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Abstract
Hyperhydricity (HH) is one of the most important physiological disorders that negatively affects various plant tissue culture 
techniques. The objective of this study was to characterize optical features to allow an automated detection of HH. For this 
purpose, HH was induced in two plant species, apple and Arabidopsis thaliana, and the severity was quantified based on 
visual scoring and determination of apoplastic liquid volume. The comparison between the HH score and the apoplastic liq-
uid volume revealed a significant correlation, but different response dynamics. Corresponding leaf reflectance spectra were 
collected and different approaches of spectral analyses were evaluated for their ability to identify HH-specific wavelengths. 
Statistical analysis of raw spectra showed significantly lower reflection of hyperhydric leaves in the VIS, NIR and SWIR 
region. Application of the continuum removal hull method to raw spectra identified HH-specific absorption features over 
time and major absorption peaks at 980 nm, 1150 nm, 1400 nm, 1520 nm, 1780 nm and 1930 nm for the various conducted 
experiments. Machine learning (ML) model spot checking specified the support vector machine to be most suited for classifi-
cation of hyperhydric explants, with a test accuracy of 85% outperforming traditional classification via vegetation index with 
63% test accuracy and the other ML models tested. Investigations on the predictor importance revealed 1950 nm, 1445 nm 
in SWIR region and 415 nm in the VIS region to be most important for classification. The validity of the developed spectral 
classifier was tested on an available hyperspectral image acquisition in the SWIR-region.

Key message 
This study provides an approach that paves the way to automatic detection of hyperhydricity by identifying the key spectral 
features of this phenomenon.

Keywords Hyperhydricity · Spectral analysis · Phenotyping · Machine learning · Automated object detection

Abbreviations
HH  Hyperhydricity
ML  Machine learning
UV  Ultra violet

VIS  Visible radiation
NIR  Near infrared radiation
SWIR  Shortwave infrared radiation
MWIR  Mid-wave infrared radiation
LWIR  Longwave infrared radiation
DAT  Days after treatment/transfer
CV  Cross validation
CNN  Convolutional neuronal network
HSI  Hyperspectral imaging

Introduction

Hyperhydricity (HH) represents one of the major chal-
lenges for increasing the efficiency of plant in  vitro 
propagation as it limits plant quality, adventitious root 
formation and ex vitro survival rate, in particular when 

Communicated by Victor M. Jimenez.

 * Hans Bethge 
 bethge@baum.uni-hannover.de

1 Laboratory for Biosystems Engineering, Faculty 
of Agricultural Sciences and Landscape Architecture, 
Osnabrück University of Applied Sciences, Oldenburger 
Landstraße 24, 49090 Osnabrück, Germany

2 Institute of Horticultural Production Systems, Section 
of Woody Plant and Propagation Physiology, Leibniz 
Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, 
Germany

http://orcid.org/0000-0002-3487-9725
http://orcid.org/0000-0001-7277-7335
http://orcid.org/0000-0002-2509-1418
http://crossmark.crossref.org/dialog/?doi=10.1007/s11240-023-02528-0&domain=pdf


552 Plant Cell, Tissue and Organ Culture (PCTOC) (2023) 154:551–573

1 3

using liquid culture or bioreactor systems (Cardoso et al. 
2018; Debergh et al. 1992; Gribble 1999). According to 
Kemat et al. (2020), at least 200 species are sensitive to 
HH and around 150 species can be affected seriously by 
HH emphasizing the relevance for commercial micropro-
pagation. HH not only restricts the propagation of in vitro 
plants, but also affects the efficiency of genetic transforma-
tion mediated by Agrobacterium (van Altvorst et al. 1996) 
and the conservation of important species in germplasm 
banks (Lizárraga et al. 2017).

HH is a physiological disorder occurring under the spe-
cific conditions of plant tissue culture such as high humid-
ity, high supplementation of sucrose, impaired gaseous 
exchange capacity and consequently low photosynthetic 
activity (George et al. 2008; Ziv 1991). The work of van 
den Dries et al. (2013) and Rojas-Martínez et al. (2010) 
provided strong evidence that the underlying mechanism of 
the HH etiology is the flooding of the apoplast, resulting 
in hypoxia and causing oxidative stress. This in turn leads 
to the macroscopic symptoms of water-soaked, wrinkled, 
curled, brittle and translucent tissue. The occurrence of HH 
was shown to be increased when the water availability for 
the in vitro explant was increased (Smith and Spomer 1995), 
e.g., by reduced concentration of the gelling agent (Ivanova 
and Van Staden 2011), or by the type of the gelling agent 
used (Pasqualetto et al. 1988; Tsay et al. 2006). The gelling 
agent gelrite induced HH in a wide range of plant genera 
(e.g., Arabidopsis sp., van den Dries et al. 2013, Malus sp. 
Pasqualetto et al. 1988, Prunus sp. Franck et al. 1998), even 
though the same gel strength as agar was used.

In addition to the anatomical changes of hyperhydric tis-
sue which include larger intercellular spaces in the meso-
phyll and a drastically reduced number of palisade cells 
(Vieitez et al. 1985), several biochemical changes of hype-
rhydric tissue such as decreased chlorophyll contents (Phan 
and Letouze 1983; Franck et al. 1998), hypolignification 
(Kevers et al. 1987; Kemat et al. 2021), and high apoplastic 
water volume (Dries et al. 2013; Tian et al. 2015; de Klerk 
and Pramanik 2017) were reported. Paques et al. (1985) 
refer to HH as an inducible and reversible phenomenon and 
demonstrated that Malus sp. ‘M26’ plantlets could return 
to non-hyperhydric state if the induction phase in liquid 
culture did not exceed five days or if the symptoms of HH 
were not too severe. Recently, there were reports that hype-
rhydricity can be reversed by supplementation of agents to 
media such as silver nitrate and trichloroacetate (Gao et al. 
2017; de Klerk and Pramanik 2017) or by controlling the 
environmental conditions in addition to media optimization 
(Mohamed et al. 2023), but no general countermeasure has 
been derived up to now. In commercial in vitro laboratories 
visual monitoring for contaminations and disorders are part 
of the routine work and therefore a costly and time-consum-
ing repetitive matter (Mestre et al. 2017).

Nowadays, digitalization enters the horticultural sector, 
driven by digital solutions to increasingly complex work 
processes achieved through technological advances in sen-
sors, automation and robotization, as well as data analysis 
through classical and advanced machine learning (ML) 
techniques. Automation of processes offers great economic 
potential for micropropagation laboratories since 60–70% 
of total costs of a micropropagated plant is due to manual 
labor (Chen 2016). An increasing number of reports on auto-
mating micropropagation processes such as explant cutting 
(Huang and Lee 2010), the commercial laser-based robotic 
cut and transplanting system RoBo®Cut (Bock Biosciences 
GmbH 2018), monitoring of cultures (Dhondt et al. 2014, 
Bethge et al. 2023) and transplanting of explants (Lee et al. 
2019) were published within the recent years. In addition, 
there are several studies on the application of computer 
vision to micropropagation (Smith et al. 1989; Aynalem 
et al. 2006; Dhondt et al. 2014; Gupta and Karmakar 2017; 
Mestre et al. 2017) with imaging sensors being the crucial 
technology. Imaging sensors used in horticulture consist of 
affordable RGB cameras, multispectral cameras, thermal 
cameras, expensive hyperspectral imaging (HSI) systems, 
ToF (Time of Flight), LIDAR systems (Light Detection and 
Ranging) and more. The different sensor systems can be 
discriminated by their operating spectral range (UV, VIS, 
NIR, SWIR, MWIR, LWIR/Thermal-IR), spectral resolu-
tion from one (monochrome) to > 100 (hyperspectral) chan-
nels and cost of purchase. For example, the price of silicon 
(Si)-based hyperspectral cameras rise by a factor of 2 to 20 
when switching the operating spectral range from VIS/NIR 
(400–1000 nm) to SWIR (900–1700 nm) with an Indium-
Galium-Asenide (InGaAs) camera chip (Tisserand 2021). 
This needs to be considered, when selecting the appropriate 
spectral range and corresponding imaging technology. While 
computer vision coupled with ML offers already great poten-
tial to solve complex detection task in agriculture (reviewed 
in Patrício and Rieder 2018), for application in plant tissue 
culture only few reports are available up to now (reviewed 
in Prasad and Gupta 2008; Hesami and Jones 2020). How-
ever, these are limited in terms of live-monitoring, since 
they followed the “object to sensor” approach for plantlet 
clustering (Mahendra et al. 2004), classification of somatic 
embryos (Zhang et al. 1999) and estimation of shoot length 
(Honda et al. 1997).

The visual appearance of plants, and in particular leaf 
pigments, can be estimated by spectroscopic approaches 
based on their interaction with electromagnetic radiation. 
Single biochemical plant metabolites can be associated with 
specific wavelengths based on their major absorption peaks 
(Table 1).

Univariate data analysis, e.g., spectral indices or multi-
variate data analyses like partial least square (PLS), allows 
the prediction of leaf pigments’ concentrations and can be 
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used for classification. These techniques also enable the 
discrimination of different plant species or the identifica-
tion of growth anomalies by specific spectral features (Shaw 
and Kelley 2005). According to Hesami and Jones (2020), 
ML techniques applied to plant tissue culture problems will 
help in future to solve classification and regression problems 
and can be employed for automation and mechanization of 
in vitro propagation, genetic engineering and genome edit-
ing technologies. In addition, Nezami-Alanagh et al. (2019) 
demonstrated the positive impact of ML models in optimiz-
ing culture media in terms of time, cost and the occurrence 
of physiological disorders in the propagation of pistachio 
rootstocks. Prasad and Gupta (2008) proposed that an auto-
mated decision-making system based on computer vision 
coupled with ML models and combined with a robotic sys-
tem will result in the mechanization of commercial mass 
propagation and help in evaluating various aspects of plant 
quality such as HH status, which might be difficult to deter-
mine by human visual inspection. To our knowledge, the 
spectral properties of HH have not yet been studied or used 
as a distinguishing feature for ML classification of in vitro 
cultured explants.

