, and bartMachine, while for extraTrees, 
although it has a larger error, it presents a much narrower confidence interval. 
Thus, we can expect that the estimate of SPM-UB based on extraTrees to be more 
reliable than the corresponding RPM.
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6.4 � Assessing robustness

Next question to answer is how robust is our solution w.r.t. uncertainties in the 
underlying system that may drastically influence the traces generated from those 
systems. In the rest of this section, we evaluate the robustness of our solution in 
the presence of (i) higher-priority aperiodic tasks (Sect.  5.4.1), (ii) dropped or 
discarded jobs (Sect.  5.4.2), (iii) overloads (Sect.  5.4.3), and (iv) initial offsets 
(Sect. 5.4.4) in the system.

6.4.1 � Robustness w.r.t. the presence of higher‑priority aperiodic tasks

For this experiment, we considered a configuration consisting of 12 automotive 
tasks (6 periodic and 6 sporadic tasks) scheduled by Rate Monotonic scheduling 
policy that are interfered by high-priority aperiodic tasks arriving according to a 
Poisson process with a rate λ = 0.0005 events/ns (namely, roughly 5 arrivals in 
every 10us). Furthermore, we focused on analyzing one periodic task in scenarios 
of having high, medium, and low priority, respectively. For each of the three pri-
ority scenarios, the task’s priority has been chosen randomly in the ranges [1, 3] 
for high, [4, 7] for medium, and [8, 12] for low-priority tasks.

Figure  8m to o show the error as a function of utilization for the tree-based 
algorithms, periodogram and PeTaMi. The periodogram is affected significantly 
when priority changes from high to low (comparing Fig.  8m and o) due to the 
increase in the number of preemptions in low-priority tasks which in-turn causes 
more noise in periodogram. In contrast, the error of RPM algorithms increases 
only slightly in large utilization values. We also see that the error of gbm and 
bartMachine at low utilization values is smaller when the task under analysis has 
a low priority. It is due to the fact that these two algorithms may not be able to 
generalize well when the periodogram has low error. Having a low error for peri-
odogram means having less significant (shorter) peaks, which in turn do not pro-
vide enough information for these algorithms to excel.

6.4.2 � Robustness w.r.t. dropping jobs

Next, we explore the impact of having missed (dropped) jobs in the input projec-
tions on the accuracy of our solutions. The setup includes 10 automotive tasks. 
We consider two scenarios: (i) the tasks under analysis has dropped jobs (with a 
15% probability), and (ii) all the other tasks have dropped jobs. Figure 8k and l 
show that all algorithms exhibit a relatively higher error when there are dropped 
jobs and the utilization is higher in comparison with experiments with no dropped 
job (e.g., comparing Fig. 8a and k or l). This increase is due to the fact that pro-
jections are imperfect and even can be misleading when some jobs are dropped. 
Moreover, periodogram is affected notably when the task under analysis drops 
jobs. However, while the RBML methods show little variations from one case to 
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the other, they are still able to retain meaningful information from their features 
even when the task under analysis has a low utilization.

6.4.3 � Robustness w.r.t. permanent overloads

For this case, we experimented with task sets whose total utilization exceeded 100%. 
A consequence of such an overload is that lower-priority tasks will experience star-
vation (i.e., these tasks will not get any opportunity to be executed). Since the pro-
jections of starved tasks do not include any information about their periodicity, we 
excluded such tasks from both the training and testing phase.

Figure 10 illustrates the effect of tardiness on the performance of the four tree-
based regression algorithms and on the two signal processing techniques as a func-
tion of the execution time variation. In Fig. 10a we observe a decrease in the error 
with respect to the execution-time variation factor � when the total utilization of 
the system is 100%. This trend is due to the decrease in the average utilization with 
the increase in � . For instance, for � = 0.5, the execution time of the tasks will be 
uniformly drawn from [0.5 × WCET, WCET], which implies an average execution 
of 0.75 × WCET, hence, the total utilization will be around 75% rather than 100%.

However, in Fig. 10c we observe an opposite trend for 140% utilization. In this 
case, the smaller values of error when there is no execution time variation are due 
to the elimination of the tasks suffering from starvation (as mentioned earlier, they 
disappear from the trace).

On the other hand, we see an increase in the error for larger � values. It is due to 
the large execution time variations which then allows some of the previously starved 
low-priority tasks find chances to be executed. However, since these chances appear 
randomly and infrequently, the resulting projections would not be consistent enough 
to provide meaningful data for the regression algorithms both during the training 
phase and testing phase.

