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Abstract
Eclipta prostrata (L.) L. is widely used in traditional medicine for treatment of hepatitis, poisoning from snake bites and 
viral infections. Pharmacological studies confirmed its antioxidant, anti-inflammatory and anticancer activities. The efficacy 
of E. prostrata (L.) L. extracts has been correlated to phenylpropanoids such as flavonoids, coumestans and caffeoylquinic 
acid derivatives. In this work, the production of wedelolactone, demethylwedelolactone and 3,5-di-O-caffeoylquinic acid 
(3,5-diCQA) in hairy root cultures of E. prostrata (L.) L. C19 clone was increased after addition of eliciting agents jasmonic 
acid (JA) or methyl jasmonate (MeJA) at multiple concentrations. Cultures elicited with 100 μM of JA saw a 5.2 fold increase 
in wedelolactone (from 0.72 to 3.72 mg/g d.w.), a 1.6 fold increase in demethylwedelolactone (from 5.54 to 9.04 mg/g d.w.) 
and a 2.47 fold increase in 3,5-diCQA (from 18.08 to 44.71 mg/g d.w.). Obtained data validate the potential of E. prostrata 
(L.) L. hairy root cultures as a production system of wedelolactone, demethylwedelolactone and especially 3,5-diCQA, which 
has recently been reported to possess activity against coronavirus disease (Covid-19) by in silico computational studies.

Key message 
The goal of this work was to evaluate the effect of jasmonic acid (JA) or methyl jasmonate (MeJA) on wedelolactone, dem-
ethylwedelolactone and 3,5-di-O-caffeoylquinic acid (anti-Covid-19 drug candidate) production from hairy root cultures of 
Eclipta prostrata (L.) L. C19 clone.

Keywords Eclipta prostrata (L.) L. · Hairy roots · Covid-19 · Coumestans · Jasmonates · Caffeoylquinic acid derivatives

Introduction

In vitro culture techniques are an alternative for rapid mul-
tiplication of rare plant genotypes, plant genome transfor-
mation, and production of plant bioactives (Espinosa-Leal 
et al. 2018). They provide unique opportunities for the use of 
biotechniques that may increase plant secondary metabolite 
production. Some methods can improve the technique such 

as the use of plant transformation generation techniques. In 
response to Rhizobium rhizogenes genetic transformation, 
susceptible plants present a phenotype alteration known 
as hairy roots (Cardarelli et al. 1987; Spena et al. 1987; 
Schmülling et al. 1988). Applications of some elicitors 
and combinations of different stress stimuli can enhance 
the production of bioactive molecules by elicitor effects. 
Jasmonates are considered widespread elicitors since they 
affect several signaling pathways stimulating the produc-
tion of different classes of secondary metabolites in plants 
and microorganisms (Lourenço et  al. 2016). The more 
active derivative methyl jasmonate (MeJA) and the less 
active cis-jasmonate and dihydrojasmonic acid are the main 
plant stress compounds involved in the signaling of defense 
responses, primarily due to induction of genes involved in 
phytoalexin and phenolics biosynthesis (Sák et al. 2021).

Eclipta prostrata (L.) L., native to Brazil and other 
tropical and subtropical regions of the world, is an annual 
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herbaceous species from the Asteraceae family (Souza et al. 
2003). This species is widely used in traditional medicine 
against several diseases like hepatitis (Lu et al. 2016), poi-
soning by snake bites and treatment of viral infections (Man-
var et al. 2012). Moreover, pharmacological studies have 
reported E. prostrata (L.) L. antioxidant, anti-inflammatory 
and anticancer activities (Chaudhary et al. 2011; Yuan et al. 
2013; Ali et al. 2016). The efficacy of E. prostrata (L.) L. 
has been correlated to chemical constituents present in its 
extracts such as flavonoids (Malla et al. 2013), thiophenes 
(Wu et al. 2008; Han et al. 2013), coumarins (Zhang and 
Guo 2001), triterpenoid saponins (Yahara et al. 1994), ster-
oids (Cheng and Hu 2010) and coumestans (Diogo et al. 
2009). The coumestans wedelolactone (WL) and demeth-
ylwedelolactone (DWL) isolated from E. prostrata (L.) L. 
are the most explored compounds from the point-of-view of 
biological activity, displayed potency and selective inhibi-
tion activity of lipoxygenase subcategories 5-lipoxigenase 
(Wagner and Fessler 1986) and a trypsin-inhibiting activity 
that may be associated to the anti-inflammatory potential 
of the species (Syed et al. 2003). WL and DWL suppressed 
cancer cell motility, inhibiting the invasion and growth of 
breast cancer cells and they also exhibited an anti-invasive 
effect on human SK-HEP-1 hepatoma cells. Also, DWL 
suppressed lung cancer cells metastasis in mice (Lee et al. 
2012). Moreover, the association of WL with the flavonoids 
apigenin and luteolin restrained both the in vitro and in vivo 
growth of prostate cancer cells (Lin et al. 2007; Tsai et al. 
2009).

