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Abstract

Jasmonates (JAs), such as jasmonic acid and its methyl ester, are lipid-derived compounds with signal functions in plant
growth and development, as well as in responses to stress. JAs are widely distributed in plants as natural plant growth regula-
tors. JAs do not work independently but work as a part of a complex signaling network with other phytohormones. They are
deployed to induce response during wounding and are often used for elicitation and stimulation of secondary metabolites
production in different in vitro culture systems. Application of JAs seems to be promising during different steps of the micro-
propagation system for different species. JAs stimulate proliferation rate of shoots, roots, callus and induce microtubers and
bulblets formation. However, negative effects of JAs on the condition of plant tissues are also reported, e.g. leaf senescence,
reduced growth and inhibited somatic embryogenesis. This review summarizes the current knowledge of the application
and properties of jasmonates under in vitro conditions in terms of cell division, explant growth, proliferation ability, storage

organ formation and stress response.

Key message

The review summarized in detail the results achieved for plants cultivated in vitro in the presence of jasmonates and their

possible mechanisms of action.

Keywords Cell proliferation - Micropropagation - Somatic embryogenesis - Storage organ formation - Abiotic stress

Introduction

Jasmonates (JAs) are widely distributed in plant tissues with
high activity and growth rate, such as the stem tips, root tips,
young leaves, flowers and unripe fruits. Endogenous JAs
levels increase in response to the external stimuli, includ-
ing mechanical damage, pathogen attack and osmotic stress
(Sembdner and Parthier 1993; Creelman and Mullet 1995).

Jasmonic acid (JA) and its methyl ester (methyl jas-
monates, MeJA) are linolenic acid (LA)-derived cyclopen-
tanone-based compounds that belong to oxylipins (Creelman
and Mullet 1995). It is believed that JA and MeJA represent a
separate group of plant growth regulators with hormone-like
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properties (Sembdner et al. 1990). The initiation of JAs
biosynthesis begins with the release of a-linolenic acid
(Fig. 1) from chloroplast membranes, which undergoes
multistage reactions catalyzed by enzymes present in plas-
tids, peroxisomes and cytoplasm (Ghasemi Pirbalouti et al.
2014; Sharma and Laxmi 2016) and is regulated by light
conditions (Zhai et al. 2007). Among exogenous JAs it was
showed that more effective is MeJA due to its easier cell
membrane crossing ability in comparison to JA and quick
demethylation to free JA (Fattorini et al. 2018).

Bioactive form of JAs synthesized by JAR1 (Jasmonyl-
L-amino acid synthetase; Fig. 1) is (75,3R)-JA-Ile perceived
by the COIl receptor (the F-box protein CORONATINE
INSENSITIVE 1) (Staswick and Tiryaki 2004; Fonseca et al.
2009; Wasternack and Hause 2013; Ueda et al. 2020). How-
ever, biochemical analysis indicated that OsJARI encodes
an enzyme conjugating JA not only to isoleucine (Ile) but
also to tryptophane (Trp), leucine (Leu), methionine (Met),
phenylalanine (Phe) and valine (Val) (Staswick 2009). JA-
Ile binds to the Skp1-Cullin-F-box (SCF)“°!E3 ubiquitin
ligase complex which further recruits JAZ (JASMONATE
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Fig. 1 Schematic representation
of JA biosynthesis, conver-

sion to the biologically active
JA-Ile by JARI and interactions
between JA and GA signaling
pathways. In the absence of JA
(a) repressors JAZ bind and
inhibit the MYC family of tran-
scription factors. JA-Ile binds
to the SCF®! ubiquitin ligase
complex and promotes degrada-
tion of JAZs, thus releasing
MYC2 to trigger expression

of JA-responsive genes. GA
pathway is mediated through
DELLA proteins. Without GA
(b) DELLASs compete with
MYC2 for binding to JAZs
enabling expression of MYC2-
regulated genes. In the presence
of GA repressors DELLA are
degraded through SCFCP2
complex, releasing JAZ to bind
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ZIM-DOMAIN) transcriptional repressors for degradation
through 26S proteasome, allowing the expression of JA-
responsive genes (Zhai et al. 2017; Hyde et al. 2018; Fig. 1).
JAZ repressors bind and inhibit the MYC family of transcrip-
tion factors which ultimately leads to the growth promotion
of leaves. However, JAZ-MYC interaction also takes part
in plant growth inhibition during defense responses (Major
et al. 2017; Guo et al. 2018). JA-Trp acts as an endogenous
auxin inhibitor in A. thaliana and exogenously caused agrav-
itropic root growth (Staswick 2009). The biological func-
tions of other JA-amino acid conjugates are still unclear,
although different COI1 homologs with variable preference
perceive those bioactive molecules (Xiao et al. 2014; Yan
et al. 2016).

@ Springer

The presence of JAs is associated with different changes
in plant development and structure. Many studies have
shown that JA and MeJA are involved in leaf senescence by
stimulation of chlorophyll degradation. JA exposure causes
damage to chloroplasts, decreases photosynthetic activity as
a result of stimulation of RuBisCO degradation, stimulates
destruction of cell membrane structure in the lipid peroxida-
tion process and increases expression of senescence associ-
ated genes. The application of MeJA in turn, leads to an
increase in the rate of cellular respiration, proteolytic and
peroxidase activity in the leaves (Parthier 1990; Creelman
and Mullet 1997; Liu et al. 2016). However, JAs are also
involved in the defense responses to herbivore attack, pro-
motion of shoot growth, storage organ formation: bulblets
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and tubers, flowering processes, fruit and inflorescence num-
ber (Rohwer and Erwin 2008; Hummel et al. 2009).

Many studies on JAs effect were carried out on field
or pot-grown plants, while its potential in in vitro culture
need to be fully understood. The aim of this review is to
summarize studies investigating the role of jasmonates in
micropropagation, explants growth, storage organ formation
and somatic embryogenesis in plants under in vitro condi-
tions. This review might provide a starting point for further
research using jasmonates.

