
Real-Time Syst (2017) 53:857–885
DOI 10.1007/s11241-017-9284-5

rt-muse: measuring real-time characteristics
of execution platforms

Martina Maggio1 · Juri Lelli2 · Enrico Bini3

Published online: 30 June 2017
© The Author(s) 2017. This article is an open access publication

Abstract Operating systems code is often developed according to principles like
simplicity, low overhead, and low memory footprint. Schedulers are no exceptions.
A scheduler is usually developed with flexibility in mind, and this restricts the ability
to provide real-time guarantees. Moreover, even when schedulers can provide real-
time guarantees, it is unlikely that these guarantees are properly quantified using
theoretical analysis that carries on to the implementation. To be able to analyze the
guarantees offered by operating systems’ schedulers, we developed a publicly avail-
able tool that analyzes timing properties extracted from the execution of a set of
threads and computes the lower and upper bounds to the supply function offered by
the execution platform, together with information about migrations and statistics on
execution times. rt-muse evaluates the impact of many application and platform
characteristics including the scheduling algorithm, the amount of available resources,
the usage of shared resources, and the memory access overhead. Using rt-muse, we
show the impact of Linux scheduling classes, shared data and application parallelism,
on the delivered computing capacity. The tool provides useful insights on the runtime
behavior of the applications and scheduler. In the reported experiments, rt-muse
detected some issues arising with the real-time Linux scheduler: despite having avail-

B Martina Maggio
martina@control.lth.se

Juri Lelli
juri.lelli@arm.com

Enrico Bini
bini@di.unito.it

1 Department of Automatic Control, Lund University, Lund, Sweden

2 ARM, Cambridge, UK

3 University of Turin, Turin, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-017-9284-5&domain=pdf

858 Real-Time Syst (2017) 53:857–885

able cores, Linux does not migrate SCHED_RR threads which are enqueued behind
SCHED_FIFO threads with the same priority.

Keywords Supply functions · Resource measurement · Linux kernel · Tools

1 Introduction

Real-time resource allocation policies are usually developed together with theoretical
results that support claims about their behavior. However, these claims apply to ideal
conditions and it is unknown if they hold when the policies are implemented in real
operating systems (OSes). For this reason, these results are often confined to theory.OS
developers are resistant to the adoption of real-time algorithms,mostly because general
purpose OSes are designed for flexibility and to operate in complex and variable
scenarios compared to the one assumed in real-time systems.

The gap between theory and practice can be closed by making the implementation
of real-time policies more accessible to non-kernel experts. A notable example in
this direction is LITMUSRT (Calandrino et al. 2006). LITMUSRT offers a simple
environment to implement sophisticated scheduling policies with a reasonably low
effort. PD2 (Anderson and Srinivasan 2001) and RUN (Regnier et al. 2011) are just
two examples of scheduling policies implemented in LITMUSRT.

Anotherway tofill the gap is to determine real-time characteristics of existing sched-
ulers’ implementations. rt-muse aims to go in this second direction. The timing
properties of scheduling policies can indeed be monitored. Feather-Trace (Branden-
burg and Anderson 2007), trace-cmd,1 and kernelshark2 are just examples of tools,
which help to monitor and to visualize some properties of the execution of threads.
However, the analysis of the large amount of data produced by these tracing tools often
needs to be extracted and interpreted by experts. rt-muse is an easy-to-use tool to
extract the real-time characteristics of an execution platform in an interpretable way.

Contribution rt-muse measures real-time characteristics of platforms by running
experiments with a synthetic taskset with user-defined characteristics and extracting
sequences of timestamps from the run. These sequences are then analyzed for real-time
features like supply functions and the number of migrations, together with statistics
on the response times of jobs. The analysis performed by rt-muse is organized in
modules, making the tool easily extensible. The advantage of a modular analysis is
that the user can specify the analysis of interest for any thread or for the taskset. A
modular analysis allows creating new modules easily. In rt-muse, implementing a
new module requires the creation of a Matlab/Octave function to perform the desired
operations. This paper extends the previous contribution of rt-muse (Maggio et al.
2016) adding a new analysis module, the statistical module presented in Sect. 3.4.

This paper also presents a broad set of experiments, covering several scheduling
policies and settings. Some of the experiments are particularly insightful and sug-

1 https://lwn.net/Articles/410200/.
2 http://rostedt.homelinux.com/kernelshark/.

123

https://lwn.net/Articles/410200/
http://rostedt.homelinux.com/kernelshark/

Real-Time Syst (2017) 53:857–885 859

gest that the current implementation of the Linux scheduling classes may actually be
improved. For example, the experiment described in Sect. 6.3 shows that threads that
could migrate and execute do not receive any CPU because of a problem with the
push/pull migration. As a new contribution of this paper over the previous publica-
tion (Maggio et al. 2016), two new sets of experiments are introduced, respectively
in Sects. 6.2 and 6.5, to further demonstrate the results that the tool allows one to
obtain. In particular, the experiment presented in Sect. 6.2 describes the behavior of
SCHED_OTHER and shows that it cannot be used as a real-time scheduling policy,
since it does not provide any guarantee on the computation time allocated to the
threads in the taskset and the set of experiments presented in Sect. 6.5 analyze the
SCHED_DEADLINE scheduling class both from the perspective of how it manages a
single reservation and in the presence of an additional load.

The results of the experiments performed by rt-muse are reproducible, as we
rely on tools that are integrated into the Linux kernel.

2 Overview of rt-muse

The goal of rt-muse is to measure the real-time characteristics of execution
platforms (Sect. 3 describes precisely the real-time characteristics extracted by
rt-muse). The platform includes the hardware, the operating system and all of its
components, among which the scheduler. rt-muse achieves its goal by analyzing
the traces of the execution of a set of experiments, properly constructed in accordance
to the user’s specifications.

The steps for using rt-muse are illustrated in Fig. 1. The first step is the creation
of a set-up file (in JSON format) that specifies the characteristics of the platform that
we want to extract. The format of the configuration file is described in Sect. 5.

To avoid the bias introduced by the measuring infrastructure, the target machine
that runs the experiments and the host machine collecting and analyzing the execution
traces are different.

Once the configuration file is completed, the invocation of a script file at the host
machine takes care of:

– Copying the configuration file to the target machine;
– starting the experiments at the target machine.While the experiment is in progress,
the target machine sends timestamps (via UDP datagrams) to the host machine that
collects them;

– as soon as the experiment terminates, the target machine informs the host machine,
which analyzes the data collected in accordance to the measurements requested
by the user.

During run-time, the timestamping infrastructure records the instant ti, j when the
j-th execution of the job body belonging to the thread τi starts and the processing
unit index πi, j . To record these timestamps, as well as to monitor other kernel events
(thread migrations, scheduler invocation, etc.), we use trace-cmd,3 the user-space

3 http://lwn.net/Articles/410200/.

123

http://lwn.net/Articles/410200/

860 Real-Time Syst (2017) 53:857–885

Target machineHost machine

launching
the script file

transfering
the configuration file

start of
the experiment

experiment
in progress

collecting
timestamps

analysis
of data

end of
the experiment

preparing
the configuration file

Fig. 1 Steps of rt-muse measurement procedure

front end for Ftrace.4 Ftrace is a lightweight tracer of kernel events developed by
Steven Rostedt, one of the Linux kernel developers. Together with kernel events, such
as thread migrations or context switches, it can monitor user-defined events. On x86
machines, Ftrace has nanoseconds precision.

Events can be collected by Ftrace in two ways: (1) stored in a buffer, which is
then flushed to disk when full, or (2) sent via User Datagram Protocol (UDP) to a
listener instance of Ftrace running on a remote machine. Due to disk writing, if the
collector is executed on the same machine, there is a risk of service outage. This is
especially true if a large number of events is generated. To avoid this problem and
to minimize the impact of the tool itself on the monitored experiment, we used the
remote monitoring via UDP. The drawback of using UDP is the possibility of losing
some events. Although this never happened in the experiments reported in the paper,
rt-muse is capable to reconstruct any missing event, by linearly interpolating the
two neighboring ones.

rt-muse is invoked on a host machine and performs the following steps:

1. It sends the experiment description, formatted as described in Sect. 4, to the target
machine, which is the one actually running the experiment;

2. It starts listening events sent by the target machine;

4 http://elinux.org/Ftrace.

123

http://elinux.org/Ftrace

Real-Time Syst (2017) 53:857–885 861

3. It communicates to the target machine to start the experiment run;
4. It collects all received events until the target communicates the completion of the

experiment;
5. It performs all the analysis modules requested by the user.

After the script file on the host machine has terminated, the user can read the output
of the experiment in a human readable form.

