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Higher plants produce a spectrum of SMs from primary 
metabolites that aid in plant defense against insects, herbi-
vores, pests, phytopathogens, etc. (Jain et al. 2019). Medici-
nal plants are the primary source of bioactive molecules, with 
many novel drugs and also components produced directly or 
indirectly. Based on the WHO reports, approximately 80% 
of the world’s population relies on traditional medicines 
notably medicinal plant-based drugs and formulations for 
their primary healthcare needs (Kumari and Kotecha 2016). 
These pharmaceutically important chemicals are produced 
in trace amounts and are dependent on the plant’s devel-
opmental and physiological state (Twaij and Hasan 2022). 
Owing to the higher usage of medicinal plants for curative 
purposes across the world, increasing market demand leads 
to over-exploitation of these plants makes them threatened. 
Due to these reasons, it is critical to identify alternate meth-
ods for producing SMs to meet the huge market demand. 
For the enhanced production of therapeutic metabolites, 
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Abstract
Plant secondary metabolites are bioactive scaffolds that are crucial for plant survival in the environment and to maintain a 
defense mechanism from predators. These compounds are generally present in plants at a minimal level and interestingly, 
they are found to have a wide variety of therapeutic values for humans. Several medicinal plants are used for pharmaceuti-
cal purposes due to their affordability, fewer adverse effects, and vital role in traditional remedies. Owing to this reason, 
these plants are exploited at a high range worldwide and therefore many medicinal plants are on the threatened list. There 
is a need of the hour to tackle this major problem, one effective approach called elicitation can be used to enhance the level 
of existing and novel plant bioactive compounds using different types of elicitors namely biotic and abiotic. This process 
can be generally achieved by in vitro and in vivo experiments. The current comprehensive review provides an overview 
of biotic and abiotic elicitation strategies used in medicinal plants, as well as their effects on secondary metabolites 
enhancement. Further, this review mainly deals with the enhancement of biomass and biosynthesis of different bioactive 
compounds by methyl jasmonate (MeJA) and salicylic acid (SA) as elicitors of wide medicinal plants in in vitro by using 
different cultures. The present review was suggested as a significant groundwork for peers working with medicinal plants 
by applying elicitation strategies along with advanced biotechnological approaches.
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different biotechnological approaches are used, but elicita-
tion is a mechanistic approach and strong arm for increas-
ing biomass and pharmacologically active phytocompounds 
production during field cultivation (Halder et al. 2019; Kan-
doudi et al. 2021). Elicitation is one of the effective biotech-
nological approaches for inducing novel SMs biosynthesis, 
and enhancement of biomass as well as the gathering of SMs 
in in vitro cultures of plants (Wang and Wu, 2013). When 
plants are exposed to elicitors, signaling molecules specifi-
cally bind to the receptors, that urged and they frequently 
produce a variety of SMs. Elicitors are biotic or abiotic sub-
stances that belong to numerous chemical classes and can 
stimulate or enhance the target SMs biosynthesis (Ghorban-
pour et al. 2014). Elicitors also play a pivotal role in plant 
growth and development as well as in signal transduction. 
In addition, elicitors signaling mechnisms have a significant 
impact on bioactivities, mitigation of environmental stress, 
plant survivability and productivity (Jan et al. 2021). Sev-
eral phytohormones (Sabagh et al. 2022), transcription fac-
tors (TFs) (Zheng et al. 2023) and enzymes (Rajput et al. 
2021) associated with various biological pathways, cell 
compartmentalization and ion exchange play a major role in 
the development of a signal transduction network. Further-
more, several TFs such as MYB, WRKY, bHLH and AP2/
ERF are actively involved in hormonal signaling pathways 
to enhance the pharamaceutically active phytocompounds 
in various medicinal plants (Jan et al. 2021; Zheng et al. 
2023). During the elicitation process, there are some types 
of parameters such as concentration, time exposure, elicitor 
type, and cell culture type that decide the accumulation and 
enhanced synthesis of metabolite production in plants (Dhi-
man et al. 2018). Several reports have revealed that the elici-
tation process increased the biosynthesis of targeted/specific 
plant-associated SMs in the hairy root and cell suspension 
cultures, providing a new channel for the pharmaceutical 
industry to produce a mass of SMs in the future (Srivastava 
et al. 2017; Singh et al. 2018a, b). To the best of our knowl-
edge, this baseline review sheds the light on potential biotic 
and abiotic elicitation strategies for medicinal plants and 
their positive impact on pharmaceutically active and novel 
SMs production. In addition, this review also aids the scien-
tists and researchers in understanding the novel and impor-
tant aspects of elicitation to harness the active ingredients of 
medicinal plants.

