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Abstract
MicroRNAs are now known to have an important role in regulating gene expression of eukaryotic organisms. miRNA 
research in plants gained importance after the discovery that several stress factors alter certain miRNA expressions, which 
subsequently regulate their target gene expressions and affect development and growth of plants. In this study, two of the 
widely studied abiotic stress conditions for plants, nitrogen deficiency and drought were used individually and as a com-
bined stress treatment on Arabidopsis thaliana callus tissues to observe the change of expressions in certain miRNAs, when 
multiple stressors are encountered. Combined stress strongly inhibited callus growth compared to other conditions, while 
strongly altering certain miRNA expressions. Compared to control, in 7-day stress treated callus, miR165a-3p,b, miR319a,b, 
miR396b-5p, miR399d and miR827 showed significant downregulation for all stress treatments, while 7-day N deficiency 
caused miR167 upregulation. Stress treatments for 7 days mostly downregulated miR167c-5p, miR319c, miR399a, miR399e 
expressions except for the N deficient samples. After 14 days of stress, miR165a-3p,b, miR396a-5p, miR399b, miR399d 
were downregulated. During 14-day drought and combined stress, miR399a and miR396b-5p expressions were upregulated, 
respectively. The differences observed in this study between stress responses of 7 and 14-day-long treatments are believed to 
be valuable to further elucidate the associated molecular mechanisms of miRNAs, determination and validation of miRNA 
targets, and how plants respond to stress conditions via various genetic regulations.
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Introduction

Plants in wild are constantly face to face with several 
stress factors: Biotic and abiotic stresses, such as bacteria, 
fungi, temperature fluctuations, salt, drought, heavy met-
als, nutrient deficiencies, radiation etc. (Mahajan and Tuteja 
2005; Fedoroff et al. 2010; Hacquard et al. 2017; Hussain 
et al. 2018). Nitrogen deficiency and drought stresses are 
extremely important factors that affect development and 
crop growth (Clarkson 1996), also causing morphological 

and physiological disturbances in plants (Wang et al. 2004; 
Anithakumari et al. 2012).

Plants respond to stress conditions by utilizing antioxi-
dant defense mechanisms (Duan et al. 2007; Praba et al. 
2009; Anjum et al. 2011). Antioxidant defense systems 
are closely related to Reactive Oxygen Species (ROS) 
and the production of ROS is the first response of the 
cell against drought stress (Miller et al. 2010). Although 
drought causes morphological, physiological, and molecu-
lar changes in plants, it also causes a decrease in plant bio-
mass and crop yield due to the limited availability of water 
in soil (Anithakumari et al. 2012). Above all these effects, 
photosynthesis, pigment content, water uptake, respira-
tion, and membrane integrity are all severely affected by 
drought, which in return triggers other plant defense mech-
anisms (Praba et al. 2009; Anjum et al. 2016). When plants 
are faced with limited water, they slow down their growth 
rates, adjust water balance in cells and tissues, activate 
antioxidant defense systems to survive (Duan et al. 2007; 
Praba et al. 2009; Anjum et al. 2011). During drought 
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stress, shoot development is also further obstructed com-
pared to root development (Anithakumari et al. 2012). The 
tolerance to drought stress in plants depends on species, 
amount of time and severity of the stress they are exposed 
to and the development phase in which they are found in 
(Demirevska et al. 2009).

Relative Water Content (RWC) is a characteristic feature 
such as stomatal conductivity, transpiration rate, leaf tem-
perature and leaf water potential to understand the relation-
ship between plant and water. Majority of plants respond 
to drought stress with a decline in RWC (Ings et al. 2013). 
RWC is also a parameter using osmotic potential for meas-
uring the severity of the drought stress treatment and used 
in drought stress treatment methods in vitro. Drought stress 
is characterized with the low availability of water, which is 
quantified as a low water potential (Ψw). By reducing the 
water potential of the plant medium in vitro using PEG8000, 
drought stress can be mimicked (Verslues 2006).