Finally, rt-muse is freely available on-line.5

Organization of the paper In the following, Sect. 3 describes the analysis modules
available. We start with the analysis to highlight what are the benefits of analyzing a
taskset execution tracewithrt-muse. The paper then describes the applicationmodel
and how it is possible to construct a synthetic taskset that models the real application
in Sect. 4. rt-muse focuses on one specific type of applications (applications that
repeats the same job continuously, like multimedia applications, streaming services,
image analysis software and many others). Sections 5 and 6 then describe how the tool
can be used, and the results of the experiments that we have conductedwith rt-muse.
Finally, Sect. 7 discusses related research efforts and Sect. 8 concludes the paper.

3 The analysis capabilities of rt-muse

This section describes the analysis modules offered by rt-muse. Each of the follow-
ing subsections focuses on one of specific module currently implemented. rt-muse
is engineered to make it simple to add a new analysis module and to use the data
produced by other modules for further investigations.

First, Sect. 3.1 describes the supply analysis module and the additional background
and definitions necessary to understand the analysis method. The supply module
computes an experiment-based approximation of the lower and upper supply bound
functions of the computing resource allocated to a single thread as well as the bounds
to the overall resource allocated to a set of threads. The section also lists several prop-
erties, which are exploited for computing bounds to the supply functions. Second, in
Sect. 3.2 we describe the runmap module, which computes a map with information
about where threads are executed. Third, in Sect. 3.3 we introduce the migration mod-
ule, that computes the migrations experiences by each thread. Finally, in Sect. 3.4 we
introduce the statistical module that computes statistics about the average response
time of jobs.

3.1 The supply analysis module

The supply analysis module aims at extracting an experiment-based supply function
from the trace of execution of the threads in the taskset. For each of the threads
we want to approximate the computational capacity offered by the platform with a
powerful analysis tool. Supply functions have been used, possibly under different
names in different contexts [e.g. service curves in network/real-time calculus (Cruz

5 https://github.com/martinamaggio/rt-muse.

123

https://github.com/martinamaggio/rt-muse

862 Real-Time Syst (2017) 53:857–885

1991; Baccelli et al. 1992; Thiele et al. 2000)], to model the availability of different
types of resource: processing time of a single (Mok et al. 2001; Lipari and Bini 2003;
Shin and Lee 2003) or multi-core (Bini 2009; Xu et al. 2015) platform, network (Cruz
1991; Almeida et al. 2002), memory (Yun et al. 2016; Åkesson and Goossens 2011),
and I/O (Pellizzoni et al. 2008). However, this is the first instance in which a supply
function is constructed based on the experimental execution trace.

To understand how supply functions are extracted from the application execution,
let us first define an execution platform P as any mechanism that provides computing
capacity [such as a virtual machine, a priority level of a scheduler, or a periodic
resource (Lipari and Bini 2003; Shin and Lee 2003)]. The supply analysis module
computes the experiment-based supply lower (respectively upper) bound functions
˜slbf(t) (resp. ˜subf(t)) of the platform P , based on actual measurements.

The instrument of the supply module to measure the supply functions of a platform
P , is a set T = {τ1, . . . , τn} of n threads which are going to be executed over the
platform itself. Each of the n threads τi ∈ T executes forever the same job in loop,
with nominal duration ei . The job body can be configured by the user, as described in
Sect. 4, to test the response of the platform to different types of loads. For the duration
of the experiment, the start time ti, j of the j-th job of the i-th thread is recorded
by the monitoring infrastructure. The supply module extracts the supply lower and
upper bounds by comparing the length of sequences of jobs with their nominal value.
Intuitively, the longer the jobs take, the smaller is the amount of computing capacity
delivered by the platform P .

In the following we present our implementation choices for the supply module.
Before, we recall some background on supply functions. The resource allocation oper-
ated by the scheduler to thread τi is modeled by means of a scheduling function ξi (t)
with the standard interpretation

ξi (t) =
{
1 τi runs at t
0 otherwise.

(1)

The supply lower bound function slbfi (t) and the supply upper bound function
subfi (t) of thread τi are functions such that (Mok et al. 2001; Lipari and Bini 2003;
Shin and Lee 2003)

slbfi (b − a) ≤
∫ b

a
ξi (t) dt ≤ subfi (b − a), (2)

meaning that slbfi (t) and subfi (t) are lower and upper bounds to the amount of
resource allocated to the thread τi in any interval of length t .

Supply functions also determine bounds to the completion time R(W) of any
amount of work W to be made by the thread τi . In fact

Rb(W) ≤ R(W) ≤ Rw(W), (3)

with Rb(W) and Rw(W) defined as

{
Rw(W) = sup{t : slbfi (t) < W }
Rb(W) = inf{t : subfi (t) ≥ W }. (4)

123

Real-Time Syst (2017) 53:857–885 863

W

Rb(W) Rw(W)

subfi(t)

slbfi(t)

upperFRb(W),W (t)

lowerFRw(W),W (t)

Fig. 2 The completion time of an amount of work W can be bounded by Rb(W) and Rw(W), which are
determinedby the supply bound functionssubfi (t) andsubfi (t), respectively, fromEq. (4). The construction
of the supply bound functions via Corollary 1 is also illustrated

Figure 2 illustrates the bounds to the completion time R(W) of (4), as function of the
pair

(
subfi (t), slbfi (t)

)
.

From (1), it follows that the maximum instantaneous execution rate is of any thread
is αmax

i = 1. Supply functions are Lipschitz-continuous with constant αmax
i , that is

∂ slbfi (t)
∂t

,
∂ subfi (t)

∂t
∈ [0, αmax

i]. (5)

Despite the value of αmax
i being 1, we keep using the explicit notation αmax

i , since
later in Sect. 3.1 we are going to analyze also the case of supply functions of a set of
threads possibly running in parallel, hence with a maximum instantaneous execution
rate higher than 1.

The determination of the exact supply functions requires the exploration of all
possible resource schedules, which is unrealistic over a real operating system. Instead,
we propose to infer the experiment-based supply function by measuring the bounds
Rw(W) and Rb(W) of the completion time of a known amount of work W . This is
made possible by the next Theorem.

Theorem 1 Let Rw(W) and Rb(W) be respectively the largest and smallest comple-
tion times of an amount W of work over a platform with maximum instantaneous rate
αmax

i .
Then, the supply lower bound function slbfi (t) is bounded from below by

slbfi (t) ≥
{

W + αmax
i × (t − Rw(W)) t ≤ Rw(W)

W t > Rw(W),
(6)

and the supply upper bound function subfi (t) is bounded from above by

subfi (t) ≤
{

W t < Rb(W)

W + αmax
i × (t − Rb(W)) t ≥ Rb(W).

(7)

123

864 Real-Time Syst (2017) 53:857–885

Proof First, we prove the Theorem for the slbfi (t). By the definition of Rw(W) in (4),
it follows that

t > Rw(W) ⇒ slbfi (t) ≥ W. (8)

In fact, if there is any t∗ > Rw(W)with slbfi (t∗) ≥ W , then Rw(W)would be at least
as big as t∗, which is a contradiction.

For any t ≤ Rw(W) we invoke the Lipschitz-continuity of slbfi (t) with constant
αmax

i , that is

slbfi (Rw(W)) − slbfi (t) ≤ αmax
i (Rw(W) − t)

slbfi (t) ≥ slbfi (Rw(W)) + αmax
i (t − Rw(W)).

From (4), since Rw(W) is the supremum of a set, then there is a sequence {tk}k∈N
within {t : slbfi (t) < W } such that limk tk = Rw(W) and limk slbfi (tk) = W .
From the continuity of slbfi (t), it follows that slbfi (Rw(W)) = W and then from the
Lipschitz-continuity

t ≤ Rw(W) ⇒ slbfi (t) ≥ W + αmax
i (t − Rw(W)), (9)

which proves, together with (8), the lower bound on slbfi (t) of (6). The proof of (7)
is analogous and it omitted for brevity. ��

The inequalities (6) and (7), can be written more compactly as

∀t, slbf(t) ≥ lowerFRw(W),W (t)

∀t, slbf(t) ≤ upperFRb(W),W (t)

respectively, with the auxiliary functions lowerFx,y(t) and upperFx,y(t) illustrated
in 2, and defined as

lowerFx,y(t) =
{

y + αmax × (t − x) t ≤ x

y t > x,
(10)

upperFx,y(t) =
{

y t < x

y + αmax × (t − x) t ≥ x .
(11)

Since the bounds of (6) and (7) hold for any amount of work W , the next corollary
follows.

