
Real-Time Syst (2017) 53:669–672
DOI 10.1007/s11241-017-9288-1

Guest editorial: special issue on mixed-criticality,
multi-core, and micro-kernels

Robert I. Davis1

Published online: 16 August 2017
© Springer Science+Business Media, LLC 2017

Today, hard real-time systems are found inmanydiverse application areas including;
autonomous vehicles, avionics, space systems, and robotics. In these areas, technolog-
ical progress is resulting in rapid increases in both software complexity and processing
demands. To address these requirements, silicon vendors have shifted their focus from
single-core to multicore hardware platforms.

Multicore hardware integrates multiple processing cores onto a single chip. To
reduce costs and to improve performance in the average case, these cores typically
share a number of hardware resources; including parts of thememory hierarchy such as
the last level cache (LLC), main memory (DRAM), and the interconnect. By contend-
ing for these shared hardware resources, tasks executing on one core can potentially
interfere with tasks executing on another core, increasing their worst-case execu-
tion times. Contention for shared resources thus poses a significant challenge in the
development of real-time systems. In some cases the contention is so great that the
analysable, guaranteed real-time performance may be no better than that for a single
core.

With the adoption of multicore technology comes the opportunity to combine dif-
ferent applications on the same hardware platform, reducing size, weight and power
consumption, as well as assembly and production costs for the overall system. Here,
different applications may have different criticality levels, designating the level of
assurance needed against failure. For example, in an avionics context, flight control
and surveillance applications in unmanned aerial vehicles (UAVs) are of high and low
criticality respectively. The problem of combining high and low criticality applica-
tions on the same hardware platform raises issues of how to reconcile the conflicting

B Robert I. Davis
rob.davis@york.ac.uk

1 Department of Computer Science, University of York, Deramore Lane, York YO10 5GH, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-017-9288-1&domain=pdf


670 Real-Time Syst (2017) 53:669–672

requirements of separation for assurance, and sharing for efficient use of resources.
Further, with the advent of applications such as autonomous driving, the complexity
and processing load of software tasks has increased to the point where individual tasks
may need to be executed in parallel across multiple cores, if they are to meet their
deadlines; adding a further layer of complexity.

The development of systems running high criticality applications requires the sup-
port of a high-assurance real-time operating system (RTOS) or micro-kernel. Not only
must the functional behaviour of the RTOS be proven correct, but also its timing
behaviour.

This special issue contains four papers at the forefront of real-time systems
research into mixed-criticality scheduling, multicore systems, and high-assurance
micro-kernels. Each of these papers appeared in preliminary form at the 22nd IEEE
real-time and embedded technology and applications symposium (RTAS) 2016. These
preliminary papers received Outstanding Paper Awards identifying them as research
of the highest quality. Overall, 92 papers were submitted to RTAS 2016. After a
detailed review process, involving 58 Program Committee members and four reviews
per paper, 25 papers were selected to appear at the conference; an acceptance rate of
27%.The papers that appear in this special issue include significant and comprehensive
additional contributions to what is already regarded as outstanding research.

The first paper is “Addressing isolation challenges of non-blocking caches formulti-
core real-time systems” by Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi.
In its preliminary form, this paper received the Best Paper Award at RTAS 2016.

In multicore systems where the last level cache and memory (DRAM) are shared
between cores, cache partitioning is often seen as an effective way of isolating tasks
executing on one core from contention due to tasks executing on another core. This
paper shows that for a number of COTS processors with out-of-order cores, and non-
blocking caches, cache partitioning alone is not sufficient to achieve such isolation.
Rather, there are a set of hardware registers called (cache) miss status holding registers
(MSHR)which the tasks running on different cores can effectively contend for. In some
cases, this leads to a slowdown of over 20 times when contenders are introduced, for
a task running on a dedicated core and using a dedicated cache partition.

This paper provides a thorough investigation of the problem includingmeasurement
of the effects on a number of different multicore hardware platforms, and further inves-
tigation using a cycle-accurate simulator. A low cost hardware extension is proposed
in conjunctionwith an operating system solution. This approach alleviates the problem
of contention for MSHRs by providing operating system control of the memory level
parallelism for each core.