Figure  10b reflects the combination of the observations for the previous two 
cases. Until 30% execution time variation, the total utilization does not fall under 
100%, hence Fig. 10b shows a similar trend to Fig. 10c. However, when � increases, 
the curve becomes similar to Fig. 10a, since now the system allows more systematic 
running intervals for the lower-priority tasks.

Fig. 10   The impact of permanent overloads
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6.4.4 � Robustness w.r.t. offsets

So far, the majority of our experiments were focused on synchronous tasks 
(namely, the initial offset of the tasks was zero). However, there are many sce-
narios where the presence of offsets is an essential element of the system, e.g., 
when the trace has been gathered from messages that transfer over a controller 
area network (CAN) and are generated by unsynchronized nodes.

We performed an experiment similar to the one for periodic systems (Sect. 5.3) 
where we varied the utilization of the task set. For this experiment, we used auto-
motive task sets with 10 periodic tasks, 50% execution time variation, and 10% 
release jitter. The offsets were randomly selected from the range [0,  H/2] with 
a uniform distribution, where H is the hyperperiod of the tasks. The results are 
presented in Fig. 11.

The first observation in Fig.  11 is that most of the RBML methods have an 
almost constant error regardless of the utilization. This behavior is due to the 
decrease in the average utilization, since a variation of 50% in execution implies 

Fig. 11   Impact of offsets

Table 2   Results on the two 
CAN data sets

Bold values indicate the smallest error in estimating message periods 
in each of the two datasets by the PRM and PRMPA methods

Data set Algorithm RPM (%) RPMPA (%)

CAN 1 (Lee et al. 
2017; HCRL 
2010)

extraTrees 28.2568 1.6179
cubist 3.2461 0.9703
gbm 15.8224 1.3919
bartMachine 20.8588 14.0103
Periodogram 5.3368 –

CAN 2 (Seo et al. 
2018; HCRL 
2010)

extraTrees 13.0256 1.7039
cubist 5.5005 2.8963
gbm 19.8341 9.8881
bartMachine 14.956 5.0264
Periodogram 9.5448 –



346	 Real-Time Systems (2022) 58:313–357

1 3

an average execution time 75% × WCET, which in turn makes our actual utiliza-
tion values to be small enough for the RBML methods to perform similarly. Also, 
we notice both cubist and extraTrees having an error below 5% for all utilization 
values, while PeTaMi shows errors reaching to 1000%. We have seen a similar 
poor performance from PeTaMi in Fig. 8i for task sets with release jitter (without 
offset). It seems that the addition of offsets and execution time variation appears 
to exacerbate the impact of release jitter when considering different utilization 
values.

6.5 � Case study

In this section, we validate our period-inference methods on two case studies. We 
use two data-sets consisting of traces coming from controller area networks (CANs), 
denoted by CAN 1 (Lee et al. 2017; HCRL 2010) and CAN 2 (Seo et al. 2018; HCRL 
2010) in Table 2. The first data set consists of 988,987 messages with 27 tasks and the 
second one of 2,369,868 messages with 45 tasks.

In order to generate our test data, we split the projections from the messages into 
smaller projections of 100 jobs. As for our training data, we synthetically generated 
traces that would provide a good proxy for real data, namely, we created a data set 
of 6000 automotive traces, with 20 tasks scheduled by non-preemptive rate monotonic 
scheduling policy, with 50% utilization and 5% jitter as the training set. The results 
from Table 2 show that our methods successfully estimated the periods of the messages 
on the actual use case, having errors below 2% for both data sets.

Fig. 12   Other evaluation criteria: a the number of rules generated by cubist algorithm as a function of 
utilization, b, c the impact of training and testing on data sets with different number of tasks, d the mem-
ory consumption and runtime of the RBML methods, e the impact of the trace length on the accuracy, 
and f the impact of training and testing on different task set types on the accuracy
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6.6 � Assessing other aspects

6.6.1 � Number of rules for cubist

Figure 12a shows an increase in the number of rules generated by cubist as the uti-
lization grows for log-uniform traces with 12 tasks. This behavior is expected since 
the projections become more complex as the number of preemptions increases in 
higher utilization values. For example, the average number of rules stored at 30% 
utilization is 16, but it raises to 65 at 90% utilization.