Elicitation is a key tool to ameliorate the 
active metabolites

The defense system of medicinal plants produces chemi-
cal substances to combat infections caused by external and 
internal stresses that can be used to elevate the level of 

these substances, which are known as SMs. Many biotech-
nological approaches are considered in in vitro cultures for 
up gradation or to enhance the production of such essential 
phytochemicals (Danova and Pistelli 2022; Jakovljevic et 
al. 2022). The elicitation process is to change the metabolic 
pathways of medicinal plants to stimulate bioactive com-
pounds through in vitro plant cultures. This method can be 
used to produce economically viable SMs on a large spec-
trum level. Elicitors act as a signaling molecule and these 
signals identified by the plant cellular membrane-bound 
receptors and activation of the signal transduction path-
ways and change the expression of regulatory players and 
resulting in enhanced synthesis and accumulation of phyto-
compounds (Zhai et al. 2017; Miladinova-Georgieva et al. 
2023). Employing in vitro cell culture as a model system, it 
may also be used to characterize and investigate the impact 
of various elicitors on plants.

Mechanism of elicitation in plants

Elicitors are associated with a broad range of different cat-
egories of compound scaffolds and biochemical pathways 
and it is stimulating the enhanced production of novel 
metabolites in some plants that may be inactive in certain 
plant species. In contrast, specific elicitors can bind with 
specific plant membrane receptors. Therefore, this implies 
that elicitor specificity exists concerning the signal mol-
ecules that are triggered by elicitation and the plant has 
the tendency to recognize certain structurally diverse com-
pounds as signaling molecules (Abdul Malik et al. 2020). 
Elicitors are recognized by plant cells by interacting with 
specific receptors on the plasma membranes of plants and 
these interactions are initiated to generate signals. Those 
identified signal molecules include chitosan, physical sig-
nals, abscisic acid, and systemin. The mechanism of elici-
tors varies with regard to their origins, specificity in terms 
of nutrition and concentration, physiochemical environ-
ment, and plant development (Meena et al. 2022). The 
first stage of the elicitor signal transduction cascade is the 
signal perception, which occurs through a series of events 
such as the activation of kinases, reactive oxygen species 
(ROS) burst, ion fluxes NADPH oxidase activation, and 
cytoplasm acidification followed by nuclear genes activa-
tion (Bajwa et al. 2021). Different mechanisms were spec-
ulated to describe the biochemical processes that occur in 
the plant cells when challenged by the elicitor. Apostol et 
al. (1989) showed that high levels of ROS accumulation in 
plant tissues occurred through oxidative bursts triggered by 
elicitor treatment. During the process of elicitation, elicitors 
can accumulate defense and pathogenesis proteins including 
endo-polygalacturonases (involved in the pectic oligomers 
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release), chitinases, glycoproteins, and protease inhibitors 
(Benhamou 1996). A series of events activated by the elici-
tor is listed as follows:

 ● The plant cell receptor perceives the specific signal-
ing molecule (elicitor), which leads to the activation 
of complex reactions such as membrane depolariza-
tion, reversible phosphorylation of plasma membrane 
proteins, Cl− and K+ efflux/H+ influx, cytosolic [Ca2+] 
concentration changes (Gelli et al. 1997), ion fluxes 
increased (Armero and Tena 2001), NADPH oxidase 
activation, mitogen-activated protein kinase (MAPK) 
activation, and ROS and reactive nitrogen species 
(RNS) production.

 ● Ion influx is a potential event that involves the plant cell 
physiological processes (Ward et al. 2009). The Ca2+ sig-
nals result in conformational changes in a number of ion 
binding proteins including calcium- dependent protein 
kinases (CDPKs) calmodulin, calmodulin-like proteins 
and secondary messengers such as inositol 1,4,5- tri-
phosphate IP3 and diacylglycerol (DAG) (White and 
Broadley 2003).

