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or F3′H promoter sequences resulted in the regeneration of 
6 and 4 transgenic lines, respectively. A complete red color-
ation of all plant organs was found in four out of six trans-
genic lines harboring the 35S-MdMYB10-GFP43 construct. 
Less red coloration of plant organs was found for lines 
transformed with the F3′H-MdMYB10-GFP43 construct. 
The MdMYB10 gene shows only limited suitability as a 
reporter gene for promoter studies in strawberries because 
weak promoter activity is difficult to distinguish, particu-
larly in tissues showing a strongly colored background such 
as green leaves. GFP specific fluorescence signals were 
detectable neither in tissue strongly expressing MdMYB10 
nor in green tissue of any transgenic line. The reason for 
this remained unclear but it can be excluded that it was due 
to incorrect splicing.

Keywords  Fragaria vesca · Anthocyanin · MYB10 
transcription factor · Flavonoid 3′-hydroxylase (F3′H) · 
Chalcone 3-hydroxylase (CH3H) · Reporter gene · CaMV 
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Abbreviations
CDS	� Coding sequence
CH3H	� Chalcone 3-hydroxylase
CaMV	� Cauliflower mosaic virus
Cyequ	� Cyanidin equivalent
F3′H	� Flavonoid 3′-hydroxylase
GFP	� Green fluorescent protein
Md	� Malus domestica

Introduction

Genetic modification of plants offers a palette of tools 
which nowadays are of particular importance for modern 

Abstract  A Malus domestica MdMYB10 transcription 
factor gene was previously used as visible marker for suc-
cessful plant transformation. We combined the MdMYB10 
transcription factor gene with a GFP gene to test its via-
bility as a non-destructive, visual, double reporter system 
for functional promoter studies in transgenic strawberry 
plants. The GFP gene was fused to MdMYB10 to pro-
vide evidence for promoter activity in red colored cells of 
transformed plant tissue and to exclude artefacts resulting 
from stress response or due to other environmental cues. 
To test this system in a first approach, we evaluated the 
MdMYB10-GFP43 construct in transgenic strawberries in 
combination with two constitutive promoters of varying 
strength, the strong CaMV 35S promoter and a weak fla-
vonoid 3′-hydroxylase (F3′H) promoter isolated from the 
ornamental plant Cosmos sulphureus. Agrobacterium tume-
faciens mediated transformation of Fragaria vesca with the 
MdMYB10-GFP43 construct combined with the CaMV 35S 
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plant science and breeding. They are very helpful in func-
tional genomics, the improvement of quality and quantity 
of agronomical traits and the production of desirable com-
ponents for mass production (Moose and Mumm 2008). 
However, in the forefront of breeding, target genes, suitable 
promoters or other regulatory sequences need to be discov-
ered and functionally characterized. This is usually done in 
model plants as this has numerous advantages for forward 
and reverse genetics. These include their small genome 
size, their short generation time, their small plant size 
allowing experiments with hundreds of plants under lab 
conditions and their close genetic relationship to commer-
cially important crops. Arabidopsis thaliana (L.) Heynh. 
is the most widely-studied plant so far and serves as a 
model system for identifying genes, determining their func-
tions and understanding the complex processes involved in 
plant growth and development (Initiative 2000; Rhee et al. 
2003). The woodland strawberry (F. vesca L.) is gaining 
increased attention as a model system for the Rosaceae 
plant family (Slovin et al. 2009; Zhang et al. 2014) which 
includes a number of economically important fruit spe-
cies such as apple, pear, quince, peach, apricot and the 
cultivated octoploid garden strawberry Fragaria × anana-
ssa Duch. The woodland strawberry seems to be ideal for 
functional genomics studies because of its diploid genome 
with 2n = 2x = 14 chromosomes and a genome size of 240 
Mbp (Shulaev et  al. 2011), the short seed to seed cycle 
of 3.0–3.5 months, its ease of propagation from seed and 
clones in small 7.5 cm plastic pots, the high efficiency of 
Agrobacterium-mediated transformation, the rapid in vitro 
regeneration and the availability of the complete genome 
sequence and other modern genetic tools (Guidarelli and 
Baraldi 2015; Lin-Wang et al. 2014). However, some tools 
for studying gene and promoter function are still needed 
or need improvement (Carvalho and Folta 2017; Gunadi 
et al. 2016). For example, good reporter genes for promoter 
analyses that allow a non-destructive easily visible evalu-
ation of tissues without the need for fluorescence or light 
imaging would be very helpful. Genes triggering tissue col-
oration that is easily detectable by visual means, like the 
MdMYB10 gene of apple, a MYB-type transcription fac-
tor leading to increased production of anthocyanin (Allan 
et al. 2008; Ban et al. 2007; Espley et al. 2007; Takos et al. 
2006), were several times suggested as good candidates 
(Hoffmann et al. 2006; Rosellini 2012).