Aside from nitrogen (N) being the most important macro-
nutrient for plant development and growth, it is also required 
in critical processes such as protein, nucleic acid, and chloro-
phyll synthesis (Clarkson 1996). Nitrate is both an important 
plant nutrient and has a valuable role as a signal molecule 
in promoting gene expressions associated with intracellular 
transport and assimilation (Medici and Krouk 2014). Gene 
expressions related to mechanisms of plant viability, espe-
cially organic acid and glucose metabolism are affected by 
nitrate (Marín et al. 2011). Nitrate Reductase (NR) activity is 
reduced under nitrogen starvation, while NLA (NITROGEN 
LIMITATION ADAPTATION) genes are activated whose 
expression is shown to be regulated by miR827 in Arabidop-
sis thaliana (Wang et al. 2004; Kant et al. 2011).

MicroRNAs (miRNAs) are non-coding, 20–24 nucleo-
tides long, endogenous small RNAs that regulate multi-
ple biological pathways in multicellular organisms (Llave 
et al. 2002; Dinger et al. 2008). Most miRNAs are evo-
lutionarily well conserved and responsible for regulating 
transcription factors which have important roles in plant 
survival. Therefore, any mutation that may occur in the 
miRNA biogenesis mechanism may cause a significant 
defect in plant growth and even have a lethal effect (Yu 
et al. 2017). Plant miRNAs target transcription factors or 
stress-regulated genes by recognizing and degreading tar-
get gene mRNAs, therefore repressing gene expression 
(Sunkar and Zhu 2004; Sunkar et al. 2006).

The evaluated miRNAs in this study and their poten-
tial roles in chosen stress conditions were summarized in 
Supplementary Table 1. In this study, miRNA expression 
changes related to drought and nitrogen deficiency were 
observed according to the exposure time to stressors in 
Arabidopsis thaliana Col-0 callus tissues. Combination of 
these two conditions were also used to observe changes, 
compared to individual treatments of these abiotic stresses.

Material and methods

Plant material, growth conditions and stress 
treatments

Arabidopsis thaliana Columbia (Col-0) seeds were pro-
vided by Prof. Dr. Neslihan Turgut Kara, Istanbul Univer-
sity, Department of Molecular Biology and Genetics who 
acquired the seeds from Dr. Ralf Stracke, Bielfeld Uni-
versity, Biotechnology Center, Genome Research Depart-
ment. To sterilize A. thaliana Col-0 seeds, 70% ethanol 
was added above the seeds and centrifuged at 600 rpm 
for 2 min in column tubes, 3 times. 1 mL 100% ethanol 
was added, and the alcohol was removed by centrifuga-
tion at 600 rpm for 2 min. Sterile seeds were sown on 
basal MS agar plates and were left to germinate in plant 
growth chamber [25 ± 2  °C, 16 h light/8  h dark cycle 
(Nüve, TK 252)]. In vitro cultured 3-week-old A. thaliana 
plant roots were selected as explants for callus induction. 
Explants were transferred to MS agar plates (Murashige 
and Skoog 1962) (Sigma, M2909) containing 1  mg/L 
2,4-D (2,4-dichlorophenoxyacetic acid) (Sigma, D7299) 
and incubated in the growth chamber for a month. After 
1 month, callus tissues were obtained from the medium, 
and transferred to fresh media which have the exact com-
position of initiation media. Callus subculturing was con-
tinued monthly during the study. For stress treatments, 
1-month-old calluses were transferred to control, nitrogen 
deficiency, drought and combination MS medium contain-
ing 1 mg/L 2,4-D. Calli were treated for 7 and 14 days, 
then collected for each condition after the treatment, as a 
total of 8 samples, for each biological replicate. To pro-
ceed with RNA isolations for the following qRT-PCR 
analysis, calli were portioned into 0.1 g samples, snap-
frozen by liquid nitrogen and stored at -80 °C until further 
use. These steps were repeated for three biological repeats.