Use of JAs during plant micropropagation

Basal culture medium provides all nutrients, energy and
water necessary for plantlets, organs, tissues or cells growth.
Regulation of developmental processes in plant tissue cul-
ture generally requires the addition of plant growth regula-
tors (PGRs). Successful micropropagation strictly depends
on a selection of appropriate PGRs and their concentration.
The most commonly used PGRs are auxins and cytokinins
which regulate growth and organize development of a plant
tissue. In general, auxin mediates cell division and cyto-
kinin mediates cell differentiation (Moubayidin et al. 2009).
However, cultured plant tissues are also influenced by gib-
berellins (GAs), brassinosteroids (BRs), ethylene (ET),
abscisic acid (ABA), salicylic acid (SA), jasmonates (JAs)
and interactions among them (Gaspar et al. 1996; Phillips
and Garda 2019). Exogenous application of JAs can affect a
great variety of morphological and physiological responses
in plants. Jasmonates, like all growth regulators, do not work
independently but they are involved in a complex signal-
ing network of interactions among multiple plant hormone
signaling pathways (Yang et al. 2019). Different effects of
exogenously applied PGRs, including JAs, may arise from
modification of synthesis, catabolism, activation, sequestra-
tion, transport, or sensitivity to endogenous phytohormones
of the same or other type (Gaspar et al. 1996).

A large number of studies conducted in different in vitro
conditions have shown that exogenous JAs inhibit plant
growth by suppression of the cell proliferation and expan-
sion (Patil et al. 2014). However, high level of endogenous
JAs was observed especially in young organs with high rate
of cell division, therefore growth-promoting activity of JAs
cannot be excluded and it was proposed that JAs-mediated
physiological response might be a consequence of changes
in endogenous cytokinins level which affects and regulates
cell cycle (Avalbaev et al. 2016). Cell cycle is also under the
gibberellins signaling control (Achard et al. 2009). Analysis
of Nicotiana attenuata plants treated with exogenous JA and
GA showed that JAs might indirectly repress shoot growth
by antagonizing the GA pathway through specific DELLA-
JAZ interactions and down regulation of photosynthesis

(Machado et al. 2017). The GA signal is perceived by GID1
(GA-insensitive dwarf1). The GID1-GA complex stimulates
plant growth and development by down-regulating DELLA
repressors. In the absence of GA DELLAs compete with
MYC?2 for binding to JAZs, thereby releasing MYC2 to acti-
vate expression of MYC2-regulated genes. In the presence
of GA DELLAs are degraded through SCFS'®2E3 complex
leading to inhibitory JAZ-MYC2 interactions (Fig. 1; De
Bruyne et al. 2014).

Cell cycle and cell proliferation

One of the first characterized physiological ex vivo effect of
JAs was growth inhibition of the potted Vicia faba pericarp
as a result of a cell cycle disturbance (Dathe et al. 1981).
On this basis, a number of studies focused on the inhibi-
tory effect of JAs on plant growth have been developed also
under in vitro conditions. Ueda and Kato (1982) reported
that JA and MeJA were powerful inhibitors of kinetin-
and N-phenyl-N'-(2-chloro-4-pyridyl)urea-induced callus
growth of Glycine max. Plant growth and development are
related to cell expansion and cell differentiation, but also
are strictly linked with cell division (Perrot-Rechenmann
2010). éwiatek et al. (2002) compared the effect of JA with
ABA on the cell cycle using Nicotiana tabacum BY-2 cell
line. Their results showed that these phytohormones dis-
turbed cell cycle progression by preventing DNA replication.
Exogenous application of both compounds before the G1/S
transition caused retention of cells in the G1 phase of the
cell cycle. ABA application at a later stages did not affect
further progression of the cell cycle, whereas JA effectively
prevented cells from entering mitosis (cells arrested in G2
phase; Fig. 2). Those observations showed that the growth
inhibition in response to JA might not resulted from a cell
expansion in the elongation zone, but from a disruption of
meristem activity (Swiatek et al. 2002). Continued research
confirmed that JA application led to tobacco BY-2 cell arrest
in both G1 and G2 phases (Swiatek et al. 2004). Analysis
of a gene expression of Arabidopsis genome showed that
also MeJA inhibited the activation of the M phase genes
thus cells were arrested in the G2 phase of the cell cycle
(Pauwels et al. 2008; Fig. 2). However, JAs treatment leads
to reprogramming cells through the activity of specific tran-
scription factors and proteins activity. It was indicated that
MelJA primarily activates expression of the genes involved
in jasmonate synthesis, thus cell cycle genes expression is
suppressed in the later stages (Gumerova et al. 2015; Pau-
wels et al. 2008).

In asynchronously dividing Taxus cuspidata cultures
addition of MeJA resulted in turn in four effects on the cell
cycle: transient increase in G2 phase cells, transient decrease
in S phase cells, and at later stages post-elicitation, increase
in GO/G1 phase cells and decrease in G2 and S phase cells.
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After 96 h of elicitation with MeJA, percentage of cells in
the G2 and S phases decreased but in the G1/GO phases
increased, therefore it was suggested that cells treated with
MeJA were not arrested in the G2/M transition but progres-
sion through the cell cycle was slowed down. A time lag
between MeJA-mediated growth inhibition and cell death in
asynchronously dividing T. cuspidate cell culture suggested
that observed growth suppression in response to MeJA was
not due to necrosis and/or rupturing of cell membranes,
although the evidence indicated that JAs might affect cell
walls (Capitani et al. 2005; Patil et al. 2014). Northern
analysis and in situ hybridization using cDNA probes of
the G1/S phase-specific genes confirmed enhanced prolif-
eration growth of N. tabacum cells in response to relatively
low concentrations of MeJA, whereas in highest concentra-
tion (10 pM) MeJA indicated transient effect and was more
effective in enhancing defense-related processes such as cell
wall thickening (Capitani et al. 2005). It was reported that
MelJA elicitation increases content of cellular monolignols
in A. thaliana (Pauwels et al. 2008) which polymerize into
lignin according to the cell-wall class III peroxidases gen-
erating reactive oxygen species (ROS) from hydrogen per-
oxide. Peroxidase expression and activity is also stimulated
by JA. These changes in response to JA are associated with
a cessation of a growth and decreased cell expansion as a
result of increased cross-linking of primary cell-wall com-
ponents (Almagro et al. 2009; Napoleao et al. 2017; Hyde
et al. 2018). An earlier report indicated that JAs delayed

1Go

s

Fig.2 Main effects of exogenous JAs on the cell cycle. JAs might
cause retention of cells in the G1 and G2 phases, increase number of
cells arrested in the GO and G1 phases, and decrease number of cells
entering the S and G2 phases

@ Springer

regeneration of the cell wall in protoplast of Solanum tubero-
sum (Ravnikar et al. 1992). In contrary to all these observa-
tions, it was reported that JA promotes division of mitotically
less active cells in the root apical meristem named quiescent
center (QC) in A. thaliana. Furthermore, JA pre-treatment
increased number of new columella cell layer between QC
and ablated cells, which suggest that JA stimulates stem cell
replacement after ablation (Chen et al. 2011). JA-dependent
regeneration network is highly important for plant response
to parasitic infection (Zhou et al. 2019).

