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Abstract
Jasmonates (JAs), such as jasmonic acid and its methyl ester, are lipid-derived compounds with signal functions in plant 
growth and development, as well as in responses to stress. JAs are widely distributed in plants as natural plant growth regula-
tors. JAs do not work independently but work as a part of a complex signaling network with other phytohormones. They are 
deployed to induce response during wounding and are often used for elicitation and stimulation of secondary metabolites 
production in different in vitro culture systems. Application of JAs seems to be promising during different steps of the micro-
propagation system for different species. JAs stimulate proliferation rate of shoots, roots, callus and induce microtubers and 
bulblets formation. However, negative effects of JAs on the condition of plant tissues are also reported, e.g. leaf senescence, 
reduced growth and inhibited somatic embryogenesis. This review summarizes the current knowledge of the application 
and properties of jasmonates under in vitro conditions in terms of cell division, explant growth, proliferation ability, storage 
organ formation and stress response.

Key message 
The review summarized in detail the results achieved for plants cultivated in vitro in the presence of jasmonates and their 
possible mechanisms of action.

Keywords  Cell proliferation · Micropropagation · Somatic embryogenesis · Storage organ formation · Abiotic stress

Introduction

Jasmonates (JAs) are widely distributed in plant tissues with 
high activity and growth rate, such as the stem tips, root tips, 
young leaves, flowers and unripe fruits. Endogenous JAs 
levels increase in response to the external stimuli, includ-
ing mechanical damage, pathogen attack and osmotic stress 
(Sembdner and Parthier 1993; Creelman and Mullet 1995).

Jasmonic acid (JA) and its methyl ester (methyl jas-
monates, MeJA) are linolenic acid (LA)-derived cyclopen-
tanone-based compounds that belong to oxylipins (Creelman 
and Mullet 1995). It is believed that JA and MeJA represent a 
separate group of plant growth regulators with hormone-like 

properties (Sembdner et al. 1990). The initiation of JAs 
biosynthesis begins with the release of α-linolenic acid 
(Fig. 1) from chloroplast membranes, which undergoes 
multistage reactions catalyzed by enzymes present in plas-
tids, peroxisomes and cytoplasm (Ghasemi Pirbalouti et al. 
2014; Sharma and Laxmi 2016) and is regulated by light 
conditions (Zhai et al. 2007). Among exogenous JAs it was 
showed that more effective is MeJA due to its easier cell 
membrane crossing ability in comparison to JA and quick 
demethylation to free JA (Fattorini et al. 2018).

Bioactive form of JAs synthesized by JAR1 (Jasmonyl-
L-amino acid synthetase; Fig. 1) is (7S,3R)-JA-Ile perceived 
by the COI1 receptor (the F-box protein CORONATINE 
INSENSITIVE 1) (Staswick and Tiryaki 2004; Fonseca et al. 
2009; Wasternack and Hause 2013; Ueda et al. 2020). How-
ever, biochemical analysis indicated that OsJAR1 encodes 
an enzyme conjugating JA not only to isoleucine (Ile) but 
also to tryptophane (Trp), leucine (Leu), methionine (Met), 
phenylalanine (Phe) and valine (Val) (Staswick 2009). JA-
Ile binds to the Skp1-Cullin-F-box (SCF)COI1E3 ubiquitin 
ligase complex which further recruits JAZ (JASMONATE 
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ZIM-DOMAIN) transcriptional repressors for degradation 
through 26S proteasome, allowing the expression of JA-
responsive genes (Zhai et al. 2017; Hyde et al. 2018; Fig. 1). 
JAZ repressors bind and inhibit the MYC family of transcrip-
tion factors which ultimately leads to the growth promotion 
of leaves. However, JAZ-MYC interaction also takes part 
in plant growth inhibition during defense responses (Major 
et al. 2017; Guo et al. 2018). JA-Trp acts as an endogenous 
auxin inhibitor in A. thaliana and exogenously caused agrav-
itropic root growth (Staswick 2009). The biological func-
tions of other JA-amino acid conjugates are still unclear, 
although different COI1 homologs with variable preference 
perceive those bioactive molecules (Xiao et al. 2014; Yan 
et al. 2016).

The presence of JAs is associated with different changes 
in plant development and structure. Many studies have 
shown that JA and MeJA are involved in leaf senescence by 
stimulation of chlorophyll degradation. JA exposure causes 
damage to chloroplasts, decreases photosynthetic activity as 
a result of stimulation of RuBisCO degradation, stimulates 
destruction of cell membrane structure in the lipid peroxida-
tion process and increases expression of senescence associ-
ated genes. The application of MeJA in turn, leads to an 
increase in the rate of cellular respiration, proteolytic and 
peroxidase activity in the leaves (Parthier 1990; Creelman 
and Mullet 1997; Liu et al. 2016). However, JAs are also 
involved in the defense responses to herbivore attack, pro-
motion of shoot growth, storage organ formation: bulblets 

Fig. 1   Schematic representation 
of JA biosynthesis, conver-
sion to the biologically active 
JA-Ile by JAR1 and interactions 
between JA and GA signaling 
pathways. In the absence of JA 
(a) repressors JAZ bind and 
inhibit the MYC family of tran-
scription factors. JA-Ile binds 
to the SCFCOI1 ubiquitin ligase 
complex and promotes degrada-
tion of JAZs, thus releasing 
MYC2 to trigger expression 
of JA-responsive genes. GA 
pathway is mediated through 
DELLA proteins. Without GA 
(b) DELLAs compete with 
MYC2 for binding to JAZs 
enabling expression of MYC2-
regulated genes. In the presence 
of GA repressors DELLA are 
degraded through SCFGID2 
complex, releasing JAZ to bind 
MYC2
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and tubers, flowering processes, fruit and inflorescence num-
ber (Rohwer and Erwin 2008; Hummel et al. 2009).

Many studies on JAs effect were carried out on field 
or pot-grown plants, while its potential in in vitro culture 
need to be fully understood. The aim of this review is to 
summarize studies investigating the role of jasmonates in 
micropropagation, explants growth, storage organ formation 
and somatic embryogenesis in plants under in vitro condi-
tions. This review might provide a starting point for further 
research using jasmonates.