Corollary 1 Let

– lowerFx,y(t) and upperFx,y(t) be defined as in (10) and (11), respectively, and
– Rw(W) and Rb(W) be longest and shortest completion time of an amount of work

W over a platform with maximum instantaneous execution rate αmax
i .

123

Real-Time Syst (2017) 53:857–885 865

Then the following bounds on the slbfi (t) and subfi (t) hold

slbfi (t) ≥ sup
W≥0

{
lowerFRw(W),W (t)

}
(12)

subfi (t) ≤ inf
W≥0

{
upperFRb(W),W (t)

}
. (13)

Equations (12), (13) provide an alternate definition of the bounds to supply func-
tions. The advantage of (12), (13) over the standard definitions of supply functions is
that they depend on the bounds Rw(W) and Rb(W) of the completion time of the work
W made by thread τi . These values, in fact, can be measured by targeted experiments
and used, through (12) and (13), to compute the experiment-based supply functions.
More precisely, the steps made by rt-muse to measure the supply functions of a
platform are

1. the set of threads {τ1, . . . , τn}, each one with nominal duration ei , are created by
the user (Sect. 4 describes how);

2. from the execution traces, the sequence of timestamps ti, j of the start time of the
j-th job of τi is extracted (j from 0 to the index maxJi of the latest timestamp);

3. from the sequence of timestamps {ti, j }maxJi
j=0 , following sequences

∀k = 0, . . . ,maxJi si,k = max
j=0,...,maxJi −k

{ti, j+k − ti, j }
∀k = 0, . . . ,maxJi si,k = min

j=0,...,maxJi −k
{ti, j+k − ti, j },

are computed (notice, it is always si,0 = si,0 = 0);
4. since each τi is structured as forever loop,we approximated the longest and shortest

time to complete an amount of work equal to k × ei as follows

Rw(k × ei) ≈ si,k Rb(k × ei) ≈ si,k . (14)

5. finally, in accordance to the bounds of (12) and (13), we define the experiment-
based supply upper/lower bound functions as

˜slbfi (t) = max
k=0...,maxJi

{
lowerFsi,k ,kei (t)

}
(15)

˜subfi (t) = min
k=0...,maxJi

{
upperFsi,k ,kei

(t)
}
. (16)

For thread τi , the job nominal length ei represents the duration of the job body
in ideal conditions (with no interference by the execution of other threads). In our
experiment-based computation, this value is set to

ei = si,1, (17)

that is the shortest duration among all job of τi in the experiment. The user can also
specify any other value. Since the job lengths extracted from the timestamps sequence

123

866 Real-Time Syst (2017) 53:857–885

have to be compared against the nominal length ei , setting ei to a bigger value may
lead to too optimistic conclusions about the computing capacity of the platform, while
setting ei smaller than si,1 may be too conservative.

To summarize the content of supply functions in amore compact andunderstandable
form, they are often abstracted by the bandwidth and the delay. More precisely, with

a given˜slbfi (t), we say that the supply lower bound function has bandwidth αi and
delay �i if

∀t, ˜slbfi (t) ≥ αi (t − �i). (18)

Among the many pairs (α,�) satisfying (18), we choose the one such that the
corresponding linear lower bound better approximate the exact supply lower bound
function slbf(t). Such a pair corresponds to the solution of the followingmaximization
problem

maximize
∫ H

�

α(t − �)

such that slbf(t) ≥ α(t − �) ∀t

with H being a user-defined time-horizon of interest. In fact, the area below the linear
lower bound over the interval of interest [0, H] can be considered a measure of the
tightness of the linear lower bound.

Analogously as in (18), we also define the bandwidth and delay of the supply upper
bound function as any pair (αi ,�i) such that:

∀t, ˜subfi (t) ≤ αi (t − �i). (19)

Notice that from the property that ˜subfi (0) = 0, it follows that �i is always going to
be non-positive. Similarly to the lower bound case, to among all linear upper bounds
satisfying (19), our tool computes explicitly the pair (αi ,�i) among the feasible ones,
such that the area below the linear upper boundover the interval [0, H] isminimized.To
enable the computation of different linear upper/lower bounds, the tool also computes
the convex hull of both the lower and the upper bound functions.

The supplymodule also allows the characterization of the overall computing capac-
ity delivered by the platform P to the entire set of n threads T . These measures are
denoted by the subscript “∗” rather than “i” of the per-thread analysis. The steps are
exactly the same as for the per-thread analysis, with the following adaptation

1. the overall schedule is defined by

ξ∗(t) =
∑
τi ∈T

ξi (t),

2. the maximum instantaneous execution rate is set to αmax∗ = min(n, m), with m
being the number of processors of the platform, and

123

Real-Time Syst (2017) 53:857–885 867

3. the timestamps are

{t∗,k} =
n⋃

i=1

{ti,k},

since, in this case, we aim at measuring the amount of computation delivered by
the platform to any thread.

After the analysis of the overall platform P is completed, the results are the supply

function bounds˜slbf∗(t),˜subf∗(t), the bandwidth/delay pair of the linear lower bound
(α∗,�∗), and the pair of the linear upper bound (α∗,�∗).

3.2 The runmap analysis module

At the begin of all jobs, Ftrace collects both the timestamp ti, j as well as the index of
the CPU on which the j-th job by the i-th thread started on, denoted with πi, j . This
information is used by the runmap analysis module, together with the total number of
jobs terminated by each thread, to compute the runmap. For each CPU included in the
affinity mask of the thread, the tool reports the percentage of jobs that started on that
CPU. This analysis can only be performed per thread.

3.3 The migration analysis module

For each thread, we compute the number of migrations experienced by the thread
during its execution. This analysis can only be performed per thread. The migration
module analyzes migrations data and allows one to compute the frequency of migra-
tion over time. This will make the information about conditions in which thread are
constantly migrated more accessible to the user, who can then understand when the
limits of the platform have been reached.

3.4 The statistical analysis module

If we define the random variable si,k as the time it takes to execute k consecutive jobs
of the thread τi (i.e., the time elapsing between the start times of k + 1 consecutive
jobs), we can say that the supply analysis module provides information about the two
random variables min{si,k} and max{si,k}. The statistical analysis module, instead,
investigates the mean and the variance of the random variable si,k . If we assume that
the timestamps of the start times of τi ’s jobs are indexed from 0 to maxJi , then the
statistical analysis module computes, for all k = 1, . . . ,maxJi , the average μi,k and
the variance σ 2

i,k , as described below

μi,k =
∑maxJi −k

j=0 (ti, j+k − ti, j)

maxJi − k + 1
(20)

123

868 Real-Time Syst (2017) 53:857–885

σ 2
i,k =

∑maxJi −k
j=0 (μi,k − (ti, j+k − ti, j))

2

maxJi − k + 1
(21)

therefore avoiding the last k−1 jobs, thatwould not contribute to ameaningful estimate
of the time it takes to execute k jobs.

4 Modeling a taskset with rt-muse

The goal of rt-muse is to measure the computing capacity delivered by the
execution platform to different types of workloads. Such a feature is realized by
allowing the testing threads T to be configured by the user. For this purpose, the
job body of each thread τi is composed by the sequential concatenation of pi

job phases denoted by φi,1, φi,2, . . . , φi,pi . Each phase φi,k belongs to a set

of available phases. Currently, the tool offers the following set of phases
 =
{φcompute, φlock, φmemory, φshared, φuser}. Each phase may be configured through
some input parameters, as described below.

The phase φcompute(�), called compute phase, is configured with a positive integer
�. The execution of the phase φcompute(�) keeps the CPU busy for a time proportional
to �. In our current implementation, this phase executes � floating point operations.
This can be used to simulate any computational intensive work such as the run of a
control algorithm, the aggregation of data from different sensors or else.

The phase φlock(�, r), called lock phase, is configured with a positive integer �

and an index r of a shared resource. The body of the phase is exactly the same as the
compute phase.However, before starting the execution of themathematical operations,
the thread locks the shared resource r . The lock is released at the end of the execution.
Resource identifiers are numbered from 0 to R − 1, where R is the total number
of available resources, as specified in the test configuration file. We use the default
pthread_mutex_lock function offered by glibc version 2.19. This phase can,
therefore, be used to evaluate the impact of shared resources on the overall computing
capacity and to test different locking protocols.

The phase φmemory(�, m), called memory phase, is configured with a positive inte-
ger � and a size m of memory to be used. The body of the phase is exactly the same as
the compute phase. However, before entering the computation part, the phase dynam-
ically allocates an amount of memory corresponding to m double values on the heap
and saves the results of the mathematical computation in the allocated vector. When-
ever the result storage reaches the end of the vector, it restarts from the beginning. This
phase can be used to test the platform in presence of memory writing and to evaluate
the impact of cache sizes on the performance delivered to the running applications.