 ● Owing to the aforementioned, these binding proteins 
activates the protein kinase cascades, which leads to the 
dynamisms in MAPK phosphorylation and it also acti-
vate the hormonal signaling pathway messengers such 
as SA and MeJA.

 ● As a result, activation of transcription and translation 
of defense-responsive genes/enzymes, which in turn 

synthetic pathways of SMs production (Ebel and Scheel 
1992). The mode of action of the elicitation process is 
illustrated in Fig. 1.

Extensive research has been conducted to the mode of 
action of the potential elicitors in plant biotechnology. Even 
though in some instances the secondary messengers, recep-
tors, responsive proteins and transduction pathway have 
been identified, the data is generally inadequate. Further-
more, the unpredictability of this mode of action leads to 
various metabolic processes. As a result, most research 
related to the improving impact of elicitation on phytocom-
pounds accumulation in plant tissue cultures was empirical 
without examining the cellular process at a molecular level.

SMs production by abiotic and biotic elicitors

Plants contain different types of SMs such as phenolics, ter-
penes or terpenoids, and N-containing compounds. Each of 
these classes has thousands of SMs (Twaij and Hasan 2022). 
The presence of certain abiotic and biotic elicitors increases 
the production of SMs in plants. The origin of elicitors can 
be classified as abiotic and biotic based on their nature. In 
abiotic elicitors, there are three types of elicitors categorized 
as physical, chemical, and hormonal (Wang and Wu 2013). 
Abiotic elicitors are a group of major elicitors for the bio-
synthesis and production of novel pharmaceutically active 
metabolites. So far, there is limited reports are available in 

Fig. 1  A possible mechanism of 
the elicitation process. detailed 
description needed. SAR - Sys-
temic acquired resistance; ISR - 
induced systemic resistance
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under in vitro cell cultures. A few examples of abiotic elici-
tors and phytocompound details are shown in Table 1.

Biotic elicitors are derived from plants and microorgan-
isms such as fungal, bacterial, and yeast. Further, they are 
either of defined composition such as a combination of yeast 
extract and homogenized fungus, inactivated enzymes, chi-
tosan, curdlan polysaccharides such as Pectin, cellulose, 
and chitin (Vasconsuelo and Boland 2007). For example, 
the enhancement of bioactive compounds such as artemis-
inin, ginsenoside, and anthocyanin is increased to a larger 
amount with the help of fungal elicitors namely Penicillium 
oxalicum and Trichoderma harzianum, respectively (Zheng 
et al. 2016; Biswas et al. 2018). Microalgal elicitors treated 
suspension cultures of Carthamus tinctorius showed an 
increased level of red pigment formation (Hanagata et al. 
1994). Various biotic elicitors are used for the enhancement 
of specific pharmaceutically important phytocompounds in 
medicinal plants. Those elicitors and enhanced compounds 
are listed in Table 2.

the field of abiotic elicitor, but now abiotic elicitation is one 
of the emerging and effective approaches to enhance the 
production of bioactive compounds through in vitro culture 
conditions (Kumari et al. 2020). The impact of abiotic elici-
tors in plant systems is diverse on cellular processes such as 
protein synthesis, growth, and development, gene expres-
sion, and lipid and carbohydrate metabolisms (Rao and 
Ravishankar 2002; Hashemi et al. 2021). Recently, various 
abiotic elicitors were used to modify the cell metabolism 
of the plant, and these cellular modifications delineated the 
enhancement of desired phytomolecule production under in 
vitro conditions (Rodziewicz et al. 2014; Xu et al. 2015) 
reported that treatment of UV-C along with the combina-
tion of Methyl jasmonate (MeJA) and Salicylic acid (SA) 
had a major impact on the enhancement of stilbene biosyn-
thesis in Vitis vinifera cell suspension cultures. Thus, the 
combination study, in turn, has shifted the novel paradigm, 
compared with one elicitor combination application that 
can effectively enhance the production of active metabolites 