Eclipta prostrata (L.) L. produces phenolic acids such as 
chlorogenic acid and its derivative 3,5-di-O-caffeoylquinic 
acid (3,5-diCQA) (Lee et al. 2010). Chlorogenic acid and its 
derivatives have demonstrated several biological activities, 
such as antioxidant, antibiosis, anti-inflammatory, antivirus, 
and antitumor activities (Huang et al. 2014; Ali et al. 2017; 
Liu et al. 2018; Devrnja et al. 2020). More recently, studies 
by molecular docking using a serine-type protease (Mpro), 
a SARS-CoV-2 virus polyprotein, showed that the obtained 
binding energies of 3,5-diCQA were closed to remdesivir 
(antiviral compound), indicating stronger binding to Mpro 
protein and promising antiviral compounds that could treat 
Covid-19 (Shah et al. 2021). Additionally, the 3,5-diCQA 
was related as an emergency drug that can be used for tar-
geting 2′-O-ribose methyltransferase of SARS-CoV-2 in 
silico (Sumon et al. 2021). In previous work, our group 
investigated the suitability of E. prostrata (L.) L. hairy root 
cultures as a system for the production of the coumestans 
wedelolactone (WL) and demethylwedelolactone (DWL) 
and a hairy root clone named C19 was selected considering 
its superior potential for producing coumestans (Diogo et al. 
2009). Aiming to increase yields of bioactive compounds, 
we decided to evaluate the eliciting effect of JA and MeJA 
in E. prostrata (L.) L. hairy root C19 during the biosynthesis 

of coumestans (WL and DWL) and especially 3,5-diCQA 
(Fig. 1), an promising anti-covid-19 compound.

Materials and methods

Chemicals

The chemical elicitors JA (jasmonic acid), MeJA (methyl 
jasmonate), and WL (wedelolactone) were purchased from 
Sigma-Aldrich® (St. Louis, MO).

Maintenance of E. prostrata (L.) L. C19 hairy root 
clone

Eclipta prostrata (L.) L. hairy root C19 clone was obtained 
by infecting E. prostrata (L.) L. micropropagated seedlings 
with R. rhizogenes LBA 9796 (Diogo et al. 2009). C19 clone 
was selected because its roots presented higher production 
of the coumestans WL and DWL. Monthly subculture of 
the C19 clone in MS liquid culture medium (Murashige and 
Skoog 1962) under agitation (100 rpm) at 24 °C in the dark 
in order to maintenance of clone. To determine the most 
appropriate period to add the eliciting agent to the culture, 
a growth curve was established inoculating hairy roots 
(2 g) into 100 ml of MS medium, in the same conditions 
as above. Hairy root samples were collected periodically at 
3-day intervals, weighed and dried in a circulating air oven 
to determine fresh and dry weight of samples.

Determination of the kinetics of growth of E. 
prostrata (L.) L. hairy root

For determining the growth kinetics, the hairy roots 
(2.00 ± 0.01 g) were inoculated into 100 mL of MS liquid 
culture medium. Cultures were kept in the dark at 25 ± 1 °C 
under agitation (100 rpm). Two independent experiments 
were carried out in triplicate flasks. Samples were collected 
at 3-day intervals up to the 36th day of culture. After deter-
mining root fresh weight, the material was dried at 45 °C 
in a circulating air oven for 24 h to determine the root dry 
weight.

Elicitation of E. prostrata (L.) L. hairy roots with JA 
or MeJA

For the elicitation assays, hairy roots (1.0 g) were inocu-
lated into 100 ml of MS liquid medium and maintained as 
above. On the 21st day, cultures were supplemented with 
two different concentrations (100 μM or 140 μM) of JA or 
MeJA (Wiktorowska et al. 2010) and kept under agitation 
as mentioned above. One, two and four days after addi-
tion of elicitor agent, samples were collected and dried in 
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a circulating air oven and then extracted to determine WL, 
DWL and 3,5-diCQA levels. Analysis of variance (ANOVA) 
was carried out to compare mean values and linear regres-
sion curves were constructed using SISVAR 5.3 software 
(Ferreira 2011). Mean values were compared by the Scott-
Knott test (p < 0.05) (Scott and Knott 1974).