Effect of JAs on the cell division was also indirectly
visualized during callus propagation under in vitro con-
ditions. In higher concentration (5-50 pM) both JA and
MelJA inhibited callus growth of Medicago sativa during
differentiation stage (Rudus et al. 2001; Table 1; Fig. 3).
Elicitation with 10—100 pM MeJA significantly decreased
cell viability of T. cuspidata and Taxus baccata suspen-
sion culture on Wy/, medium supplemented with 6-ben-
zylaminopurine (BA) and 1-naphthaleneacetic acid (NAA)
(Bulgakov et al. 2011). Also 100 uM MeJA significantly
decreased cell viability in protoplast culture of A. thali-
ana due to the rapid accumulation of H,0, (Zhang and
Xing 2008). Enhanced hydrogen peroxide and superoxide
radical production was also detected in Salvia miltiorrhiza
hairy roots (Liang et al. 2012) and Panax ginseng roots
(Al et al. 2006). In Ricinus communis gradual accumula-
tion of H,0, was indicated between 1 and 6 h after MeJA
treatment of plants germinated under ex vivo conditions
(Soares et al. 2010). High level of accumulated ROS leads
to lipid peroxidation in cell membranes that might cause
membrane damages, imbalance of cell homeostasis and
further cell death (Pérez-Pérez et al. 2012). Correlation
between oxidative stress and JAs is very complex. It was
proposed that JA at a definite concentration can directly
modify superoxide dismutase (SOD) structure that stimu-
lates its activity (Maksymiec and Krupa 2006), thus JAs
indicated both antioxidative and pro-oxidative activity
(Ho et al. 2020). Exposure to JA and MeJA (50-200 uM)
of Mentha X piperita cell suspension culture resulted in a
less biomass accumulation than that of the control. Both
elicitors suppressed growth of the cell suspension culture,
although stronger inhibition was noted for MeJA appli-
cation. Furthermore elicitation resulted in cultures color
change from greenish to brown. Authors mentioned that
this effect might be caused by increased accumulation of
phenolic compounds and their oxidation what correlates
with stimulatory effect of JAs on secondary metabolites
accumulation (Krzyzanowska et al. 2011).

Earlier reports indicated that JAs not only have suppress-
ing effect, but also have stimulating effect on cell division
in various culture conditions or plant species, thus effect of
JAs depends on its concentration, interaction with a specific
PGRs and type of explant. In S. fuberosum JA (0.01-1.0 pM)
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combined with BA and 2,4-dichlorophenoxyacetic acid (2,4-
D) stimulated cell division manifested by increased number
of microcalli (Ravnikar et al. 1992). Similar results were
obtained for Prunus avium and Vigna mungo callus cultures
propagated on B5 and MS medium, respectively, supple-
mented with JA in the comparable concentrations (Table 1),
although without any other hormonal additives (Kondo et al.
2002; Lingakumar et al. 2014). Addition of the ester deriva-
tive of JA also affected callus growth. MeJA (10-40 pM)
combined with 2,4-D and kinetin (Kin) increased cal-
lus growth rate from Dianthus caryophyllus leaf explants
(Matter et al. 2017). Even ten times higher concentration
(118.9-475.6 pM) of MeJA in MS medium with BA and
NAA increased fresh and dry weight of Catharanthus roseus
callus (Al-Zuhairi and Ghanm 2017). The JAs effect might
also depend on the growth stage of the plants. In Malus
pumila growing in an open field, the endogenous level of JA
is high in the early stages of pulp development, thus effect
of exogenous JA under in vitro conditions varied between
samples from ex vivo plants collected in different days after
blooming (DAFB). It was indicated that only at 15 DAFB,
when the plant tissue was still in the cell division stage,
JA promoted callus formation. At 25 and 35 DAFB, JA in
turn inhibited callus formation probably because endoge-
nous JA concentrations increase with time of fruit growth.
These results indicated that only low endogenous JA level
promotes callus formation, whereas increasing JA concentra-
tion inhibits this process (Kondo et al. 2001).

Bulgakov et al. (2011)

References

spore-derived gametophyte

pension cell culture
JA promoted sporophyte development from Castilho et al. (2018)

>10 pM MelA inhibited growth of sus-

Effect

Organogenesis

Wp/a (BA+NAA)

1/2 MS

Analyzing JAs addition during plant micropropagation, it
was reported that these compounds perform varied effects,
either promoting or inhibitory. For example, JA in concen-
trations of 0.5-2.0 pM shortened time for shoot initiation,
increased shoot and root elongation, number of nodes, leaves
and roots in stem nodes of S. tuberosum placed onto MS
medium (Kumlay 2016; Table 1). In turn, growth of the
Oryza sativa seedling was inhibited with increasing con-
centration of JA in MS medium, even in the presence of
1 pM JA root growth was reduced twofold over the control
(Cho et al. 2007). As it was noticed role of JAs seems to be
species- and context-dependent (Lakehal and Bellini 2018)
and mentioned JA and GA growth-defense balance should be
considered during analyzing the JAs effect on the propaga-
tion effectiveness. Generally it is presupposed that JA pri-
oritizes defense, in turn GA—prioritizes growth. Inhibited
plant growth as a results of JA treatment is probably related
with suppression of GA-mediated pathway (Hou et al. 2013;
Nguyen et al. 2019a). It was indicated that MeJA-mediated
growth inhibition might results also from the perturba-
tions in mitochondrial membrane integrity, decreases in the

Explant Medium (PGR)