Table 1 Impact of Abiotic Elicitors on the enhanced synthesis of SMs in Medicinal Plants
Elicitor Target metabolite Plant species Culture type References
Cadmium (Cd) Tanshinone Salvia miltiorrhiza Cell suspension culture Zhao et al., 2010

Resveratrol Vitis vinifera Cell suspension culture Cai et al., 2013
pH Withanolide A Withania somnifera Hairy root culture Praveen et al. 2012
Gibberellic acid 
(GA)

Caffeic acid derivatives Echinacea pupurea Hairy root culture Abbasi et al., 2012

Nanosilver Atropine Datura metel Hairy root culture Shakeran et al., 2015
Copper (Cu) Bacoside Bacopa monnieri Shoot culture Sharma et al., 2015
Copper sulfate Bacoside A Bacopa monnieri Shoot culture Sharma et al., 2015
Coniferaldehyde 
and Methylene 
dioxycinnamic 
acid

Lariciresinol, pinoresinol, 
podophyllotoxin

Linum album Hairy root culture Ahmadian Chashmi 
et al., 2016

Iron oxide 
(FeNPs) 
nanoparticles

Hyoscyamine and scopolamine Hyoscyamus reticulatus Root culture Moharrami et al., 
2017

Ultraviolet C Lignans and neolignans Linum usitatissimum L Cell suspension culture Anjum et al., 2017
Drought stress Cineole Thymus vulgaris L Cell suspension culture Llorens-Molina and 

Vacas, 2017
Ultraviolet B Betacyanins,

betaxanthins, and flavonoids
Alternanthera species Leaf samples Klein et al., 2018

Silver nitrate Atropine Datura metel Hairy root culture Shakeran et al., 2015
Flavonoids, Phenolic acids Ocimum basilicum Cell suspension culture Acıkgoz, 2020

SA Bacoside A Bacopa monnieri Shoot culture Sharma et al., 2015
 L-3,4-dihydroxyphenylalanine Hybanthus enneaspermus Root culture Sathish et al., 2020
Bilobalide, ginkgolide A,B,C Ginkgo biloba Immobilized cell culture Sukito and 

Tachibana, 2016
Wounding stress Total phenolic content Ajuga bracteosa Root culture Saeed et al., 2017

Sesquiterpenes Persicaria minor Cell suspension culture Sellapan et al., 2018
Phenolic compounds Thevetia peruviana Cell suspension culture Mendoza et al., 2018

Jasmonic acid Scopolamine Duboisia genus Hairy root culture Singh et al. 2018a, b
Rutin, neohesperidin, buddleside Isatis tinctoria Hairy root culture Gai et al., 2019
Oleanolic acid, glycosides Calendula officinalis Hairy root culture Alsoufi et al., 2019
Chrysin, wogonin, baicalein Scutellaria bornmuelleri Hairy root culture Gharari et al. 2020a
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MeJA and SA

In plants, several metabolic activities are mediated by inter-
nal signals known as plant hormones. Among the various 
metabolic processes, stress tolerance is one of the impor-
tant processes to be able to cause several stresses. In this 
condition, phytohormones like MeJA, a member of the jas-
monate family, modulate important factors of plant physi-
ology (Chen et al. 2006). MeJA was first isolated in 1962 
from Jasminum grandiflorum’s essential oil (Demole et al. 
1962). MeJA, a volatile methyl ester of jasmonic acid has 
been identified as a major signaling molecule in abiotic and 
biotic stresses (Wang et al. 2021). It plays an important role 
in plants from morphological to molecular functions. Due 
to its volatile nature as well as the capacity to permeate via 
biological membranes, MeJA is regarded as a significant 
phytohormone that can facilitate intra-and inter-communi-
cations in plants, regulating defense responses, particularly 
antioxidant systems. Implementation of exogenous MeJA to 
plant in vitro cultures has been recognized as a novel method 
for the enhanced production of SMs, increased activity of 
antioxidant enzymes, and the expression of genes associated 
with defense (Murthy et al. 2014; Ho et al. 2020).