Use of JAs during plant micropropagation

Basal culture medium provides all nutrients, energy and 
water necessary for plantlets, organs, tissues or cells growth. 
Regulation of developmental processes in plant tissue cul-
ture generally requires the addition of plant growth regula-
tors (PGRs). Successful micropropagation strictly depends 
on a selection of appropriate PGRs and their concentration. 
The most commonly used PGRs are auxins and cytokinins 
which regulate growth and organize development of a plant 
tissue. In general, auxin mediates cell division and cyto-
kinin mediates cell differentiation (Moubayidin et al. 2009). 
However, cultured plant tissues are also influenced by gib-
berellins (GAs), brassinosteroids (BRs), ethylene (ET), 
abscisic acid (ABA), salicylic acid (SA), jasmonates (JAs) 
and interactions among them (Gaspar et al. 1996; Phillips 
and Garda 2019). Exogenous application of JAs can affect a 
great variety of morphological and physiological responses 
in plants. Jasmonates, like all growth regulators, do not work 
independently but they are involved in a complex signal-
ing network of interactions among multiple plant hormone 
signaling pathways (Yang et al. 2019). Different effects of 
exogenously applied PGRs, including JAs, may arise from 
modification of synthesis, catabolism, activation, sequestra-
tion, transport, or sensitivity to endogenous phytohormones 
of the same or other type (Gaspar et al. 1996).

A large number of studies conducted in different in vitro 
conditions have shown that exogenous JAs inhibit plant 
growth by suppression of the cell proliferation and expan-
sion (Patil et al. 2014). However, high level of endogenous 
JAs was observed especially in young organs with high rate 
of cell division, therefore growth-promoting activity of JAs 
cannot be excluded and it was proposed that JAs-mediated 
physiological response might be a consequence of changes 
in endogenous cytokinins level which affects and regulates 
cell cycle (Avalbaev et al. 2016). Cell cycle is also under the 
gibberellins signaling control (Achard et al. 2009). Analysis 
of Nicotiana attenuata plants treated with exogenous JA and 
GA showed that JAs might indirectly repress shoot growth 
by antagonizing the GA pathway through specific DELLA-
JAZ interactions and down regulation of photosynthesis 

(Machado et al. 2017). The GA signal is perceived by GID1 
(GA-insensitive dwarf1). The GID1-GA complex stimulates 
plant growth and development by down-regulating DELLA 
repressors. In the absence of GA DELLAs compete with 
MYC2 for binding to JAZs, thereby releasing MYC2 to acti-
vate expression of MYC2-regulated genes. In the presence 
of GA DELLAs are degraded through SCFGID2E3 complex 
leading to inhibitory JAZ-MYC2 interactions (Fig. 1; De 
Bruyne et al. 2014).

Cell cycle and cell proliferation

One of the first characterized physiological ex vivo effect of 
JAs was growth inhibition of the potted Vicia faba pericarp 
as a result of a cell cycle disturbance (Dathe et al. 1981). 
On this basis, a number of studies focused on the inhibi-
tory effect of JAs on plant growth have been developed also 
under in vitro conditions. Ueda and Kato (1982) reported 
that JA and MeJA were powerful inhibitors of kinetin‐ 
and N‐phenyl‐N′‐(2‐chloro‐4‐pyridyl)urea‐induced callus 
growth of Glycine max. Plant growth and development are 
related to cell expansion and cell differentiation, but also 
are strictly linked with cell division (Perrot-Rechenmann 
2010). Świątek et al. (2002) compared the effect of JA with 
ABA on the cell cycle using Nicotiana tabacum BY-2 cell 
line. Their results showed that these phytohormones dis-
turbed cell cycle progression by preventing DNA replication. 
Exogenous application of both compounds before the G1/S 
transition caused retention of cells in the G1 phase of the 
cell cycle. ABA application at a later stages did not affect 
further progression of the cell cycle, whereas JA effectively 
prevented cells from entering mitosis (cells arrested in G2 
phase; Fig. 2). Those observations showed that the growth 
inhibition in response to JA might not resulted from a cell 
expansion in the elongation zone, but from a disruption of 
meristem activity (Świątek et al. 2002). Continued research 
confirmed that JA application led to tobacco BY-2 cell arrest 
in both G1 and G2 phases (Świątek et al. 2004). Analysis 
of a gene expression of Arabidopsis genome showed that 
also MeJA inhibited the activation of the M phase genes 
thus cells were arrested in the G2 phase of the cell cycle 
(Pauwels et al. 2008; Fig. 2). However, JAs treatment leads 
to reprogramming cells through the activity of specific tran-
scription factors and proteins activity. It was indicated that 
MeJA primarily activates expression of the genes involved 
in jasmonate synthesis, thus cell cycle genes expression is 
suppressed in the later stages (Gumerova et al. 2015; Pau-
wels et al. 2008).

In asynchronously dividing Taxus cuspidata cultures 
addition of MeJA resulted in turn in four effects on the cell 
cycle: transient increase in G2 phase cells, transient decrease 
in S phase cells, and at later stages post-elicitation, increase 
in G0/G1 phase cells and decrease in G2 and S phase cells. 
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After 96 h of elicitation with MeJA, percentage of cells in 
the G2 and S phases decreased but in the G1/G0 phases 
increased, therefore it was suggested that cells treated with 
MeJA were not arrested in the G2/M transition but progres-
sion through the cell cycle was slowed down. A time lag 
between MeJA-mediated growth inhibition and cell death in 
asynchronously dividing T. cuspidate cell culture suggested 
that observed growth suppression in response to MeJA was 
not due to necrosis and/or rupturing of cell membranes, 
although the evidence indicated that JAs might affect cell 
walls (Capitani et al. 2005; Patil et al. 2014). Northern 
analysis and in situ hybridization using cDNA probes of 
the G1/S phase-specific genes confirmed enhanced prolif-
eration growth of N. tabacum cells in response to relatively 
low concentrations of MeJA, whereas in highest concentra-
tion (10 μM) MeJA indicated transient effect and was more 
effective in enhancing defense-related processes such as cell 
wall thickening (Capitani et al. 2005). It was reported that 
MeJA elicitation increases content of cellular monolignols 
in A. thaliana (Pauwels et al. 2008) which polymerize into 
lignin according to the cell-wall class III peroxidases gen-
erating reactive oxygen species (ROS) from hydrogen per-
oxide. Peroxidase expression and activity is also stimulated 
by JA. These changes in response to JA are associated with 
a cessation of a growth and decreased cell expansion as a 
result of increased cross-linking of primary cell-wall com-
ponents (Almagro et al. 2009; Napoleao et al. 2017; Hyde 
et al. 2018). An earlier report indicated that JAs delayed 

regeneration of the cell wall in protoplast of Solanum tubero-
sum (Ravnikar et al. 1992). In contrary to all these observa-
tions, it was reported that JA promotes division of mitotically 
less active cells in the root apical meristem named quiescent 
center (QC) in A. thaliana. Furthermore, JA pre-treatment 
increased number of new columella cell layer between QC 
and ablated cells, which suggest that JA stimulates stem cell 
replacement after ablation (Chen et al. 2011). JA-dependent 
regeneration network is highly important for plant response 
to parasitic infection (Zhou et al. 2019).