The phase φshared(�), called shared phase, is configured with a positive integer �.
The phase behaves similarly to the memory phase, but it writes the data to a memory
buffer shared among all the threads (rather than in a private buffer as in φmemory). The
shared memory is locked before usage and the lock is released when the � operations
are completed. The size of the shared memory buffer is specified as a configuration
parameter for the entire application and thememory is allocated on the heap at start-up.

123

Real-Time Syst (2017) 53:857–885 869

This phase can be used to evaluate the performance degradation in presence of shared
memory.

Finally, the phase φuser offers the user the possibility to define any user-specific
phase. During this phase, the user function is invoked. The code of this phase can be
modified by the user to analyze the computing capacity delivered by the platform to
any type of application, which cannot be precisely described by any sequence of the
predefined phases.

5 Specification of experiments

As anticipated in Sect. 2, an experiment is defined by a configuration file that specifies
the taskset characteristics and the execution platform characteristics. This file is for-
matted using the JavaScript Object Notation (JSON6). As illustrated in the example
of Listing 1, and has four main sections (“objects” in the JSON terminology):

1. global, specifying the global settings,
2. resources, specifying the available resources,
3. shared, denoting the shared memory size, and
4. threads, describing the threads in T to be executed.

Theglobal configuration section (lines 1–4 in the example of Listing 1) allows the
user to specify the default scheduling policy to be used.Currently, onlyLinuxmachines
are allowed, and the scheduling classes can be chosen among SCHED_OTHER,
SCHED_RR, SCHED_FIFO and SCHED_DEADLINE, which are implemented in the
latest kernel (at line 2, SCHED_RR is specified as default). Also, the duration of the
experiment in seconds is specified in the global section (10 seconds in the example,
at line 3). The resources section (line 6 in the example) reports the number R of
total different shared resources to be used by any φlock phase. In the lock phase, one
can specify that the thread locks the resource r = 0, . . . , R − 1. The section shared
(line 7 in the example) specifies the size in bytes of the shared memory buffer to be
shared by the φshared thread phases. Such a buffer is protected with an additional lock
(not belonging to the R mutexes specified in the resources section).

1 { "global" : {
2 "default_policy" : "SCHED_RR",
3 "duration" : 10,
4 "analysis": { "supply": true }
5 },
6 "resources": 2,
7 "shared": 50,
8 "threads": {
9 "thread1": {

10 "priority": 10,
11 "cpus": [0,1,2],
12 "phases": {
13 "c0": { "loops": 1000 },
14 "l0": { "loops": 2000, "res": 0 },
15 "s0": { "loops": 1000 },

6 http://www.json.org.

123

http://www.json.org

870 Real-Time Syst (2017) 53:857–885

16 "l1": { "loops": 3000, "res": 1 },
17 "m0": { "loops": 1000, "memory": 10 },
18 "c1": { "loops": 5000 }
19 },
20 "analysis": { "supply": true,
21 "runmap": true,
22 "migrations": true,
23 "statistical": true }
24 },
25 "thread2": {
26 "cpus": [0,1],
27 "policy": "SCHED_DEADLINE",
28 "budget": 1000,
29 "period": 2000,
30 "phases": {
31 "c0": { "loops": 5000 },
32 "m0": { "loops": 1000, "memory": 100 },
33 "l0": { "loops": 10000, "res": 1 }
34 } } } }

Listing 1 Example of JSON test configuration file.

The threads τ ∈ T are described in thethread section (lines 8–34 in the example).
For each thread τi the scheduling parameters are specified. These parameters are used
by the scheduler to select the threads to be executed over the execution platform P (in
the example, τ1 is scheduled by the default scheduling policySCHED_RRwith priority
10 set at line 10, while at lines 27–29 τ2 is set to be scheduled by SCHED_DEADLINE
with budget 1000 and period 2000 nanoseconds). Also, for each thread it is possible
to specify its affinity, that is the subset of the available CPUs on which the thread is
allowed to execute (in the example, τ1 can execute only on CPUs 0, 1, and 2, while τ2
can execute only on CPUs 0 and 1). If left unspecified, the thread can migrate over all
the available CPUs.

Finally, for each thread τi the phases section contains the list of the pi phases to
be executed in sequence. Each phase has a name and the corresponding parameters.
The name of the phase identifies its type. A phase name that starts with the letter c is a
φcompute(�) phase and expects to receive the parameter �. A phase name starting with
the letter l indicates a lock phase φlock(�, r) and should receive two parameters, the
number of iterations � and the resource r to be locked. A phase name starting with the
letter m denotes a memory phase φmemory(�, m) and takes two parameters, the number
of iterations � and the amount of memory to be used m. Finally, a phase name starting
with the letter s identify a shared phase φshared(�) and receives one parameter, the
number of iterations �. Phases of the same type may repeat within the thread body.
In the example, τ1 has p1 = 5 phases described in lines 12–19. According to the
specification of Listing 1, the phases of τ1 are:

1. φ1,1 = φcompute(1000), that is a loop of 1000 mathematical operations,
2. φ1,2 = φlock(2000, 0), that is a loop of 2000 mathematical operations while lock-

ing resource 0,
3. φ1,3 = φshared(1000), that is it computes 1000 operations on the shared memory

buffer of size 50 (as specified at line 7),
4. φ1,4 = φlock(1000, 1), that is τ1 uses resource 1, and then does 1000 iterations,

123

Real-Time Syst (2017) 53:857–885 871

5. φ1,5 = φmemory(1000, 10), that is τ1 does 1000 iterations writing circularly in a
memory area of 10 elements, and finally

6. φ1,6 = φcompute(5000), that is a loop of 5000 mathematical operations.

Thread τ2 of the example, instead, has the following phases: φ2,1 = φcompute(5000),
φ2,2 = φmemory(1000, 100), and φ2,3 = φlock(10000, 1).

The analysis section can be specified within each thread specification as well as
within the global section. In both cases, it lists the name of the analysis modules to
be executed. In case the analysis element is missing (such as for τ2 in the example),
then the corresponding thread data is not analyzed, although executed. This feature can
be used to create someworkload interferingwith the threads to bemonitored.When the
analysis section is present in theglobal section, the corresponding analysismod-
ules are performedover thedata aggregated fromall threads that contain ananalysis
section. Such a type of aggregated analysis can be used to determine the overall char-
acteristics of the platform (such as the overall delivered computing capacity).

5.1 Example of results

To better illustrate the output of rt-muse, we present an example with 6 threads
all equal to each other. We assigned them the SCHED_OTHER scheduling class and
set an affinity mask that contains CPUs [1, 2, 3], meaning that all the 6 threads were
confined to run over 3 among the 4 CPUs available on our platform. All thread bodies
were composed by the only one phase φi,1 = φcompute(100000), for all i = 1, . . . , 6.
The experiment lasted 100 seconds.

The actual duration of the monitored window was 99.0567 s. Compared to the
duration of the experiment (set to 100 s), it means that it took about one second to start
up the tool, create the threads, take first scheduling decisions, etc. before the first job
of all 6 threads was activated.

Let us illustrate the results of the analysis of thread τ3 (anyother selectionwould give
similar data, as all threads are the same). Thread τ3 released 35838 (denoted bymaxJ3
in Sect. 3.1) jobs in the analysis window. The number of job migrations measured by
the migrations module is 220. Thread τ3 did run over the 3 CPUs according to
the shares [0.009, 0.440, 0.551]. The experiment-based supply lower/upper bounds
˜slbf3(t) and ˜subf3(t) are plotted in Fig. 3. Notice that, to illustrate the information
over different timescales, the lower-left corner of the top figure is properly magnified
below. Lower and upper linear bounds, with parameters (α3,�3) and (α3,�3), are
also drawn in dashed lines. Finally, we observe that any valid linear bound, other than
the ones explicitly computed by our method, can be determined by evaluating only

the points over the convex hull of˜slbf3(t) (or ˜subf3(t)) provided with the results. The
vertices of the supply function along the convex hull are also drawn in the figure.