Anthocyanins are a class of flavonoid pigments pro-
viding red, blue or purple pigmentation to fruits, flowers, 
foliage, roots and stems and are suggested to contribute to 
human health (van Nocker et al. 2012; Würdig et al. 2014). 
Recently it was shown that anthocyanin formation can be 
used as a potential visual selection marker during plant 
transformation (Kortstee et  al. 2011) as an alternative to 
removable marker gene systems or chemically selectable 

markers, such as kanamycin resistance. Kortstee et  al. 
(2011) transformed the MdMYB10 together with a mutant 
MdMYB10 promoter allele from the apple cv. ‘Red Field’ 
into apple, strawberry and potato as model crop species. 
Red colored calli, red shoots and red well-growing apple 
and strawberry plants reliably indicated successful transfor-
mation events, although a small number of falsely negative 
regenerates were described as well (Kortstee et al. 2011).

With this in mind, we constructed a new 
MdMYB10/GFP43 fusion gene intended to be useful for 
the non-destructive discovery of protein expression by sim-
ple visual control on red coloration, which can be simul-
taneously double-checked by green fluorescence. The 
MdMYB10/GFP43 fusion gene was placed under the regu-
lation of the strong constitutive CaMV 35S promoter and 
a second, constitutive plant-derived promoter [flavonoid 
3′-hydroxylase (F3′H) promoter] respectively. The resulting 
transgenic plants were intensively evaluated to test the suit-
ability of the novel reporter gene for promoter studies in the 
model plant Fragaria vesca.

Materials and methods

Plant material

For the isolation of the 5′-flanking regulatory regions 
closed buds with 5  mm length of Cosmos sulphureus cv. 
‘Sunny Goldgelb’ (Austrosaat, Vienna, Austria) were col-
lected during summer 2012, frozen in liquid nitrogen and 
stored at −80 °C until use. For plant transformation and 
promoter evaluation the S10 inbred line of the diploid 
woodland strawberry (Fragaria vesca L.) cv. ‘Rügen’ was 
used.

Isolation and analysis of the 5′‑flanking regions

Genomic DNA was isolated from closed buds accord-
ing to Aldrich and Cullis (1993). The 5′-flanking regions 
were isolated using the GenomeWalker™ Universal Kit 
(Clontech, Saint-Germain-en-Laye, France) according 
to the manufacturer’s instructions. The first primer pair 
was designed based on the F3′H sequence (GenBank: 
FJ216426) (Schlangen et  al. 2010). DNA-fragments were 
isolated and ligated into the vector pCR®2.1-TOPO (Inv-
itrogen, Paisley, UK) and transformed in E. coli TOP10 
(Invitrogen, Paisley, UK). Plasmids were isolated using the 
Wizard Miniprep Kit (Promega, Mannheim, Germany) and 
sequenced by StarSEQ (Mainz, Germany). Further prim-
ers for genome walking were designed from the sequences 
obtained (Suppl. Table  S1). Finally, a putative F3′H pro-
moter sequence containing 1712  bp of the 5′-flanking 
region (GenBank: KU508433) was obtained with the 
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primer pair Pro.F3′H. A putative chalcone 3-hydroxylase 
(CH3H) promoter sequence was obtained in a similar way 
(GenBank: KU508432) (Supplemental material).

The transcription start site (TSS) in the 5′-flanking 
region of the F3′H was predicted by using the TSSP soft-
ware (Softberry, http://linux1.softberry.com), and the cis-
acting regulatory elements were analysed by using the 
PlantCARE software (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html/).