6.6.2 � Learning robustness: training and testing on different number of tasks

Figure 12b and c illustrate how the mismatch between the number of tasks within 
the traces used for training and the traces used for testing affects the accuracy of 
the tree-based algorithms. The experiment is conducted on log-uniform traces with 
70% utilization and without uncertainties (since we want to capture a large range of 
periods and also isolate the effect of the discrepancy between the number of tasks).

Figure 12b shows that training on traces with fewer tasks than the target system 
leads to 2.9% higher error in average than the opposite scenario (Fig. 12c). Moreo-
ver, in both cases, we observe that when the gap between the number of tasks in 
training and testing traces is smaller, the error is smaller too. We also see that cub-
ist has the best generalization capability; it has less than 2.5% error as long as it is 
trained with task sets that have at least 8 tasks.

6.6.3 � Learning robustness: training and testing on different task set types

For this experiment, we train the models on an aggregated set containing 2000 log-
uniform traces for every utilization value in {0.3, 0.5, 0.7, 0.9} and 12 tasks. After-
wards, the evaluation is completed on 2000 automotive traces with 12 tasks for each 
of the aforementioned utilization values individually.

The results, summarized in Fig. 12f, show that cubist has the smallest error (i.e., 
below 8% for utilization values lower than 90%). Comparing Figs. 12f and 8a (where 
the training and testing were done on the same task set types) we see only a slight 
difference in the error of the RBML methods which shows that they rather general-
ize well.

6.6.4 � Learning robustness: training and testing on different projection lengths

The goal of this experiment is to see how the error of the RBML methods is affected by 
the length of their input trace during the inference phase (testing). This experiment is 
performed on log-uniform traces with 70% utilization and 10 tasks, with the particular-
ity that, when testing, we limit the length of the projections to a certain multiple of the 
task’s period (shown on the horizontal axis of Fig. 12e). As it can be seen in Fig. 12e, 
both cubist and extraTrees are able to estimate the true period with less than 4% error 
even when only two jobs of the target task appear in the trace. As expected, the error 
reduces gradually with the increase in the length of the trace. In contrast, bartMachine 
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has the largest fluctuations in error, making it less reliable when the projection’s length 
is lower than 20 times the period of the target task.

6.6.5 � Learning robustness: training and testing on task sets scheduled by different 
scheduling policies

One other aspect we take into account is the robustness of our method when there 
could be a difference between the scheduling policy used during the training and test-
ing phases. In this experiment, we train the RBML methods on traces of task sets com-
ing from both rate monotonic (RM) and earlier-deadline first (EDF) scheduling poli-
cies. Afterwards, we test the RBML models on separate test sets, each containing traces 
only from RM and EDF, respectively. Also, since the periods coming from a log-uni-
form distribution are not harmonic, we chose log-uniform traces for this experiment. 
Since for harmonic periods (as in automotive traces), RM generates an almost identical 
schedule to EDF, it is not useful to consider those task sets in this experiment.

For this experiment, task sets where generated following the same approach 
explained in Sect. 5.3. Each task set has 10 tasks with log-uniform periods and 50% 
execution time variation. Table 3 shows that all considered regression methods have a 
very similar performance regardless of the utilization.

6.7 � Quaternary projections

As mentioned in Sect. 4.2, the information about the execution of lower-priority 
tasks in quaternary projections can be used to reduce the upper bound on the 

Table 3   Evaluating the learning 
robustness when the training 
and testing are done with 
different scheduling policies

The columns indicate the policy being used for testing

Algorithm Utilization RM (%) EDF (%)

cubist 0.3 0.1047 0.1046
0.5 0.1122 0.1057
0.7 0.1552 0.1554
0.9 0.2165 0.2024

gbm 0.3 0.7145 0.7151
0.5 0.8730 0.8731
0.7 0.9558 0.9493
0.9 1.0915 1.0951

extraTrees 0.3 0.3024 0.3026
0.5 0.3951 0.3953
0.7 0.4891 0.4821
0.9 0.8702 0.9175

bartMachine 0.3 0.5947 0.5929
0.5 0.6332 0.6316
0.7 0.9501 0.9509
0.9 1.3092 1.3155
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period. To evaluate the impact of this extra information in reducing the period 
bounds, we perform an experiment to compare the accuracy improvement resulted 
from using bounds obtained from quaternary and ternary projections.