For the same thread τ3, Fig. 4 illustrates the standard deviation σ3,k , that is the
square root of the expression of (21). As illustrated in the figure, σ3,k grows up to a
maximum and then decreases to 0 when k ← maxJ3. In fact, when k grows, then
the sample space over which the variance is computed shrinks. Unless the scheduling
algorithm of the platform P can provide some level of determinism in the resource

123

872 Real-Time Syst (2017) 53:857–885

125

100

75

50

25

0
0 25 50 75 100 125 150 175 200 225 250

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

2.5

2

1.5

1

0.5

0

[msec]

[msec]

[sec]

[sec]

slbf(t)

subf(t)

max{0, α(t − Δ)}
min{αmaxt, α(t − Δ)}
convex hull of slbf(t)

convex hull of subf(t)

Fig. 3 Illustration of the results of the supply analysis module

0 5 10 15 20 25 30 35 40

0.6

0.4

0.2

0.8

0

σ3,k

k × 103

Fig. 4 Standard deviation σ3,k over k, as computed by the statistical analysis module

allocation to k consecutive jobs for some k, a decrease of σi,k should be interpreted as
an indication of a short experiment duration.

123

Real-Time Syst (2017) 53:857–885 873

6 Experimental results

In this section, we show a set of experiments that we conducted to test the available
Linux scheduling classes, as well as the capacity loss due to the usage of critical
sections and memory allocation. These experiments compute the experiment-based

supply function bounds˜slbf(t) and ˜subf(t), as defined in (15)–(16), and the distribu-
tion of the threads on the available CPUs. All the experiments were run over an Intel
Quad core running at 2.50 GHz equipped with Linux kernel 3.17.

6.1 Experimental environment

This section describes the experimental environment in which we performed our tests.
This includes a review of the Linux scheduling hierarchy and a description of the
tracing infrastructure.

In Linux, the scheduling policy is determined by the scheduling class assigned to
a thread. The available scheduling classes in the kernel—from version 3.14—are:

1. SCHED_DEADLINEhas the highest priority among all. It implements theConstant
Bandwidth Server (CBS) (Abeni and Buttazzo 1998) and it is configured with the
reservation budget Q and period P;

2. SCHED_FIFO implements fixed priority scheduling and is configured with a pri-
ority level from 99 (highest) to 1 (lowest);

3. SCHED_RR is the same as SCHED_FIFO. However, after a thread has run for
100ms, (this duration is configurable by writing to /proc/sys/kernel/
sched_rr_timeslice_ms), it is pushed back to the queue of its priority level

4. SCHED_OTHER this is the standard scheduling algorithm inLinux, theCompletely
Fair Scheduler (CFS).

Threads also have an affinity mapwhich determines the set of coreswhere the thread
is allowed to execute. For efficiency, there is one run queue per core. Hence, to imple-
ment a logical global run queue, the so-called push/pull migration is implemented: in
certain circumstances, such as when the local queue is empty, a processor may try to
pull a thread ready for execution from another queue. Similar mechanisms exist for
pushing threads to other CPUs.

6.2 The SCHED_OTHER Linux scheduling class

The aim of this experiment is to evaluate the behavior of SCHED_OTHER. Despite
not being a real-time scheduler, SCHED_OTHER is designed to enforce fairness
among the threads (CFS). We defined a set T = {τ1, . . . , τ6} of 6 threads. All the
τi threads have the same characteristics. Their job is composed by one single phase
φi,1 = φcompute(100000). In other words, every thread executes 100000mathematical
operations for each job.We execute the set T on a platformP , composed by four cores.
The scheduling parameters of τ of all the threads belonging to T are the same: the
threads affinity mask contains three CPUs, [1, 2, 3], avoiding the execution on CPU
#0. The default policy SCHED_OTHER is used for all the threads. We let the operating

123

874 Real-Time Syst (2017) 53:857–885

Table 1 Threads scheduled by
SCHED_OTHER

supply runmap

τi αi �i αi �i #1 #2 #3

τ1 0.374 0.112 0.484 −0.081 0.062 0.614 0.324

τ2 0.382 0.197 0.627 −0.313 0.191 0.332 0.476

τ3 0.353 0.059 0.479 −0.107 0.009 0.440 0.551

τ4 0.378 0.212 0.624 −0.319 0.159 0.302 0.539

τ5 0.393 0.129 0.642 −0.097 0.109 0.545 0.346

τ6 0.372 0.166 0.679 −0.181 0.834 0.062 0.104

system schedule the threads for a duration of 100 seconds. We expect that six threads
with the same characteristics, running on three cores, would receive similar budgets,
possibly obtaining each half of a CPU.

For each thread, Table1 reports the pairs (αi ,�i) and (αi ,�i) computed by the
supply module, as explained in 3.1, corresponding to the linear bounds maximiz-
ing/minimizing the area over the interval [0, 5]. The last three columns correspond to
the share of consumed CPU obtained with the runmap module.

It can be observed that the allocated bandwidths are almost all equal to each other
and that the range of variability of the bandwidth over time is wide as αi is always
significantly smaller than αi . Although other interfering operating systems threads
could be easily accommodated on CPU #0, which is not used by the set T , still the
overall delivered bandwidth is lower bounded by α∗ = 2.582374, which is quite less
than the full 3 CPUs dedicated to T . One could suspect that the missing bandwidth
is due to the tracing infrastructure. However, this is not the case. As shown in the
experiments of 6.3, the overhead introduced by trace-cmd is extremely limited
and other scheduling policies manage to effectively distribute a higher fraction of the
available computing resources. The supply functions of τ3 was also plotted in 3.

Finally, by observing that the values of �i are considerably large, we conclude that
the granularity of threads schedules is considerable large. This, however, is expected
since SCHED_OTHER does not aim at providing tight timing guarantees, but rather a
fair allocation of resources.

6.3 The SCHED_FIFO and SCHED_RR classes

The aim of this set of experiments is to verify the computing capacity offered by
SCHED_FIFO and SCHED_RR. We expect them to offer better guarantees on the
delivered computing capacity compared to SCHED_OTHER. In our experiments all
threads run at the same priority level, which was set to 50. Otherwise, threads at higher
priority would consume all the available computing capacity, and lower priority ones
would never have a chance to execute.

In the first experiment, the set T contains seven threads, T = {τ1, . . . , τ7}. The
job of each thread τi is composed by a single phase φi,1 = φcompute(100000). The
affinity set of all seven threads is set to [1, 2, 3], avoiding the execution on CPU #0.

123

Real-Time Syst (2017) 53:857–885 875

Table 2 Threads scheduled by
SCHED_FIFO and SCHED_RR

scheduling supply runmap

τi class αi �i #1 #2 #3

τ1 SCHED_FIFO 0.998 0.0011 0 0 1

τ2 SCHED_FIFO 0.998 0.0003 1 0 0

τ3 SCHED_RR 0 – 0 0 1

τ4 SCHED_RR 0.499 0.1021 0 1 0

τ5 SCHED_RR 0 – 1 0 0

τ6 SCHED_RR 0.499 0.1015 0 1 0

τ7 SCHED_RR 0 – 1 0 0

The scheduling class SCHED_FIFO is assigned to τ1 and τ2, while all threads in
{τ3, . . . , τ7} are scheduled by SCHED_RR.

Given the scheduling hierarchy, we expect that the two threads executing with
SCHED_FIFO would saturate one CPU each. In fact, when one of these executes
for the first time on one CPU, it never releases it. The other 5 threads scheduled by
SCHED_RR should all run over the third CPU, receiving then around 20% of the
available computing capacity.

Table2 shows the bandwidthαi and the delay�i , extracted by thesupplymodule.
The values of αi and �i are almost identical to their corresponding lower bounds.
The table also reports the percentage of time that each thread spent on each of the
available CPUs, obtained with the runmap module. Contrary to our expectations,
the threads scheduled with SCHED_RR, despite having the same priority level as the
SCHED_FIFO ones, are not migrated to the available CPU. Hence, the SCHED_FIFO
threads prevent some of them from running at all, with a quite evident lack of fairness.
More precisely, after a deeper investigation, we found that τ5 and τ7 did not run at
all. τ3 run for a round only. Since τ3, τ5, and τ7 were on the same CPU as some
SCHED_FIFO thread, as the SCHED_FIFO threads starts running they never give
the control back to the scheduler. In this situation, for fairness, we would expect that
the scheduler would pull τ3, τ5, and τ7 to the run queue of CPU #2. This, however,
does not happen. The explanation is that push/pull migration happens based on the
priority level only. Hence, the scheduler does not see any reason why pulling τ3, τ5,
and τ7 to CPU #2, when on CPU #2 it is running a thread with the same priority. We
believe, however, that fairness would increase by pulling SCHED_RR threads which
may have happened to be behind to some SCHED_FIFO ones in the same priority
queue.7

Also, using the runmap module, we observe that τ4 and τ7 equally share CPU
#2, and �4 = �6 ≈ 100 ms, that is the default length of the round in SCHED_RR,
as specified in /proc/sys/kernel/sched_rr_timeslice_ms. The overall
bandwidth is α∗ = 2.994, very close to the number of assigned cores. This confirms
that the tracing infrastructure of trace-cmd8 is lightweight.