SC
G

JAs concentration
1-100 pM MeJA
0.1-10 pM JA

Taxus cuspidate; Taxus baccata
Anemia tomentosa

Taxaceae
Anemiaceae

Medium: B5 Gamborg’s B5S medium, BNM buffered nodulation medium, Knop Knop’s medium, LS Linsmayer and Skoog medium, MS Murashige and Skoog medium, MSB5 Murashige and
Skoog medium including Gamborg B35 vitamins, MSPV modified Murashige and Skoog medium, NLN-13 Nitsch and Nitsch medium with 13% sucrose modified by Lichter, SH Shenk and

Hildebrandt medium, S7 Shepard and Totten medium, W5 W5 solution, WPM woody plant medium, Wy,, W, Bulgakov’s medium supplemented with BAP and NAA
Explants: BP basal plates, C callus, CT cotyledons, D discs from pulp, EC embryogenic callus, G gametophytes, H hypocotyls, HR hairy roots, L leaves, LC leaf callus, MC microspore suspen-

Plant growth regulators: 2,4-D 2,4-dichlorophenoxyacetic acid, 2-iP 6-(y,y-dimethylallylamino)purine, BA 6-benzyloaminopurine, /AA indole-3-acetic acid, /BA indole-3-butyric acid, Kin kine-
sion, PL plantlets, PP protoplasts, R roots, SC suspension cell culture, SD seedlings, SE seeds, SH shoots, SN stem nodes, ST shoot tips, TCL thin cell layers

Table 1 (continued)

Plant species

tin, NAA 1-naphthaleneacetic acid
EC the most effective concentration

Fern
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Fig.3 Diagrammatic representation of the effects of exogenously applied JAs under in vitro conditions (promoting and inhibitory effects)

biosynthesis of ATP and proteins involved in energy metabo-
lism (Ruiz-May et al. 2011; Cho et al. 2007).

Shoots proliferation and growth of the aerial parts

In the shoot induction, development and proliferation cyto-
kinins play a vital role. In S. fuberosum stem node cultures it
was indicated that exogenous JA increased the ratio between
physiologically active and inactive cytokinins without
changing its total content (Dermastia et al. 1994). In turn,
Triticum aestivum seedlings treated with MeJA showed two-
fold increased accumulation of cytokinins without changes
in ABA and auxins levels (Avalbaev et al. 2016). It was
also reported that MeJA increased accumulation of cyto-
kinins, despite the antagonistic interaction between JA and
cytokinin noted in xylem development of A. thaliana (Jang
et al. 2017). JAs were considered as inhibitors of cytokinin-
induced plant growth manifested by reduced biomass in A.
thaliana (Yan et al. 2007,2009; Zhang and Turner 2008;
Noir et al. 2013; Attaran et al. 2014; Table 1; Fig. 3) and
in O. sativa (Yang et al. 2012; Hibara et al. 2016). JA sup-
presses cell proliferation in wounded A. thaliana plants lead-
ing to a reduced leaf size with fewer and smaller epidermal

@ Springer

cells giving a “bonsai effect” (Zhang and Turner 2008; Noir
et al. 2013; Yang et al. 2019). JAs act as a growth inhibitors
even in combination with exogenous BA. Repressed growth
of the shoots was observed for Pinus radiata (Tampe et al.
2001), Curcuma longa (Cousins and Adelberg 2008) and
Withania somnifera (Sivanandhan et al. 2013). No shoot
production was observed for Lavandula angustifolia treated
with 4.78 pM JA (Miclea et al. 2020). Addition of JA even
in concentrations lower than 1 pM into MS medium with
BA reduced multiple formation and elongation of Pistacia
lentiscus shoots (Koc et al. 2014). JA in concentrations up
to 0.05 puM increased dry weight of shoots, leaves and roots
developed from single nodes explants and number of leaves
of Brassica oleracea cultivated in MS medium. In higher
concentrations (1.25-6. uM) JA inhibited explant growth
(Toro et al. 2003). MeJA in concentrations 0.1-1.0 pM also
increased explant fresh weight but in higher concentra-
tion decreased number of developed shoots in N. tabacum
cultured on MS medium supplemented with BA and TAA.
Histological analyzes indicated that loss of the thin layer
tobacco explants ability to regenerate in response to MeJA
treatment was due to a strong hypertrophy of the cells and
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disappearance of meristemoids (Biondi et al. 2001) and
reduced shoot primordial development (Capitani et al. 2005).

For various species JA stimulated shoot proliferation
rate and growth when it was added into a medium in con-
centrations up to 10 pM (Table 1). JA supplementation of
a medium containing N6-(2-Isopentenyl)adenine (2-iP)
increased shoot multiplication and development in Allium
sativum (0.1-10 pM JA) and Narcissus triandrus (4.8 pM
JA) (Ravnikar et al. 1993; Santos and Salema 2000). Com-
bined with Kin, 10 pM JA increased shoot number of
Dioscorea cayenensis—D. rotundata (Ovono et al. 2007). In
Pyrus communis and P. cerasus X P. canescens shoots addi-
tion of 1-10 uM JA into MS medium supplemented with
BA and IBA or NAA increased leaf growth, fresh and dry
weight of shoots (RuZi¢ et al. 2013). MeJA (0.3-3.2 pM)
also improved shoot multiplication and favored leaf devel-
opment of Pistacia vera propagated onto MSPV medium
containing BA and IBA, although 10 pM MeJA led to the
leaf senescence and decreased shoot proliferation (Dolcet-
Sanjuan and Claveria 1995). On the other hand in Musa
acuminata increasing concentration of MeJA up to 100 uM
also stimulated proliferation rate of shoots in presence of BA
(Mahmood et al. 2012). Similarly proliferation rate of Tarax-
acum pieninicum shoots on MS medium supplemented with
BA and NAA was stimulated by JA in higher concentrations
(24-96 pM). However, it was reported that increasing con-
centration of JA limited the growth of the obtained shoots
(Kaminska et al. 2018). The opposite effect was obtained for
Ziziphora persica multiplied shoots on MS medium supple-
mented with the same PGRs, where MeJA decreased shoot
proliferation rate but stimulated its elongation (Zare-Hassani
et al. 2019). Increased height and dry weight of the seedlings
probably by a rapid and significant increase of cytokinins
level was observed also for T. aestivum and Artemisia annua
treated with only MeJA in low concentrations (0.01-1 uM
and 2-5 pM, respectively) (Avalbaev et al. 2016; Alam and
Albalawi 2020), but high MeJA concentrations (10 and
100 uM) inhibited wheat seedlings growth (Avalbaev et al.
2016). Reduced growth of the shoots in response to JA or
MelJA alone in MS medium was also reported in S. tubero-
sum (Ravnikar et al. 1992), O. sativa (Cho et al. 2007), Cen-
tella asiatica and Galphimia glauca (Mangas et al. 2006).
In A. thaliana inhibited leaf growth as a result of treatment
with 50 uM MeJA was manifested by both cell number and
cell size reduction (Noir et al. 2013). Furthermore, it was
indicated that exogenous MeJA suppresses hypocotyl elon-
gation in a SCF “©!'_dependent pathway in Arabidopsis
under various light conditions, particularly effectively under
red light (Chen et al. 2013). Signal cross-talk between JA
and the red-light receptor phytochrome B (phyB) is thought
to intermediate growth stimulation in neighboring plants
competing for light. However, in further research it was
shown that growth restriction at high level of endogenous

JA was independent of phyB but involved dysregulation of
Trp biosynthesis (Major et al. 2020).