The objective of this study was to investigate the spectral 
fingerprints of hyperhydric tissue in two different plant spe-
cies (Malus sp. and Arabidopsis thaliana) after forced induc-
tion of the growth anomaly and subsequent spectral analysis 
of the explants. Here, we selected Malus as a representa-
tive of classical in vitro shoot cultures and Arabidopsis as a 
model plant for the underlying mechanism of HH. A novel 
phenotyping system was tested to monitor the morphological 
characteristics of hyperhydric explants in time-series image 
data. Furthermore, we aimed at identifying specific absorp-
tion features of hyperhydric tissues that are sufficient for 
discrimination by ML techniques and to locate them within 
in the electromagnetic radiation spectrum. Putative discrimi-
nating models should be validated and discussed in terms of 
their feasibility in plant tissue culture. The findings of this 
study should pave the way for an automatic detection of HH 
by live-monitoring of in vitro cultures.

Material and methods

Plant material and experimental setup

Morphological characteristics of hyperhydricity

From in vitro apple shoot cultures (Malus sp. ‘G214’) uni-
form shoots of 10–15 mm length were prepared and culti-
vated on modified MS medium (Murashige and Skoog 1962) 
containing 2.2 µM 6-benzylaminopurine (BAP), 0.5 µM 
indole-3-butyric acid (IBA), 3% (w/v) sucrose and solidified 
with either 0.8% (w/v) agar (Plant agar, Duchefa, Haarlem, 
The Netherlands) for the control variant (“MS + agar”) or 
with 0.25% (w/v) gelrite (Duchefa, Haarlem, The Nether-
lands) for the HH induction variant (“MS + gelrite”). The 
pH of the medium was adjusted to 5.8 prior to autoclaving 
at 121 °C for 15 min.

Arabidopsis thaliana ‘Col-0’ seeds which had been stored 
at 4 °C, were surface-disinfected using 70% (v/v) isopro-
panol for 30 s, followed by 2% (v/v) sodium hypochlorite 
plus Tween 20 for 5 min and then rinsed thoroughly three 
times using sterile deionized water. The seeds were germi-
nated for 10 days at 24 °C in 9 cm-Petri dishes (polysty-
rene) on modified plant growth regulator-free B5 medium 
(Gamborg et al. 1968), containing 1.5% (w/v) sucrose with 
0.8% (w/v) Plant agar and pH 5.8. Uniform 10 day-old seed-
lings were selected and five seedlings per 500 mL-vessel 
were transferred to modified plant growth regulator-free 
B5 medium (Gamborg et al. 1968), containing 1.5% (w/v) 
sucrose and either 0.8% (w/v) Plant agar for the control vari-
ant (“B5 + agar”) or 0.25% (w/v) gelrite (“B5 + gelrite”) to 
induce HH. The pH of the medium was adjusted to 5.8 prior 
to autoclaving at 121 °C for 15 min.

Ten 500 mL polypropylene vessels were prepared for 
Experiment I (Table 2) and Experiment II, each with four 
plantlets and containing ~ 80 mL of one of the two dif-
ferent media (“B5/MS + agar”/“B5/MS + gelrite” supple-
mented with 1 g L-1 titanium dioxide). Titanium dioxide 
(food dye; Ruth GmbH & Co.KG, Bochum, Germany) 

Table 1  Selected reported symptoms of hyperhydric tissues (HH) and corresponding expected major changes in optical absorbance features

*Absorptions peaks according to Curran (1989) in a wavelength range of 400 to 2000 nm. Bold wavelength indicating stronger absorption of the 
respective chemical compound

Reference Plant species Observation Deduced optical absorbance 
features in VIS-SWIR [nm]*

Phan and Letouze (1983) P. avium Lower chlorophyll content in HH 430, 460, 640, 660
Van den Dries et al. (2013) A. thaliana Higher apoplastic water volume in HH 970, 1200, 1400, 1450, 1940
Phan and Letouze (1983) P. avium Less protein content in HH 910, 1020, 1510, 1940, 1980
Kemat et al. (2021) A. thaliana Hypolignification in HH 1200, 1420, 1450, 1690, 1940
Saher et al. (2005) D. caryophyllus Higher sugar content in HH 1450, 1490, 1580, 1780, 1960
Van den Dries et al. (2013) A. thaliana Anthocyanins accumulation in HH 550
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was used to add a white color to the medium, because 
this enabled the height measurements of the robot system 
due to increased reflection of the culture media. A plastic 
film (PVC system foil; Klarsichtpackung GmbH, Hofheim, 
Germany) sealed the containers as a substitution of the 
lid of the containers to provide a fully transparent view 
while ensuring the aseptic condition of the cultures. These 
cultures were cultivated at 22 °C with a 16 h photoperiod 
and under a PPFD (Photosynthetic Photon Flux Density) 
of 35–40 μmolm−2s−1 , provided by two tubular fluores-
cent lamps (Philips MASTER TL-D 58W/865). The lab’s 
bottom-cooling system—provided by water-cooled plastic 
tubes below the shelf—prevented water condensation due 
a local shift of dew point. Room temperature ranged from 
19 (night) to 25 °C (day) with an average of 22 °C over 
24 h, while the average surface temperature of the cooled 
cultivation area ranged from 19 (night) to 24 °C (day) 
with an average of 21 °C over 24 h. In addition to the 
non-destructive monitoring approach (Exp. I & II), three 
experiments (Exp. III, Exp. IV, Exp. V; Table 2) were con-
ducted with different evaluation time points. The evalua-
tion time points were chosen based on the key events in 
the dynamic etiology of hyperhydricity during a culture 
passage (~ 4–5 weeks for Malus). Important morphological 
changes were observed during the first two weeks, so Exp. 
III and V covered this time span, while measurements in 
Exp. IV were undertaken to cover the second half of the 
culture passage.

Hyperhydricity induction

For Malus shoot cultures, 500 mL polypropylene containers 
containing 80 mL of the two different media were used and 
each container was inoculated with five shoots. Cultivation 
took place for 20 days (Table 2; Exp. III), 28 days (Exp. IV) 
and 16 days (Exp. V) at 22 °C (room temperature ranged 
from 19 (night) to 25 °C (day) with an average of 22 °C 
over 24 h) with a 16 h photoperiod and under a PPFD (Pho-
tosynthetic Photon Flux Density) of 35–40 µmol  m−2  s−1, 
provided by tubular fluorescent lamps (Philips MASTER 
TL-D 58W/865). Arabidopsis plantlets were cultivated as 
described above for 20 days (Exp. III).

Evaluations

Morphological characteristics of hyperhydricity via image 
analysis

For visualization of the etiology of HH, the multisensory 
robot system “Phenomenon” (Bethge et al. 2023) was used. 
RGB images were captured in Exp. I and Exp. II every 4 h 
with a 12.3-megapixel RGB camera (Raspberry Pi Camera 
HQ, Raspberry Pi Foundation, Cambridge, UK) equipped 
with a 6 mm fixed focal length low-distortion lens (Edmund 
Optics: 6 mm wide angle lens, f/1.2, high resolution = 120 
lp  mm−1 (lp = line pairs), low distortion < 0.5%) and with the 
following camera parameters: resolution = 4054 px × 3040 

Table 2  Overview of conducted experiments and measurements ten

a The multisensory robot system “Phenomenon” developed by Bethge et al. (2023), consisting of 4 sensors (RGB camera, laser distance sensor, 
thermal camera and a microspectrometer), was used to enable in-situ measurement of the morphology through the lid of the culture vessels

Experiment Plant species Time series [day] Evaluations Determination/Device

I Arabidopsis thaliana 0–20 RGB growth curve RGB image sensor of  Phenomenona

RGB shape analysis RGB image sensor of  Phenomenona

Depth mean canopy height Laser distance sensor of  Phenomenona

Depth maximum plant height Laser distance sensor of  Phenomenona

II Malus sp. 0–27 RGB growth curve RGB image sensor of  Phenomenona

RGB shape analysis RGB image sensor of  Phenomenona

RGB image data set RGB image sensor of  Phenomenona

Depth mean canopy height Laser distance sensor of  Phenomenona

Depth maximum plant height Laser distance sensor of  Phenomenona

III Malus sp.,
Arabidopsis thaliana

0, 5, 10, 15, 20 HH Score Visual scoring
Apoplastic liquid volume Apoplastic liquid volume
Reflection spectra UV–VIS Spectrometer Perkin-Elmer

IV Malus sp. 14, 21, 28 HH Score Visual scoring
Apoplastic liquid volume Apoplastic liquid volume
Reflection spectra UV–VIS Spectrometer Perkin-Elmer

V Malus sp. 0, 4, 8, 12, 16 HH Score Visual scoring
Apoplastic liquid volume Apoplastic liquid volume
Reflection spectra UV–VIS Spectrometer Perkin-Elmer
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px, shutter speed = 2000  ms, iso = 100, autowhite-bal-
ance = off and a fixed gain of 3.3, 1.5 (red, blue).