All these reports are evidence that any type of abiotic 
and biotic elicitors given to the plant will undoubtedly have 
opened up an impact on the SMs production through altera-
tions in various biochemical pathways. There are some cons 
also noted while using elicitors. Moreover, not all the elici-
tors affect the SMs production which depends on the con-
centration and type of biotic elicitors used (Baenas et al. 
2014). However, there are no reports available for a combi-
nation study of two or more biotic elicitors for phytocom-
pounds enhancement. Developing the combination study of 
biotic elicitors will pave the way to enhance the synthesis 
of metabolite production via in vitro conditions and create 
novel avenues for future researchers.

Among the various types of elicitors, MeJA and SA are 
the highly reported phytohormone elicitors. Hence, in this 
review, we have attempted to summarize the effect of MeJA 
and SA plant hormones for enhancing the production of 
novel bioactive molecules in medicinal plants through dif-
ferent in vitro cell cultures.

Table 2 Effect of Biotic Elicitors on therapeutic metabolites production in Plants
Elicitor Compounds Plant species Culture type References
Sclerotinia sclerotiorum Lignan Linum album Hairy root cultures Esmaeilzadeh 

Bahabadi et al., 2014
Sucrose Leoligin Leontopodium alpinum Hairy root cultures Wawrosch et al., 2014
Penicillium fellutanum Glycyrrhizic acid Taverniera cuneifolia

(Roth) Arn.
Root cultures Awad et al., 2014

Chitin trans-Resveratrol and
viniferins

Vitis vinifera Cell suspension culture Taurino et al. 2015

Phenylpropanoids and 
naphtodianthrones

Hypericum perforatum Cell suspension culture Gadzovska-Simic et 
al., 2015

Bacillus cereus Atropine Datura metel hairy root cultures Shakeran et al., 2015
Staphylococcus aureus Atropine Datura metel hairy root cultures Shakeran et al., 2015
Dextron Phenylpropanoids and 

naphtodianthrones
Hypericum perforatum Shoot, callus, cell suspen-

sion cultures
Gadzovska-Simic et 
al., 2015

Pectin Phenylpropanoids and 
naphtodianthrones

Hypericum perforatum Shoot, callus, cell suspen-
sion cultures

Gadzovska-Simic et 
al., 2015

Aspergillus niger Oleanolic acid, urosolic acid Salvia fruticosa Cell suspension culture Kummritz et al., 2016
Rhizophagus irregularis Rosmarinic acid Ocimum basilicum Root cultures Srivastava et al., 2016
Piriformospora indica Withanolides Withania somnifera Hairy root cultures Ahlawat et al., 2017
Trichoderma harzianum Ginsenoside and Anthocyanin Panax sikkimensis Cell suspension cultures Biswas et al., 2018
Bacillus subtilis Ginsenoside Panax quinquefoliusL Cell suspension cultures Biswas et al., 2018
Chitosan Withaferin Withania somnifera (L.) Hairy root culture Thilip et al., 2019
Coronatine and sorbitol Artemisinin Artemisia annua Hairy root cultures Salehi et al. 2019a
Bacillus subtilis Diosgenin Helicteres isora L Cell suspension cultures Shaikh et al., 2020
Escherichia coli Diosgenin Helicteres isora L Cell suspension culture Shaikh et al., 2020
Yeast extract Flavonoids, phenolic acids Ocimum basilicum Cell suspension culture Acıkgoz, 2020
Alternaria panax Ginsenoside Panax ginseng Cell suspension culture Hao et al., 2020
Agrobacterium rhizogenus Paclitaxel Taxus brevifolia Hairy root cultures Jalalipour Parizi et 

al., 2020
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Regulatory mechanism and biosynthesis of 
bioactive compounds in plants

MeJA signaling

The primitive stage of MeJA signaling includes a number 
of metabolic pathways to be activated. In general, the bio-
synthesis of polypeptides or the formation of free radicals 
indicates the introduction of biotic and abiotic stress. The 
activation of cell receptors, and protein molecules as well 
as over activity of transporters also represent the stressed 
condition. In response to pathogen attack, oligosaccharide 
signals were found in symplastic and apoplastic pathways, 
which indicates the plant is experiencing stess reversal path-
way. Moreover, the activation of phospholipases (PLAs) is 
essential for MeJA biosynthesis and signaling. PLAs pro-
duce linoleic acid from the plasma membrane which serves 
as a precursor for MeJA. Several mutant and transgenic 
plants have been used to study the PLAs activity (Yan et al. 