Our metric is the percentage of improvement in the bounds (the smaller the 
upper bound, the better it is). We reported (BT − BQ)∕BT , where BQ is the upper 
bound resulted from quaternary projections and BT is the upper bound resulted 
from ternary projections (see Sects. 4.1 and 4.2). A higher value of improvement 
indicates that the upper bound obtained from the quaternary projection is smaller 
(tighter) than the upper bound from the ternary projection. The experiment con-
figuration is similar to those described in Sect. 5.1. We consider automotive tasks 
with 10 tasks each having a 50% execution time variation and no release jitter.

Figure  13a shows the percentage of the traces that have an improvement in 
their bounds when quaternary projections are used, i.e., when BQ < BT . Fig-
ure  13b shows the average improvement (left vertical axis) and maximum 
improvement (right vertical axis). These average and maximum improvement val-
ues are obtained for projections for which using quaternary projections improves 
the upper bound.

Fig. 13   The effect of quaternary projections. a Is the percentage of the traces that had an improvement 
in their bounds when quaternary projections were used and b is the average improvement (left vertical 
axis) and maximum improvement (right vertical axis). Please note the difference in the scale of these two 
vertical axes

Fig. 14   Comparing Theorem 1 
with Theorem 1 in Vădineanu 
and Nasri (2020) to quantify the 
improvement in the new upper 
bound



350	 Real-Time Systems (2022) 58:313–357

1 3

Figure 13 shows that with the increase in the utilization, the improvement on the 
bounds also increases (both the percentage of task sets that have improvement in 
their bound and the amount of improvements). This is expected since at larger uti-
lization values, the idle intervals become more scarce and, therefore, less informa-
tive. However, the intervals during which lower-priority tasks execute either do not 
change or increase (like all other tasks when a system has higher utilization). Conse-
quently, the quaternary projections become richer and richer in terms of information 
they contain.

6.8 � New upper bound

In this experiment, we evaluate the improvement resulted from the new upper bound 
(Theorem  1 in this paper) and the upper bound in our prior work [Theorem  1 in 
(Vădineanu and Nasri 2020)]. We report this improvement by (Bold − Bnew)∕Bold , 
where Bnew is the upper bound from Theorem 1 (in this paper) and Bold is the upper 
bound from Theorem 1 in Vădineanu and Nasri (2020).

We performed the experiment as explained in Sect. 5.1. We varied the utilization 
and for each utilization value, the experiment was performed on 2000 automotive 
traces with 10 tasks each without any uncertainties in their timing parameters (i.e., 
no release jitter).

Figure 14 shows the average and maximum improvements for all projections gen-
erated in the experiment. We observe that with the increase in the utilization, the 
new bound becomes tighter than the old bound (the improvement increases). As we 
discussed earlier, with the increase in the utilization, the chance to find idle times in 
a ternary projection reduces and hence it becomes more important to use the remain-
ing opportunities (resulted from the few remaining idle slots) more efficiently. The 
new bound uses these opportunities more efficiently by having a tighter estimation 
of the arrival time of the second effective interval in every two consecutive effective 
intervals. This can also be seen when comparing Eq. (12) in this paper and Eq. (10) 
in Vădineanu and Nasri (2020).

6.9 � Non‑preemptive scheduling

To evaluate performance of our solution for systems that are scheduled by a non-
preemptive scheduling policy, we performed a similar set of experiments as in 
Sect. 5.3, using automotive task sets for the following utilization values {0.15, 0.3, 
0.45, 0.6}. We scheduled these task sets by the non-preemptive fixed-priority sched-
uling policy (following rate monotonic priorities). The reason we could not include 
higher utilization values was due to the large amount of deadline misses that appear 
in traces. Since we wanted to focus on the impact of the non-preemptive scheduling 
policies in the experiments (and not the impact of deadline misses), we excluded 
higher utilization values from this experiment.

We excluded svr and avNNet from the diagrams because they had a poor per-
formance (similar to Fig.  8 for the non-preemptive systems as well. We also 
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added one more baseline, called the naive solution that calculates the mean of the 
inter-arrival intervals within the projection as an estimation for the period of the 
task.