Sensor data from the multisensory robot system “Phe-
nomenon” (Bethge et al. 2023) were processed, segmented, 
and various parameters were calculated. RGB image analysis 
was performed in Python (Van Rossum and Drake 2009), 
using the following packages: OpenCV v3.4.9 (Bradski 
2000), NumPy v1.20.2 (Van Der Walt  et al. 2011) and 
PlantCv v3.11.0 (Gehan et al. 2017) and the Software toolkit 
Ilastik v1.3.3 (Sommer et al. 2011) headless integrated in 
the Python script. RGB image analysis included a histogram 
stretching for normalization, segmentation via a trained ran-
dom forest classifier, normalization to the day 0 plant area 
and calculation of projected plant area (37.7 px = 1 mm). 
Shape analyses were performed on the four largest objects 
by area and limited to the first nine days to avoid errors from 
overlapping explants. We used the installed shape function 
of PlantCv to calculate solidity (measure of density as the 
ratio between object area and area of the convex hull of the 
object) and eccentricity (measure of deviation of an ellipse 
to a circle (eccentricity = 0) as the ratio between major and 
minor axis).

Depth data were acquired once per day for each culture 
container with the point-measuring laser distance sensor as a 
spatial scan by sequential readout of the sensor while shifting 
the detector head of the “Phenomenon” robot system in xy 
direction, according to the scan pattern (100 mm × 100 mm; 
with a resolution of 1 mm × 1 mm). The laser distance sen-
sor (OD-Mini OB1-B100, Sick AG, Waldkirch, Germany) 
used in this setup was specified by the manufacturer with a 
power consumption of < 1.92 W, laser emission wavelength 
of 655 nm, max. output of 390 µW (laser class 1), a measur-
ing range of 50 to 150 mm and a linearity of ± 100 µm as 
well as spot size of 700 µm × 600 µm at a measuring distance 
of 100 mm. The analog output of the laser distance sensor 
(10 V) was connected via a small voltage divider circuit to 
a high precision 16-bit A/D-converter (ADS 1115), which 
communicated via Inter-Integral Circuit  (I2C) with a micro-
controller board (Wemos D1 Mini). Each distance measure-
ment consisted of a up to ten single readouts and averaging 
(excluding default sensor values), to achieve a robust and 
low-noise measurement. A detailed description of the robot 
system “Phenomenon” can be found in Bethge et al. (2023).

Depth data of explants were obtained by measuring 
10,000 data points of each culture vessel once a day with 
a scanning laser distance sensor. The depth data processing 
pipeline included the segmentation of culture media by a 
RANSAC (random sample consensus, Fischler and Bolles 
1981) segmentation approach, subtraction of RANSAC 
plane, normalization to the day 0 plant height with the 
Python libraries: Open3D v0.15.1 (Zhou et al. 2018) and 
Pyvista v0.34.0 (Sullivan et al. 2019). Pipelines construction 
is described in detail in Bethge et al. (2023).

Statistical analysis of repeated measures data was per-
formed using R software. Data were transformed, if neces-
sary, with the R package bestNormalize v1.8.2 (Peterson and 
Peterson 2020). Different linear mixed-effect models from 
nlme v3.1-153 package (Pinheiro et al. 2017) were fitted to 
the data with different covariance structures: scaled identity, 
first-order autoregressive, first-order heterogeneous autore-
gressive, compound symmetry, Toeplitz and heterogenous 
Toeplitz. The mean model consisted of the fixed effects 
treatment/medium type and time and their interaction terms. 
An extra random effect was included in the model to account 
for the dependencies between measurements from the same 
culture container or in SI. 1 for shape analysis from the same 
explant (as nested random effect). We also included linear 
models with random intercept (CulturecontainerID) and 
random slope (Time). The respective best model (Fig. 1A: 
linear mixed model with scaled identity covariance struc-
ture and random slope; Fig. 1B and SI. 1A: linear mixed 
model with heterogenous Toeplitz covariance structure and 
random slope; SI. 1B: linear mixed model with heteroge-
nous Toeplitz covariance structure and random intercept) 
was selected based on the Akaike Information Criterion 
(AIC, Sakamoto et al. 1986) values and residual analysis 
(QQ-plot). Pairwise comparisons using Tukey’s HSD test 
at p < 0.05 was performed and show significant differences 
between treatments within a time point.

Visual scoring of hyperhydricity severity level

In the Experiments III to V, the severity of HH was assessed 
for each explant and at every time point (Exp. III: 0, 5, 10, 
15, 20 days; Exp. IV: 14, 21, 28 days; Exp. V: 0, 4, 8, 12, 
16 days) according to Tian et al. (2015) with minor modi-
fications (Table 3). The starting plant material cultivated 
on control media represented the samples of 0 days after 
transfer (DAT 0).

Determination of apoplastic liquid volume

Per time point at least 10 samples per treatment were col-
lected for the determination of apoplastic liquid volume, 
with DAT 0 samples representing the starting material. 
Apoplastic liquid was extracted from leaf tissue by mild 
centrifugation according to van den Dries et al. (2013) and 
Terry and Bonner (1980): Leaves (50–150 mg FM) from 
a single explant were excised, weighed, and placed into a 
2 mL tube microcentrifuge filter without membrane (Clear-
Line®; Kisker Biotech GmbH & Co, Steinfurt, Germany). 
Samples were centrifuged at 3000 g for 20 min at 4 °C. 
Immediately after centrifugation, the leaves were reweighed 
to determine the apoplastic liquid volume  (VAL) in µL  g−1 
fresh mass (FM) using the Eq. 1.
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where FM = fresh mass of leaves in mg,  Mac = mass of leaves 
after centrifugation and ρH2O = water density (the water den-
sity was taken as equal to 1 g  mL−1 assuming the apoplastic 
liquid is mainly water and has a temperature of 4 °C).

Spectral data acquisition and analysis

Prior to the quantification of apoplastic liquid volume, one 
fully expanded leaf per explant under study was collected. 
The leaf was then placed in a 3D printed sample holder 
(SI. 2) in an adaxial position that allowed for flat clamping 

(1)V
AL

=

(

FM − M
ac

)

⋅ �
H2O

FM

Fig. 1  Morphological differences in growth patterns of explants of 
A. thaliana Col-0 and Malus ‘G214’ cultivated on either agar or gel-
rite solidified media (Mean ± SD). A The curve for the increase in 
the projected plant area was calculated from the analysis of the seg-
mented RGB images normalized to the plant area of day 0 and pre-
sented as projected plant area  [cm2]. Since flower initiation started at 
later time points for A. thaliana and thus an error in the estimation of 
projected plant area might occur, the analysis of growth curves was 
limited to the first ten days. B The relative increase in mean canopy 
height resulted from analysis of segmented depth data collected with 
a scanning laser distance sensor and normalized to day 0 plant height. 

Yellows lines indicates cultivation on standard media formulation 
on Gamborg-B5 (A. thaliana) and MS-Medium (Malus) solidified 
with 0.8% agar (w/v), while dark gray lines display the cultivation 
on induction media containing 0.25% (w/v) gelrite, inducing HH. C 
Representative images at the endpoint of the experiments. Sample 
number (n) indicates the individual culture containers. Significance 
stars indicate comparisons of treatments within a time point (day) 
with *p < 0.05, **p < 0.01, ***p < 0.001. RGB and depth data were 
acquired with the multisensory robot system “Phenomenon” (Bethge 
et al. 2023). (Color figure online)

Table 3  Scoring of hyperhydricity by visual observation (Tian et al. 
2015, with minor modifications)

Hyperhydricity score Symptoms

0 No visual symptoms
1 ≤ 50% curled leaves
2  > 50% curled leaves
3  > 50% curled and thickened leaves
4 Curled, thickened, translucent, fragile leaves
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without exerting too much pressure on the leaf (with a cav-
ity of 1 mm). The curled hyperhydric leaves were handled 
with care to obtain reflection spectra from a planar surface. 
The leaf reflectance spectra were examined with a Perkin-
Elmer Lambda 900 UV–VIS-NIR-SWIR spectrometer 
(Perkin-Elmer Instruments, Norwalk, USA) equipped with 
150 mm Indium-Gallium-Arsenide (InGaAs) integrating 
sphere. The reflectance intensity was measured in steps of 
1 nm in the wavelength range between 200 and 2000 nm, 
and the reflectance was calculated using the reflection 
spectrum of the white reference standard Spectralon®. 
Raw spectra were pre-processed in R v4.1.2 using Rstudio 
(RStudio Team 2015) with the hsdar v1.0.4 package (Leh-
nert et al. 2018) allowing the cleaning of device errors, 
trimming to spectral range of 400 mn to 2000 nm and 
smoothing with the Savitzky-Golay filter at a window size 
of 25 data points of third-degree polynomials to remove 
noise from data.

Spectra of  leaves obtained from three experiments 
(Exp. III: 147, Exp. IV: 39 spectra, Exp. V: 51) were 
divided into two groups based on the significance level 
of the apoplastic liquid volume and the HH score of the 
whole explant was assessed by visual observation. Here, 
the explants with a HH score of 0 and 1 were classified as 
normal explants while the explants with a HH score of 2 
to 4 represented hyperhydric explants. This resulted in 100 
and 137 spectra of normal and hyperhydric leaves, respec-
tively, covering the two plant species Malus ‘G214’ (187 
spectra) and A. thaliana (50 spectra). For visualization 
and isolation of the HH-specific absorption features, leaf 
spectra were further processed with the segmented upper 
hull continuum removal method described in detail in Leh-
nert et al. (2018). This normalization method allowed a 
comparison of individual absorption features on a com-
mon baseline formed by a segmented upper hull of local 
maxima and resulted in absorption features spectra. In 
addition, difference spectra of absorption feature spectra 
were calculated by subtracting normal leaf spectra from 
hyperhydric leaf spectra.