SA is a well-known elicitor for inducing systemic 
acquired resistance and can also elevate the synthesis of 
SMs in plants. SA is a phenolic compound that has attracted 
the greatest attention from scientists around the world. The 
intensive studies on SA in medicinal plants have revealed its 
role in various developmental and physiological processes, 
including ethylene production, stomatal movements, pho-
tosynthesis, membrane functions, pigment accumulation, 
enzyme activities, plant growth and development (Ali et al. 
2021). Hence, SA and its related precursors are classified 
as phytohormones (Koo et al. 2020). The significant and 
functional analog of SA includes salicylic acid, dihydroxy 
benzoic acid, methyl salicylic acid, and acetylsalicylic acid. 
They are produced from isocomerate and phenylalanine 
(Sahu 2013) and are transferred through apoplast, which is 
aided by pH gradient modulation or SA deprotonation or via 
cuticle wax in cuticle deficient plants to the mechanism of 
action for the required performance (Lim et al. 2020).

Table 3 Effect of MeJA and SA on the enhancement of specific SMs in vitro culture of medicinal plants
S. 
No.

Plant species Elevated Secondary Metabolites Elicitors Type of culture Reference (s)

1. Glycyrrhiza inflata Glycyrrhizin MeJA Hairy root culture Wongwicha et al. 
2011

2. Withania somnifera Withanolide A,
withanone, and
withaferin A

SA hairy root Sivanandhan et al. 
2013

3. Panax ginseng Ginsenosides MeJA Hairy root Corchete et al. 2013
4. Bacopa monnieri Bacoside A SA and MeJA Shoot Sharma et al. 2015
5. Catharanthus roseus Ajmalicine MeJA and 

Cyclodextrin
Cambial meriste-
matic cells

Zhou et al. 2015

6. Salvia miltiorrhiza Tashinones MeJA Hairy root Hao et al. 2015
7. Vitis vinifera Stilbene SA cell suspension Xu et al. 2015
8. Gymnema sylvestre Gymnemic acid MeJA Cell suspension Chodisetti et al. 2015
9. Hypericum perforatum Flavonoid (Hyperin and Quercetin) MeJA Cell suspension Wang et al. 2015
10. Ginkgo biloba Bilobalide, ginkgolide A, ginkgolide B, gink-

golide C
SA and MeJA immobilized cell 

cultures
Sukito and 
Tachibana, 2016

11. Ajuga bracteosa Phytoecydysteroids MeJA Hairy root Saeed et al. 2017
12. Ajuga bracteosa TPC and TFC MeJA and PAA Root suspension Saeed et al. 2017
13. Podophyllum hexandrum 

(ptox)
Podophylloxin MeJA Cell Hazra et al. 2017

14. Duboisia genus Scopolamine MeJA Hairy root Singh et al. 2018a, b
15. Isatis tinctoria Epigoitrin, tryptanthrin, indigo, indirubin SA hairy root Gai et al. 2019
16. Achillea gypsicola camphor and phenolic compounds SA and MeJA Cell suspension Acikgoz et al. 2019
17. Isatis tinctoria Rutin, neohesperidin, buddleside MeJA Hairy root Gai et al. 2019
18. Bacopa monnieri Bacoside A SA Suspension Koul and Mallub-

hotla, 2020
19. Hybanthus 

enneaspermus
L-3,4-dihydroxyphenylalanine SA adventitious root Sathish et al. 2020

20. Piper cumanense 5-hidroximetilfurfural, (Z)-9-octadecenamide 
and phenol

SA and MeJA Cell suspension Rodriguez-Sanchez 
et al. 2020

21. Scutellaria bornmuelleri Chrysin, baicalein, wogonin MeJA hairy root Gharari et al. 2020a
22. Vernonia anthelmintica rhamnetin SA and MeJA Cell suspension Rajan et al. 2020
23. Rubia tinctorum Anthraquinone and phenols SA adventitious root 