Figure 15a shows how the average error is influenced by the change in utiliza-
tion. We notice a slight increase in error for every tree-based algorithm with the 
increase in utilization (this is similar to the preemptive systems). Also, the errors of 

Fig. 15   Results for non-preemptive systems. a, b The impact of utilization and the number of tasks on 
task sets with no timing uncertainties, c the impact of utilization on tasks with execution time variation, 
d the impact of execution time variation, e the impact of utilization on tasks with release jitter, and f the 
impact of utilization on tasks with release jitter and random offset

Table 4   Comparing the 
accuracy improvement 
resulted from RPMPA and 
SPM w.r.t. the original RPM 
for non-preemptive systems 
considered in Fig. 15. Negative 
improvements represent a drop 
in accuracy

Algorithm Setup RPMPA 
improvement 
(%)

SPM 
improve-
ment (%)

cubist No uncertainty 8.16 90.09
extraTrees 13.36 86.44
bartMachine 25.75 89.56
gbm 28.59 87.81
cubist Execution var. 11.37 86.31
extraTrees 53.55 87.49
bartMachine 41.29 86.25
gbm 42.93 91.41
cubist Release jitter − 60.75 22.28
extraTrees − 15.01 39.87
bartMachine 22.10 69.09
gbm 27.02 72.86
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all RBML methods stay below 1% with cubist, extraTrees, and PeTaMi producing 
very similar results. 

Impact of the number of tasks. Figure 15b shows that the error increases with the 
increase in the number of tasks, which is the opposite of the trend we saw in Fig. 8c. 
This increase is caused by the increase in the blocking of higher-priority tasks. In a 
preemptive system, higher-priority tasks typically are scheduled as soon as they are 
released, but in a non-preemptive system, they might be blocked by the lower-prior-
ity tasks. With the increase in the number of tasks, the chance that a higher-priority 
task is being blocked by a low-priority one increases.

Impact of execution-time variation. Figure 15c shows that adding even a small 
amount of execution-time variation significantly increases the error of PeTaMi. We 
see a slight increase (of 5%) in the error of gbm, while cubist, extraTrees and bart-
Machine are largely unaffected. Moreover, we observe from Fig. 15d that increasing 
the execution time variation (the horizontal axis) results in a decrease of the aver-
age error. This behavior is similar to what we saw in preemptive systems (shown in 
Fig. 8g and explained in Sect. 5.3).

Impact of release jitter. Similar to the preemptive case (see Sect. 5.3 the part on 
release jitter), having release jitter in the system increases the error for all methods, 
in particular for PeTaMi. As we expected, when there are inherent uncertainties in 
the arrival times (caused by release jitters), the accuracy of PeTaMi decreases drasti-
cally, while our solutions have a low error (below 7%).

Impact of initial task offsets. To assess the impact of initial offsets on the accuracy 
of our solutions for non-preemptive systems, we performed another experiment in 
which we assigned a random offset with a uniform distribution in the range [0, H/2] 
to each task, where H is the hyperperiod of the task set. Fig. 15f shows the impact 
of random offsets (its offset-free counterpart is Fig. 15e). We observe that adding 
offsets hardly changes the behavior of most of the methods since Fig. 15f looks very 
similar to Fig.  15e. Interestingly, adding offsets improved PeTaMi’s accuracy (by 
about 20%). One explanation might be that when a set of almost harmonic tasks 
have non-identical offsets, the chance that they arrive at a time that the resource 
is idle is higher. Consequently, when they arrive, they are not interfered or being 
blocked by other higher- or lower-priority tasks. Therefore, the uncertainty about the 
execution window of the tasks, and hence the error of PeTaMi, reduces.

Comparing RPMPA and SPM with RPM. This experiment quantifies the degree 
of improvement introduced by the period adjustment method (RPMPA) and by the 
space-pruning method (SPM) in systems that consist of non-preemptive tasks. For this 
experiment, we aggregated the task sets generated for Fig. 15 into three categories: (i) 
task sets with no execution-time variation and no jitter (including all task sets used for 
Fig. 15a and b), (ii) task sets with execution-time variation (including all task sets used 
for Fig. 15c and d), (iii) task sets with release jitter (including all task sets used for 
Fig. 15e and f). These categories are represented in the second column of Table 4 with 
labels no uncertainty, execution var., and release jitter. We then run SPM and RPMPA 
on each of the categories and compare their performance with RPM.

To evaluate the impact of RPMPA and SPM w.r.t. RPM, we used a metric called 
improvement % shown on the third and fourth columns of Table 4. This metric is 
calculated as follows (ERPM − EX)∕ERPM , where X is either RPMPA or SPM. This 
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metric shows by what percentage each of the RPMPA and SPM could further reduce 
the error of the RPM method. The higher the value of the improvement, the larger 
the positive impact of the method. When the improvement is negative, the method 
being considered has increased the error in comparison to the original RPM. This 
case happened, for example, for RPMPA when task sets have release jitter (as it can 
be seen in the third column of Table. 4 for cubist and extraTrees methods).