In addition, we defined three spectral ranges based on 
the sensitivity of the state-of-the-art sensor technologies 
such as standard RGB camera systems with silicon sensor 
chips (3 channels: B: 400 nm to 500 nm, G: 500 nm to 
600 nm and R: 600 nm to 700 nm), multispectral camera 
systems with silicon sensor chips (4 channels: B: 400 nm 
to 500 nm, G: 500 nm to 600 nm, R: 600 nm to 700 nm and 
NIR: 750 nm to 850 nm) and SWIR-HSI camera systems 
with Indium-Gallium-Arsenide (InGaAs) sensor chips 
(SWIR: 900 nm to 1700 nm). This division was made as a 
decision support for assessing the potential of the candi-
date detection systems to detect HH based on their spectral 
sensitivity range and considering their affordability.

Identification of hyperhydricity‑specific absorption features

Different ML models were trained with the caret v6.0-90 
package (Kuhn 2008) in the R software to identify the 
key absorption features that discriminate between nor-
mal and hyperhydric explant leaf spectra. Here, pre-pro-
cessed spectral data sets (237) were centered and scaled 
and divided into a training set (178 spectra; Malus: 143, 
A. thaliana: 35, with 103 normal and 75 hyperhydric 
explants, in total) and a test set (59 spectra; Malus: 44, 
A. thaliana: 15, with a total of 34 normal and 25 hype-
rhydric explants). All classification models were trained 
with the same resampling procedure consisting of a 10 
times tenfold repeated cross validation (CV). The tenfold 
repeated CV divides the training data into 10 equal parts 
(10 subsamples with a size of 178/10). These parts are 
iterated 10 times, during each iteration, 9 of the 10 parts 
serve as training data, and the remaining 10th part as the 
validation set to calculate model performance metrics. In 
10 times repeated tenfold CV this process is repeated 10 
times; therefore, performance of training was validated on 
100 validation subsamples consisting of 17–18 individual 
spectra.

In the confusion metrics, correctly classified normal 
and hyperhydric leaves formed the true-positive (TP) 
and the true-negative (TN) class, while false classified 
ones constituted the false-positive (FP) and false-negative 
(FN) class, respectively. For evaluation of model valida-
tion performance, the sensitivity (Eq. 2; TPR: true posi-
tive rate) and the specificity (Eq. 3; TNR: true negative 
rate) were calculated with normal explants as the positive 
class and the area under the curve (AUC) of the receiver-
operator-characteristics (Eq. 4; AUC ROC), while for evalu-
ation of model test performance, the accuracy (Eq. 5) was 
determined. Here, misclassifications are described by the 
false negative rate (FNR) and false positive rate (FPR). 
Balanced accuracy (Eq. 6) and  F1 score (Eq. 7) were calcu-
lated to account for putative class imbalances. To find the 
best suitable model for discriminating between normal and 
hyperhydric leaf spectra, different ML model structures 
were tested, including a neuronal net with the maximum 
allowable number of weights set to 2000 (“nnet” from nnet 
v7.3-16 package; Ripley et al. 2016), a linear discriminate 
analysis (“lda” from caret package), a supported vector 
machine (“svmLinear” from caret package), a random for-
est (“rf” from caret package), a high dimensional discrimi-
nate analysis (“hdda” from caret package) as well as a 
linear discriminate analysis (“lda” from caret package with 
PCA-preprocessed data set) with an upstream principal 
component analysis (PCA). Based on their resampled per-
formance metrics, the best model was selected to identify 
its most relevant features/wavelengths on the basis of the 
underlying variable importance in the model.
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Automated hyperhydricity detection

To test the validity of the developed spectral classifier, an 
HSI-system operating in the shortwave infrared (SWIR) 
region was used to acquire a single HSI data cube from a 
culture vessel containing a HH-sensitive apple genotype 
(Malus ‘Selection 4’). The imaging system that was devel-
oped and described by Thiel (2018) consisted of an EVK 
Helios Core NIR Line-scan camera (240 px × 1 px and 252 
spectral channels in the wavelength region of 900 nm to 
1700 nm), two 65 W halogen spot lights and a conveyer-
belt system to move the sample. Image acquisition was 
performed in closed polypropylene culture vessels, so that 
sterile conditions could be maintained inside the vessel and 
water condensation was prevented by heat radiation from 
the halogen lamps. Since only one HSI data cube could be 
acquired, these results were considered to be an exemplary 
and preliminary validation test.

The developed spectral classifier was retrained with a 
reduced number of features to match the spectral channels 
of the imaging system (Features/wavelengths: 252 channels 
in the range between 900 and 1700 nm). Due to the binary 
classification output of the classifier, most of the background 
pixels were removed by creation of a binary mask with 
simple thresholding of the image slice at a wavelength of 
1000 nm. Then each pixel of the segmented hyperspectral 
data cube was inserted as an input to the spectral classifier 
and class membership was predicted.

As a more affordable approach and as a proof of con-
cept, an object detection model based on annotated RGB 
images acquired by the robot system was trained. Therefore, 
250 images were randomly selected and annotated with the 

(2)Sensitivity = TPR = 1 − FNR =
TP

TP + FN

(3)Specificity = TNR = 1 − FPR =
TN

TN + FP

(4)AUC
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(6)Balanced accuarcy =
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1
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)
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(
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)
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graphical user interface  Roboflow© (Dwyer et al. 2022). 
The image data set consisted of 200 annotated images of 
eight culture containers from Experiment II and 50 images 
from a comparable experiment to increase variance in the 
number of explants, background colour, and colour of cul-
ture media. A total of 504 normal explants and 545 hype-
rhydric explants were included. The image data set was 
divided into 175 images as training set, 50 images as vali-
dation set and 25 images as test set. Data augmentation of 
annotated bounding boxes increased the training set to 1800 
images and included: horizontal and vertical flip, rotation 
by 90° (clockwise, counter-clockwise, upside down), rota-
tion by ± 5°, brightness by ± 10%, exposure by ± 7%, blur 
with 2px and noise with 2% of pixels. The data set (Bethge 
2023) is publicly accessible via  Roboflow© universe. Time 
series images of two culture vessels from Experiment II were 
retained and used to visualize the trained model. Object 
detection models perform attempts to identify and locate 
objects in images while assigning them to the appropriate 
classes. We selected YOLOv8 (Jocher et al. 2023) archi-
tecture as the latest versions of the YOLO (“You only look 
once”, Redmond et al. 2016) family. YOLO is a single-stage 
object detector, consisting of three parts in its architecture: 
backbone, neck and head. The backbone is defined by sev-
eral convolutional layers which extract key features from 
the images, the neck uses the features and forms the feature 
pyramid by fully connected layers and the head is the final 
output layer for prediction of bounding boxes and classifi-
cation. The training process was performed in the Google 
Colaboratory (Colab/Colab Pro) environment on a NVIDIA 
A100-SXM4-40 GB graphical processing unit (GPU) ser-
viced by Google. In addition, the model was trained with 
the following parameters: epochs = 250 (early stopping 
occurred after 188 epochs), batch size = 16 images, image 
size = 640 px, patience = 100 epochs, learning rate = 0.01, 
momentum = 0.94, intersection over union (IoU) = 0.7. We 
let Roboflow train two object detection models, one from 
scratch and one with weights from a previously trained 
model (additional 125 images from the same experiment) to 
see the full potential of the dataset with the optimized pipe-
line. Evaluation of model performance was based on preci-
sion (Eq. 8), recall (Eq. 9), average precision (AP; Eq. 10) 
and mean average precision (mAP; Eq. 11) of the validation 
set. Here true positive (TP) indicate a correct detection and 
classification, false negative (FN) describes cases where the 
prediction missed the detection contained in the ground truth 
data, while in a false positive (FP) case a bounding box was 
predicted on a location not contained in the ground truth 
data. Thereby, AP represents the area under the precision-
recall-curve across a range of probability confidence thresh-
old values from 0 to 1. The mAP is the sum of AP of each 
class (k) divided by the number of classes (n) at a given 
intersection over union (IuO) threshold of 0.5. Intersection 
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over union is defined as ratio between the overlap area to the 
united area of the predicted and ground truth bounding box. 
After the training process predications were obtained using 
the Python library roboflow v0.2.25 (Dwyer et al. 2021) with 
IuO threshold and confidence threshold set to 0.5.

Morphological characteristics of hyperhydricity 
via image analysis

Studying the morphology of the shoots of the two treatments 
revealed major differences in horizontal and vertical growth. 
Significantly stronger growth, quantified as projected plant 
area, was observed for the gelrite treatment at early time 

(8)Precision =
TP

TP + FP

(9)Recall =
TP

TP + FN

(10)AP =
1∫
0

Precision(Recall) d (Recall)

(11)mAP =
1

n

k=n
∑

k=1

AP(k)

points (5  days) for both plant species (Fig.  1A). After 
4 weeks of cultivation, shoots of Malus in culture vessels 
with gelrite medium had with 24.5  cm2 a 2.4 times greater 
increase in projected plant area than shoots in vessels with 
agar medium with 10.3  cm2. Here, 65% of the explants of 
Malus had a HH score > 2 in the gelrite treatment compared 
to 0% for agar treatment. For A. thaliana we evaluated the 
projected plant area only until day 10 to avoid distorting 
effects on projected plant area due to flower initiation start-
ing at day 12. Shape analysis of single explants showed sig-
nificant differences in solidity at day 3 and in eccentricity 
at day 6 for A. thaliana, whereas the shape differences of 
Malus explants were not significant (SI. 1). Vertical growth 
analysis, quantified as mean canopy height (Fig. 1B) and 
maximum shoot height as mean of upper  10th percentile (SI. 
1), showed a significantly higher mean canopy height of 
Malus for the gelrite treatment at day 18 and of A. thaliana 
at day 16. An even earlier distinction was recorded for the 
maximum shoot height, i.e. at day 11 and 14 for A. thaliana 
and Malus, respectively.