Murashige and Skoog (MS) medium was used for ger-
mination, plant growth and callus induction of Arabidop-
sis thaliana Col-0 seeds. Plant growth regulator 2,4-D was 
applied in 1 mg/L concentration to MS media used in callus 
induction. Control condition for both 7- and 14- day treat-
ments, had the same medium content as the callus induc-
tion media. Nitrogen deficiency in the media was created 
using MS modified basal salt mixture (without  NH4NO3, 
Sigma®, Lot: 103K2354). To prepare nitrogen deficiency 
stress medium, 3% sucrose and 2.68 g/L  NH4NO3-free MS 
powder were dissolved in distilled water. Drought stress 
medium was prepared according to the protocol of Verslues 
et al. (2006) and Van Der Weele et al. (2000), at -0.7 MPa 
(Osmotic Potential). Polyethylene Glycol 8000 (PEG 
8000) (Sigma, P2139) was used to create drought stress in 
the medium by overnight incubation of PEG8000 overlay 
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solution on half-strength MS-agar plates. While preparing 
the combined stress medium,  NH4NO3-free MS salt mixture 
and PEG 8000 were used in accordance with the drought 
medium and N deficiency medium protocol. Therefore, 
PEG-infused plates for combined treatment were prepared 
using modified MS basal salt mixture (without  NH4NO3). 
Prepared medium plates were stored at 4 °C.

Morphological and growth index analysis

Callus tissues were analyzed for morphological differences 
after 7-day and 14-day long treatments. Plates were pho-
tographed to observe varying colors and textures between 
treatments. To conduct growth index analysis, callus tissues 
were weighed equally as 0.5 g. Change in fresh callus weight 
was measured after 7- and 14- day treatments. Growth per-
centages were calculated according to Sahraroo et al. (2014).

RNA isolation and qRT‑PCR analysis

Equal amounts of 0.1 g frozen callus tissues were grinded 
by mortar and pestle using liquid nitrogen. Isolations were 
performed manually by phenol:chloroform extraction using 
Hibrizol (Hibrigen™). After the RNA pellets were dissolved 
in DEPC (Diethyl Pyrocarbonate)-treated water, absorb-
ances were measured on Nanodrop (Thermo Fisher Scien-
tific, Nanodrop 2000 Spectrophotometer). A260/A280 ratio 
was used to determine the purity of RNA samples. RNAs 
with A260/A280 ratio ≈2.0 were accepted as pure and were 
stored for further use at -80 °C.

cDNA synthesis of isolated RNAs was performed in a 
Thermal Cycler (BIORAD, T100) using TaqMan™ Micro-
RNA Reverse Transcription Kit (Applied Biosystem, Lot: 
00575529) according to the instructions of manufacturers. 
For the cDNA synthesis of respective selected miRNAs, spe-
cifically designed stem-loop primers were used per 1000 ng 
total RNA (Suppl. Table 2). Using the synthesized cDNA, 
qPCR analyses are conducted to determine the changes in 
miRNA expressions between 7-days and 14-days stress 
treated and control samples. Cq values of all miRNAs and 
the reference gene Actin were detected using real-time ther-
mal cycler, BIORAD CFX96. For 20 µL of qPCR reac-
tion, 1X SYBR Green Mix (Hibrigen), 10 µM specifically 
designed forward miRNA primer, 10 µM Universal Reverse 
Primer, 2 µL cDNA and 6 µL nuclease-free water were used 
as reaction components. Reaction conditions entail: Initial 
denaturation at 95 °C for 10 min, followed by 45 cycles of 
denaturation at 95 °C for 15 s and annealing at 62 °C for 
1 min. Following melting curve analysis validated the speci-
ficity of the designed primers. Fold change expressions of all 
microRNAs were calculated using the delta-delta ct method 
(Livak and Schmittgen 2001).