Effect of JAs on the cell division was also indirectly 
visualized during callus propagation under in vitro con-
ditions. In higher concentration (5–50 μM) both JA and 
MeJA inhibited callus growth of Medicago sativa during 
differentiation stage (Ruduś et al. 2001; Table 1; Fig. 3). 
Elicitation with 10–100 μM MeJA significantly decreased 
cell viability of T. cuspidata and Taxus baccata suspen-
sion culture on WB/A medium supplemented with 6-ben-
zylaminopurine (BA) and 1-naphthaleneacetic acid (NAA) 
(Bulgakov et al. 2011). Also 100 µM MeJA significantly 
decreased cell viability in protoplast culture of A. thali-
ana due to the rapid accumulation of H2O2 (Zhang and 
Xing 2008). Enhanced hydrogen peroxide and superoxide 
radical production was also detected in Salvia miltiorrhiza 
hairy roots (Liang et al. 2012) and Panax ginseng roots 
(Ali et al. 2006). In Ricinus communis gradual accumula-
tion of H2O2 was indicated between 1 and 6 h after MeJA 
treatment of plants germinated under ex vivo conditions 
(Soares et al. 2010). High level of accumulated ROS leads 
to lipid peroxidation in cell membranes that might cause 
membrane damages, imbalance of cell homeostasis and 
further cell death (Pérez-Pérez et al. 2012). Correlation 
between oxidative stress and JAs is very complex. It was 
proposed that JA at a definite concentration can directly 
modify superoxide dismutase (SOD) structure that stimu-
lates its activity (Maksymiec and Krupa 2006), thus JAs 
indicated both antioxidative and pro-oxidative activity 
(Ho et al. 2020). Exposure to JA and MeJA (50–200 µM) 
of Mentha × piperita cell suspension culture resulted in a 
less biomass accumulation than that of the control. Both 
elicitors suppressed growth of the cell suspension culture, 
although stronger inhibition was noted for MeJA appli-
cation. Furthermore elicitation resulted in cultures color 
change from greenish to brown. Authors mentioned that 
this effect might be caused by increased accumulation of 
phenolic compounds and their oxidation what correlates 
with stimulatory effect of JAs on secondary metabolites 
accumulation (Krzyzanowska et al. 2011).

Earlier reports indicated that JAs not only have suppress-
ing effect, but also have stimulating effect on cell division 
in various culture conditions or plant species, thus effect of 
JAs depends on its concentration, interaction with a specific 
PGRs and type of explant. In S. tuberosum JA (0.01–1.0 μM) 

Fig. 2   Main effects of exogenous JAs on the cell cycle. JAs might 
cause retention of cells in the G1 and G2 phases, increase number of 
cells arrested in the G0 and G1 phases, and decrease number of cells 
entering the S and G2 phases
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combined with BA and 2,4-dichlorophenoxyacetic acid (2,4-
D) stimulated cell division manifested by increased number 
of microcalli (Ravnikar et al. 1992). Similar results were 
obtained for Prunus avium and Vigna mungo callus cultures 
propagated on B5 and MS medium, respectively, supple-
mented with JA in the comparable concentrations (Table 1), 
although without any other hormonal additives (Kondo et al. 
2002; Lingakumar et al. 2014). Addition of the ester deriva-
tive of JA also affected callus growth. MeJA (10–40 μM) 
combined with 2,4-D and kinetin (Kin) increased cal-
lus growth rate from Dianthus caryophyllus leaf explants 
(Matter et al. 2017). Even ten times higher concentration 
(118.9–475.6 μM) of MeJA in MS medium with BA and 
NAA increased fresh and dry weight of Catharanthus roseus 
callus (Al-Zuhairi and Ghanm 2017). The JAs effect might 
also depend on the growth stage of the plants. In Malus 
pumila growing in an open field, the endogenous level of JA 
is high in the early stages of pulp development, thus effect 
of exogenous JA under in vitro conditions varied between 
samples from ex vivo plants collected in different days after 
blooming (DAFB). It was indicated that only at 15 DAFB, 
when the plant tissue was still in the cell division stage, 
JA promoted callus formation. At 25 and 35 DAFB, JA in 
turn inhibited callus formation probably because endoge-
nous JA concentrations increase with time of fruit growth. 
These results indicated that only low endogenous JA level 
promotes callus formation, whereas increasing JA concentra-
tion inhibits this process (Kondo et al. 2001).

Organogenesis

Analyzing JAs addition during plant micropropagation, it 
was reported that these compounds perform varied effects, 
either promoting or inhibitory. For example, JA in concen-
trations of 0.5–2.0 μM shortened time for shoot initiation, 
increased shoot and root elongation, number of nodes, leaves 
and roots in stem nodes of S. tuberosum placed onto MS 
medium (Kumlay 2016; Table 1). In turn, growth of the 
Oryza sativa seedling was inhibited with increasing con-
centration of JA in MS medium, even in the presence of 
1 μM JA root growth was reduced twofold over the control 
(Cho et al. 2007). As it was noticed role of JAs seems to be 
species- and context-dependent (Lakehal and Bellini 2018) 
and mentioned JA and GA growth-defense balance should be 
considered during analyzing the JAs effect on the propaga-
tion effectiveness. Generally it is presupposed that JA pri-
oritizes defense, in turn GA—prioritizes growth. Inhibited 
plant growth as a results of JA treatment is probably related 
with suppression of GA-mediated pathway (Hou et al. 2013; 
Nguyen et al. 2019a). It was indicated that MeJA-mediated 
growth inhibition might results also from the perturba-
tions in mitochondrial membrane integrity, decreases in the 
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biosynthesis of ATP and proteins involved in energy metabo-
lism (Ruiz-May et al. 2011; Cho et al. 2007).