Rooting of the plantlets

The most important PGRs during rooting process of in vitro
derived shoots are auxins, especially indole-3-butyric acid
(IBA) and indole-3-acetic acid (IAA) (Goel et al. 2018).
Increased accumulation of endogenous JA might be stimu-
lated during adventitious root (AR) formation by conver-
sion of the IBA to IAA in NO-mediated upregulation of JA
biosynthetic genes (Fattorini et al. 2017). It was suggested
that MeJA acts during dedifferentiation phase by increas-
ing sensitivity to auxin of the founder cells which divide
and the descendent cells become increasingly determined
to root formation under the auxin signal (De Klerk 2002).
However, it was documented that JA and auxins antagonize
root growth through interaction between JAZ protein and
transcription factor MYC2 (Yang et al. 2019; Fig. 1). Fur-
thermore, MeJA induced root growth inhibition through the
reduction of Arabidopsis root cell length with involvement
of COI1 in this process (Adams and Turner 2010). These
results suggest that JAs modulates root formation via whole
JAs pathway COI1-JAZs-MYC2 (Chini et al. 2009), but it
was also reported that JA inhibits auxin-induced lateral root
(LR) formation independently of the COII receptor (Ishi-
maru et al. 2018). Inhibition of AR initiation induced by
JAs involve cytokinin-dependent pathway in A. thaliana
(Lakehal et al. 2020). In turn auxin increases JA conjugation
efficiency lowering free JA level. This auxin-JA interaction
supports the hypothesis that JA signaling pathway nega-
tively regulates AR in Arabidopsis hypocotyls (Gutierrez
et al. 2012). Other studies indicated that JAs inhibits primary
root (PR) elongation but promotes LR formation (Lakehal
and Bellini 2018) and it was reported that IAA biosynthesis
is required for MeJA to promote LR formation (Sun et al.
2009; Cai et al. 2014). Furthermore, it was shown that JA
affect PR and LR growth by an auxin-independent pathway.
The inhibiting effect of JA on a root system was found to be
caused by a reduced cortex cell length and the low rate of the
root-meristem cell formation in Helianthus annuus seedlings
(Monzén et al. 2012). It was also suggested that the effect of
JAs on the root growth may result from the reorganization
of the root meristem, decreased cell division, inhibited cell
elongation and premature cell maturation (Xue and Zhang
2007; Tung et al. 1996).

As for all micropropagation steps concentration of PGR
does matter, but for some species, e.g. O. sativa, JA regard-
less of its concentration reduced root growth (Cho et al.
2007). In Medicago truncatula in turn only 0.1-10 pM JA
inhibited nodulation and suppressed roots elongation growth
(Sun et al. 2006). Similarly MeJA (5-16 uM) decreased root
biomass in Curcuma longa plantlets (Cousins and Adelberg

@ Springer
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2008). However, suppressed rooting process was mainly
associated with the high concentrations of JAs (Table 1).
Addition of 100 uM MeJA into MS medium reduced roots
growth of C. asiatica, Ruscus aculeatus and G. glauca (Man-
gas et al. 2006). Furthermore, MeJA (50-100 uM) inhibited
hairy roots growth of C. asiatica (Nguyen et al. 2019b). Sup-
plementation of WPM medium with MeJA in concentrations
of 50-200 uM led to decreased roots and shoots develop-
ment and growth on nodal explants of Stevia rebaudiana
(Moharramnejad et al. 2019). In turn in Z. persica 100 pM
MelA decreased number of roots, although at higher concen-
tration (150 uM) stimulated root elongation (Zare-Hassani
et al. 2019). Stimulation of root formation by JAs was also
noted for low concentrations (up to 1.0 pM) in S. tuberosum,
B. oleracea and Lycopersicum esculentum (Ravnikar et al.
1992; Tung et al. 1996; Toro et al. 2003; Zhang et al. 2006;
Table 1). In Cymbidium kanran 1 pM JA increased number
of rhizome branches (Shimasaki et al. 2003). Even in lower
concentrations (4.76x 107 to 4.76 x 107 pM) JA induced
minirhizomes formation in shoot clusters of Rheum rhabar-
barum (Rayirath et al. 2011). JA also stimulated root primor-
dium and subsequent root formation with lateral branches in
V. mungo hypocotyls placed onto MS medium (Lingakumar
et al. 2014). Addition of 10.65 uM MeJA into MS medium
supplemented with Gamborg’s B5 vitamins, BA and NAA
increased number of regenerated roots in Cymbopogon sch-
oenanthus seedlings but showed negative effect on a shoot
production (Abdelsalam et al. 2018).

It was indicated that JA derived by the demethylation of
MelA, applied at 0.01 pM in combination with IBA and
Kin enhanced AR in N. tabacum and A. thaliana seedlings
and thin cell layers (TCLs) under dark conditions. The
endogenous IAA levels increased in the TCLs at the time
of the first AR-cell cluster formation under MeJA treat-
ment. Furthermore, it was shown that also xylogenesis in
Arabidopsis TCLs is under the JAs control. Role of JAs in
these processes was related to crosstalk between JA- and
ET-signalling (Fattorini et al. 2009, 2018). It was proposed
that JA at high concentrations promote xylogenesis rather
than AR formation, and mentioned cross-talk between JA
and ET may decide which of these competing processes will
occur (Druege et al. 2019). These results were confirmed by
Betti et al. (2019) who showed that during AR formation in
Arabidopsis stem explants cultured with IBA the antago-
nism between JA and ET is based on an involvement of the
EIN2 (Ethylene Insensitive2) and COI1 cross-talk. It was
also assumed that JAs cooperate with cytokinins to repress
initiation of AR formation in Arabidopsis under constant
red light conditions thus JAs effect on AR formation might
also depend on light conditions during culture (Lakehal et al.
2020; Fig. 3).