Additionally, to have a broader idea on the implica-
tions of the detected expression changes of our miRNAs, 
we performed target candidate analysis via psRNATarget, 
plant small RNA target analysis server (Dai et al. 2018).

Statistical analysis

miRNA expression assays were conducted for three bio-
logical replicates. For each set of the experiment, qPCR 
reactions were set up using three technical repeats and 
NTC. Statistical analyzes were performed using GraphPad 
9.1.2 demo version. Growth index analysis were statisti-
cally tested by two-way ANOVA and Tukey tests for sig-
nificance. For statistical analysis of miRNA expressions, 
one Way ANOVA and Tukey test were applied. For all 
analysis, values of p < 0.05 were considered significant.

Results

Plant growth and morphological analysis

Control and stress-treated callus tissues were collected 
after 7- and 14-days. All treatments had their own control 
conditions as shown in Fig. 1. Callus tissues showed vis-
ible changes in their colors and morphology, especially 
in drought and combined stress treatments, both in 7-day 
and 14-day old samples. Callus tissues were also ana-
lyzed for their growth percentages. Callus weight was 
measured and the amount of growth after the correspond-
ing treatments were calculated according to the growth 
index formula. Growth percentages of all conditions are 
shown as a graph with multiple comparison analysis in 
Fig. 2.

Growth index results show significantly reduced callus 
weight after 7-days of drought and combined treatments 
with no change in weight for 7-day N deficiency and con-
trol samples. Callus weight of 14-day control sample was 
highly significantly increased compared to all other condi-
tions, reaching twice the weight of initial stage, indicating 
normal growth without stress treatment. Even though the 
weight of callus tissue was highly decreased after 7 days 
of drought, after 14 days, 20% growth compared to day-0 
was observed. Initial drop in weight (7-d) could potentially 
be due to the lowered water content of the agar plate caus-
ing water-loss from the plant, whereas after 14-day the 
growth of callus tissue overcompensated for the water-loss 
showing a significant increased growth percentage in the 
results. Callus weight decreased by 39% after 7-day com-
bined stress treatment, after 14 days growth percentage 
was still negative at -11%.
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RNA isolation and qRT‑PCR analysis

Isolated RNAs from all samples were checked for RNA 
quantity and quality by Nanodrop and agarose gel 

electrophoresis, respectively. All RNA samples were 
deemed suitable for use as templates in cDNA synthe-
sis by miRNA-specific stem loop primers. Expression 
analysis by qRT-PCR were performed for all samples 
using Actin gene as positive control. Fold changes for all 
miRNA expressions compared to control are shown as a 
heatmap in Fig. 3.

Statistical analysis resulted in significantly changed 
expressions of miRNA transcripts under different treat-
ment conditions in this study. 7-day treatment results 
are given in Fig. 4, while 14-day treatment results are 
shown in Fig. 5. According to the expression analysis, 
miR165a-3p and miR165b were significantly downregu-
lated in all 7-day treatments compared to the control. 
Treatment of 14 days caused downregulation for these 
miRNAs in all conditions. miR167a-5p and miR167b 
showed significant downregulation for all stress con-
ditions after 7  days of treatment, whereas no mean-
ingful change occurred in 14 days treatment samples. 
These miRNAs had no significant variance in between 
treatments for both 7-day and 14-day samples. For 
miR167c-5p, 7-day drought and combined stresses had 
lower expression compared to control. 14-day samples 
of this miRNA were upregulated under N deficiency, 
while downregulated for both drought and combination. 
miR167d was highly significantly upregulated during 
7-day N deficiency stress and downregulated during 
combined stress treatment. Upregulation of miR167d 
occurred significantly on 14-day N deficiency, and it 
was also downregulated on 14-day combined stress treat-
ment. miR169b-5p and miR169c, under 7-day combined 