7 https://lkml.org/lkml/2015/12/11/481.
8 https://lwn.net/Articles/410200/.

123

https://lkml.org/lkml/2015/12/11/481
https://lwn.net/Articles/410200/

876 Real-Time Syst (2017) 53:857–885

Table 3 Threads scheduled by
SCHED_RR

supply runmap

τi αi �i �i #1 #2 #3

τ1 0.499088 0.103804 −0.101733 0 1 0

τ2 0.332735 0.201808 −0.202646 1 0 0

τ3 0.332756 0.202721 −0.202454 1 0 0

τ4 0.499114 0.102200 −0.197099 0 0 1

τ5 0.499065 0.104840 −0.101514 0 1 0

τ6 0.332763 0.202703 −0.202447 1 0 0

τ7 0.499093 0.197762 −0.102400 0 0 1

In a follow-up experiment with SCHED_RR the same 7 threads were all assigned
the SCHED_RR scheduling class. As shown in Table 3, despite the threads having all
the same characteristics, the resource allocation is uneven. This happens because the
scheduler does not migrate threads to achieve fairness. In fact, the bandwidth of each
thread is equally divided among threads running over the same CPU.

6.4 Impact of memory allocation

The aim of this set of experiments is to quantify the overhead of dynamically allocating
memory to the running threads. We run a single thread T = {τ1}. The thread is
composed by a single phase φi,1 = φmemory(1000000, m), with m being the size of an
array of double precisionfloating-point variables dynamically allocated/deallocated by
the thread (see Sect. 4). In the experiment, we set m ∈ {[1, 2, 3, 4, 5, 6, 7, 8, 9]×10d }
andd ∈ {0, 1, 2, 3, 4, 5, 6}.Keeping a constant number of operations andby increasing
the size of thememory used by the thread, we aim at evaluating the impact of allocating
and freeing memory as well as the cache size. The processors of our test machine have
128KB of L1 cache and 4096KB of L2 cache. The size of a double number is 8
bytes, therefore our tests use a range of memory spanning from 8B (m = 1) to 72MB
(m = 9000000).

We use SCHED_RR and set τ1’s affinity mask to [1, 2, 3], avoiding the execution
on CPU #0. Also, we set the experiment duration equal to 300 seconds, to evalu-
ate the effect over a longer run. We report the average job duration and the results
obtained with the migration module. The first row in 5 shows the average jobs dura-
tion for different memory sizes. As can be seen, the average value spikes up, and the
job becomes on average twice as long, in the transition between m = 4000000 and
m = 5000000.

The second plot in Fig. 5 shows the migration ratio, defined as the amount of
migrations over the amount of completed jobs. As can be seen, the ratio is quite low
until the jobs have a short duration. Once the jobs have longer duration, the ratio
of migration increases, showing that the scheduler is actively trying to cope with
the new job, possibly hoping that migrating the thread would help in reducing its
duration.

123

Real-Time Syst (2017) 53:857–885 877

0.020

0.030

0.040

0.050
A
ve
ra
ge

[s
]

100 101 102 103 104 105 106 107

0.006

0.008

0.010

0.012

0.014

m

M
ig
ra
ti
on

ra
ti
o

Fig. 5 Mean job duration and migration ratio (# of migrations divided by the # of completed jobs) varying
the amount of memory used in each job

6.5 The SCHED_DEADLINE scheduling class

The aim of this set of experiments is to investigate the behavior of the highest prior-
ity Linux scheduling policy, SCHED_DEADLINE. SCHED_DEADLINE in principle
should offer the best timing guarantees among all the policies implemented in the
Linux kernel, since it has been specifically designed for the real-time execution of
tasks. In the following, we test its behavior both in terms of it enforcing the parame-
ters of a single thread in isolation and in terms of the amount of computation given to
a thread with more complex tasksets.

First, we report a series of tests with one single thread τ1, varying the scheduling
parameters. Specifically, we varied the budget τ1.Q and correspondingly the period
τ1.P of the thread, keeping the ratio between them fixed and equal to 0.5. As done with
previous experiments, the affinity mask of the thread contains three cores, [1, 2, 3],
while core 0 was kept free. The thread τ1 is composed by a single compute phase
φi,1 = φcompute(10000).

The x-axis of Fig. 6 shows τ1.Q while the y-axis hosts the figures α1 and �1. As
can be seen, the use of SCHED_DEADLINE results in very predictable lower bounds.
With very short periods (less than 1ms), α1 is close to 0.45, while higher budgets result
in a better use of the available resource, with α1 approaching the theoretical value of
0.5. When even higher budgets are given to the τ1, despite having a lower bound α1
very close to 0.5, �1 increases, reaching values corresponding to 0.1 second.

123

878 Real-Time Syst (2017) 53:857–885

100 1000 10000 100000

0.01

0.1

0.4

0.5

τ1.Q (0.5 × τ1.P) [μs]

α
1
an

d
Δ

1

α1
Δ1

Fig. 6 α1 and �1 obtained with different couples of budget Q and period P and a fixed ratio of 0.5

100 1000 10000 100000

0.01

0.1

0.4

0.5

τ1.Q (0.5 × τ1.P) [μs]

α
1
an

d
Δ

1

α1
Δ1

Fig. 7 α1 and �1 obtained with different couples of budget Q and period P , and a fixed ratio of 0.5, with
additional load

While this test experimentally demonstrated the ability of SCHED_DEADLINE
to provide accurate resources to the running threads, it is worth investigating
how it behaves in higher load conditions. We therefore tested the limits of
SCHED_DEADLINE in a situation close to overload. We used a set of threads
T = {τ1, τ2, τ3, τ4}. All the four threads can be scheduled on two of the four available
CPUs, its affinity mask being [1, 2]. We conducted a series of experiment, varying the
budget and the period of τ1 as done for the previous experiment. The other threads,
τ{2..4} receive a fixed budget of 10ms with a period of 20ms. All the four threads are
composed by a single phase φi,∗ = φcompute(10000).

Figure7 shows α1 and�1 for each of the tested values. The behavior obtained with
a budget up to 10 ms is very similar to the one shown in Fig. 6. On the contrary, when
the budget and period increase, α1 starts decreasing, becoming less predictable. This
is not surprising, considering the stress introduced in the system with the additional
load.

In another experiment, we aimed at plotting the experiment-based supply lower
and upper bounds to the resource provided by a SCHED_DEADLINE thread. Figure 8
shows the supply function bounds of a thread scheduled

1. within a reservation with budget Q = 10msec and period P = 20msec (in
black), and

123

Real-Time Syst (2017) 53:857–885 879

100

80

60

40

20

0
0 20 40 60 80 100 120 140 160 180 200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

0.8

0.6

0.4

0.2

0

[msec]

[msec]

[sec]

[sec]

slbf(t), subf(t), Q = 10msec, P = 20msec

linear bounds, Q = 10msec, P = 20msec

slbf(t), subf(t), Q = 50msec, P = 100msec

linear bounds, Q = 50msec, P = 100msec

Fig. 8 Supply functions of a SCHED_DEADLINE thread

2. within a reservation with budget Q = 50msec and period P = 100msec (in
gray).

Also, the linear bounds are drawn by dashed lines. In addition to the analized thread,
7 more threads create load to the 4 CPUs, such that the total load by the 8 threads to
the 4 CPUs is about 3.5.

In the case of period P = 20msec, the lower bound to the bandwidth is α1 =
0.495127, very close to the theoretical value of 0.5. Similarly, in the case of period
P = 100msec, the lower bound to the bandwidth is α1 = 0.495218.

6.6 Decrease of capacity with shared resources

The aim of this set of experiments is to investigate the variation in the total offered
computing capacity α∗ due to critical sections. To do so, we define a set of n
threads T = {τ1, . . . , τn} with n belonging to the set {3, 5, 10}. All jobs of all
threads are composed by two different phases: φi,1 = φlock(x × 10000, 0) and

123

880 Real-Time Syst (2017) 53:857–885

3

2.5

2

1.5

1

0.5
0 10 20 30 40 50 60 70 80 90 1005 15 25 35 45 55 65 75 85 95

[lock %]

α∗

n = 3

n = 5

n = 10

Fig. 9 Total computing capacity α∗ as the size of critical section varies

φi,2 = φcompute((1 − x) × 10000). Hence, a fraction x of the total 10000 mathe-
matical operations are executed while locking the resource “0”. The rest is executed
outside the locked section. The experiment is repeatedwith the fraction x of operations
within the locked section ranging over {5%, 10%, . . . , 95%}. The affinity mask of all
threads is set to [1, 2, 3], avoiding the execution on CPU #0. All the n threads execute
within a CBS server, implemented by the SCHED_DEADLINE scheduling class, with
period P = 10 ms and budget Q = 3

n × 10 ms, with n being the total number of
threads. With these settings, all n threads equally share the 3 available cores. We are
interested in measuring the total computing capacity provided by the platform, α∗. We
expect that an increase in the number of threads would generate more contention on
shared resources and, at the same time, an increase in the size of the critical section
would diminish the provided total capacity α∗.