Shoots proliferation and growth of the aerial parts

In the shoot induction, development and proliferation cyto-
kinins play a vital role. In S. tuberosum stem node cultures it 
was indicated that exogenous JA increased the ratio between 
physiologically active and inactive cytokinins without 
changing its total content (Dermastia et al. 1994). In turn, 
Triticum aestivum seedlings treated with MeJA showed two-
fold increased accumulation of cytokinins without changes 
in ABA and auxins levels (Avalbaev et al. 2016). It was 
also reported that MeJA increased accumulation of cyto-
kinins, despite the antagonistic interaction between JA and 
cytokinin noted in xylem development of A. thaliana (Jang 
et al. 2017). JAs were considered as inhibitors of cytokinin-
induced plant growth manifested by reduced biomass in A. 
thaliana (Yan et al. 2007,2009; Zhang and Turner 2008; 
Noir et al. 2013; Attaran et al. 2014; Table 1; Fig. 3) and 
in O. sativa (Yang et al. 2012; Hibara et al. 2016). JA sup-
presses cell proliferation in wounded A. thaliana plants lead-
ing to a reduced leaf size with fewer and smaller epidermal 

cells giving a “bonsai effect” (Zhang and Turner 2008; Noir 
et al. 2013; Yang et al. 2019). JAs act as a growth inhibitors 
even in combination with exogenous BA. Repressed growth 
of the shoots was observed for Pinus radiata (Tampe et al. 
2001), Curcuma longa (Cousins and Adelberg 2008) and 
Withania somnifera (Sivanandhan et al. 2013). No shoot 
production was observed for Lavandula angustifolia treated 
with 4.78 μM JA (Miclea et al. 2020). Addition of JA even 
in concentrations lower than 1 μM into MS medium with 
BA reduced multiple formation and elongation of Pistacia 
lentiscus shoots (Koç et al. 2014). JA in concentrations up 
to 0.05 μM increased dry weight of shoots, leaves and roots 
developed from single nodes explants and number of leaves 
of Brassica oleracea cultivated in MS medium. In higher 
concentrations (1.25–6. μM) JA inhibited explant growth 
(Toro et al. 2003). MeJA in concentrations 0.1–1.0 μM also 
increased explant fresh weight but in higher concentra-
tion decreased number of developed shoots in N. tabacum 
cultured on MS medium supplemented with BA and IAA. 
Histological analyzes indicated that loss of the thin layer 
tobacco explants ability to regenerate in response to MeJA 
treatment was due to a strong hypertrophy of the cells and 

Fig. 3   Diagrammatic representation of the effects of exogenously applied JAs under in vitro conditions (promoting and inhibitory effects)
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disappearance of meristemoids (Biondi et al. 2001) and 
reduced shoot primordial development (Capitani et al. 2005).

For various species JA stimulated shoot proliferation 
rate and growth when it was added into a medium in con-
centrations up to 10 μM (Table 1). JA supplementation of 
a medium containing N6-(2-Isopentenyl)adenine (2-iP) 
increased shoot multiplication and development in Allium 
sativum (0.1–10 μM JA) and Narcissus triandrus (4.8 μM 
JA) (Ravnikar et al. 1993; Santos and Salema 2000). Com-
bined with Kin, 10  μM JA increased shoot number of 
Dioscorea cayenensis—D. rotundata (Ovono et al. 2007). In 
Pyrus communis and P. cerasus × P. canescens shoots addi-
tion of 1–10 μM JA into MS medium supplemented with 
BA and IBA or NAA increased leaf growth, fresh and dry 
weight of shoots (Ružić et al. 2013). MeJA (0.3–3.2 μM) 
also improved shoot multiplication and favored leaf devel-
opment of Pistacia vera propagated onto MSPV medium 
containing BA and IBA, although 10 μM MeJA led to the 
leaf senescence and decreased shoot proliferation (Dolcet-
Sanjuan and Claveria 1995). On the other hand in Musa 
acuminata increasing concentration of MeJA up to 100 µM 
also stimulated proliferation rate of shoots in presence of BA 
(Mahmood et al. 2012). Similarly proliferation rate of Tarax-
acum pieninicum shoots on MS medium supplemented with 
BA and NAA was stimulated by JA in higher concentrations 
(24–96 μM). However, it was reported that increasing con-
centration of JA limited the growth of the obtained shoots 
(Kamińska et al. 2018). The opposite effect was obtained for 
Ziziphora persica multiplied shoots on MS medium supple-
mented with the same PGRs, where MeJA decreased shoot 
proliferation rate but stimulated its elongation (Zare-Hassani 
et al. 2019). Increased height and dry weight of the seedlings 
probably by a rapid and significant increase of cytokinins 
level was observed also for T. aestivum and Artemisia annua 
treated with only MeJA in low concentrations (0.01–1 µM 
and 2–5 µM, respectively) (Avalbaev et al. 2016; Alam and 
Albalawi 2020), but high MeJA concentrations (10 and 
100 µM) inhibited wheat seedlings growth (Avalbaev et al. 
2016). Reduced growth of the shoots in response to JA or 
MeJA alone in MS medium was also reported in S. tubero-
sum (Ravnikar et al. 1992), O. sativa (Cho et al. 2007), Cen-
tella asiatica and Galphimia glauca (Mangas et al. 2006). 
In A. thaliana inhibited leaf growth as a result of treatment 
with 50 µM MeJA was manifested by both cell number and 
cell size reduction (Noir et al. 2013). Furthermore, it was 
indicated that exogenous MeJA suppresses hypocotyl elon-
gation in a SCF COI1-dependent pathway in Arabidopsis 
under various light conditions, particularly effectively under 
red light (Chen et al. 2013). Signal cross-talk between JA 
and the red-light receptor phytochrome B (phyB) is thought 
to intermediate growth stimulation in neighboring plants 
competing for light. However, in further research it was 
shown that growth restriction at high level of endogenous 

JA was independent of phyB but involved dysregulation of 
Trp biosynthesis (Major et al. 2020).