@ Springer

Somatic embryogenesis

Somatic embryogenesis (SE) is the developmental process
in which a competent cell or a cell group undergoes bio-
chemical and molecular changes resulting in the forma-
tion of a somatic embryo (Yang and Zhang 2010). Somatic
embryos are bipolar structures with an apical pole (the
future shoot) and a basal pole (the future root), both with
its own meristem (Horstman et al. 2017). This regenera-
tion system is preferred over organogenesis due to a low
frequency of chimeras, a high number of regenerants and
a limited level of somatic variation (Gaj 2001; Carra et al.
2019). One of the determining factors during induction of
SE is IAA metabolism in the cells. Acquisition the embryo-
genic potential by pro-embryogenic mass is dependent on
auxin homeostasis at a specific level (Nic-Can and Loyola-
Vargas 2016). In Arabidopsis SE is a two-step process. In
the first step early cotyledonary zygotic embryos are placed
on medium supplemented with auxins to stimulate forma-
tion of the embryogenic tissue. In the next step formation of
the somatic embryos is stimulated by the removal of aux-
ins from the medium. JA is a key component of embryo-
genesis regulation in the pathway including phytoglobin 2
(PGB2), NO and several JA-responsive intermediates (Bas-
suner et al. 2007; Mira et al. 2016). It was suggested that
JAs inhibit embryo germination in angiosperm (Biatecka
and Ke¢pezyniski 2003), although high endogenous level of
JA is essential for somatic embryo formation in M. sativa. A
relatively high and stable JA content was reported in somatic
embryos developed from globular through torpedo till early-
cotyledonary stage (Rudus et al. 2009). Exogenous MeJA
not only inhibited callus growth of this species during differ-
entiation stage, but also negatively affected the proliferation
of embryogenic suspension and reduced somatic embryos
production (Rudus et al. 2001, 2006; Table 1; Fig. 3). Tokuji
et al. (1995) showed that MeJA markedly delayed somatic
embryo differentiation from cell clusters to torpedo stage
and repressed their further regeneration in Daucus carota.
Cells of Fagopyrum tataricum from suspension culture
after MeJA treatment were almost completely unable to
produce somatic embryos. Proposed explanation was based
on possible suppression of the cell cycle genes expression
and cells arrest of entry into mitosis. On the other hand it
cannot be excluded that exogenous MeJA induced perturba-
tions in the level of endogenous hormones which after cells
transfer onto hormone-free medium prevent activation of the
embryogenesis process (Gumerova et al. 2015). In contrast
to these results, Reinbothe et al. (1994) indicated that MeJA
induces embryogenesis-related proteins and mRNA in Nico-
tiana plumbaginifolia. Improved microspore embryogenesis
was obtained for Brassica napus treated with 4.8 pM JA
for 24 h. At higher level (9.5 and 23.8 pM) JA improved
embryogenesis and callogenesis only after 6 h incubation.
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Longer incubation decreased microspore embryogenesis
and microspore-derived embryos germination (Ahmadi
et al. 2014). Blazquez et al. (2004) indicated that JA also in
low concentration (2.4 pM) significantly improved SE and
plant regeneration in Crocus sativus. Equivalent to somatic
embryos in orchids, protocorm-like bodies (PLBs) forma-
tion was improved as a result of a MeJA treatment, although
PLBs formation decreased as MeJA level increased (Teixeira
da Silva 2012). Similar results were obtained in shoots cul-
ture of Cymbidium eburneum where addition of MeJA into
MS medium stimulated PLBs formation with simultaneous
decreased shoot formation (Shimasaki et al. 2003).

Microtuber and bulblet formation

For some species culture through bulblets or microtubers has
become a more effective method of propagation due to the
genetic purity (Wang and Hu 1982; Sultana et al. 2010). For-
mation of this both storage organs under in vitro conditions
might be affected by several factors such as sucrose levels,
photoperiods and PGRs and is controlled by biochemical
and genetic factors (Gheisari and Miri 2017; Islam et al.
2017).

Several phytohormones are associated with the processes
associated with the tuberization. Especially significant role
was assigned to GA; which regulates the change in cell
growth orientation from longitudinal to radial swelling of
the stolon tip what is characteristic step during tuber for-
mation (Hannapel et al. 2017). JAs also induce changes of
the cell division marked by cortical microtubules reorienta-
tion and radial expansion direction during initiation of stor-
age organs formation (Shibaoka 1991; Matsuki et al. 1992;
Podwyszynska et al. 2015). JAs involvement in this process
was repeatedly confirmed not only in tuber formation from
stolon apex in plants from soil cultivation (Koda 1997; Cen-
zano et al. 2003) but also during further cell expansion of
medullary tissue in S. tuberosum microtuber discs cultured
in vitro (Takahashi et al. 1994; Table 2). Pruski et al. (2002)
pointed out that JA induction of tuberization and microtu-
ber bulking on S. tuberosum nodal cuttings was most pro-
nounced under tuberization-inhibiting 16 h photoperiod. As
can be seen different studies indicated that JA and its deriva-
tives stimulated microtuber formation (Hamberg and Gard-
ner 1992; Fig. 3) not only in potato, but also in D. rotundata
(Jasik and Mantell 2000), D. cayenensis (Ovono et al. 2007)
and Pterostylis sanguinea (Debeljak et al. 2002), although a
number of studies indicated that JA was not directly involved
in process of tuberization in Solanum spp. (Helder et al.
1993; Jackson and Willmitzer 1994; Jackson 1999). This
process is also controlled by light, temperature and GA (Lin
et al. 2013). It suggests that tuberization is indirectly con-
trolled by JAs through crosstalk with GA signaling (Koda
1997; Wasternack and Hause 2013; Siddiqi and Husen

2019). However, increased accumulation of JA in pretuber-
ous roots of Manihot esculenta planted in the field inhibited
tuberous root formation. Those inconsistencies might be
due to the differences between potato (i.e., stem tuber) and
cassava (i.e., root tuber) and contrasting JAs impact on the
cell processes in tissues that differ e.g. in sensitivity to this
phytohormone and endogenous level of other PGRs (Utsumi
et al. 2020), e.g. cytokinins which were reported to antago-
nize the JAs effect on S. tuberosum microtuber growth after
induction. Furthermore JAs effect on microtuber formation
is also maturity-specific. The late maturing cultivar may
have lower response to JAs (Sarkar et al. 2006).