Hyperhydricity induction

Visual scoring of HH revealed the dynamics of HH induc-
tion using gelrite in the two plant species under investiga-
tion. Anthocyanin accumulation was noted within the first 
4 days in both treatments for Malus. However, it persisted 

Fig. 2  Visual scoring of hyperhydricity of A Malus ‘G214’ and B 
A. thaliana Col-0 in  vitro cultures over 20  days (DAT, Days After 
Treatment). Samples from 0  days after transfer (DAT 0) represent 
the starting plant material cultured on control media. Yellows bars 
indicate cultivation on standard media formulation A MS-Medium, 
B Gamborg-B5 solidified with 0.8% (w/v) agar, while gray bars dis-
play the cultivation on induction media containing 0.25% (w/v) gel-
rite. Dashed lines represent the medians of each histogram. Sample 

number (n) indicates the individual explants. The different sample 
numbers result from the combined evaluation with different methods 
(apoplastic liquid evaluation, reflection spectroscopy) of the same 
samples. Different letters resulting from Kruskal–Wallis test followed 
by Fisher’s LSD (p  < 0.05) indicate significant differences between 
histograms. Kruskal–Wallis effect size could be determined to be 
very strong with A η2 = 0.62 and B η2 = 0.65. (Color figure online)
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only in the gelrite treatment until the end of the experiment 
in most explants. In Malus, severe symptoms of HH were 
induced even on the agar control medium in 12.5% of the 
shoots (Fig. 2A). In two experiments, significant differences 
in the HH score and the occurrence of severe symptoms 
(curled, thickened and translucent leaves = level 4 of the 
HH score) between the agar control and the gelrite induction 
treatment were identified 10 days (Fig. 2A) and 8 days (SI. 
3) after transfer. When performing this experiment under a 
novel phenotyping system, time-lapse videos were taken. 
They confirmed these observations and visualized the tem-
poral development of HH in the two plant species (Malus: 
SI. 4 and A. thaliana: SI. 5). Three of four apple shoots 
turned into a hyperhydric status and formed first hyperhy-
dric leaves (SI. 4: arrows) on gelrite at 5 DAT (SI. 4: 100 h). 
They started to curl at 8 DAT and also became much larger 
than those on agar. After 27 days, severe symptoms appeared 
on dark green to reddish explants that exhibited compact 
growth with curled, epinastic, and brittle leaves.

For A. thaliana, there was already a significant increase 
in the HH score after 5 days of treatment (Fig. 2B). Fur-
thermore, decolorization of leaves was the predominating 
symptom of HH in A. thaliana on gelrite induction medium. 
For A. thaliana seedlings, first signs of HH (SI. 5: arrows) 

became visible at 5 DAT (SI. 5: 100 h) on gelrite-solidified 
medium and shoots developed longer petioles and much 
larger leaves with severe HH symptoms.

The apoplastic liquid volume increased steadily for Malus 
(Fig. 3A) until 15 DAT, while Experiment IV (SI. 3) demon-
strated a decrease at later time points: 21 days and 28 days. 
A significant difference in apoplastic liquid content in both 
plant species was detected at the earliest time point: 4 DAT 
(SI. 3) and 5 DAT (Fig. 3A and B), where the apoplastic 
liquid volumes of explants on gelrite induction media were 
already twice as high as those of explants on agar control 
media. In Malus, three independent experiments (Fig. 3A 
and SI. 3) allowed us to confine the time of peak in apo-
plastic liquid volume at 12 to 16 DAT. Apparently, up to 
this timepoint, quantification of apoplastic liquid volume 
reflected the HH score well—even the occurrence of some 
hyperhydric explants on the agar control medium was also 
reflected in the increase in apoplastic water volume (Fig. 3A 
vs. SI. 3). However, at later time points, the severity of HH 
symptoms steadily increased, while apoplastic liquid volume 
stayed constant.

To prove the relation between the objective quantification 
of apoplastic liquid volume and the HH score determined 
by visual scoring, data pairs of a total of 349 measurements 

Fig. 3  Apoplastic liquid volume of A Malus ‘G214’ and B A. thali-
ana Col-0 in vitro cultures over time (DAT, Days After Treatment). 
Samples from 0  days after transfer (DAT 0) represent the starting 
plant material cultured on control media. Yellow lines indicate cul-
tures on standard media A MS-Medium, B Gamborg-B5 solidified 
with 0.8% (w/v) agar, while gray dashed lines display the cultures 
on HH induction media containing 0.25% (w/v) gelrite (Mean ± SD). 
The values of A. thaliana at DAT 0 B were masked in gray to indicate 

the authors’ uncertainty, because the plants were very small when 
the apoplastic water volume was determined at this time, and there-
fore a large influence of adhering water could not be excluded. Rep-
licate number (n) indicates the individual explants. Different letters 
resulted from Tukey’s HSD test at p < 0.05 and indicate significant 
differences when comparing time points within one treatment, while 
asterisks indicate comparisons of treatments within a time point with 
* =  p < 0.05, ** =  p < 0.01, *** =  p < 0.001. (Color figure online)
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from both treatments of Malus were used (Fig. 4). We found 
the highest correlation between HH score and apoplastic 
volume to be ρ(18) = 0.83 (p < 0.001) 12 DAT using spear-
man’s rank correlation for all acquired time points for Malus. 
Interestingly, only three groups could be distinguished 

significantly by apoplastic liquid volume. Explants with a 
HH score of two had more than > 50% curled leaves and 
in average a double amount of apoplastic liquid volume. 
We therefore restricted the three significant groups to two 
classes (HH score 0–1: normal explants and HH score 2–4: 
hyperhydric explants) in further analysis, regardless of the 
treatment in order to exclude treatment-depended effects on 
the spectral analysis.

Spectral analysis of hyperhydricity

The evaluation of leaf explants via UV–VIS-NIR-SWIR 
spectroscopy (Fig. 5) revealed the first major difference in 
significantly reduced reflectance in the RGB (400 nm to700 
nm) region of 6.5 ± 3.2% for the hyperhydric explants com-
pared to 8.7 ± 3.9% for normal explants. The largest dif-
ference in reflectance was recorded for NIR (750 nm to 
850 nm) region with a reflectance of 20.5 ± 9.0% hyperhy-
dric explants and normal explants with 28.3 ± 9.5%. Also, 
for the SWIR (950 nm to 1700 nm) region the overall reflec-
tance was lower in hyperhydric explants (13.8 ± 8.2% for 
hyperhydric and 21.4 ± 8.7% for normal explants). Differ-
ences in average reflectance were most significant in the blue 
(p< 2.2e-16) region followed by SWIR (p< 4.3e-14), green 
(p< 1.1e-12), red (p< 2.5e-11) and the NIR region (p< 2.0e-
09) according to the results of a Mann–Whitney test.

The emergence of HH-specific absorption features 
over time was recorded applying the continuum removal 
method to pre-processed spectra of Experiment V and the 

Fig. 4  Relation between visual scoring of hyperhydricity and apo-
plastic liquid volume of Malus  ’G214’ (Mean ± SD). Data obtained 
from three different induction experiments (Exp. III-V) covering time 
points from 0 to 28 DAT. Replicate number (n) indicates the indi-
vidual explants. Different letters resulted from Tukey’s HSD test at 
p < 0.05 and show significant differences between score levels

Fig. 5  Raw reflectance spectra of Malus ‘G214’ and A. thaliana 
Col-0 in vitro leaves. Mean (solid) ± SD (dashed) spectra of normal 
leaves (N, in green) and hyperhydric leaves (HH, in blue). The dis-
tinction was based on visual scoring of HH (N: 0–1 HH score; HH: 
2–4 HH score). Wavebands represent different spectral regions, 
defined by the sensitivity of silicon-based (Si) cameras, such as 

affordable RGB and RGB-NIR multispectral cameras, and a more 
expensive Indium-Galium-Asenide-based (InGaAs) detection sen-
sor. Reflectance spectra were measured with an UV–VIS-NIR-SWIR 
spectrometer (PerkinElmer Lambda 950) in a wavelength range of 
200 nm to 2000 nm and at a resolution of 1 nm. (Color figure online)
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formation of difference spectra of the isolated band depth 
spectra, where the absorption features spectra of normal 
explants were subtracted from absorption features spectra 
of hyperhydric explants (Fig. 6). Greater absorption of hype-
rhydric explants was observed as early as 8 DAT, with a 
maximum at 1402 nm and a full width at half maximum of 
157 nm. At later time points the difference in absorbance at 
around 980 nm, 1150 nm, 1400 nm, 1520 nm and 1780 nm 
increased negatively, while at around 1930 nm the difference 
positively increased. In the VIS region, two further local 
maxima arose at 460 nm and 695 nm at DAT 10, which were 
also detected at the later time points. However, these peaks 

can be considered as artefacts of the reduced reflection in the 
green region due to the continuum removal method based 
on connection of local maxima. In addition, a consistent 
positive peak indicating less absorption or higher reflec-
tion of hyperhydric explants was found with a maximum 
around 1930 nm, besides the two local minima at 1400 nm 
and 1520 nm. When combining data from all experiments 
(SI. 6), including different time points and the two differ-
ent plant species, we identified reliable minima (arrows) at 
980 nm, 1150 nm, 1400 nm, 1520 nm, and 1780 nm, indicat-
ing stronger absorption of the hyperhydric explants, and a 
reliable maximum at 1930 nm.