Preparation of the binary plasmid vector constructs

The binary plasmid vectors p9N::35S-MdMYB10-GFP43 
and p9N::F3′H-MdMYB10-GFP43 were provided by DNA 
Cloning Service e.K. (Hamburg, Germany). The MdMYB10 
coding region of the red leaved apple hybrid TNR 31-35 
of Malus sieversii var. sieversii f. niedzwetzkyana (Espley 
et  al. 2007, 2009; Würdig et  al. 2014), including its first 
intron and a codon usage optimized version for the expres-
sion in dicotyledons of the red-shifted smRS-GFP gene 
(Davis and Vierstra 1998) containing the intron of the 
potato ST-LS1 gene, were used for the construction of the 
MdMYB10/GFP43 fusion gene. A p9N::35S-MdMYB10-
GFP43 vector was constructed using the p9N-35S binary 
plasmid vector (DNA Cloning Service) that contains 
the nptII selectable marker gene driven by the nopaline 
synthase promoter from A. thaliana. The p9N::F3′H-
MdMYB10-GFP43 vector was obtained by exchanging the 
CaMV 35S promoter of p9N-35S for the F3′H promoter 
(Gene bank: KU508433).

Plant transformation

Plant transformation was performed as described recently 
(Fischer et  al. 2014) using the A. tumefaciens strain 
EHA105 (Hood et  al. 1993), with each plant harboring 
one of the binary plasmid vectors p9N::35S-MdMYB10-
GFP43 and p9N::F3′H-MdMYB10-GFP43. Wounded leaf 
discs of F. vesca cv. ‘Rügen’ were inoculated with the A. 
tumefaciens strain EHA105 carrying one of the two binary 
plasmid vectors differing in the promoter controlling the 
fusion gene (p9N::35S-MdMYB10-GFP43, and p9N::F3′H-
MdMYB10-GFP43). Selection of putative transgenic 
plants was performed on regeneration medium containing 
500 mg l−1 timetin and 300 mg l−1 kanamycin. The explants 
were transferred into light after 3 weeks and subcultured 
every 3 weeks. Regenerated plantlets were transferred onto 
hormone free MS regeneration medium and transferred to 
soil as soon as plantlets had produced sufficient roots. They 
were acclimated in mini greenhouses where they were 
grown for 3 weeks in 5 cm plastic pots supplemented with 
potting compost and perlite. Subsequently they were grown 

under normal greenhouse conditions in 8 and 12 cm plastic 
pots.

Using the vector p9N::35S-MdMYB10-GFP43, one 
transformation experiment with 580 leaf explants resulted 
in 14 regenerated plants, six of which survived the entire 
selection process. These six plants were further han-
dled as putative transgenic plants and labeled with F-133, 
F-134, and F-143 to F-146. Using the vector p9N::F3′H-
MdMYB10-GFP43, a single transformation experiment 
with 260 leaf explants resulted in seven regenerated plants. 
Four out of these plants survived and were regarded as 
putative transgenic plants (F-154, and F156 to F-158).

PCR and Southern blot analysis

Analysis of integrated T-DNA in the plant genome was 
performed by PCR. Genomic DNA was extracted from 
50 to 60 mg leaf tissues using the DNeasy Plant Mini Kit 
(Qiagen, Hilden, Germany). Transferred DNA sequences 
including nptII, MdMYB10, GFP43, MdMYB10::GFP43, 
and the housekeeping gene elongation factor 1-alpha 
(EF1α) were amplified by PCR using appropriate primer 
pairs listed in Table  1. The PCR reaction was per-
formed in 25  µl containing 5–50  ng of template DNA, 
1× DreamTaq™ buffer, 0.2  mM dNTPs, 0.5  µM of each 
primer and 0.5 unit DreamTaq™ DNA polymerase (MBI 
Ferments, St. Leon-Roth, Germany). The PCR program 
was performed as follows: Initial denaturation at 94 °C for 
2  min, followed by 30 cycles of denaturation (94 °C for 
30 s), annealing (53–63 °C for 1 min) and extension (72 °C 
for 1 min) and a final extension at 72 °C for 7 min.

Analysis of integrated T-DNA copies in the plant 
genome was performed by Southern hybridization as 
recently described (Fischer et al. 2014). The genomic DNA 
was extracted from 100 mg plant leaf tissue using a modi-
fied cetyl trimethyl ammonium bromide (CTAB) extrac-
tion protocol. 10  µg DNA were incubated with 100 U of 
BamHI (MBI Ferments, St. Leon-Roth, Germany) at 37 °C 
overnight. The cleaved DNA was separated on a 1% aga-
rose gel and transferred onto a nylon membrane (Roche 
Diagnostics, Mannheim, Germany). Digoxygenin-labeled 
probes for hybridization were amplified using the forward 
and reverse primers on the coding region of the nptII gene. 
Hybridization and detection were performed using the 
ECF-Random-Prime-Labeling and Detection Kit (Amer-
sham Biosciences, Freiburg, Germany) according to the 
manufacturer’s manual.