Fig. 1  Stress induced Arabidopsis thaliana callus. A: 7-days control, B: 7-days nitrogen deficiency, C: 7-days drought, D: 7-days combined, E: 
14-days control, F: 14-days nitrogen deficiency, G: 14-days drought, H: 14-days combined

 

Fig. 2  Growth index results for all conditions. Numbers on y-axis 
show growth percentages. (Adjusted p values: (****) < 0.0001, 
(ns) > 0.1234)
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stress showed significant downregulation compared to 
control. 14-day drought and combined stress resulted 
in the downregulated expression of miR169b-5p and 
miR169c compared to control samples. miR319a and 
b were downregulated for all three treatments in 7-day 
samples, on 14-day samples, only drought treatment 
had significantly downregulated miRNA expressions. 
miR319c, on the other hand, showed highly significant 
downregulation in 7-day drought and combined stress, 
similar to the 14-day treatments. On the contrary, 14-day 
N deficiency upregulated the expression of miR319c 
significantly.

Only significant change of miR396a-5p is in 14-day 
samples, all three treatments had lower expression of this 
miRNA. miR396b expression decreased on all 7-day treat-
ment samples, whereas 14-day combined treatment had 
increased expression of this miRNA compared to control. 
7-day drought and combined stress lowered the expression 
of miR399a, while 14-day drought increased the miR399a 
expression in comparison with the control. 7-day combined 
stress also lowered the expression of this miRNA com-
pared to drought stress, even though no significant change 

was observed in N deficiency treatment. miR399b was 
downregulated significantly for all treatments in 14-day 
samples compared to control. Downregulation of miR399d 
was highly significant in all 7-day and 14-day stress treat-
ments, whereas miR399e expression only decreased in 
7-day drought and combined stress while increasing in 
14-day N deficiency. miR399e was significantly downreg-
ulated in 14-day drought and combined stress conditions. 
miR399f was downregulated in 7-day N deficiency and 
combined stress compared to control. Finally, the miR827 
only showed significant upregulation under N deficiency 
on 14-day samples, though in 7-day samples, it was down-
regulated significantly under all stress treatments compared 
to control.

Determination of potential miRNA targets

Certain potential target genes of studied miRNAs have been 
detected using psRNATarget tool, all gene ID and expectation 
values are given in Table 1. How these miRNA targets could 
have been affected by the expression changes observed in this 
study are analyzed.

Fig. 3  Heatmap for fold change 
(ddct) values of miRNA expres-
sions for N deficiency, drought, 
and combined stress conditions 
in 7- and 14-day stress induced 
plants
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Fig. 4  Changes in miRNA expressions for N deficiency, drought and combined stress conditions in 7-day stress induced plants. (p < 0.1234 (ns), 
p < 0.0332 (*), p < 0.0021 (**), p < 0.0002 (***), p < 0.0001 (****))
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Fig. 5  Changes in miRNA expressions for N deficiency, drought, and combined stress conditions in 14-day stress induced plants. (p < 0.1234 
(ns), p < 0.0332 (*), p < 0.0021 (**), p < 0.0002 (***), p  < 0.0001 (****))
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Discussion

Nitrate, besides being an important nutrient, is a valuable 
component of the cell promoting expressions of genes 
with various functions. Scarcity of nutrients have been a 
widely studied stress condition because of its detrimental 
effects on plant productivity (Marín et al. 2011; Medici and 
Krouk 2014). When plants face drought, processes such as 
photosynthesis and respiration are affected, while antioxi-
dant defense systems are activated. Plants create a stress 
response to cope with both drought and nutrient deficiencies 
via physiological, morphological, and molecular changes 
(Anithakumari et al. 2012). Micronutrients such as nitro-
gen (as inorganic nitrate  (NO3−) and ammonium  (NH4+)) 
are absorbed from the soil via water uptake (Lambers et al. 
2008). Drought conditions therefore strongly inhibit the 
nutrient uptake capability of the plant making it vulnerable 
to nutrient deficiencies, as validated previously where the N 
and P concentrations of plant tissues decreased significantly 