Quantification of WL, DWL and 3,5‑diCQA in E. 
prostrata (L.) L. hairy root C19 clone

For quantification of target secondary metabolites produced 
by E. prostrata (L.) L. hairy roots, dried roots (200 mg) were 
sonicated with 5.0 mL MeOH:H2O (7: 3) for 30 min. The 
extracts were then filtered through a 0.45 μm membrane and 
injected into a HPLC Shimadzu LC10AD vp (Shimadzu, 
Japan) coupled with a photodiode array detector. A Phenom-
enex Quinetex C-18 column (250 × 4.0 mm, 5 μm particles) 
was used for the analyses. The solvent system consisted of 
0.1% acetic acid in water (A) and methanol (B). The analy-
sis was performed on a linear gradient ranging from 10% B 
to 66% B in 32 min, returning to 10% B for up to 35 min. 
concluding the analysis in 40 min. The injection volume 
was 20 μL and visualization at 330 and 350 nm. Quanti-
fication was performed by external standardization using 
standard curves from WL (at concentrations of 0.063 mg/
mL to 0.50 mg/mL) and 3,5-diCQA (at concentrations of 
0.063 mg/mL to 1.00 mg/mL).

Isolation and structural elucidation of 3,5‑diCQA 
from E. prostrata (L.) L. hairy root C19 clone

C19 hairy roots cultured for 21 days in MS liquid medium 
were harvested and dried in a circulating air oven. The dried 
material (300 g) was macerated in an ethanol:water (7:3) 
solution (2 L) for 7 days and then with methanol (1 L) for 
7 days. The methanolic extract was evaporated to dryness 
and the dry residue (60 g) was solubilized in methanol:water 
(1:9), partitioned with hexane and then with ethyl acetate 
(thrice each). The aqueous fraction obtained from the ethyl 
acetate partition was further fractionated by multi-step 
solid phase extraction (SPE-C18) and semi-preparative 
HPLC. The protocol used in C-18 solid phase extraction 
SPE (Supelco; 1 g) was as follows: the cartridge was condi-
tioned with 6 mL of methanol and then with 6 mL of water. 
Then the crude extract (100 mg dissolved in 6 mL of water) 
was loaded onto the cartridge. The cartridge was washed 
with 6 mL of water, 6 mL of 8:2 methanol–water and 6 mL 
of ethyl acetate (wash residues). The water fraction (40 mg) 
was then submitted to semi-preparative HPLC using the 
solvent system: 0–32’ (10:66; A:B), 32–35’ (66:10; A:B), 
3 mL.min−1 flow rate, and detection at 330 and 350 nm dur-
ing 40 min (A-water with 0,1% of acetic acid; B-MeOH); 
and an Agilent Zorbax Eclipse XDB-C18 column, 5μ, 

250 × 9.4 mm, to yield 3,5-diCQA (10 mg). Purified 3,5-
diCQA was analyzed by one- and two-dimensional NMR 
in methanol-D4 using a Brüker® (Billerica, MA) BioSpin 
Avance 400 MHz spectrometer. ESI-HR-MS was performed 
on a time-of-flight mass spectrometer (Jeol Accu TOF 4G, 
Tokyo, Japan).

Results and discussion

The E. prostrata (L.) L. hairy root C19 clone growth was 
evaluated for 21 days. In the first 3 days, the hairy roots were 
in the lag phase of growth, and the most intense cellular divi-
sion occurred between the 6th and the 21st days of culture in 
which the fresh mass increased from 4.55 g/100 mL on the 
6th day up to 31.7 g/100 mL on the 21st day, representing 
1.3 fold increase at the beginning of the log phase and up 
to 14.9 fold increase at the end of the log phase (Supple-
mentary data; Fig. S1). After 21 days, no mass increase was 
observed for the cultures indicating that the system reached 
the growth stationary phase and the death or decline phase 
was not observed in the course of experiments. The con-
struction of growth curves allowed for the determination 
of the ideal time for addition of eliciting agents to cultures, 
which corresponds to the end of the logarithmic cell divi-
sion phase. Obtained results indicated the 21st day of culture 
growth as the most effective day for starting elicitation. The 
growth profile of E. prostrata (L.) L. hairy roots resem-
ble Polygonum multiflorum hairy roots where it was found 
that the ideal time for the induction of anthraquinones was 
between the 18th and 21st days of elicitation (Huang et al. 
2014). Similarly, studies have reported the 21st day of elici-
tation as the end of the exponential growth phase of Artemi-
sia annua hairy roots (Sivakumar et al. 2010). However, the 
log growth phase may vary depending on the plant species. 
Hairy roots of Rhaponticum carthamoides, also from the 
Asteraceae family, reported the period of 35 days for great-
est mass production of fresh hairy roots (Skala et al. 2015).