cultures
Demirci et al. 2021

1 3

452



Plant Cell, Tissue and Organ Culture (PCTOC) (2023) 153:447–458

SA signaling

SA serves as a mediator in plant development and stress 
conditions such as cold, drought and salinity, which are 
partly accomplished through enhanced biosynthesis of 
SMs. Depending on the elicitor treatment, stress conditions 
and pathogen attack, SA levels in plants vary. Under stress 
conditions, SA binds to various metabolic substances and 
controls the entire molecular signaling mechanisms. SA is 
strongly involved in the regulation of endoplasmic reticu-
lum (ER) stress, antioxidant mechanism and heavy metal 
toxicity (Korner et al. 2015; El-Esawi et al. 2017). Exog-
enous SA treatment can protect the plant against cadmium 
toxicity; play an important role in plant defense. NPR1 (non-
expresser of pathogenesis-related protein 1) and SA-binding 
proteins (SABPs) are the major transcriptional regulators of 
SA signaling pathways (Guo et al. 2019). The ER controls 
the synthesis the proteins. Disruption of ER homeostasis 
leads to the production of misfolded proteins, which result 
in stress-inducing stimuli. SA modulates the redox homeo-
stasis and activate the function of desired TFs. Nowadays, 
various environmental conditions are leading to a global 
food shortage. Under this condition, exogenous use of bio-
active metabolites like SA may increase the agricultural 
yield. The accumulation of SA-based derivaties can reduce 
populations of herbivores. Pretreatment with polyamines 
may enhance the overall function of SA. Moreover, several 
TFs function in response to SA signaling. BcWRKY46 and 
OsWRKY77 effectively respond to SA signaling through 
defense responses (Wang et al. 2012; Lan et al. 2013). A 
recent study reported that, SA responsive WRKY TF posi-
tively regulates the biosynthesis of taxol in T. chinensis by 
upregulating the taxol biosynthesis genes expression (Chen 
et al. 2021). In S. miltiorrhiza, SA stimulated the tanshinone 
genes expression including SmGGPPS, SmIPPI, SmCPS, 
SmDXS-II and SmHMGR, consistent with SA induction on 
enhanced tanshinone production (Hao et al. 2015). In V. 
vinifera, SA stimulated the production of PAL (phenylala-
nine ammonia-lyase) mRNA, an essential enzyme in phen-
ylpropanoid metabolism, resulting in a extensive production 
of phenolic content (Wen et al. 2008; Ma et al. 2017) repo-
ted that li049 an AP2/ERF TF family, serves as a positive 
regulator for the biosynthesis of SMs called lignan/lignin 
in Isatis indigotica by the activation of SA signaling path-
way. Currently, only a few research on TFs responding to 
SA have been reported, indicating that more research is 
required to achieve more results in the future.