Commercially grown cultivars are also propagated by
other vegetative tissue, such as bulbs. Conventionally bulbs
are produced from scales since a long period of time. Micro-
propagation is similar to the scaling, although under in vitro
conditions small scale-explants are used and excised scales
from the new bulblets can be used as initial material thus
propagation cycles can be performed few times per year
(Askari et al. 2018). It was shown that increased JAs level
occurs also in bulb forming plants suggesting that this phyto-
hormone is involved in the formation of storage organs other
than tubers. JAs plays role in the formation and enlargement
of bulblets on N. triandus (Santos and Salema 2000), A.
sativum (Bekheet 2006), Allium victorialis (Park et al. 2004)
shoot explants placed on MS medium, and A. sativum basal
plates transferred onto BS medium (Ravnikar et al. 1993)
(Table 2; Fig. 3). For A. sativum and Narcissus papyraceus
it was also noted that JA and MeJA, respectively, stimu-
lated bulblet formation and increased number and weight
of bulblets in combination with NAA (Kim et al. 2003;
Hosseini et al. 2013), although in N. papyraceus MelJA
showed an inhibitory effect on a size of bulblets (Hosseini
et al. 2013). Interestingly JA combined with cytokinin 2-iP
stimulated bulblets production and its growth in Hyacin-
thus orientalis (Dogan et al. 2020), although Saniewski and
Puchalski (1987) reported that 0.5% MeJA inhibited benzy-
ladenine-induced bulblet formation in Muscari armeniacum
and in lower concentration (0.1% and 0.2%) MeJA delayed
development and growth of the bulblets. MeJA decreased
bulblet number also in Tulipa gesneriana, although in one
of the four studied cultivars (P14) MeJA combined with
500 pM Arg increased number of bulblets, their size and
weight (Podwyszyriska et al. 2015).

Development of gametophyte and sporophyte

JA may be involved in alternation of generations in ferns
by activating the ontogenesis phases. The JA effect on the
growth of gametophyte is age-dependent. JA at 0.1-1.0 pM
promoted early Platycerium bifurcatum gametophyte devel-
opment and its transition from a filamentous to a spatulate
growth. In turn, after 40 days of culture JA inhibited growth
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of the gametophyte of this species. Authors proposed that
maturation of the gametophytes leads to differences in
response to JA (Camloh et al. 1996, 2001). In protoplast
culture of a sporophyte 0.01 pM JA stimulated initial divi-
sions of the cells (Camloh et al. 1996). JA, especially in
concentration of 10 pM, promoted rhizoids and adventitious
shoots development on leaves of this species. Stimulatory
effect on rhizoid development was observed even in the pres-
ence of 100 pM JA (Camloh et al. 1999). Exogenous JA
activated growth of the gametophyte and the further sporo-
phytes development on the thallus surface of Anemia tomen-
tosa. It was also observed that JA was able to remain in
the gametophyte stage even when sporophytes were already
developed (Castilho et al. 2018). However, in horsetail Equi-
setum arvense JA inhibited growth of gametophytic and spo-
rophytic tissues and also suppressed initiation of sporophytic
shoots in vitro (Kuriyama et al. 1993).

JAs as a stimulator of secondary metabolism

JAs have been widely used as elicitors to induce second-
ary metabolite production in a variety of plant in vitro cul-
tures. Increased secondary metabolites accumulation was
often associated with decreased explants growth. Treatment
of Calendula officinalis hairy roots with JA led to slightly
decreased growth of the explants, but stimulated secretion
of oleanolic acid glycosides into the medium (Alsoufi et al.
2019). Similar correlation was reported for C. asiatica.
MeJA inhibited shoot, callus and cell suspension culture
growth with simultaneous stimulation of asiaticoside (in
shoot and callus culture) and asiatic acid (callus culture)
biosynthesis (Krishnan et al. 2019). However treatment of
adventitious roots of Ajuga bracteosa with NAA and MeJA
led to increased maximum dry biomass formation and
enhanced total phenolic content (Saeed et al. 2017). Similar
results were obtained for Castilleja tenuiflora thirty-day-
old in vitro plants elicited by foliar spraying with MeJA
(Rubio-Rodriguez et al. 2021). Effect of jasmonates, as for
all growth regulators, strictly depends on the used concen-
tration. Treatment of Vitis vinifera with MeJA showed that
100 uM and 50 pM concentrations enhanced and lowered
hairy roots biomass and secretion of resveratrol into the cul-
ture medium, respectively (Hoseinpanahi et al. 2020). The
wider examples of the JAs usage for elicitation under in vitro
conditions can be found in other reviews (Giri and Zaheer
2016; Singh and Dwivedi 2018; Ho et al. 2020).