Before elicitation and after 21 days of culture of the E. 
prostrata (L.) L. hairy root C19 clone, the ethanolic extracts 
from hairy root C19 clone was prepared and submitted to 
chromatographic procedures and semi-preparative HPLC. 
3,5-diCQA was obtained as a white powder and character-
ized by MS and one- and two-dimensional NMR. NMR 
data showed three important signals from the aromatic ring 
at δ 7.05 (s, H-2’/2’’), δ 6.79; 6.76 (H-5’/5’’), and δ 6.5 
(H-6’/6’’), also the 1H-NMR spectrum showed two sets of 
double bonds H-7’ and H-8’ at δ 7.61/7.54 and δ 6.33/ 6.21, 
respectively, related to caffeoyl moities. Signals of the quinic 
acid subunit were confirmed with the presence of methylene 
groups (C-2 and C-6) at δ 34.3 and δ 36.2 (Supplemen-
tary data; Table S1 and Fig. S2–S5). HRMS data confirm 
the proposed molecular formula (Supplementary data; Fig. 
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S6–S7). All NMR data allowed us to establish the structure 
of 3,5-diCQA in comparison with literature data (Wu et al. 
2007; Wan et al. 2017).

Elicitation with JA and MeJA indicated that all variables 
analyzed (exposure period, type and concentration of the 
elicitor) affected the production of the target compounds 
WL, DWL and 3,5-diCQA, as shown in Fig. 1 (Supple-
mentary data; Table S2). When examining WL production 
in hairy roots elicited with JA or MeJA, regarding expo-
sure time, samples of all treatments collected 2 or 4 days 
after addition of elicitors showed an increased produc-
tion of WL compared to control. Hairy roots elicited for 
2 days presented an increase on WL production in the range 
of 1.30 mg/g d.w. and 1.20 mg/g d.w. for elicitation with 
100 μM JA and 100 μM MeJA and of 0.65 mg/g d.w. and 
1.05 mg/g d.w. for 140 μM JA and 140 μM MeJA, respec-
tively, while the control produced 0.73 mg/g d.w. Moreover, 
hairy roots elicited for 4 days presented enhanced produc-
tion of WL in all tested conditions, though it was observed 
that the best eliciting agent was JA in the concentration of 
100 μM, which produced 3.72 mg/g d.w., thereby an increase 
of 5.2 fold in WL production if compared to the control 
which produced 0.72 mg/g d.w. Linear regression curves 
constructed for evaluating WL production after elicitation 

for 2 and 4 days showed that on the 2nd day there was no 
significant difference between elicitation with JA or MeJA 
agents; however, there was a correlation between dose and 
effect of elicitor once 100 μM of either JA or MeJA induced 
higher stimulating effect than 140 μM. Regression analysis 
data showed that higher production of WL could be obtained 
in hairy roots elicited with 53 μM of JA (Fig. 2A). Prolonged 
period of co-culture with JA resulted in more pronounced 
effect on the production of WL, 3.72 mg/g d.w., by roots 
exposed to 100 μM JA, maximum yield at 78 μM of JA, than 
those exposed to 140 μM JA (Fig. 2B).

In general, WL production in E. prostrata (L.) L. hairy 
roots was superior in cultures elicited by JA than in cultures 
elicited with MeJA. The best JA concentration on 2nd day 
should be 53 µM whilst the best JA concentration on 4th day 
should be 78 µM, in follows that one could reduce elicitor 
dosage and save money. Hairy roots exposed to JA for 4 days 
showed enhanced DWL production compared to the control. 
Cultures elicited with 100 μM JA produced 9.04 mg/g d.w. 
of DWL while those co-cultured with 140 μM JA produced 
8.63 mg/g d.w. of DWL. Obtained yields represent a 1.6 fold 
increase on DWL contents compared to the control.