after drought stress (Cramer et al. 2009; Sardans and Peñue-
las 2012; He and Dijkstra 2014). Reason for this lower N 
uptake under drought has been found to be related to condi-
tions such as mineralization-caused decreased soluble nutri-
ent source or reduced diffusion (Fierer and Schimel 2002; 
Bista et al. 2018). Plant miRNAs were first discovered in 
Arabidopsis, and it has been repeatedly shown that these 
small regulatory RNA molecules have key roles in control-
ling expressions of genes responsible for plant growth and 
stress response (Chen 2004; Pegler et al. 2019).

In this study, expressions of various stress-related micro-
RNAs in Arabidopsis thaliana were studied to evaluate their 
responses to a combination of these two widely studied 
stress conditions, drought, and nitrogen deficiency. Com-
bined treatment of these stresses strongly downregulated 
the expressions of miR165a-3p, miR165b, miR167c-5p, 
miR167d, miR319c, miR399d and miR399e both on day 
7 and day 14. Among these, there are miRNAs previously 
associated with stress conditions in other studies, HD-ZIP 

Table 1  Potential and known targets of analyzed miRNAs detected in psRNATarget. (EXP: expectation value, lower values represent higher 
compatibility between target and sRNA. TE: transposable element)

miRNAs miR165a-3p miR165b miR167a-5p, b & d miR167c-5p miR319a,b,c

  psRNA Targets AT1G52150.1 (EXP:1.5) 
ATHB-15

AT1G30490.1 (EXP:0.5)
PHV, ATHB9
AT4G32880.1 (EXP:0.5)
ATHB-8
AT2G34710.1 (EXP:0.5)
PHB, ATHB14
AT5G60690.1 (EXP:0.5)
REV
AT1G41820.1 (EXP:2.5) 

Has46

AT1G30490.1(EXP:0.5)
PHV, ATHB9
AT4G32880.1(EXP:0.5)
ATHB8
AT2G34710.1(EXP:0.5)
PHB, ATHB14
AT5G60690.1(EXP:0.5)
REV, IFL
AT1G52150.1(EXP:1.5)
ATHB-15, ATHB15
AT1G41820.1(EXP:2.5) 

Has46

AT5G41300.1(EXP:2.5) 
Receptor-like protein 
kinase-related family 
protein

AT1G30330.2 (EXP:2.0)
ARF6
AT5G37020.1 (EXP:2.0)
ARF8
AT1G40075.1 (EXP:2.5)
TE gene

AT2G26950.1 (EXP:1.5)
MYB104
AT5G06100.1 (EXP:1.5)
MYB33
AT3G11440.1 (EXP:1.5)
ATMYB65
AT3G66658.1 (EXP:2.5)
ALDH22A1
TCP genes:
(EXP:2.5)
AT2G31070.1
AT3G15030.3
AT1G30210.2
AT4G18390.2
TE genes:
(EXP:2.5)
AT3G33076.1
AT4G22415.1
AT5G28335.1
AT3G33084.1

  Functions Development, secondary cell wall formation
Class III HD-ZIP Transcription Factors
Signal transduction

Gynoecium and stamen development Morphogenesis of shoot 
lateral organs

 
miRNAs

 
miR396a-3p

 
miR396b-5p

 
miR399a-f miR399b

 
miR827

  psRNA Targets AT3G54280.1(EXP:2.5) 
RGD3, BTAF1 |

AT3G54280.2(EXP:2.5) 
RGD3

AT2G46060.1(EXP:2.5) 
transmembrane protein-
related

AT1G08290.1(EXP:2.5) 
WIP3

AT5G01370.1(EXP:1.5)ACI1
AT5G43060.1(EXP:2.0)Granulin 

repeat cysteine protease family 
protein

AT2G15630.1(EXP:2.0)
PPR superfamily protein
AT5G57590.1(EXP:2.5)
BIO1
AT3G19040.1(EXP:2.5)
TAF1, TAF1B, HAF2
AT1G60140.1(EXP:2.5)
ATTPS10, TPS10