Fig. 6  Spectral contrasting reflectance of Malus ‘G214’ normal and 
hyperhydric explants over time (DAT, Days After Treatment). The 
spectral data used originate from Experiment V. Upper row: Raw 
reflection spectra; middle row: extracted absorption features after 
segmented convex-hull removal of raw spectra; bottom row: differ-
ence spectrum of the absorption peaks, where the absorption features 
spectra of normal explants were subtracted from absorption features 
spectra of hyperhydric explants. Mean (solid) ± SD (dashed) spectra 
of normal explant leaves (N, in green) and hyperhydric explant leaves 
(HH, in blue). Distinction of N and HH was based on visual scoring 

of HH (N: 0–1 HH score; HH: 2–4 HH score). Arrows indicate puta-
tive major biochemical compounds absorbing in the given wavelength 
region, according to Curran (1989). Colored arrows represent: "Chl" 
= chlorophyll (dark green), "Antho" = anthocyanin (red), "H20" = 
water (dark blue), "L" = lignin (dark red), "P" = protein (green), "S" 
= sugar (yellow). Reflection spectra were measured with an UV–VIS-
NIR-SWIR spectrometer (PerkinElmer Lambda 950) in a wavelength 
range of 200 mn to 2000 and at a resolution of 1 nm. Absorption fea-
tures spectra of the other conducted experiments, showing similar 
results, can be found in SI. 6. (Color figure online)
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To demonstrate whether the observed differences in 
reflectance spectra are sufficient to reliably discriminate 
between hyperhydric and non-hyperhydric explants, while 
generalizing plant species and time points, we performed 
a model spot checking for several ML models with whole 
spectral data sets as input (Table 4). The models spot check 
based on AUC ROC metrics identified partial least square 
(PLS) and linear discriminate analysis with upstream prin-
cipal component analysis (PCA.LD) with 0.94 to be superior 
in the training step when classifying the explants against 
the other models, while supported vector machine (SVM), 
neutral net (NNET) with 0.93 and random forest model (RF) 
with 0.92 performed only slightly worse. High dimensional 
linear discriminate analysis (HD.LD) showed the lowest per-
formance and was therefore excluded. Furthermore, SVM 
was best in classifying normal explants as expressed in the 
sensitivity metrics with 0.91 ± 0.08, while NNET reached 
with 0.93 ± 0.13 the highest specificity indicating the best 
performance in identifying hyperhydric explants. On the 
test set consisting of 59 unseen spectra, SVM outperformed 
the other models with the highest accuracy with 0.85, the 

highest balanced accuracy with 0.84, the highest sensitivity 
with 0.91 and the highest F1 score of 0.87 and was therefore 
selected as final model, besides for its low training time and 
its better human interpretability. As a reference of a classical 
approach, we checked the classification performance of a 
two-band normalized difference ratio index using a threshold 
of 0.35, which resulted in a low accuracy of 0.63.

The evaluation of the predictor importance based on 
ROC-curve importance of SVM revealed the most impor-
tant wavelength for classification (Fig. 7). The most relevant 
wavelength for classification was found at 1949 nm, followed 
by the peak at 1445 nm in the SWIR region, 424 nm in the 
blue region and 676 nm in the red region. The wavelength 
region from 700 to 900 nm, including the NIR region, con-
tained the least essential information for the classification. In 
the green region, 500 nm was most important, while in the 
SWIR region two further peaks were identified at 975 nm 
and 1202 nm.

The 237 acquired spectra of the two species were further 
used to simulate three in literature stated HH-affected leaf 
compounds over time (anthocyanin, water, lignin) via 

Table 4  Performance metrics of machine learning (ML)-based spectral classifiers. Bold letters indicate the value for the best performing model 
in each column

* Principal component analysis (PCA) was performed prior to linear discriminate analysis (LD), therefore the training time should be considered 
slightly higher
a Note: AUC ROC, sensitivity and specificity were calculated with normal explants as the positive class
b Note: Normalized difference ratio index with a threshold of 0.35

ML model Training

Data set [No. of 
spectra]

Train time [s] AUC ROC
a [Mean ± SD] Sensitivitya 

[Mean ± SD]
Specificitya 
[Mean ± SD]

NNET 178 761.7 0.93 ± 0.07 0.89 ± 0.10 0.83 ± 0.13
LDA 178 115.2 0.87 ± 0.09 0.82 ± 0.12 0.74 ± 0.16
SVM 178 42.2 0.93 ± 0.07 0.91 ± 0.08 0.79 ± 0.15
RF 178 819.5 0.92 ± 0.06 0.84 ± 0.11 0.80 ± 0.15
PLS 178 5.6 0.94 ± 0.06 0.90 ± 0.09 0.82 ± 0.13
HD.DA 178 38.0 0.83 ± 0.09 0.83 ± 0.12 0.78 ± 0.14
PCA.LD* 178 1.4 0.94 ± 0.06 0.89 ± 0.09 0.82 ± 0.13
NDRIb – – – –

Test

ML model Data set [No. of 
spectra]

Accuracy Accuracy [95% CI] Balanced 
accuracy

Sensitivitya F1 score Specificitya

NNET 59 0.81 0.69–0.90 0.81 0.85 0.84 0.76
LDA 59 0.73 0.59–0.84 0.72 0.79 0.77 0.64
SVM 59 0.85 0.82–0.93 0.84 0.91 0.87 0.76
RF 59 0.71 0.58–0.82 0.72 0.68 0.73 0.76
PLS 59 0.69 0.56–0.81 0.70 0.68 0.72 0.72

HD.DA 59 0.61 0.47–0.73 0.62 0.53 0.61 0.72
PCA.LD* 59 0.69 0.56–0.81 0.70 0.68 0.72 0.72

NDRIb 59 0.63 0.51–0.77 0.66 0.47 0.59 0.84
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described vegetation indices (Fig.  8; mARI, Gitelson 
et al. 2006; NDWI, Gao 1996; NDLI, Serrano et al. 2002). 
Hyperhydric explants of A. thaliana showed a relatively 
small increase in ARI, high increase in NDWI and nota-
ble reduction in NDLI compared to normal explants. All 
three vegetation indices simulated using spectra of Malus 
“G214” classified as hyperhydric, revealed a strong change 
over time compared to normal spectra.

Automated detection of hyperhydricity

To test the validity of the SWIR region of the trained spec-
tral classifier as spectral region with high importance for 
discrimination of HH and to see the generalization to a 
new domain, the classifier was applied on a previously 
acquired SWIR-HSI data set from culture vessels contain-
ing normal (N, green) and hyperhydric explants (HH, blue) 

Fig. 7  Variable importance of spectral classification of hyperhydric-
ity using a support vector machine approach. Classification classes 
consisted of reflection spectra from either normal or hyperhydric 
leaves based on visual scoring of HH (N: 0–1 HH score; HH: 2–4 HH 

score). Wavebands representing different spectral regions, defined by 
the sensitivity of silicon-based (Si) cameras, such as affordable RGB 
and RGB-NIR multispectral cameras, and more expensive Indium-
Galium-Asenide-based (InGaAs) sensors as candidates for detection

Fig. 8  Selection of contrasting vegetation indices to hyperhydricity 
inducing cultivation of Malus 'G214' and A. thaliana 'Col-0'. Vegeta-
tion indices were calculated from spectra from three different experi-
ments (Exp. III-V). Data points from normal explants are indicated in 
green (N: 0–1 HH score), while the blue color represents data from 

hyperhydric tissue (HH: 2–4 HH score). Estimated 95% confidence 
interval was colorized in light gray, while lines illustrate the locally 
weighted data trend by  2nd order polynomial regression. ARI/mARI 
defined according to Gitelson et al. (2006), NDWI from Gao (1996) 
and NDLI according to Serrano et al. (2002). (Color figure online)
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of Malus ‘Selection 4’ (Fig. 9A). From the spectral signa-
tures (Fig. 9B), a normalized difference ratio index (NDRI, 
Fig. 9C–E) as a two-band index with a HH-insensitive 
wavelength at 1086 nm (Fig. 9C) and a HH-responsive 
wavelength at 1432 nm (Fig. 9D) was derived. Hyperhy-
dric explants became almost invisible due to their high 
absorption/ reduced reflection (R) at 1432 nm (Fig. 9D 
and SI. 7). Based on the acquired spectral signature a nor-
malized difference ratio index (NDRI) could be derived 
(Eq. 12), which is formed by two wavelengths, an HH-
insensitive correction wavelength at 1086 nm and a HH-
sensitive at 1432 mn.

The NDRI image (Fig. 9E) was segmented with a mask 
for plant pixels (Fig. 9F) and a threshold was applied to 
produce the classification image (Fig. 9G). For the ML 
approach that included the application of the spectral clas-
sifier (Fig. 9H), some modifications were made to the trained 
spectral classifier, such as spectral resampling to fit the spec-
tral sensor channels and segmentation to limit the task to 
a two-class problem (see Materials and Methods section).

(12)NDRI =

(

R1086nm − R1432nm

)

(

R1086nm + R1432nm

)

As a more affordable approach of HH detection—SWIR 
camera systems can cost hundred to thousand times more 
than an RGB camera system—three different object detec-
tion models were trained based on RGB image time series 
data sets to determine if the information contained in the 
three spectral channels of the RGB images (in addition to 
the observed morphological differences in the shape of the 
explants) was sufficient to correctly classify the hyperhy-
dric explants. With all three trained models (Table 5) a high 
mAP of > 88% was observed for the validation set, indicat-
ing a high accuracy in localization and correct classification 
of the explants in the images. Highest precision of 86.8% 
in validation set was reached with the model PCTOC_V2. 
For this model, we used the Roboflow Train option to train 
an object model from scratch. The model PCTOC_V3 per-
formed best in terms of the recall metric with 95.7% and 
mAP with 95.6% in the validation set. In an unseen test data 
set PCTOC_V3 outperformed the other models in mAP with 
97.0% and highest recall 89.0% and was therefore selected 
to visualize its performance on a selection of test set images 
(Fig. 10) and on unseen time-series data from two culture 
vessels of the same experiment (SI. 8).

The PCTOC_V3 model identified multiple objects on 
the selection of test set images (Fig. 10) with only slightly 
greater predicted bounding boxes compared to ground truth. 