Rooting of the plantlets

The most important PGRs during rooting process of in vitro 
derived shoots are auxins, especially indole-3-butyric acid 
(IBA) and indole-3-acetic acid (IAA) (Goel et al. 2018). 
Increased accumulation of endogenous JA might be stimu-
lated during adventitious root (AR) formation by conver-
sion of the IBA to IAA in NO-mediated upregulation of JA 
biosynthetic genes (Fattorini et al. 2017). It was suggested 
that MeJA acts during dedifferentiation phase by increas-
ing sensitivity to auxin of the founder cells which divide 
and the descendent cells become increasingly determined 
to root formation under the auxin signal (De Klerk 2002). 
However, it was documented that JA and auxins antagonize 
root growth through interaction between JAZ protein and 
transcription factor MYC2 (Yang et al. 2019; Fig. 1). Fur-
thermore, MeJA induced root growth inhibition through the 
reduction of Arabidopsis root cell length with involvement 
of COI1 in this process (Adams and Turner 2010). These 
results suggest that JAs modulates root formation via whole 
JAs pathway COI1-JAZs-MYC2 (Chini et al. 2009), but it 
was also reported that JA inhibits auxin-induced lateral root 
(LR) formation independently of the COI1 receptor (Ishi-
maru et al. 2018). Inhibition of AR initiation induced by 
JAs involve cytokinin-dependent pathway in A. thaliana 
(Lakehal et al. 2020). In turn auxin increases JA conjugation 
efficiency lowering free JA level. This auxin-JA interaction 
supports the hypothesis that JA signaling pathway nega-
tively regulates AR in Arabidopsis hypocotyls (Gutierrez 
et al. 2012). Other studies indicated that JAs inhibits primary 
root (PR) elongation but promotes LR formation (Lakehal 
and Bellini 2018) and it was reported that IAA biosynthesis 
is required for MeJA to promote LR formation (Sun et al. 
2009; Cai et al. 2014). Furthermore, it was shown that JA 
affect PR and LR growth by an auxin-independent pathway. 
The inhibiting effect of JA on a root system was found to be 
caused by a reduced cortex cell length and the low rate of the 
root-meristem cell formation in Helianthus annuus seedlings 
(Monzón et al. 2012). It was also suggested that the effect of 
JAs on the root growth may result from the reorganization 
of the root meristem, decreased cell division, inhibited cell 
elongation and premature cell maturation (Xue and Zhang 
2007; Tung et al. 1996).

As for all micropropagation steps concentration of PGR 
does matter, but for some species, e.g. O. sativa, JA regard-
less of its concentration reduced root growth (Cho et al. 
2007). In Medicago truncatula in turn only 0.1–10 μM JA 
inhibited nodulation and suppressed roots elongation growth 
(Sun et al. 2006). Similarly MeJA (5–16 µM) decreased root 
biomass in Curcuma longa plantlets (Cousins and Adelberg 
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2008). However, suppressed rooting process was mainly 
associated with the high concentrations of JAs (Table 1). 
Addition of 100 µM MeJA into MS medium reduced roots 
growth of C. asiatica, Ruscus aculeatus and G. glauca (Man-
gas et al. 2006). Furthermore, MeJA (50–100 µM) inhibited 
hairy roots growth of C. asiatica (Nguyen et al. 2019b). Sup-
plementation of WPM medium with MeJA in concentrations 
of 50–200 µM led to decreased roots and shoots develop-
ment and growth on nodal explants of Stevia rebaudiana 
(Moharramnejad et al. 2019). In turn in Z. persica 100 µM 
MeJA decreased number of roots, although at higher concen-
tration (150 µM) stimulated root elongation (Zare-Hassani 
et al. 2019). Stimulation of root formation by JAs was also 
noted for low concentrations (up to 1.0 μM) in S. tuberosum, 
B. oleracea and Lycopersicum esculentum (Ravnikar et al. 
1992; Tung et al. 1996; Toro et al. 2003; Zhang et al. 2006; 
Table 1). In Cymbidium kanran 1 μM JA increased number 
of rhizome branches (Shimasaki et al. 2003). Even in lower 
concentrations (4.76 × 10−5 to 4.76 × 10−3 μM) JA induced 
minirhizomes formation in shoot clusters of Rheum rhabar-
barum (Rayirath et al. 2011). JA also stimulated root primor-
dium and subsequent root formation with lateral branches in 
V. mungo hypocotyls placed onto MS medium (Lingakumar 
et al. 2014). Addition of 10.65 µM MeJA into MS medium 
supplemented with Gamborg’s B5 vitamins, BA and NAA 
increased number of regenerated roots in Cymbopogon sch-
oenanthus seedlings but showed negative effect on a shoot 
production (Abdelsalam et al. 2018).

It was indicated that JA derived by the demethylation of 
MeJA, applied at 0.01 μM in combination with IBA and 
Kin enhanced AR in N. tabacum and A. thaliana seedlings 
and thin cell layers (TCLs) under dark conditions. The 
endogenous IAA levels increased in the TCLs at the time 
of the first AR-cell cluster formation under MeJA treat-
ment. Furthermore, it was shown that also xylogenesis in 
Arabidopsis TCLs is under the JAs control. Role of JAs in 
these processes was related to crosstalk between JA- and 
ET-signalling (Fattorini et al. 2009, 2018). It was proposed 
that JA at high concentrations promote xylogenesis rather 
than AR formation, and mentioned cross-talk between JA 
and ET may decide which of these competing processes will 
occur (Druege et al. 2019). These results were confirmed by 
Betti et al. (2019) who showed that during AR formation in 
Arabidopsis stem explants cultured with IBA the antago-
nism between JA and ET is based on an involvement of the 
EIN2 (Ethylene Insensitive2) and COI1 cross-talk. It was 
also assumed that JAs cooperate with cytokinins to repress 
initiation of AR formation in Arabidopsis under constant 
red light conditions thus JAs effect on AR formation might 
also depend on light conditions during culture (Lakehal et al. 
2020; Fig. 3).