Figure 9 shows the total computing capacity α∗. The most surprising, and to some
extent unexpected, behavior is the case with n = 10 threads. When the fraction
of locked code x is around 35% the delivered computing capacity is actually at its
maximum (even higher than when x = 5%). We have found a sound explanation.
When the share of locked section x is larger than 1/m, with m equal to the number of
CPUs, the thread schedule is constrained by the schedule of the locked sections. This
actually simplifies greatly the scheduling decisions and the resulting capacity α∗ is
higher. If instead x < 1/m (33% in our case) then the scheduler has to take decisions
over n threads, with a clear performance degradation proportional to the number of
threads. Considering the counter-intuitive nature of this phenomenon, we plan further
investigations in the future. Finally, we also observe that for very large fraction of
locked job body, the overall computing capacity is even less that a single core. This
is not surprising, since under these conditions much time is wasted by managing the
locks.

Along the same line, we construct another experiment, varying the number of
threads and fixing three different percentage of operations in the critical section: 25,
50 and 75%. For each thread, the period of the reservation P is set to 10000 (μs)

123

Real-Time Syst (2017) 53:857–885 881

0 20 40 60 80 100

0.5

1

1.5

2

2.5

Number of threads

α
∗

α∗25% α∗50% α∗75%

Fig. 10 α∗ with a varying number of threads and different relative critical sections sizes

and the budget Q = 3 × 10000/n where n is the total number of threads. With these
parameters, threads equally share the 3 available cores.We are interested in measuring
the lower bound on the total computing capacity provided by the platform, α∗. We
expect that an increase in the number of threads would generate more contention on
shared resources and, at the same time, an increase in the size of the critical section
would diminish the provided total capacity.

Figure10 shows three lines, each of them corresponding to the relative size of the
critical section (25, 50 and 75%)with respect to the number of threads displayed on the
x-axis. For short critical sections (25 and 50%), the lower bound on the total delivered
capacityα∗ is diminishing sharplywith the number of threads,with a provided capacity
even below 1 when the number of threads is about 60 and 40, respectively. However,
when the critical section takes up 75% of the total work done by the job of the threads,
the total capacity is always above 1, even when the number of threads increases up to
100.

7 Related work

Experimental results are crucial in the development of software systems and sched-
ulers are no exceptions (Chodrow et al. 1991). Indeed, there are many tools that aim
at testing and verifying different aspects of schedulers for real-time systems. Some
of them executes specific programs to test one of the capabilities of the real-time
system, like memory management (Chodrow et al. 2006), mutexes and priority inher-
itance,9 resource holding times (Fisher et al. 2007), or scheduling with the control
groups.10 Other works are devoted to specific type of applications, like quantifying
the gap between models and implementations of control systems (Yazarel et al. 2005)
or the behavior of multimedia applications (Li et al. 2006). rt-muse is different with

9 https://github.com/linux-test-project/ltp.
10 http://sourceforge.net/projects/cgfreak/.

123

https://github.com/linux-test-project/ltp
http://sourceforge.net/projects/cgfreak/

882 Real-Time Syst (2017) 53:857–885

respect to both these classes, since it extracts performance metrics running a generic
program, that represents the real application in its entirety. This is not the first work
using measurements from a real system to extract characteristics and models of dif-
ferent aspects of the execution of a program on a particular architecture. A notable
example is (Baier et al. 2015), where the authors use measurement-based techniques
to fine-tune stochastic models that can be analyzed by a probabilistic model checker,
applying the technique to the analysis of a test-and-set spinlock protocol (Anderson
1990). Despite the similarity of performing tests on a real architecture to extract mod-
els, the models and the aim of the two projects are complementary. The main idea
of (Baier et al. 2015) is to derive models from current architectures that could be
extended to provide insight on the behavior of future platforms. However, it is quite
cumbersome to obtain precise and reliable information about the operating systems
behavior (Traeger et al. 2008). Due to this, we are satisfied with approximate compu-
tation models and the generated upper and lower bounds.

Other tools like Hourglass (Regehr 2002) and rt-muse execute a specific work-
load that could be specified as a command line parameter. Hourglass aims at testing
the behavior of schedulers for uniprocessor platforms. It computes a schedule for a
given workload, by executing the workload and recording which thread was running
and when context switches were happening. While rt-muse has in common with
Hourglass the execution of a workload that could be customized, rt-muse targets
multicore platforms and provides experimental bounds to the amount of CPU provided
in the given run. Since Hourglass provides a schedule, it is quite difficult to quantify
the results and understand if something could be improved in the implementation of
the scheduler. One of the earliest tools for analyzing schedulers was the Hartstone
benchmark (Kamenoff and Weiderman 1991). Hartstone aims at testing the capabili-
ties of a uniprocessor architecture by executing tests of increasing difficulty. In every
iteration, the pool of threads to be scheduled generates more load for the architecture
and the number of iterations that could be executed without deadline misses deter-
mines the benchmark score. While being extremely simple to implement in every
architecture, Hartstone lacks generality, since it assumes that threads do not interfere
with each other, neither with shared memory nor with messages or similar. It also does
not provide a clear interpretation of the results.

In an attempt to measure the effect of the most known sources of bottlenecks
in production environments, lmbench (McVoy and Staelin 1996) provides a set of
microbenchmarks to test different performance issue sources in modern operating sys-
tems. Similarly to rt-muse, it measures latencies and delays. However, the intent
of lmbench is to reproduce problems and issues and not to benchmark the imple-
mentation of real-time environments. The benchmark is not application-independent,
nor it provides further analysis capabilities on the obtained result for the platform as a
whole. A widely used real-time benchmark, cyclictest11 is a high-resolution analysis
tool to test a real-time system in its entirety, including the architecture, the scheduler
and the workload. It measures the latency response of an application that only sleeps
by continuously setting the instant in which the application should be woken up and

11 http://www.kernel.org/pub/linux/kernel/people/clrkwllms/rt-tests/.

123

http://www.kernel.org/pub/linux/kernel/people/clrkwllms/rt-tests/

Real-Time Syst (2017) 53:857–885 883

records the difference between this instant and the real wake up time. It is useful to
detect unexpected large latencies on a system, for example due to overload condi-
tions. This benchmark is very difficult to extend and does neither provide any insight
on the behavior of the application in case its load is complex, nor combine different
types of operations. The suite of MiBench (Guthaus et al. 2001) is composed by 35
applications that could be used in the context of embedded and real-time systems,
for example in telecommunications or in the automotive domain. Despite it being a
complete workload, it does not provide any data analysis.

Bastoni et al. (2011) studied semi-partitioned schedulers in depth, evaluat-
ing the scheduling overhead, the cache-induced delays and other metrics with
LITMUSRT (Calandrino et al. 2006). While both rt-muse and (Bastoni et al. 2011)
use traces of events to analyze the behavior of schedulers, LITMUSRT aims at sim-
plifying the implementation of complex scheduling policies, while rt-muse aims at
closing the gap between theory and implementation by exposing the real-time char-
acteristics of already implemented schedulers.

8 Conclusions and future work

To respond to the need of profiling the real-time behavior of real-time schedulers, we
proposedrt-muse. Due to the extensible nature of the tool,we plan to implement new
phaseswhich uses disk, network, or simply sleep. In addition, the results of the analysis
could be used to propose some patches in the Linux kernel, such as the introduction
of more fairness when scheduling together SCHED_FIFO and SCHED_RR threads.