2013). In MeJA-associated short and long-distance signal-
ing, various plant growth regulators and hormones such as 
auxin, cytokinin, ethylene and SA play a vital role in the 
development of complex regulatory network which in turn 
impact different biochemical processes and SMs accumu-
lation (Chini et al. 2018). On the other hand, various TFs 
such as WRKY, bZIP, bHLH, NAC, AP2/ERF and MYB are 
involved in the MeJA signaling process. It has been reported 
that the bHLH and MYC TF is a master regulator for the 
MeJA signaling pathway. The MeJA-responsive MYB-TF 
enhances phenolic acid accumulation in S. miltiorrhiza 
(Zhou et al. 2021). Moreover, MeJA mediated WRKY TF 
also plays a crucial role in the production of SMs in medici-
nal plants. WRKY TF is involved in regulation of SMs bio-
synthesis such as taxol and artemisinin in Taxus chinensis 
and A. annua, respectively (Ma et al. 2009; Subramaniyam 
et al. 2014). MeJA and SA induced TF-WRKY enhances 
triterpenoid biosynthesis and over-expression of WRKY18 
increases salt stress tolerance in Ziziphus jujuba Mill. (Wen 
et al. 2023; Wang et al. 2017) studied transcriptome analysis 
of Lycoris aurea seedlings with the treatment of MeJA to 
determine which molecular mechanisms are responsible for 
regulating SMs pathway activity in plants. The expression 
of the plant secondary process highly depends on the dif-
ferent TFs at diverse levels. For instance, TFs participated 
in MeJA signaling cascades pathways usually regulating 
the transcription of several genes involved in biosynthesis, 
to improve the accumulation of bioactive compounds in 
medicinal plants (Zhou and Memelink 2016). Several TFs 
have been identified as regulators of SMs biosynthesis in 
plants, belonging to the families AP2/ERF, MYB, WRKY 
and bHLH. MeJA signaling activates the MAP kinase cas-
cade, which regulates the calcium channel and interactions 
with functional molecules. Additionally this signaling path-
way interacts with plant growth regulators (PGRs) such as 
gibberellic acid, SA, abscisic acid, and ethylene to moni-
tor a wide network of various plant physiological and bio-
logical processes. Plants are constantly exposed to various 
environmental stresses. Their stress response is facilitated 
by a number of bioactive compounds. The exposure of plant 
cells to diverse stress factors, as well as their primary and 
secondary defense responses, leads to improved production 
of phytocompounds, genetic expression, multicomponent 
signaling, changes in metabolic processes and the involve-
ment of various TFs all this activity is synchronized with 
both MeJA and SA signals in many ways. There is evidence 
that plants do regulate TFs to monitor signaling cascades 
that can reverse the effect of oxidative stress. Research in 
transgenic plants has revealed the cirical role of various TFs 
and gene networks in MeJA and SA signaling pathways that 
are involved in protecting the plants from various stress fac-
tors and enhance SMs production (Khare et al. 2020).
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MeJA and phenylacetic acid (PAA) were used as elicitors 
to increase total phenolic and flavonoid content in the root 
suspension of Ajuga bracteosa. Phytoecdysteroid levels 
were enhanced by 14 days of MeJA elicitation in A. brac-
teosa (Saeed et al. 2017). Gadzovska et al. (2013) reported, 
SA treated suspension culture showed a two-fold increase 
of hypericin and pseudohyperian production in Hypericum 
perforatum (L.). MeJA treatment showed low concentra-
tions of exogenous MeJA that could provide a potential pro-
tocol for the enhancement of bacoside contents in Bacopa 
seedlings (Bunjan et al. 2018; Koul and Mallubhotla 2020) 
reported that SA was used as an elicitor to enhance biomass 
and bacoside production using in vitro suspension cultures 
of B. monneiri. Another study was carried out to enhance the 
bacoside content of B. monnieri through in vitro suspension 
culture using plant growth regulators such as 6-benzylad-
enine (BA), kinetin, thidiazuron and chitosan. Among them, 
thidiazuron-treated samples showed increased bacoside 
content (Kharde et al. 2018). MeJA, SA, and copper sul-
fate (CuSO4) were used to enhance the bacoside content in 
B. monnieri shoot cultures and the results showed, CuSO4 
treated shoot cultures exhibited a maximum yield of baco-
side content than the other two hormonal elicitors (Sharma 

Effect of MeJA and SA as elicitors on the 
biosynthesis of SMs production of potent 
medicinal plants

MeJA and SA have been very well-documented chemical 
elicitors, a response to insect attacks, which deters feed-
ing. MeJA has been hypothesized as an essential signaling 
elicitation molecule leading to the production of novel and 
desired phytocompounds through in vitro cell cultures (Zhao 
et al. 2010). In B. monnieri, the combination of MeJA and 
SA significantly increased the biomass and bacoside A con-
tent in in vitro shoot cultures. An example thematic image 
was represented in Fig. 2. The bioactive compound bacoside 
A production was enhanced by using MeJA through in vitro 
shoot culture of B. monneiri (Sharma et al. 2015; Largia et 
al. 2015; Kim et al. 2007) reported that the SA and MeJA 
enhance the asiaticoside content in hairy root cultures of 
C. asiatica after 3 weeks of elicitation and enhance glycyr-
rhizin production in Glycyrrhiza glabra after the addition 
of MeJA and SA. SA and MeJA significantly improve the 
ginkgolide A, B, C and bilobalide production in the Ginkgo 
biloba under in vitro conditions in immobilized cell cul-
tures (Sukito and Tachibana 2016). The synergetic effect of 

Fig. 2 Enhancement of biomass through elicitation process in B. monnieri
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