AT2G33770.1(EXP:0.0) UBC24, 
PHO2

AT2G26900.1(EXP:2.0) Sodium 
Bile acid symporter family

AT4G09730.1(EXP:2.5) RH39

AT2G33770.1(EXP:1.5) 
UBC24, PHO2

AT3G06500.1(EXP:2.5) 
Plant neutral invertase 
family protein

AT1G02860.2(EXP:0.0)
NLA | SPX (SYG1/Pho81/

XPR1) domain-containing 
protein

AT1G02860.1(EXP:0.0)
NLA, BAH1 | SPX (SYG1/

Pho81/XPR1) domain-contain-
ing protein

AT4G37590.1(EXP:2.5)
NPY5 | Phototropic-responsive 

NPH3 family protein

  Functions Plant leaf growth Phosphate homeostasis Nitrogen/Phosphate Metabolism
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transcription factor family, specifically HD-ZIP III, being 
one of the most prominent target genes of miR165 were 
detected to be ABA regulated and triggered under abiotic 
stress conditions due to their roles in signal perception and 
transduction (Zhong and Ye 2007; Li et al. 2022). During 
stress, due to the miR165/HD-ZIP regulation, miR165 are 
expected to be downregulated, as we have observed for all 
conditions in our study.

Effect of drought, heat and salinity stresses on certain 
miRNAs and their targets in Arabidopsis thaliana Col-0 
ecotype were studied previously, in which drought stress 
upregulated 111 miRNAs and downregulated 2 miRNAs. 
Salinity decreased miR169g expression 8.7 times, while all 
three stresses decreased miR169f and miR169h expressions. 
Our study also demonstrated a downregulation during both 
7-day drought and combined stress for miR169f and g, com-
pared to N-deficient callus. Downregulation of miR169 was 
also demonstrated in other studies of Arabidopsis thaliana 
(Li et al. 2008; Zhao et al. 2011).

Adding to the previously reported studies, our psRNATar-
get results also pointed out significant targets of the studied 
miRNAs (Table 1). Drought and salinity stresses have been 
associated with miR319 expression in Arabidopsis thaliana 
plants, which targets and regulates the expressions of TCP 
transcription factors (Liu et al. 2008; Zhou and Luo 2014). 
Drought conditions are known to cause disturbances in 
growth and development due to altered metabolic activity 
and functions, to tolerate these conditions, plants activate 
certain signal mechanisms and differentially express tran-
scriptional regulators (Mahmood et al. 2019). Results of our 

study showed that after 7-days of N deficiency and drought 
stress, miR319a and b expressions were downregulated for 
both stresses and their combination, signaling a potential 
regulation of transcription factors which are responsible in 
plant growth and development (Li 2015). The downregu-
lation was observed only in drought conditions for 14-day 
stress treated callus, potentially due to the stress response 
of the plant to battle deteriorated growth by preventing the 
negative regulation of TCP factors by miR319. Increasing 
the number of growth and development related factors and 
compensating for the effect of stress, as a result. Our growth 
index analysis supported this idea, where we could observe 
the lowered growth during 7 days of drought and combina-
tion stress. After 14-days, callus weight was significantly 
higher than 7-day samples, showing that the growth was 
slower but persistent.