Fig. 9  Validation test of major absorption features by hyperspectral 
imaging. A Reference RGB image of a Malus ‘Selection 4’ vessel 
with normal (N, green) and hyperhydric (HH, blue) explants used 
for hyperspectral imaging of the SWIR region with the EVK Helios 
Core NIR Line-scan camera (240 px × 1 px and 252 spectral chan-
nels in the wavelength region of 900  nm to 1700  nm, according to 
Thiel 2018). B SWIR reflectance spectra of normal leaf, hyperhydric 
leaf and culture media (CM) pixels (green, blue and orange) with 
the dashed vertical lines indicating spectral locations of selected 
wavelengths. C and D False-color images of selected wavelengths 

at 1086 nm and 1432 nm. E Normalized difference ratio of selected 
wavelengths used to illustrate classical discriminating approach via F 
segmentation of plant pixels and G binarization by thresholding. Pro-
posed discriminating approach by application of H ML model “Sup-
port vector machine“ (ML-SVM) on segmented plant pixels of the 
SWIR-Hyperspectral-Image-Cube (SWIR-HSI-Cube). ML-SVM was 
laboratory-trained with single leaf reflection spectra and is presented 
as the predicted probability images of plant pixels. Hyperspectral 
imaging was performed through the lid of theculture vessel. (Color 
figure online)
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A supposedly perfect classification could be reached with 
the prediction settings used. However, severely hyperhy-
dric explants (Fig. 10B1) received a lower class member-
ship probability then explants with developing HH symp-
toms (Fig. 10B2). Class membership probability of normal 
explants was generally high on the test set (Fig. 10B3) and 
seemed to be stable even on the time-series RGB image data 
set (SI. 8, left image). For hyperhydric explants, prediction 
confidence increased until day 10 and decreased at day 16 
in the time-series RGB image data set (SI. 8, right image).

Discussion

Time‑lapse videos enable insights into early phases 
of HH development

HH is a serious limitation of plant tissue propagation affect-
ing multiple phases of in vitro cultivation. The use of the 
novel monitoring system “Phenomenon” capturing time 
series image data (SI. 4 and SI. 5) identified (i) the first 
visual symptoms of HH to occur 5 DAT and (ii) an acceler-
ated and higher growth of shoots of the gelrite treatment 
(Fig. 1A). Thereby, significant differences in the projected 
plant area between the two treatments were found already 
5 days after transferring to the culture media in both species. 
As discussed previously by Kevers et al. (1984), HH may 
be considered as morphological response to waterlogging, 
which in turn induces ethylene synthesis. For A. thaliana, we 
observed a higher vertical growth (Fig. 1B) with hyponasty 
(SI. 5), which was described as ethylene-triggered strategy 
of ex vitro plants in waterlogging conditions to re-estab-
lish contact with air and restore successful gas exchange 
(Voesenek and Blom 1989). Furthermore, Vreeburg et al. 
(2005) described a flooding-induced petiole elongation in a 
two-stage process, starting with acidification of the apoplast 

followed by cell wall expansion. This is in agreement with 
our observation of a significantly higher eccentricity (devia-
tion of the ellipse to circle) and significantly less solidity 
(density of the object) for explants in the gelrite treatment 
(SI. 1B). A more pronounced curling of the leaves was 
observed in Malus (SI. 4) which also resulted in epinastic 
leaf growth. In addition, a significant higher mean canopy 
height (Fig. 1B) and maximum shoot height of Malus shoots 
on gelrite medium (SI. 1A) indicated a more pronounced 
vertical orientation of growth.

Hyperhydricity induction by increased water 
availability

Although HH symptoms vary between different plant spe-
cies and cultivars, and several factors have been described 
to trigger HH, a putative common underlying mechanism 
of apoplast flooding has been described (van den Dries 
et al. 2013). Several studies showed that increasing the 
water availability by decreasing the concentration of 
gelling agent, changing the type of gelling agent or the 
cultivation in liquid media induced HH in a large set of 
plant species (Dianthus sp., Casanova et al. 2008; Aloe 
sp., Ivanova and Van Staden 2011, Malus sp. Chakrabarty 
et al. 2003).

In our study, we demonstrated the HH-inducing effects 
of gelrite for Malus and Arabidopsis indicated by the 
overall increase in HH scores (Fig. 2 and SI. 3) and apo-
plastic liquid volume (Fig. 3 and SI. 3) over time. Gelrite 
differs from agar in terms of consistency and purity and 
resulted in a superior growth of explants at a comparable 
gel strength (Scherer 1987; Tsay et al. 2006; Pasqualetto 
et al. 1988). However, gelrite induced HH in several spe-
cies (Arabidopsis sp., van den Dries et al. (2013), Malus 
sp. Pasqualetto et al. 1988, Prunus sp. Franck et al. 1998) 
limiting the use of this gelling agent. Scherer et al. (1988) 

Table 5  Performance metrics of object detection models trained on RGB images. Bold letters indicate the value for the best performing model in 
each column

a Note: Not yet implemented in Ultralytics YOLOv8.0.20
b Note: Trained with weights from PCTOC_V2 (based 250 images) and additionally 125 images
c Note: Precision and recall on test set were calculated with IoU and confidence threshold of 0.5

Name Model archi-
tecture

Training Validation Test

Data set 
[No. of 
images]

Description Data set 
[No. of 
images]

mAP 
[%]

Precision 
[%]

Recall 
[%]

Data set 
[No. of 
images]

mAP 
[%]

Precisionc 
[%]

Recallc 
[%]

PCTOC_
V1

YOLOv8 250 Colab with weights 
from scratch

50 88.4 83.0 82.1 25 NYIa 94.4 49.5

PCTOC_
V2

Roboflow 2.0 
OD

250 Weights from scratch 50 93.5 86.8 86.4 25 95.0 90.4 87.6

PCTOC_
V3

Roboflow 2.0 
OD

375b Weights from 
PCTOC_V2

50 95.6 83.8 95.7 25 97.0 93.7 89.0
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could show that there is no difference in the osmotic and 
water potential of gelrite compared to agar. Van den Dries 
et al. (2013) suspected therefore a local dissolution of the 
culture medium due to the excretion of chelators by the 

explants and thus a higher water availability and water 
uptake. This higher water availability in gelrite-solidified 
media most likely explains HH-induction and acceler-
ated growth, but other putative factors like differences in 

Fig. 10  Object detection performance of the PCTOC_V3 model on 
an image selection of the test set. (A) Ground truth RGB image of 
the Malus ‘G214’ test set annotated with normal (Normal, green) 
and hyperhydric (HH, blue) explants (A1–A3). (B) Predicted objects 

(B1–B3) and class membership probability (0 to 1 corresponds 0 to 
100%). Prediction was performed with confidence threshold and 
intersection of union threshold of 0.5. (Color figure online)
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uptake of nutrients or plant hormones were also found: 
Higher contents of magnesium (Mg) and a higher ratio of 
potassium (K) to sodium (Na) were detected in the leaves 
of walnut explants grown on gelrite medium compared 
to agar, which can affect stomatal function (Barbes et al. 
1993). Furthermore, Arthur et al. (2004) found a lower 
concentration of IAA-like compounds in gelrite than in 
different types of agar powder.

With the collected data and the time-lapse videos, we 
could narrow down crucial key points within the develop-
ment of HH of the two species in time. First visual identifi-
able symptoms (SI. 4 and SI. 5) and significant increases in 
apoplastic liquid volume were observed already after 5 days 
of cultivation on gelrite media in both species. Time series 
dynamics of apoplastic liquid volume confirmed previous 
data for A. thaliana (van den Dries et al. 2013)—in both 
studies hyperhydric explants of A. thaliana had an apoplas-
tic liquid volume of around 300 µL  g−1 FM 15 days after 
treatment, but were carried out for the first time for Malus. 
Quantification of apoplastic liquid volume of A. thaliana 
seedlings at very early time points was limited by the very 
small amounts of apoplastic liquid and the distorting effect 
of adhering water (Fig. 3B). For Malus, the highest increase 
in apoplastic liquid volume for the gelrite treatment was 
detected within the first 4–5 days in two independent experi-
ments (SI. 3, Fig. 3B). Furthermore, a different behavior of 
the HH score and the apoplastic liquid volume was found 
after 21 days of cultivation in Malus: While the severity 
of HH symptoms steadily increased over time, the apoplas-
tic liquid volume seemed to reach saturation at later time 
points (SI. 3¸ Fig. 4). Therefore, we suggest the HH score 
to be useful to determine the symptoms of HH, whereas the 
quantification of apoplastic liquid volume better reflects the 
physiological state of the explants.

Identification of HH‑specific spectral absorption 
features

Despite the fact that clear visible symptoms (Table 1) of HH 
were reported and still are the major distinguishing param-
eter for classification, spectroscopic analysis of HH is lim-
ited. Only Marques et al. (2021) using Fourier-transform 
infrared spectroscopy in attenuated total reflectance mode 
(FTIR-ATR), evaluated chemical properties of prepared 
cell walls of hyperhydric Arbutus unedo. Assuming HH as 
a consequence of flooding of the air-filled apoplast by water, 
UV–VIS–NIR–SWIR reflection spectroscopy was expected 
to detect these physiological changes due to higher light 
absorption of water compared to air. Therefore, we applied 
this technique to identify specific absorption features of HH 
essential for designing an automated detection system. How-
ever, we excluded the UV region (< 400 nm) from further 
analysis due to the low penetration depth of UV light in plant 

tissue (Qi et al. 2010), since most reflection signals can only 
be attributed to anatomical and biochemical properties of 
cuticle, trichomes and the upper epidermis.