Table 4 shows that applying period bounds (i.e., the SPM method) significantly 
reduces the error in comparison to the original RPM. For task sets that do not have 
uncertainties or have execution-time variation, the average improvement is about 
85% (see the upper part of the fourth column of Table 4). For task sets with release 
jitter, the benefit is a bit smaller but it is certainly more than just using RPMPA 
(comparing the third and fourth columns). In average, SPM has an 80% improve-
ment in the accuracy (for all task sets in Fig. 15 combined).

In particular, for systems with release jitter, using the SPM certainly (and always) 
reduces the errors while this might not be the case for RPMPA. As it was discussed 
earlier (in Sect.  5.3), release jitter negatively impact the signal-processing tech-
niques (periodogram and autocorrelation) and hence the candidates they produce 
may be farther from the true period.

7 � Discussions

ExtraTrees and cubist. Among our experiments, extraTrees algorithm has the lowest 
error in almost all setups. However, when it trains on a different task set type than 
the ones used for testing (shown in Sects. 5.5 or 5.6.3), its does not generalize well. 
This makes extraTrees a good choice when we have access to training data from 
the same system we want to test on (e.g., when it is used for monitoring a known 
system). On the other hand, when the target system is unknown, or we do not have 
access to the traces, cubist regression is a better choice; with a similar accuracy as 
extraTrees and better generalizability.

Non-tree-based solutions. The experiments have confirmed our statement from 
Sect. 3.2, where we expected the tree-based solutions to outperform the other types 
of RBML methods, when applied to our problem. We noticed that avNNet has 
almost a constant yet very large error of 100% for all experiments. This expresses 
the inability of the algorithm to learn a non-linear mapping from the input to the 
output, deciding instead to approximate the output as a constant value, namely the 
average of the periods from the training set. Since the test set is generated the same 
way as the training set, it will have a similar average value for its periods, thus keeps 
the error constant. Furthermore, svr is also not a good choice for the period-infer-
ence problem since our feature space is rather sparse, namely the features from peri-
odogram and autocorrelation do not have values that place the data points close to 
each other in this space. Hence, svr is not able to find a suitable hyperplane to fit the 
data. Moreover, we see that the candidate adjustment step has a significant impact 
on reducing the errors. However, in the presence of large release jitters, RPMPA 
must be used cautiously as it may increase the error.
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Discussions on memory consumption and runtime. Figure  12d addresses both 
the memory requirements and the runtime of the six considered RBML methods. 
We notice that cubist has a considerably low memory consumption compared to the 
rest. It is also almost the fastest solution during both the training and testing phases 
among the well-performing algorithms. On the other end of the spectrum, bartMa-
chine has the slowest training and testing phases, and avNNet has the largest mem-
ory consumption among the considered algorithms.

Non-preemptive scheduling. By conducting a set of experiments for systems with-
out preemptions (see Fig. 15), we observed that the behavior expressed by all tree-
based solutions was highly similar to the preemptive case. This demonstrates the 
applicability of our solutions to both types of scheduling paradigms.

Offsets. We noticed that the addition of offsets hardly resulted in a change of 
behavior for the RBML methods, presenting an almost identical pattern to the sce-
nario with simultaneous releases.

Comparing RPM, RPMPA, and SPM. Our results (see Fig.  9; Tables  2 and 4) 
show that both RPMPA and SMP are able to further reduce the error resulted from 
the regression methods (RPM method). We also observed a significant reduction of 
error when using period bounds (SPM method) in comparison with RPM.

8 � Conclusions

In this paper, we introduced the first regression-based machine learning (RBML) 
solution for the problem of inferring a task’s period from its binary projections. We 
investigated six most-successful families of RBML methods for this problem and 
provided comprehensive evaluations and discussions about their accuracy and robust-
ness under various scenarios. We proposed further steps for improving the accuracy 
by creating period-adjustment and space-pruning methods that use the properties of 
a work-considering scheduler to prune the space of valid periods of a task. Our solu-
tions proved to be robust and highly accurate. The average observed error of our (best) 
solution was under 1% in most scenarios including those with a mixture of periodic, 
aperiodic, and sporadic tasks, execution time variation, and release jitter while the 
existing work has two to three orders-of-magnitude higher errors. On the case studies 
from actual systems, the error of our best solution was 1.7%. In the future, we would 
like to explore RBML methods to infer the timing properties of parallel applications 
running on multiprocessor platforms and under partial observations.
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