Gene expression analysis

Analysis of transcript abundance was performed by (RT)-
PCR. Total RNA was extracted from 50  mg plant tis-
sues using InviTrap® Spin Plant RNA Mini Kit 1012 

http://linux1.softberry.com
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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(STRATEC Biomedical AG, Birkenfeld, Germany). 1  µg 
of total RNA was used for the reverse transcription using 
the RevertAid™ First Strand cDNA Synthesis Kit (Thermo 
Scientific, Braunschweig, Germany). The generated cDNA 
was used as a template for PCR, which was performed 
using the same primers and conditions as described above. 
Full length amplification of the MdMYB10/GFP43 fusion 
gene was performed using the Phusion DNA Polymerase 
(ThermoFisher Scientific, Schwerte, Germany) in a final 
volume of 20  µl using primers MYB_ATG and GFP_RR 
described in Table 1 and Fig. 1. The PCR reaction was per-
formed as follows: Initial denaturation at 98 °C for 30 s, fol-
lowed by 30 cycles of denaturation (98 °C for 10 s), anneal-
ing (63 °C for 30 s) and extension (72 °C for 1 min) and a 
final extension at 72 °C for 7 min.

Phenotypic evaluation of transgenic strawberries

Leaves, crowns, flowers (sepal, petal, stamen, carpel), 
and fruits of all transgenic lines in comparison to the wild 

type (wt) line were evaluated and phenotypic characteris-
tics were documented by photos. The examination for GFP 
fluorescence was done using a Zeiss Axioskop 135 micro-
scope (TSO Thalheim Spezialoptik GmbH, Germany). For 
this, transgenic plant leaves, stems, flowers, and flower 
buds and the non-transgenic control tissues were cut into 
small pieces and mounted in water on glass microscope 
slides for inspection.

Results

Isolation of the 5′‑flanking region of the F3′H from C. 
sulphureus

Using the sequences of the F3′H cDNA clone (GenBank: 
FJ216426) specific primers were designed and used as a 
starting point for the stepwise de novo sequencing of the 
5′-flanking region of F3′H from genomic DNA obtained 
from buds of C. sulphureus. A putative F3′H promoter 

Table 1   Primers used for 
molecular evaluation of the 
transgenic strawberry plants, 
position in the construct is 
shown in Fig. 1

a Primer was available and originally designed for MdMYB10a, which is a homolog of MdMYB10. This 
primer is not optimal, because of three mismatches at the 5′-end (written in bold) and eight bases at the 
5′-end which are located in the intron sequence (underlined). However, the primer was initially tested in 
combination with MdMYB10_R and successful on DNA and cDNA

Gene Primer: sequence (5′–3′) Anneal-
ing (°C)

Amplicon size 
(bp)

Genomic cDNA

nptII nptII_F: ACA​AGA​TGG​ATT​GCA​CGC​AGG
nptII_R AAC​TCG​TCA​AGA​AGG​CGA​TAG

58 780 780

MdMYB10a MYB_Fa: CAAAGCA​GGC​TTA​AAC​AGGTG
MYB_R: TAA​GAC​CTC​AGC​CCC​AAA​AAT

60 296 296

GFP43 GFP_F: CTT​TCA​AGG​ACG​ACG​GAA​ATTA
GFP_R: GAT​TGT​CAG​GGA​GAA​GAA​CTGG

60 300 300

EF1α EF1-F: ATT​GTG​GTC​ATT​GGYCAYGT
EF1-R: CCA​ATC​TTGTAVACA​TCC​TG

58 800 700

MdMYB10::GFP43 MYB_ATG:ATG​GAG​GGA​TAT​AAC​GAA​AAC​CTG​
GFP_RR: CAT​CCA​TTC​CAT​GAG​TGA​TACC

63 1974 1462

Fig. 1   Schematic representation of T-DNA construction of the 
binary plasmids p9N::35S-MdMYB10-GFP43 and p9N::F3′H-
MdMYB10-GFP43. LB and RB, T-DNA left and right border 
sequences; Pnos, promoter sequence of the nopaline synthase gene; 
nptII, CDS of the nptII selectable marker gene; T-35S, terminator 
sequence of the 35S Cauliflower mosaic virus gene; P35S, promoter 
sequence of the 35S Cauliflower mosaic virus gene; F3′H, promoter 