The observed overall reduction in reflectance of hyperhy-
dric explants (Fig. 5) compared to normal ones is consistent 
with the visual appearance of the observed darkening of the 
affected explants (SI. 4 and SI. 5). The visualization of iso-
lated absorption features over the time course of the develop-
ment of HH in Malus (Fig. 6) should give insights whether 
there is at least a trend in the time course of the presumed 
absorption characteristics. We used the continuum removal 
method to exclude the observed overall absolute reduc-
tion in reflection and to compare all spectra on a common 
base. This allowed an automated extraction of absorption 
peaks for the SWIR region with predominant absorptions 
valleys, however, produced artefacts in the VIS region. In 
the SWIR region, a consistent difference between absorp-
tion of normal and hyperhydric leaves was observed for the 
wavelengths 980 nm, 1150 nm, 1400 nm, 1520 nm, 1780 nm 
and 1930 nm, both over time (Fig. 6) and in the different 
experiments (SI. 6). Most likely, the absorption of water 
in the plant tissue is most responsible for the wavelengths 
980 nm, 1150 nm, 1400 nm. Curran et al. (1989) described 
the intense absorption of liquid water at 970 nm, 1200 nm, 
1400 nm and 1450 nm due to the fundamental O–H bend-
ing vibrations of the first overtone. Thus, the tendency of an 
increase in water absorption (970 mn, 1200 nm, 1400 nm, 
1450 nm) within time is in accordance with the increase 
in apoplastic liquid volume over time. However, absorption 
bands of other compounds like proteins, lignins and sug-
ars are located within the peak between 1300 to 1600 nm 
and contribute to the total absorption in this region. Curran 
et al. (1989) associated the absorption at 1780 nm to cel-
lulose, sugars and starch. Since for this wavelength a higher 
absorption in hyperhydric leaves was observed in our study, 
this is in line with the detection of a higher sugar content 
(sucrose, glucose and fructose) in hyperhydric explants of 
Dianthus (Saher et al. 2005), but contradicting Kevers et al. 
(1987) who reported less lignin and cellulose in hyperhydric 
Dianthus.

Simulation of vegetation indices (Fig. 8) demonstrated 
traceable trends, that closely match the dynamics of the 
physiological reference data (Fig. 3 & SI. 3) and support 
the observation of time-series data (SI. 4 & SI. 5). Overall, 
the vegetation indices from normal explants exhibited low 
variance, although they were derived from different experi-
ments. The high variance of hyperhydric explants indicated 
by the confidence interval can be explained by different 
physiological states of explants with different degrees of 
hyperhydricity. The simulation of a modified anthocyanin 
index, indicated a higher anthocyanin content in hyperhydric 
leaves of Malus, but not Arabidopsis, supporting our RGB 
image time series. The normalized difference water index 
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(NDWI) displayed higher water contents for hyperhydric 
explants of both species and supported our observation that 
apoplastic liquid volume did not increase any more after 
4 weeks of cultivation. The normalized difference lignin 
index (NDLI) showed in both species less lignin for hype-
rhydric leaves. However, the trend of the NDLI curves in 
both species followed inversely that of the NDWI indicat-
ing a putative dependency on plant water content. Marques 
et al. (2021) found no significant difference in the lignin 
content per dry weight of hyperhydric and normal leaves of 
Arbutus, whereas Kevers et al. (1987) reported a lower lignin 
content per fresh weight of hyperhydric tissue. It remains to 
be clarified, whether these divergent results are due to differ-
ent species or to the fact that the fresh mass of hyperhydric 
explants is much higher.

Automated detection of HH by machine learning

In order to evaluate the performance of the spectral data 
in the classification of hyperhydric and normal leaves, we 
trained different ML models (Table 4), investigated the 
most important wavelengths of the best model (Fig. 7) and 
compared them against a novel vegetation index as the clas-
sical approach (Fig. 9). The ML models differed in their 
architecture, complexity, performance, prediction time and 
interpretability (Singh et al. 2016; Liakos et al. 2018; and 
Hesami and Jones 2020). All ML models reached a high 
AUC ROC > 0.83 in training, however only SVM and NNET 
had a high accuracy > 0.80 on test data. Both ML models 
outperformed with an accuracy of 0.81 for NNET (balanced 
accuracy of 0.81) and 0.85 for SVM (balanced accuracy of 
0.84) the univariate vegetation index approach with a lower 
accuracy of 0.63 (balanced accuracy of 0.66). Furthermore, 
SVM was best in classifying normal spectra indicated by 
highest sensitivity of 0.91 on the test set. The two-band veg-
etation index NDRI reached the highest specificity of 0.84 
in the test data, followed by SVM with 0.76, meaning high-
est ratio in the identification of hyperhydric tissue, however, 
low sensitivity of 0.47, low accuracy of 0.63 and low  F1 
score of 0.59 indicated a conservative behavior of classifica-
tion towards hyperhydric explants. SVM was selected due 
to its high performance on training and testing datasets, low 
training data volume requirements, performance on high-
dimensional datasets, low risk of overfitting, good gener-
alization ability, and its advantages over NNET in terms 
of training time, simplified structure, and interpretability 
(Singh et al. 2016; Liakos et al. 2018). The evaluation of 
the feature importance of SVM for classification (Fig. 7) 
supported our findings that bands (peaks with maxima at 
1949 nm, 1445 nm, 1202 nm and 975 nm) associated with 
water absorption were crucial to distinguish between hype-
rhydric and normal leaves. However, the method indicated 
essential features importance in the VIS region with maxima 

at 424 nm and 676 nm. In regard of an automated HH detec-
tion system, we further evaluated two different approaches 
(i) HH detection based on an HSI-SWIR camera system 
(Fig. 9) and (ii) HH detection based on RGB camera system 
coupled with a deep neuronal network (DNN) to provide two 
putative solutions for commercial plant propagation based 
on our findings (Table 5, Fig. 10, SI. 8).

Following the HSI-SWIR camera system approach, we 
could only test the validity of our spectral classifier as a 
proof of concept because we only had a single HSI acquisi-
tion (SI. 7), so these results should be interpreted with cau-
tion. In addition, our analysis followed a two-class classifica-
tion problem, but under the assumption that an automated 
HH detection system monitors explants on culture media 
during cultivation, culture media spectra could presumably 
interfere with the other classes within classification. There-
fore, for further studies, we propose to include the acquisi-
tion of reflectance spectra of the culture media in the dataset. 
Nevertheless, we could test our ML-SVM classifier, trained 
on spectra from Malus ‘G214’ and A. thaliana, on the single 
SWIR-HSI acquisition of Malus ‘Selection 4’ segmented 
plant pixels, indicating the generalization ability of the clas-
sifier with respect to experimental setup and plant species/
genotype. The NDRI and ML-SVM both classified most 
pixels correctly, however, ML-SVM segmented the borders 
of different classes much sharper. These preliminary results 
demonstrated that classification of HH is possible during 
in vitro cultivation and through the lid of the vessel with 
either an expensive SWIR-HSI system classifying with our 
novel ML-SVM classifier or more cost-effectively with a 
two-channel SWIR camera system using a novel vegetation 
index.

Alternatively, an RGB camera setup coupled with con-
volutional neural network (CNN) can be the most cost-
effective solution for an automated HH-detection. Since 
we had identified feature importance also in the VIS 
region, a proof-of-concept study was conducted to dem-
onstrate object detection via CNN. Therefore, we used 
the  Roboflow© pipeline, which allowed an easy access to 
these tools and provided an interface for data annotation, 
pre-processing, data augmentation, training, data avail-
ability and deployment of the trained models. Comparing 
a self-trained YOLOv8 with the unknown object detec-
tion algorithms of Roboflow Train (Table 5), we did not 
reach the performance of their optimized model, which 
was particularly evident in the performance on test set, 
where PCTOC_V1 reached the highest precision with 
94.4%, but with low recall of 49.5%—indicating only half 
of all explants could be detected. The best trained model 
PCTOC_V3, however had a precision of 83.8% on valida-
tion and of 97.0% on test set, indicating that prediction 
was mostly correct (Table 5, Fig. 10, SI. 8). In addition 
the explants were reliably detected (recall of 95.7% on 
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validation set and 89.0% on test set). By using the rela-
tively new Python library roboflow, we encountered some 
unsolved issues as seen in SI. 8 where non-maximum-
suppression only works so far within one class, resulting 
in multiple predictions per object. Considering the prop-
erties of the dataset, the low amount of data (250 to 375 
images), resulting from time series images (1049 explants) 
of only 32 individual explants, we could see already good 
performance on the test set and the time-series set (Fig. 10 
& SI. 8).

Conclusions

To our knowledge this study is the first report of (i) iden-
tifying discriminating wavelengths in the VIS–NIR-SWIR 
region for the detection of HH, (ii) application of short 
wave infrared hyperspectral imaging to detect growth 
anomalies in vitro, (iii) proposing a spectral classifier 
for hyperhydricity. Wavelength bands (around 1940 nm, 
1450 nm, 1200 nm and 970 nm) associated with absorp-
tion of water are the most distinguishable between hype-
rhydric and normal leaves within the analyzed spectral 
data set (400 nm to 2000 nm). In addition, minor impor-
tant wavelengths were found in the RGB region (around 
430 nm and 680 nm), whereas the NIR region seemed to 
be less important. Furthermore, RGB images of hyperhy-
dric explants contain sufficient morphological and spectral 
features to allow a reliable detection of HH in an afforda-
ble manner via convolutional neuronal networks. However, 
this needs to be proven in an in-depth study. Nonetheless, 
these results can serve as a proof-of-concept for CNN-
assisted live monitoring of plant tissue cultures and pave 
the way for increased use of CNN to estimate other key 
parameters such as multiplication rate, nutrient deficiency, 
and contamination.
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