Somatic embryogenesis

Somatic embryogenesis (SE) is the developmental process 
in which a competent cell or a cell group undergoes bio-
chemical and molecular changes resulting in the forma-
tion of a somatic embryo (Yang and Zhang 2010). Somatic 
embryos are bipolar structures with an apical pole (the 
future shoot) and a basal pole (the future root), both with 
its own meristem (Horstman et al. 2017). This regenera-
tion system is preferred over organogenesis due to a low 
frequency of chimeras, a high number of regenerants and 
a limited level of somatic variation (Gaj 2001; Carra et al. 
2019). One of the determining factors during induction of 
SE is IAA metabolism in the cells. Acquisition the embryo-
genic potential by pro-embryogenic mass is dependent on 
auxin homeostasis at a specific level (Nic-Can and Loyola-
Vargas 2016). In Arabidopsis SE is a two-step process. In 
the first step early cotyledonary zygotic embryos are placed 
on medium supplemented with auxins to stimulate forma-
tion of the embryogenic tissue. In the next step formation of 
the somatic embryos is stimulated by the removal of aux-
ins from the medium. JA is a key component of embryo-
genesis regulation in the pathway including phytoglobin 2 
(PGB2), NO and several JA-responsive intermediates (Bas-
suner et al. 2007; Mira et al. 2016). It was suggested that 
JAs inhibit embryo germination in angiosperm (Białecka 
and Kępczyński 2003), although high endogenous level of 
JA is essential for somatic embryo formation in M. sativa. A 
relatively high and stable JA content was reported in somatic 
embryos developed from globular through torpedo till early-
cotyledonary stage (Ruduś et al. 2009). Exogenous MeJA 
not only inhibited callus growth of this species during differ-
entiation stage, but also negatively affected the proliferation 
of embryogenic suspension and reduced somatic embryos 
production (Ruduś et al. 2001, 2006; Table 1; Fig. 3). Tokuji 
et al. (1995) showed that MeJA markedly delayed somatic 
embryo differentiation from cell clusters to torpedo stage 
and repressed their further regeneration in Daucus carota. 
Cells of Fagopyrum tataricum from suspension culture 
after MeJA treatment were almost completely unable to 
produce somatic embryos. Proposed explanation was based 
on possible suppression of the cell cycle genes expression 
and cells arrest of entry into mitosis. On the other hand it 
cannot be excluded that exogenous MeJA induced perturba-
tions in the level of endogenous hormones which after cells 
transfer onto hormone-free medium prevent activation of the 
embryogenesis process (Gumerova et al. 2015). In contrast 
to these results, Reinbothe et al. (1994) indicated that MeJA 
induces embryogenesis-related proteins and mRNA in Nico-
tiana plumbaginifolia. Improved microspore embryogenesis 
was obtained for Brassica napus treated with 4.8 μM JA 
for 24 h. At higher level (9.5 and 23.8 μM) JA improved 
embryogenesis and callogenesis only after 6 h incubation. 
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Longer incubation decreased microspore embryogenesis 
and microspore-derived embryos germination (Ahmadi 
et al. 2014). Blázquez et al. (2004) indicated that JA also in 
low concentration (2.4 μM) significantly improved SE and 
plant regeneration in Crocus sativus. Equivalent to somatic 
embryos in orchids, protocorm-like bodies (PLBs) forma-
tion was improved as a result of a MeJA treatment, although 
PLBs formation decreased as MeJA level increased (Teixeira 
da Silva 2012). Similar results were obtained in shoots cul-
ture of Cymbidium eburneum where addition of MeJA into 
MS medium stimulated PLBs formation with simultaneous 
decreased shoot formation (Shimasaki et al. 2003).

Microtuber and bulblet formation

For some species culture through bulblets or microtubers has 
become a more effective method of propagation due to the 
genetic purity (Wang and Hu 1982; Sultana et al. 2010). For-
mation of this both storage organs under in vitro conditions 
might be affected by several factors such as sucrose levels, 
photoperiods and PGRs and is controlled by biochemical 
and genetic factors (Gheisari and Miri 2017; Islam et al. 
2017).

Several phytohormones are associated with the processes 
associated with the tuberization. Especially significant role 
was assigned to GA3 which regulates the change in cell 
growth orientation from longitudinal to radial swelling of 
the stolon tip what is characteristic step during tuber for-
mation (Hannapel et al. 2017). JAs also induce changes of 
the cell division marked by cortical microtubules reorienta-
tion and radial expansion direction during initiation of stor-
age organs formation (Shibaoka 1991; Matsuki et al. 1992; 
Podwyszyńska et al. 2015). JAs involvement in this process 
was repeatedly confirmed not only in tuber formation from 
stolon apex in plants from soil cultivation (Koda 1997; Cen-
zano et al. 2003) but also during further cell expansion of 
medullary tissue in S. tuberosum microtuber discs cultured 
in vitro (Takahashi et al. 1994; Table 2). Pruski et al. (2002) 
pointed out that JA induction of tuberization and microtu-
ber bulking on S. tuberosum nodal cuttings was most pro-
nounced under tuberization-inhibiting 16 h photoperiod. As 
can be seen different studies indicated that JA and its deriva-
tives stimulated microtuber formation (Hamberg and Gard-
ner 1992; Fig. 3) not only in potato, but also in D. rotundata 
(Jasik and Mantell 2000), D. cayenensis (Ovono et al. 2007) 
and Pterostylis sanguinea (Debeljak et al. 2002), although a 
number of studies indicated that JA was not directly involved 
in process of tuberization in Solanum spp. (Helder et al. 
1993; Jackson and Willmitzer 1994; Jackson 1999). This 
process is also controlled by light, temperature and GA (Lin 
et al. 2013). It suggests that tuberization is indirectly con-
trolled by JAs through crosstalk with GA signaling (Koda 
1997; Wasternack and Hause 2013; Siddiqi and Husen 

2019). However, increased accumulation of JA in pretuber-
ous roots of Manihot esculenta planted in the field inhibited 
tuberous root formation. Those inconsistencies might be 
due to the differences between potato (i.e., stem tuber) and 
cassava (i.e., root tuber) and contrasting JAs impact on the 
cell processes in tissues that differ e.g. in sensitivity to this 
phytohormone and endogenous level of other PGRs (Utsumi 
et al. 2020), e.g. cytokinins which were reported to antago-
nize the JAs effect on S. tuberosum microtuber growth after 
induction. Furthermore JAs effect on microtuber formation 
is also maturity-specific. The late maturing cultivar may 
have lower response to JAs (Sarkar et al. 2006).