sequence of the F3′H gene; MYB-Intron-MYB, synthetic CDS of the 
MdMYB10 gene still containing its first native intron; GFP43-Intron-
GFP43, synthetic CDS of the GFP43 gene interrupted by the STLS1 
intron; Tocs, terminator sequence of the octopine synthase gene. 
Positions of primers are marked by arrows. Primer names are given 
as abbreviations. The full names are given in Table 1 
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region of 1.7 kb length was obtained by genome walking. 
An NCBI blast of the F3′H promoter region did not show 
any similarities with known sequences. Comparison of 
the putative F3′H promoter regions of C. sulphureus 
(GenBank: KU508433) and a Fragaria vesca F3′H 
(GenBank: KC708488) showed only around 40% corre-
lation and stretches of identic sequence were below eight 
nucleotides. The isolated 5′-flanking region was of com-
parable size to other F3′H promoter regions available 
in the NCBI data base for Antirrhinum majus (1529 bp; 
JF309098), Malus hybrid cultivar (1393 bp; KT288226), 
Vitis vinifera (952 bp, KT216255) and Tulipa fosteriana 
(1900 bp; KF146886, 1901 bp; KF751606).

The in silico analysis of the 5′-flanking region of 
the F3′H revealed a putative TSS 44  bp upstream of 
the translation initiation codon ATG. Beside the typi-
cal TATA-box (63  bp upstream of ATG) and CAAT-
box (75  bp upstream of ATG), several other cis-acting 
regulatory elements were predicted with the PlantCARE 
software tool. These included light responsive elements 
(e.g. Box I, G-Box, I-box, MNF1, Sp1, and the motifs 
ACE, CATT, TCT, GATA) besides a number of other 
putative regulatory elements, e.g. ABRE (abscisic acid 
responsiveness), Box-W1 (fungal elicitor responsive ele-
ment), CGTCA-motif (involved in the methyl jasmonate 
responsiveness), EIRE (elicitor responsive element), 
ERE (ethylene responsive element), HSE (heat stress 
responsiveness), LTR (low temperature responsiveness), 
MBS (MYB binding site involved in drought inducibil-
ity), TC-rich repeats (defense and stress responsiveness), 
WUN-motif (wound responsive element) or Skn-1 motif 
(required for endosperm expression).

Molecular evaluation of putative transgenic strawberry 
plants

All putative transgenic plants F-133, F-134, and F-143 to 
F-146 transformed with p9N::35S-MdMYB10-GFP43 and 
the plants F-154, F-156, F-157, and F-158 with p9N::F3′H-
MdMYB10-GFP43 were evaluated for the presence of 
transgenic DNA sequences by PCR with genomic DNA 
as template. The quality of the isolated DNA was tested 
using the primers EF1-F and EF1-R which are specific for 
the housekeeping gene EF1α. A fragment with a size of 
800 bp could be amplified for each sample (Table 2). Sub-
sequently all samples were PCR tested on the presence of 
the transferred gene sequences using the primers nptII_F/R 
for nptII, GFP_F/R for GFP43, and MdMYB10a_F/R for 
MdMYB10, which resulted in amplification products of 
780, 300 and 296 bp, respectively (all primers are shown in 
Table 1). Genomic DNA from all ten plants was positively 
tested for the presence of all three transgenes (Table  2). 
Subsequently, these ten plants were propagated vegetatively 
to produce transgenic clones.

The integration of the T-DNA into the strawberry 
genome of the ten transgenic lines was evaluated by South-
ern hybridization. NptII specific hybridization signals were 
detected in all samples (data not presented).