@ Springer

JAs under stress conditions

A few studies are available on the effect of JAs on in vitro
cultivated plant tissue subjected to stress conditions. Signifi-
cantly more observations and conclusions were made and
reached in pots and fields experiments with foliar application
of JAs, e.g. under salinity stress (Manan et al. 2016; Taheri
et al. 2020), drought stress (Sadeghipour 2018; Tayyab et al.
2020), heavy metal stress (Ahmad et al. 2017; Ali et al.
2018), heat stress (Lee et al. 2019), cold stress (Connolly
and Orrock 2018; Ghanbari et al. 2018) and under biotic
stress (Burdziej et al. 2021). Under in vitro conditions JAs
were studied under drought, salt and cold stress conditions
(Table 3). To simulate drought stress in plants mostly a high
molecular weight polyethylene glycol (PEG) has been used
as a non-penetrating osmotic agent which lowers the water
potential of the medium (Bressan et al. 1981). Improved
explants growth under water stress in response to MeJA and
JA was reported for M. acuminata and Fragaria X ananassa
(Mahmood et al. 2012; Yosefi et al. 2020). Protective role of
JAs might be correlated with a mitigation of oxidative stress
by increased activity of POD and SOD enzymes (Yosefi et al.
2020), although contradictory effects of JAs in significantly
higher concentration (200 uM) were obtained for Verbascum
nudicuale seedlings (Ghasemlou et al. 2019). Induced activ-
ity of antioxidant enzymes was also observed in 7. aestivum
under water stress in presence of a low MeJA concentra-
tions (0.25-2.5 uM) with simultaneous increase in the level
of H,0, (Ma et al. 2015), which suggests that JAs might
also play role during induction of the oxidative stress. JAs
also decreased proline accumulation in B. napus and Sac-
charum species under water stress. Increased proline level
might indicate high stress level or high stress responsivity
(Huguet-Robert et al. 2003; Nieves et al. 2001). Bandurska
et al. (2003) indicated that exogenous JA increased endog-
enous level of ABA in Hordeum vulgare and H. spontaneum
plantlets. ABA is the principal mediator in physiological
outcome of drought avoidance, tolerance and resistance. JA
and ABA seem to share common targets in a signaling path-
way related to drought (de Ollas and Dodd 2016). The link-
age of these two phytohormones was also indicated in a cold
stress (Wang et al. 2016). In Malus X domestica cultivated in
8 °C MelJA improved callus growth and increased expression
level of the genes involved in cold-signal response (Wang
et al. 2019). Encapsulated shoot tips of Taraxacum pienini-
cum in a calcium alginate matrix showed growth inhibition
during cold-storage in the presence of JA, although JA lim-
ited proline accumulation and oxidative stress by decreased
lipid peroxidation (Kaminiska et al. 2018). Application of
JAs improved explants condition also under salinity stress,
e.g. JAs stimulated growth of the G. max and S. tubero-
sum explants (Yoon et al. 2009; Efimova et al. 2019) and
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Table 3 Effect of jasmonates on explants conditions under abiotic stress

Plant species Jas concentration Explant Stress condi-  Effect References
tions
Water stress
Brassicaceae
Brassica napus 50-600 uM MeJA LD 178- MelJA decreased Pro accumulation Huguet-Robert et al. (2003)
350 gLt
PEG
Musaceae
Musa acuminata 5-160 uM MeJA ST 30 gL™' PEG MelA above 5 uM increased proliferation ~ Mahmood et al. (2012)
rate and vigour of shoots, FW, relative
water and Pro content
Poaceae
Hordeum vulgare 5-15 uM JA PL —1.5MPa JA increased ABA but decreased spermi- Bandurska et al. (2003)
Hordeum spontaneum PEG dine content
Saccharum sp. hybrid 4.7 uM JA ESE 05M JA decreased embryos survival, soluble Nieves et al. (2001)
sucrose, proteins and free Pro content, increased
silicagel starch, total phenolics and polyamines
content
Triticum aestivum 0.25-2.5 uM MeJA C —1.25MPa  MeJA increased LOX activity, endogenous Ma et al. (2015)
PEG JA and H,O, content, induced antioxidant
enzymes, decreased MDA level and
improved cell viability
Rosaceae
Fragaria X ananassa 10-50 uM JA HC 5-7% PEG JA improved plantlets growth, increased Yosefi et al. (2020)
Chl and carotenoids content, enhanced
activity of POD and SOD enzyme
Scrophulariaceae
Verbascum nudicuale 200 uM MeJA SD —0.3 and — MelJA decreased shoot FW and DW, pho- Ghasemlou et al. (2019)
0.6 Mpa tosynthetic pigments contents, increased
PEG total phenol, flavonoid, H,0, and MDA
content, decreased SOD and PPO activ-
ity, increased POD activity
Cold stress
Asteraceae
Taraxacum pieninicum 24-96 uM JA ST 4°C JA inhibited explants growth, reduced Kaminska et al. (2018)
accumulation of Pro and TBARS
Rosaceae
Malus X domestica 10-1000 uM MeJA C 8°C MeJA improved calli growth and increased Wang et al. (2019)
expression level of the cold-signal
response genes
Salt stress
Fabaceae
Glycine max 20 uM MeJA SD 60 mM NaCl MelJA alleviated the detrimental effect of Yoon et al. (2009)
salt stress (growth parameters, Chl and
Pro content, photosynthesis and transpi-
ration rate)
Solanaceae
Solanum melongena 10-20 pM JA E 100 mM NaCl Pretreatment with 10 uM JA reduced salt Manar et al. (2013)
stress affecting embryos development
Solanum tuberosum 0.001-10 uM JA PL 100 mM NaCl JA stimulated stem growth, number of Efimova et al. (2019)

tiers and leaves, FW, increased Chl and
carotenoids content

Explants: C callus, E embryos, ESE encapsulated somatic embryos, HC herbaceous cuttings, LD leaf discs, PL plantlets, SD seedlings, ST shoot

tips

Chl chlorophyll, DW dry weight, FW fresh weight, LOX lipoxygenase, MDA malondialdehyde, PEG polyethylene glycol, POD peroxidase, PPO
polyphenol oxidase, Pro proline, SOD superoxide dismutase, TBARS thiobarbituric acid reactive substances
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development of S. melongena embryos (Manar et al. 2013)
treated with 60-100 mM NaCl (Table 3). At molecular level
it was reported that JA-inducible salt stress related genes
were not activated in presence of ABA in O. sativa roots,
although some evidence of a crosstalk between these phyto-
hormones for regulating salt stress was proposed (Ryu and
Cho 2015).

Conclusions

Jasmonates can differentially affect explants growth under opti-
mal and stress conditions. More detailed works are needed to
determine what mechanisms decide about physiological effect
of JAs. JA is best studied as an elicitor and undoubtedly plays
an important role in a secondary metabolite biosynthesis. The
detailed role of JAs in a whole plant or explants growth is still
unknown. JAs are often described as a growth retardant dur-
ing defense related to biotic stresses, however they have also
stimulatory effect on explants growth, especially microtubers
and bulblets. The crosstalks between JAs and other phytohor-
mone (mainly cytokinins, auxins and gibberellins) seems to
be crucial for shoot proliferation, rooting and embryogenesis
efficiency of different species. Particularly interaction linking
JAs responses with gibberellins signaling pathway is a key
factor determining explant growth and tuberization process.
Knowledge about the mechanism of JA action in explants will
provide useful information, especially important for species
with problematic propagation and microprapagation system.
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