The second paper is “Attacking the one-out-of-m multicore problem by combining
hardware management with mixed-criticality provisioning” by Namhoon Kim, Bryan
C. Ward, Micaiah Chisholm, Cheng-Yang Fu, James H. Anderson and F. Donelson
Smith. In its preliminary form, this paper received the Best Student Paper Award at
RTAS 2016.

The potential for significant contention over shared hardware resources by tasks
executing on different cores of a multicore system can lead to substantial pessimism
in the verification of timing constraints. In the worst-case, tasks executing on one core
of an m-core system may be subject to so much contention that their execution is

123



Real-Time Syst (2017) 53:669–672 671

slowed by a factor of m or more, compared to the baseline of running in isolation
without contention. In terms of guaranteed real-time performance, the advantages of
having m-cores can be entirely negated. This is referred to as the “one out of m”
problem, since it would be more effective for the system to utilize only one core. This
paper addresses the “one out of m” problem by combining allocation techniques that
consider the criticality levels of application tasks with hardware mechanisms that can
make execution on a multicore platform more predictable, for those criticality levels
that need it. The mixed criticality framework employed enables DRAM banks and
areas of last level cache to be allocated to groups of tasks according to their criticality
level. Further, a linear programming method is proposed which is able to size the LLC
areas in a way that benefits schedulability. The paper closes with an evaluation of the
effectiveness of the framework based on a large-scale overhead-aware schedulability
study.

The third paper is “Mixed-criticality federated scheduling for parallel real-time
tasks” by Jing Li, David Ferry, Shaurya Ahuja, Kunal Agrawal, Christopher Gill, and
Chenyang Lu.

High performance real-time applications, such as those that facilitate autonomous
driving, have both high processing demands and tight deadlines. Such tasks may
require the use of internal parallelism to meet their deadlines (i.e. a single task may
need to execute in parallel on a number of cores). This paper addresses the problem
of mixed criticality scheduling of parallel real-time tasks that are modelled using
a directed acyclic graph (DAG). A mixed criticality federated scheduling (MCFS)
algorithm is proposed, with capacity augmentation bounds proven for dual- and multi-
criticality systems. An improved algorithm is also proposed, which retains the same
capacity augmentation bounds, but is able to schedule many more task sets in practice.
An MCFS runtime is implemented using Linux with the RT_PREEMPT patch as the
underlying operating system and OpenMP to manage threads and assign workload.
The MCFS runtime provides both graceful degradation and the ability to recover back
to normal operation. An empirical evaluation shows the effectiveness of the approach
in practice.

The fourth paper is “High-assurance timing analysis for a high-assurance real-time
operating system” by Thomas Sewell, Felix Kam, and Gernot Heiser.

It is essential that the system software e.g., real-time operating system used to
support high criticality applications is proven correct in terms of both its functional
behaviour and its timing behaviour (i.e. worst-case execution time (WCET) bounds).
This paper addresses the latter aspect for the high-assurance seL4micro-kernel.WCET
analysis is performed on the binary code; however, at that level, information about loop
bounds and infeasible paths is not normally available. This information can be provided
manually; however, that approach can be error-prone. Instead, this work proposes the
use of a translation-validation (TV) framework, and an optimizing complier. The TV
tool relates control flow at the source level to that at the binary level enabling the
WCET analysis to make use of information present in the source that is missing in
the binary. This provides a high-assurance means of automatically determining loop
bounds and infeasible paths in the kernel. The technique is also shown to work with
standard WCET benchmarks.

123



672 Real-Time Syst (2017) 53:669–672

Together, these papers form an excellent cross-section of state-of-the-art real-time
systems research into mixed-criticality scheduling, multicore systems, and micro-
kernels. They will undoubtedly provide a catalyst for further exciting research in this
field.

Rob Davis
Guest Editor

123


	Guest editorial: special issue on mixed-criticality, multi-core, and micro-kernels