Transcript analysis

The presence of transcripts in leaf tissue was tested by RT-
PCR using the same primers for nptII, MdMYB10, GFP43 
and EF1α as described above. For all lines (transgenic 
and wild type) a 700 bp fragment of EF1α was amplified 
as expected for uncontaminated cDNA. In none of sam-
ples the 800 bp fragment for genomic DNA was detected. 
Transcripts of nptII, MdMYB10 and GFP43 could only be 

Table 2   PCR based evaluation of leaf tissue of the transgenic strawberry lines

 n. d. not detected

Plasmid vector Genotype Genomic DNA cDNA

EF1α (800 bp) nptII (780 bp) MdMYB10(296 bp) GFP43(300 bp) EF1α (700 bp) nptII (780 bp) MdMYB10 (296 bp) GFP43(300 bp)

‘Rügen’ + n. d n. d n. d + n. d n. d n. d
p9N::35S-

MdMYB10-
GFP43

F-133 + + + + + + + +
F-134 + + + + + + + +
F-143 + + + + + + + +
F-144 + + + + + + + +
F-145 + + + + + + + +
F-146 + + + + + + + +

p9N::F3′H-
MdMYB10-G 
FP43

F-154 + + + + + + + +
F-156 + + + + + + n. d n. d
F-157 + + + + + + + +
F-158 + + + + + + + +
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detected in leaf samples of nine out of the ten transgenic 
lines (Table  2). No RT-PCR products were detectable for 
MdMYB10 and GFP43 for the sample of F-156.

Full length transcription of the MdMYB10/GFP43 fusion 
gene was initially tested on leaf tissue using the prim-
ers MYB_ATG and GFP43_RR. The primer pair flanks 
the MdMYB10/GFP43 fusion gene (Fig.  1) and amplifies 
a 1974  bp fragment on genomic DNA. After successful 
splicing of the two introns, the same primer pair ampli-
fies a fragment of 1462 bp on cDNA. A PCR fragment of 
strong intensity and a size of <1.5 kbp was detected in all 
samples of plants transformed with p9N::35S-MdMYB10-
GFP43 (Fig. 2a). A very faint band of identical size could 
be detected for cDNA samples of three out of the four lines 
(F-154, F-156, and F-158) transformed with p9N::F3′H-
MdMYB10-GFP43. No fragment was detectable for the 
sample of F-157 (Fig. 2b).

Phenotypic evaluation of transgenic strawberry lines

Five clones for each of the transgenic lines and the wt 
were rooted, transferred to the greenhouse and grown 
under normal light and temperature conditions. These 
plants were evaluated on visible signs (red tissue col-
oration) of MdMYB10 expression. Based on their col-
oration of different plant organs, all plants transformed 
with p9N::35S-MdMYB10-GFP43 were classified into 

four different groups, with the wt cv. ‘Rügen’ as group 1 
(Table 3). A complete red coloration of all plant organs 
as expected in the case of constitutive overexpression of 
MdMYB10 was only found in the group 3 clones F-134, 
F-143, F-144, and F-145 (Fig. 3). Lines of groups 2 and 
4 were characterized by green leaves (with red edges in 
group 4), yellow stamens, and white (group 2) or very 
slightly red (group 4) colored petals (Table 3). Whether 
these differences in tissue coloration are due to differ-
ences in the MdMYB10 mRNA transcript levels or not is 
beyond the scope of this study.

Much less red coloration of plant organs was found 
for lines transformed with p9N::F3′H-MdMYB10-
GFP43. These plants could hardly be distinguished from 
wt plants. A slight red coloration was sometimes found 
at the base of petals or on transgenic stigmas (Fig.  4). 
Sometimes red coloration was also found on sepals of 
very young and still closed flower buds of transgenic 
lines (Fig.  5). Such red coloration of sepals, petals and 
stigmas was never found on wt plants.

Leaf, stem, flower, and flower bud samples of all trans-
genic lines and the wt were investigated on GFP fluores-
cence using UV light microscopy. GFP specific fluores-
cence signals were neither detectable in tissue strongly 
expressing MdMYB10 nor in green tissue in any of the 
lines.

Fig. 2   Evaluation of transcription of the MdMYB10/GFP43 fusion 
gene using the primers MdMYB10_ATG and GFP43_RR. a For 
genomic DNA and plasmid DNA of the transformation vector a frag-
ment of 1974  bp is expected. b For cDNA of the transgenic straw-
berry clones a fragment of 1462 bp is expected. SM, Gene Ruler™ 
100  bp DNA Ladder Plus (ThermoFisher Scientific, Schwerte, Ger-
many); Blank, H2O instead of DNA used as negative control; Plas-

mid, DNA of the plasmid used for plant transformation as positive 
control; WT, cDNA of the non-transgenic wild type cv. ‘Rügen’ used 
as negative control; F-133 to F-146, cDNA of the transgenic straw-
berry lines transformed with p9N::35S-MdMYB10-GFP43; F-154 
to F-158, cDNA of the transgenic strawberry lines transformed with 
p9N::F3′H-MdMYB10-GFP43
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Table 3   Phenotypic classification of transgenic strawberry lines transformed with p9N::35S-MdMYB10-GFP43