In a previous study, drought and salinity stresses 
changed miR396 expression which is known to target 
GRF (“GROWTH REGULATION FACTOR”) genes 
(Covarrubias and Reyes 2010). Pegler et al. (2019), also 
showed that drought stress treatment resulted in upregu-
lated miR396 expression in Arabidopsis thaliana (Pegler 
et al. 2019). In our study, after 7-day stress treatment, 
miR396a-5p had no significant change, though miR396b 
was downregulated for all conditions. 14-day stress treated 
callus had downregulated expression of miR396a-5p for 
all conditions, whereas miR396b expression was upregu-
lated during combined stress. Previously, it’s been shown 
that miR396/GRF regulatory module regulates growth-
related processes. Increased number of miR396 inhibits 

Fig. 6  Summary of the miRNA expression changes detected and their 
potential effects. (Red arrows represent downregulation, green arrows 
upregulation. Orange arrows represent changes during combined 

stress, arrows = downregulation, hyphen = no change. Purple boxes 
represent possible targets of the miRNAs)



 Plant Cell, Tissue and Organ Culture (PCTOC)          (2024) 157:42    42  Page 10 of 12

GRF expressions resulting in the disruption or decelera-
tion of growth in plants (Liu et al. 2009; Omidbakhshfard 
et al. 2015). A combination of drought and N deficiency 
is demonstrated to possibly regulate miR396 expression, 
as a result of this study. Similar to miR319/TCP, miR396/
GRF regulation is correlated to our growth and expression 
analysis. Lowered miR396 expression increases the num-
ber of GRF factors, mending negative effects of stress on 
plant growth. Being the negative regulator of growth-regu-
lating factors (GRF), downregulation of miR396 increases 
the number of GRF in cells, which could be seen as an 
indication of battling disrupted growth-related processes 
after 7 days.

N deficiency is expected to affect miR827 expressions, 
7-day stress downregulated miR827 for all conditions, 
though in 14-days, there was a significant upregulation. This 
could be due to the miR827/NLA (nitrogen limitation adap-
tation) regulation of stress adaptation during prolonged N 
starvation (Kant et al. 2011). Higher NLA expression during 
downregulated miR827 would potentially provide an adapta-
tion to the stress, which would explain the downregulation 
in our 7-day samples. For miR399e, 14-day stress caused an 
upregulation. Being responsible for phosphate homeostasis 
in Arabidopsis (Fujii et al. 2005), this miRNA could have 
been induced by nutrient deficiency. miR399e specifically 
targets and downregulates a phosphate transporter coding 
gene (PHO2), which occurs expectedly in higher frequency 
in response to various abiotic stress conditions due to its 
upregulation (Pegler et al. 2019). PHO2 is responsible from 
the uptake and translocation of phosphate, lowered function 
of this gene results in higher accumulation of phosphate spe-
cies in plant shoots, making its downregulation meaningful 
under phosphate deficient conditions (Dong et al. 1998). 
Though, how this applies to our nitrogen deficient media can 
be explained by another observation in Arabidopsis, where 
the N and P availability responses seem to interfere. Phos-
phate starvation response (PSR) was found to be actively 
regulated by N signaling pathways, with PHO2 acting as the 
messenger of N presence while also interacting with NRT1.1 
(NITRATE TRANSPORTER1.1) and controlling its tran-
script levels, all leading to the PSR being highly influenced 
by N signaling, therefore the N content of the environment 
(Medici et al. 2019).

As inferred from both the previous studies and the tar-
get analysis, many factors associated with stress responses, 
growth and nutrient metabolisms in plants were linked with 
the examined miRNAs. A summary of how and when these 
changes occurred are given in Fig. 6.

Naturally, wild plants encounter multiple stress condi-
tions at the same time, as a result, miRNA expressions 
change to adapt to the environment by regulating plant 
responses. In this study, by combining drought and N 
deficiency stressors, the differences in plants’ molecular 

response to a combination of stress and individual stress 
conditions were pointed out. Potential targets of these 
miRNAs were taken into consideration and their possible 
impact on the plant stress response was conversed, depend-
ing on the changes of expression detected. Additionally, 
the amount of time plant faces the stressor has also been 
shown to have impact on the plant microRNAs’ earlier and 
later responses, while effecting the plant growth as well. 
Findings of this study could help further studies using 
combined stressors and envisioning the use of miRNAs 
to combat multiple stress factors effecting plant growth 
and development.
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