Commercially grown cultivars are also propagated by 
other vegetative tissue, such as bulbs. Conventionally bulbs 
are produced from scales since a long period of time. Micro-
propagation is similar to the scaling, although under in vitro 
conditions small scale-explants are used and excised scales 
from the new bulblets can be used as initial material thus 
propagation cycles can be performed few times per year 
(Askari et al. 2018). It was shown that increased JAs level 
occurs also in bulb forming plants suggesting that this phyto-
hormone is involved in the formation of storage organs other 
than tubers. JAs plays role in the formation and enlargement 
of bulblets on N. triandus (Santos and Salema 2000), A. 
sativum (Bekheet 2006), Allium victorialis (Park et al. 2004) 
shoot explants placed on MS medium, and A. sativum basal 
plates transferred onto B5 medium (Ravnikar et al. 1993) 
(Table 2; Fig. 3). For A. sativum and Narcissus papyraceus 
it was also noted that JA and MeJA, respectively, stimu-
lated bulblet formation and increased number and weight 
of bulblets in combination with NAA (Kim et al. 2003; 
Hosseini et al. 2013), although in N. papyraceus MeJA 
showed an inhibitory effect on a size of bulblets (Hosseini 
et al. 2013). Interestingly JA combined with cytokinin 2-iP 
stimulated bulblets production and its growth in Hyacin-
thus orientalis (Doğan et al. 2020), although Saniewski and 
Puchalski (1987) reported that 0.5% MeJA inhibited benzy-
ladenine-induced bulblet formation in Muscari armeniacum 
and in lower concentration (0.1% and 0.2%) MeJA delayed 
development and growth of the bulblets. MeJA decreased 
bulblet number also in Tulipa gesneriana, although in one 
of the four studied cultivars (P14) MeJA combined with 
500 μM Arg increased number of bulblets, their size and 
weight (Podwyszyńska et al. 2015).

Development of gametophyte and sporophyte

JA may be involved in alternation of generations in ferns 
by activating the ontogenesis phases. The JA effect on the 
growth of gametophyte is age-dependent. JA at 0.1–1.0 μM 
promoted early Platycerium bifurcatum gametophyte devel-
opment and its transition from a filamentous to a spatulate 
growth. In turn, after 40 days of culture JA inhibited growth 
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of the gametophyte of this species. Authors proposed that 
maturation of the gametophytes leads to differences in 
response to JA (Camloh et al. 1996, 2001). In protoplast 
culture of a sporophyte 0.01 μM JA stimulated initial divi-
sions of the cells (Camloh et al. 1996). JA, especially in 
concentration of 10 μM, promoted rhizoids and adventitious 
shoots development on leaves of this species. Stimulatory 
effect on rhizoid development was observed even in the pres-
ence of 100 μM JA (Camloh et al. 1999). Exogenous JA 
activated growth of the gametophyte and the further sporo-
phytes development on the thallus surface of Anemia tomen-
tosa. It was also observed that JA was able to remain in 
the gametophyte stage even when sporophytes were already 
developed (Castilho et al. 2018). However, in horsetail Equi-
setum arvense JA inhibited growth of gametophytic and spo-
rophytic tissues and also suppressed initiation of sporophytic 
shoots in vitro (Kuriyama et al. 1993).

JAs as a stimulator of secondary metabolism

JAs have been widely used as elicitors to induce second-
ary metabolite production in a variety of plant in vitro cul-
tures. Increased secondary metabolites accumulation was 
often associated with decreased explants growth. Treatment 
of Calendula officinalis hairy roots with JA led to slightly 
decreased growth of the explants, but stimulated secretion 
of oleanolic acid glycosides into the medium (Alsoufi et al. 
2019). Similar correlation was reported for C. asiatica. 
MeJA inhibited shoot, callus and cell suspension culture 
growth with simultaneous stimulation of asiaticoside (in 
shoot and callus culture) and asiatic acid (callus culture) 
biosynthesis (Krishnan et al. 2019). However treatment of 
adventitious roots of Ajuga bracteosa with NAA and MeJA 
led to increased maximum dry biomass formation and 
enhanced total phenolic content (Saeed et al. 2017). Similar 
results were obtained for Castilleja tenuiflora thirty-day-
old in vitro plants elicited by foliar spraying with MeJA 
(Rubio-Rodríguez et al. 2021). Effect of jasmonates, as for 
all growth regulators, strictly depends on the used concen-
tration. Treatment of Vitis vinifera with MeJA showed that 
100 μM and 50 μM concentrations enhanced and lowered 
hairy roots biomass and secretion of resveratrol into the cul-
ture medium, respectively (Hoseinpanahi et al. 2020). The 
wider examples of the JAs usage for elicitation under in vitro 
conditions can be found in other reviews (Giri and Zaheer 
2016; Singh and Dwivedi 2018; Ho et al. 2020).

JAs under stress conditions

A few studies are available on the effect of JAs on in vitro 
cultivated plant tissue subjected to stress conditions. Signifi-
cantly more observations and conclusions were made and 
reached in pots and fields experiments with foliar application 
of JAs, e.g. under salinity stress (Manan et al. 2016; Taheri 
et al. 2020), drought stress (Sadeghipour 2018; Tayyab et al. 
2020), heavy metal stress (Ahmad et al. 2017; Ali et al. 
2018), heat stress (Lee et al. 2019), cold stress (Connolly 
and Orrock 2018; Ghanbari et al. 2018) and under biotic 
stress (Burdziej et al. 2021). Under in vitro conditions JAs 
were studied under drought, salt and cold stress conditions 
(Table 3). To simulate drought stress in plants mostly a high 
molecular weight polyethylene glycol (PEG) has been used 
as a non-penetrating osmotic agent which lowers the water 
potential of the medium (Bressan et al. 1981). Improved 
explants growth under water stress in response to MeJA and 
JA was reported for M. acuminata and Fragaria × ananassa 
(Mahmood et al. 2012; Yosefi et al. 2020). Protective role of 
JAs might be correlated with a mitigation of oxidative stress 
by increased activity of POD and SOD enzymes (Yosefi et al. 
2020), although contradictory effects of JAs in significantly 
higher concentration (200 µM) were obtained for Verbascum 
nudicuale seedlings (Ghasemlou et al. 2019). Induced activ-
ity of antioxidant enzymes was also observed in T. aestivum 
under water stress in presence of a low MeJA concentra-
tions (0.25–2.5 µM) with simultaneous increase in the level 
of H2O2 (Ma et al. 2015), which suggests that JAs might 
also play role during induction of the oxidative stress. JAs 
also decreased proline accumulation in B. napus and Sac-
charum species under water stress. Increased proline level 
might indicate high stress level or high stress responsivity 
(Huguet-Robert et al. 2003; Nieves et al. 2001). Bandurska 
et al. (2003) indicated that exogenous JA increased endog-
enous level of ABA in Hordeum vulgare and H. spontaneum 
plantlets. ABA is the principal mediator in physiological 
outcome of drought avoidance, tolerance and resistance. JA 
and ABA seem to share common targets in a signaling path-
way related to drought (de Ollas and Dodd 2016). The link-
age of these two phytohormones was also indicated in a cold 
stress (Wang et al. 2016). In Malus × domestica cultivated in 
8 °C MeJA improved callus growth and increased expression 
level of the genes involved in cold-signal response (Wang 
et al. 2019). Encapsulated shoot tips of Taraxacum pienini-
cum in a calcium alginate matrix showed growth inhibition 
during cold-storage in the presence of JA, although JA lim-
ited proline accumulation and oxidative stress by decreased 
lipid peroxidation (Kamińska et al. 2018). Application of 
JAs improved explants condition also under salinity stress, 
e.g. JAs stimulated growth of the G. max and S. tubero-
sum explants (Yoon et al. 2009; Efimova et al. 2019) and 
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Table 3   Effect of jasmonates on explants conditions under abiotic stress