Group Genotype Upper leaf 
surface

Petiole Sepal Petal Stamen Carpel mg Cyequ/g FW

1 Rügen Green Light red, green Light green White Yellow Light yellow Below detection 
level in leaves 
and petals

2 F-133 Dark green Light red, green Light green White Yellow Pink Below detection 
level in leaves 
and petals

3 F-134 Light red, to red Red to dark red Light red to red Light red to red Light red to red Pink 3 ± 0.1 in leaves 
and petalsF-143

F-144
F-145

4 F-146 Green with red-
dish edges

Light red with 
reddish spots

Light red Light red Yellow Light pink Below detection 
level in leaves 
and petals

Fig. 3   Phenotypic comparison of the transgenic strawberry plants 
transformed with p9N::35S-MdMYB10-GFP. Greenhouse grown 
plants of the transgenic strawberry plants (groups 2, 3 and 4) and the 
non-transgenic wild type (WT) cv. ‘Rügen’ were evaluated on their 

coloration of their leaves (left), petiole (middle), and flower organs 
(right). All phenotypes could be allocated to four different groups 
(Table 3)
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Evaluation of tissue specific expression 
of the MdMYB10/GFP43 fusion gene

Different tissues of the transgenic strawberry lines were 
tested on MdMYB10/GFB43 transgene expression using 
the primers MYB_ATG and GFP_RR. Lines F-133, F-143 
and F-146 were selected as representative examples for 

the phenotypic classes 2, 3 and 4 (Table  3) of the trans-
genic lines expressing MdMYB10-GFP43 gene con-
struct driven by the CaMV 35S promoter. All tissues 
of all plants expressed a fragment of the expected size 
of ~1.5 kbp (Fig.  6). However, transgenic plants of the 
phenotypic classes 2 and 4 expressed additional frag-
ments of larger sizes. Based on their fragment lengths 

Fig. 4   Phenotypic comparison 
of the flower organs of the 
transgenic strawberry plants 
transformed with p9N::F3′H-
MdMYB10-GFP43. Coloration 
of flower organs was evaluated 
on greenhouse grown plants of 
the non-transgenic wild type 
(WT) cv. ‘Rügen’ (left) and 
transgenic strawberry plants 
(middle and right). Red colora-
tion was sometimes found at 
the base of transgenic petals 
(top middle and right) or on 
transgenic stigmas (middle and 
bottom, middle and right)

Fig. 5   Phenotypic comparison of the closed flower buds of trans-
genic strawberry plants transformed with p9N::F3′H-MdMYB10-
GFP43. Coloration of sepals was evaluated on greenhouse grown 

plants of the non-transgenic wild type (WT) cv. ‘Rügen’ (left) and 
transgenic strawberry plants (middle and right). Red coloration was 
sometimes found in transgenic sepals (middle and right)
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these amplicons seem to represent different versions of 
the MdMYB10/GFP43 fusion gene which were incom-
pletely spliced. Incorrect splicing of the two introns of the 
MdMYB10/GFP43 fusion gene could be reason for the phe-
notypic differences observed between the transgenic lines 
of different phenotypic classes.

Subsequently the expression of the MdMYB10-GFP43 
gene in different tissues of plants containing the gene 
driven by the F3′H promoter was also tested. The expres-
sion pattern of the transgene varied between the different 
transgenic lines, but also within the plants of the same 
line. A few selected examples of this investigation are 
shown in Fig. 7. Expression was always detectable in leaf 
tissue. In all other tissues the transgene was occasionally 
expressed. In summary, it can be stated that the expression 
of the MdMYB10-GFP43 gene under control of the F3′H 
promoter was always detectable in cases where red colored 
tissue was investigated, but sometimes the transcript could 
also been detected in non-red tissues. Incorrect splicing 
was not as frequently found in transgenic lines transformed 
with the F3′H-MdMYB10-GFP43 gene construct.