Besides coumestans, E. prostrata (L.) L. hairy roots pro-
duced significant amounts of 3,5-diCQA, and the elicitation 
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Fig. 1  Production of WL, DWL and 3,5-diCQA in E. prostrata (L.) L. hairy roots on 4th day of cultivation after elicitation with JA and MeJA
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using JA and MeJA improved the production in all treat-
ments as compared to control (Fig. 1). Effects of a longer 
elicitation period were correlated with the elicitor concen-
tration, and more enhanced production was observed in the 
roots harvested after a 4-day elicitation period. JA showed 
more effective results on the production of 3,5-diCQA pro-
ducing 44.71 mg/g d.w. and 41.62 mg/g d.w. in cultures 
elicited for 4 days with 100 μM and 140 μM JA, respec-
tively (the control produced 18.08 mg/g d.w.). Although 
a stimulating effect of MeJA was inferior when compared 
to JA, 3,5-diCQA yields ranged from 36.71 mg/g d.w. to 
28.02 mg/g d.w. in hairy roots elicited with 100 μM and 
140 μM MeJA, respectively (Fig. 1). When comparing 3,5-
diCQA production in the control culture it was possible to 
infer a production 2.5 and 2.3 fold superior in cultures elic-
ited with 100 μM and 140 μM JA and 2.0 and 1.5 fold in cul-
tures elicited with 100 μM and 140 μM MeJA, respectively 
(Fig. 2). The best JA concentration on the 2nd day should 
be 112.16 µM whilst the best JA concentration on the 4th 
day should be 102.34 µM. It is important to highlight that 
the JA concentration above 102.34 µM reduced 3,5-diCQA 
production. Linear regression analysis (Fig. 2) indicated that 
secondary metabolite production in cultures elicited with JA 
was dependent on elicitor concentration, that is, the lower 
the elicitor concentration the superior the caffeoylquinic acid 

derivative production. Furthermore, cultures elicited with 
140 μM MeJA showed toxic effects and subsequent reduc-
tion in the production of target bioactives. Obtained results 
indicate that both elicitor agents added to E. prostrata (L.) 
L. hairy root cultures were able to improve production of the 
target compounds, but JA was more effective than MeJA.

The most elicited compound is the WL, followed by 
3,5-diCQA and DWL respectively, suggesting that these 
chemical agents predominantly activate the enzymes of 
the phenylpropanoids via synthesis. WL achieved was 5.2 
fold, while the yields of 3,5-diCQA and DWL were 2.5 
and 1.6 fold higher, respectively (Fig. 3). WL is biosyn-
thesized by shikimate and acetate pathways, has been a 
high commercial value, and considerable amounts were 
produced after elicitation experiments. The 3,5-diCQA is 
biosynthesized by the shikimate pathway and is generally 
involved in plant disease-resistance responses to biotic or 
abiotic stress (Wan et al. 2017). Recently, 3,5-diCQA has 
been shown as a high value biological compound because 
it displays in silico anti-covid-19 activity [30–31, 39–40] 
(Joshi et al. 2020; Shah et al. 2021; Sumon et al. 2021; 
Kadioglu et al. 2021) and E. prostrata (L.) L. hairy root 
cultures proved to be an exceptional biological source for 
high 3,5-diCQA biotechnological production.

Fig. 2  Linear regression curves of WL and 3,5-diCQA produced by 
E. prostrata (L.) L. hairy roots as a function of period of elicitation 
and concentration of JA or MeJA elicitors. A WL after 2-day elicita-

tion; B WL after 4-day elicitation; C 3,5-diCQA after 2-day elicita-
tion; D 3,5-diCQA after 4-day elicitation
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Conclusions

The biosynthesis of wedelolactone, demethylwedelolac-
tone and 3,5-diCQA were positively influenced by elicitor 
concentration and elicitor exposure time of both chemi-
cal elicitors tested. The optimum period of co-cultivation 
with each elicitor was 4 days. Compared to controls, the 
highest yield of WL achieved was a 5.2 fold increase, 
while the yields of 3,5-diCQA and DWL were 2.5 and 
1.6 fold higher, respectively. Under these conditions, E. 
prostrata (L.) L. hairy roots cultures showed productiv-
ity of 0.15 mg/g/day of WL, 0.36 mg/g/day of DWL and 
1.19 mg/g/day of 3,5-diCQA. Obtained data validate the 
potential of E. prostrata (L.) L. elicited hairy root cul-
tures as an efficient system for the production of bioactive 
phenylpropanoids, specially the 3,5-diCQA, a potential 
anti-Covid-19 therapeutic agent as determined by com-
putational evidence.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11240- 021- 02201-4.
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