Acknowledgements The authors would like to thank Tommaso Cucinotta for his insightful comments on
an earlier version of this draft.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abeni L, Buttazzo G (1998) Integrating multimedia applications in hard real-time systems. In: Proceedings
of the 19th IEEE real-time systems symposium, pp 4–13

Åkesson B, Goossens K (2011) Architectures andmodeling of predictable memory controllers for improved
system integration. In: Design, automation & test in europe conference & exhibition, pp 1–6

AlmeidaL, Pedreiras P, Fonseca JAG (2002) The FTT-CANprotocol:why and how. IEEETrans IndElectron
49(6):1189–1201

Anderson JH, Srinivasan A (2001) Mixed Pfair/ERfair scheduling of asynchronous periodic tasks. In:
Proceedings of the 13th Euromicro conference on real-time systems, pp 76–85

Anderson TE (1990) The performance of spin lock alternatives for shared-memory multiprocessors. IEEE
Trans Parallel Distrib Syst 1(1):6–16

Baccelli F, Cohen G, Olsder GJ, Quadrat JP (1992) Synchronization and linearity, vol 3. Wiley, New York
Baier C, Daum M, Engel B, Härtig H, Klein J, Klüppelholz S, Märcker S, Tews H, Völp M (2015) Locks:

picking key methods for a scalable quantitative analysis. J Comput Syst Sci 81(1):258–287
Bastoni A, Brandenburg BB, Anderson JH (2011) Is semi-partitioned scheduling practical? In: Proceedings

of the 2011 23rd Euromicro conference on real-time systems, pp 125–135

123

http://creativecommons.org/licenses/by/4.0/

884 Real-Time Syst (2017) 53:857–885

Bini E, Bertogna M, Baruah S (2009) Virtual multiprocessor platforms: specification and use. In: Proceed-
ings of the 2009 30th IEEE real-time systems symposium, pp 437–446

Brandenburg B, Anderson J (2007) Feather-trace: a light-weight event tracing toolkit. In: Proceedings of
the third international workshop on operating systems platforms for embedded real-time applications,
pp 19–28

Calandrino JM, Leontyev H, Block A, Devi UC, Anderson JH (2006) LitmusRT : a testbed for empirically
comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE international real-
time systems symposium, pp 111–126

Chodrow S, Jahanian F, Donner M (1991) Run-time monitoring of real-time systems. In: Proceedings of
the 12th real-time systems symposium, pp 74–83

Cruz RL (1991) A calculus for network delay, part I: network elements in isolation. IEEE Trans Inf Theory
37(1):114–131

Fisher N, Bertogna M, Baruah S (2007) Resource-locking durations in EDF-scheduled systems. In: Pro-
ceedings of the 13th IEEE real time and embedded technology and applications symposium, pp 91–100

Guthaus MR, Ringenberg JS, Ernst D, Austin TM, Mudge T, Brown RB (2001) MiBench: a free, commer-
cially representative embedded benchmark suite. In: 2001 IEEE internationalworkshoponproceedings
of the workload characterization. WWC-4, pp 3–14

Kamenoff N, Weiderman N (1991) Hartstone distributed benchmark: requirements and definitions. In:
Proceedings of the twelfth real-time systems symposium, pp 199–208

Li ML, Van Achteren T, Brockmeyer E, Catthoor F (2006) Statistical performance analysis and estimation
of coarse grain parallel multimedia processing system. In: Proceedings of the 12th IEEE real-time and
embedded technology and applications symposium, pp 277–288

Lipari G, Bini E (2003) Resource partitioning among real-time applications. In: 15th Euromicro conference
on real-time systems, pp 151–161

Maggio M, Lelli J, Bini E (2016) A tool for measuring supply functions of execution platforms. In: 2016
IEEE 22nd international conference on embedded and real-time computing systems and applications
(RTCSA), pp 39–48, Aug 2016

McVoy L, Staelin C (1996) LMBench: portable tools for performance analysis. In: Proceedings of the 1996
annual conference on USENIX annual technical conference, pp 23–23

Mok AK, Feng X, Chen D (2001) Resource partition for real-time systems. In: Proceedings of the 7th IEEE
real-time technology and applications symposium, pp 75–84

Pellizzoni R, Bui BD, CaccamoM, Sha L (2008) Coscheduling of CPU and I/O transactions in COTS-based
embedded systems. In: Proceedings of the 2008 real-time systems symposium, pp 221–231

Pizlo F, Vitek J (2006) An emprical evaluation of memory management alternatives for real-time java. In:
Proceedings of the 27th IEEE international real-time systems symposium, pp 35–46

Regehr J (2002) Inferring scheduling behavior with hourglass. In: Proceedings of the FREENIX track: 2002
USENIX annual technical conference, pp 143–156

Regnier P, Lima G, Massa E, Levin G, Brandt S (2011) RUN: optimal multiprocessor real-time scheduling
via reduction to uniprocessor. In: Proceedings of the 32nd IEEE real-time systems symposium, pp
104–115, Dec 2011

Shin I, Lee I (2003) Periodic resource model for compositional real-time guarantees. In: Proceedings of the
24th IEEE international real-time systems symposium, pp 2–13

Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems. In:
Proceedings of the IEEE international symposium on circuits and systems, pp 101–104

TraegerA, ZadokE, JoukovN,Wright CP (2008)Anine year study of file system and storage benchmarking.
Trans Storage 4(2):5:1–5:56

Xu M, Phan LT, Sokolsky O, Xi S, Lu C, Gill C, Lee I (2015) Cache-aware compositional analysis of
real-time multicore virtualization platforms. Real Time Syst 51(6):675–723

Yazarel H, Girard A, Pappas GJ, Alur R (2005) Quantifying the gap between embedded control models
and time-triggered implementations. In: Proceedings of the 26th IEEE international real-time systems
symposium, pp 111–120

Yun H, Yao G, Pellizzoni R, Caccamo M, Sha L (2016) Memory bandwidth management for efficient
performance isolation in multi-core platforms. IEEE Trans Comput 65(2):562–576

123

Real-Time Syst (2017) 53:857–885 885

Martina Maggio is an Associate Professor at the department of
Automatic Control, Lund University. The focus of her PhD stud-
ies at the Dipartimento di Elettronica e Informazione at Politecnico
di Milano, supervised by Alberto Leva, was the control-theoretical
design of computing systems components. For one year, she vis-
ited the Computer Science and Artificial Intelligence Laboratory, at
Massachusetts Institute of Technology, working under the supervi-
sion of Anant Agarwal and together with Henry Hoffmann on the
Self-Aware Computing project, named one of ten “World Changing
Ideas” by Scientific American in 2011. During her stay at the Lund
University, she worked with Karl-Erik Årzén on resource manage-
ment in Real-Time computing systems and cloud computing prob-
lems. Her research interests include the application of control the-
ory to Software Engineering problems, with the goal of designing
software systems that provide predictable performance despite run-
time variations.

Juri Lelli received a BS and a MS in Computer Engineering at
the University of Pisa (Italy). He then earned a PhD degree at the
Scuola Superiore Sant’Anna of Pisa, Italy (ReTiS Lab). He is one
of the original authors of the SCHED_DEADLINE scheduling pol-
icy in Linux, and he is actively helping maintaining it. He is cur-
rently working at ARM Ltd., where he continues contributing to the
Linux scheduler development, with a special focus on energy aware
scheduling and power management.

Enrico Bini is Associate Professor at Department of Computer Sci-
ence, University of Turin. Until 2016, he was assistant professor at
Scuola Superiore Sant’Anna, Pisa. Also in 2012–14, he was Marie-
Curie fellow at Lund University. In 2004, he completed the PhD
on Real-Time Systems at Scuola Superiore Sant’Anna (recipient
of the Spitali Award for best PhD thesis of the whole university).
In January 2010 he also completed a Master degree in Mathe-
matics with a thesis on optimal sampling for linear control sys-
tems. He has published more than 90 papers (4 best-paper awards
@RTNS @RTCSA @ICC) on real-time scheduling, operating sys-
tems, optimization methods for real-time and control systems, opti-
mal management of distributed and parallel resources. His service
to the research community includes the participation in 58 Tech-
nical Program Committees (including RTSS (2010, 2014, 2015,
2017), RTAS (2009, 2010, 2011, 2013, 2015, 2016) and EMSOFT
(2011, 2016)), the organization of 12 events (including PC co-Chair

of RTNS 2017, Local co-Organizer of ESWeek 2018), the review of 9 PhD thesis and about 40 papers/
year, in the above mentioned research areas.

123

	rt-muse: measuring real-time characteristics of execution platforms
	Abstract
	1 Introduction
	2 Overview of rt-muse
	3 The analysis capabilities of rt-muse
	3.1 The supply analysis module
	3.2 The runmap analysis module
	3.3 The migration analysis module
	3.4 The statistical analysis module

	4 Modeling a taskset with rt-muse
	5 Specification of experiments
	5.1 Example of results

	6 Experimental results
	6.1 Experimental environment
	6.2 The SCHED_OTHER Linux scheduling class
	6.3 The SCHED_FIFO and SCHED_RR classes
	6.4 Impact of memory allocation
	6.5 The SCHED_DEADLINE scheduling class
	6.6 Decrease of capacity with shared resources

	7 Related work
	8 Conclusions and future work
	Acknowledgements
	References