Explants: C callus, E embryos, ESE encapsulated somatic embryos, HC herbaceous cuttings, LD leaf discs, PL plantlets, SD seedlings, ST shoot 
tips
Chl chlorophyll, DW dry weight, FW fresh weight, LOX lipoxygenase, MDA malondialdehyde, PEG polyethylene glycol, POD peroxidase, PPO 
polyphenol oxidase, Pro proline, SOD superoxide dismutase, TBARS thiobarbituric acid reactive substances

Plant species Jas concentration Explant Stress condi-
tions

Effect References

Water stress
 Brassicaceae

  Brassica napus 50–600 µM MeJA LD 178–
350 g·L−1 
PEG

MeJA decreased Pro accumulation Huguet-Robert et al. (2003)

 Musaceae
  Musa acuminata 5–160 µM MeJA ST 30 g·L−1 PEG MeJA above 5 µM increased proliferation 

rate and vigour of shoots, FW, relative 
water and Pro content

Mahmood et al. (2012)

 Poaceae
  Hordeum vulgare
  Hordeum spontaneum

5–15 µM JA PL  − 1.5 MPa 
PEG

JA increased ABA but decreased spermi-
dine content

Bandurska et al. (2003)

  Saccharum sp. hybrid 4.7 μM JA ESE 0.5 M 
sucrose, 
silicagel

JA decreased embryos survival, soluble 
proteins and free Pro content, increased 
starch, total phenolics and polyamines 
content

Nieves et al. (2001)

  Triticum aestivum 0.25–2.5 µM MeJA C  − 1.25 MPa 
PEG

MeJA increased LOX activity, endogenous 
JA and H2O2 content, induced antioxidant 
enzymes, decreased MDA level and 
improved cell viability

Ma et al. (2015)

 Rosaceae
  Fragaria × ananassa 10–50 µM JA HC 5–7% PEG JA improved plantlets growth, increased 

Chl and carotenoids content, enhanced 
activity of POD and SOD enzyme

Yosefi et al. (2020)

 Scrophulariaceae
  Verbascum nudicuale 200 µM MeJA SD  − 0.3 and – 

0.6 Mpa 
PEG

MeJA decreased shoot FW and DW, pho-
tosynthetic pigments contents, increased 
total phenol, flavonoid, H2O2 and MDA 
content, decreased SOD and PPO activ-
ity, increased POD activity

Ghasemlou et al. (2019)

Cold stress
 Asteraceae

  Taraxacum pieninicum 24–96 µM JA ST 4 °C JA inhibited explants growth, reduced 
accumulation of Pro and TBARS

Kamińska et al. (2018)

 Rosaceae
  Malus × domestica 10–1000 µM MeJA C 8 °C MeJA improved calli growth and increased 

expression level of the cold-signal 
response genes

Wang et al. (2019)

Salt stress
 Fabaceae

  Glycine max 20 µM MeJA SD 60 mM NaCl MeJA alleviated the detrimental effect of 
salt stress (growth parameters, Chl and 
Pro content, photosynthesis and transpi-
ration rate)

Yoon et al. (2009)

 Solanaceae
  Solanum melongena 10–20 µM JA E 100 mM NaCl Pretreatment with 10 µM JA reduced salt 

stress affecting embryos development
Manar et al. (2013)

  Solanum tuberosum 0.001–10 µM JA PL 100 mM NaCl JA stimulated stem growth, number of 
tiers and leaves, FW, increased Chl and 
carotenoids content

Efimova et al. (2019)



441Plant Cell, Tissue and Organ Culture (PCTOC) (2021) 146:425–447	

1 3

development of S. melongena embryos (Manar et al. 2013) 
treated with 60–100 mM NaCl (Table 3). At molecular level 
it was reported that JA-inducible salt stress related genes 
were not activated in presence of ABA in O. sativa roots, 
although some evidence of a crosstalk between these phyto-
hormones for regulating salt stress was proposed (Ryu and 
Cho 2015).

Conclusions

Jasmonates can differentially affect explants growth under opti-
mal and stress conditions. More detailed works are needed to 
determine what mechanisms decide about physiological effect 
of JAs. JA is best studied as an elicitor and undoubtedly plays 
an important role in a secondary metabolite biosynthesis. The 
detailed role of JAs in a whole plant or explants growth is still 
unknown. JAs are often described as a growth retardant dur-
ing defense related to biotic stresses, however they have also 
stimulatory effect on explants growth, especially microtubers 
and bulblets. The crosstalks between JAs and other phytohor-
mone (mainly cytokinins, auxins and gibberellins) seems to 
be crucial for shoot proliferation, rooting and embryogenesis 
efficiency of different species. Particularly interaction linking 
JAs responses with gibberellins signaling pathway is a key 
factor determining explant growth and tuberization process. 
Knowledge about the mechanism of JA action in explants will 
provide useful information, especially important for species 
with problematic propagation and microprapagation system.
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