Discussion

This study served the purpose of testing an 
MdMYB10/GFP43 fusion gene for suitability as a non-
destructive visual reporter gene for functional genom-
ics studies in transgenic strawberry plants. GFP protein 
is frequently used as marker in functional plant science 
(Gunadi et  al. 2016; Halfhill et  al. 2003; Harper et  al. 
1999; Richards et  al. 2003; Stewart 2001; Zhang et  al. 
2002) but requires special equipment for its detection. 
Over-expression of the MdMYB10 gene, in contrast, usu-
ally leads to strong red tissue coloration in different spe-
cies of the Rosaceae plant family (Dixon et al. 2013; Espley 
et  al. 2007, 2012; Medina-Puche et  al. 2014) and should 
therefore allow the visual and non-destructive detection of 
promoter activity in different plant tissues throughout the 
entire life cycle of the plant. However, artifacts resulting 
in anthocyanin formation due to stress response or other 
environmental cues cannot be excluded. Therefore GFP43 
gene was fused to MdMYB10 to allow the double-checking 
of red coloured tissue microscopically on GFP expression. 
Our construct provokes the expression of a protein which 
contains the MYB-type transcription factor MdMYB10 of 
apple at its N-terminus and a codon optimized version of 
GFP at its C-terminus.

The MdMYB10/GFP43 fusion gene was tested in combi-
nation with two plant promoters for proof-of-concept. The 
CaMV 35S promoter was used because of its constitutive 
nature and the usually high expression level of genes driven 
by it (Odell et al. 1985). In this case, a high expression of 
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Fig. 6   Evaluation of MdMYB10/GFP43 transgene expression in dif-
ferent tissues of p9N::35S-MdMYB10-GFP transgenic strawberry 
plants. SM, Gene Ruler™ 100 bp DNA Ladder Plus (ThermoFisher 
Scientific, Schwerte, Germany) with fragment sizes of 100, 200, 
300, 400, 500 (bold), 600, 700, 800, 900, 1000 (bold), 1200, 1500, 
2000, and 3000  bp; Blank, H2O instead of DNA used as negative 
control; Plasmid, DNA of the plasmid used for plant transformation 
as positive control. The white arrow marks the 1974  bp PCR frag-
ment expected for genomic DNA containing both introns. The black 
arrow marks the 1462 bp PCR fragment expected for mRNA without 
introns. Amplicons between these two fragments indicate the pres-
ence of incorrectly spliced versions of the MdMYB10/GFP43 gene 
(1651 bp with Intron 2, but without intron 1 and 1785 bp with Intron 
1, but without Intron 2, respectively)
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MdMYB10/GFP43 was expected to result in a strong red 
coloration of transgenic tissues as described for strawberry 
plants expressing the MdMYB10 gene under the control 
of a natural mutant version of its own promoter and its 
own terminator (Kortstee et  al. 2011). The other putative 
promoter was obtained from the ornamental plant C. sul-
phureus by cloning the 5′-flanking regions of the F3′H gene 
of the flavonoid pathway. An ornamental plant, rather than 
the native F3′H promoter of Fragaria, was chosen to avoid 
undesired silencing events caused by sequence similarities.

In C. sulphureus, two closely related genes of the flavo-
noid pathway have been identified, which encode enzymes 
introducing a second hydroxyl group in the B-ring of fla-
vonoids and chalcones, respectively. However they showed 
interesting tissue specific differences in their expression 
pattern, because CH3H was primarily expressed in flow-
ers and seedlings (Schlangen et  al. 2010). F3′H, in con-
trast seemed to be constitutively and moderately expressed 
(Schlangen et al. 2010; Yuan et al. 2014).

From the transgenic plants obtained, only those carrying 
the MdMYB10/GFP43 fusion gene under the control of the 
CaMV 35S promoter revealed strongly red colored tissues 
as expected. However, not all the plants showed uniform 
coloration. Whereas four out of six transgenic lines had 
complete dark red coloration in all organs (leaves, stems, 
petals, sepals, pistils, stamens), the other two showed deep 

red color only in the pistils, but no or only faintly colored 
leaves, petals, stems and/or stamen. Incorrect splicing of the 
MdMYB10/GFP43 fusion gene is proposed as one possible 
reason for the differences found in tissue coloration (see 
Fig. 6). However, anthocyanin production was observed in 
all our transgenic lines albeit in varying intensities which is 
in contrast to Kortstee et al. (2011) where not all plants car-
rying the MdMYB10 gene showed coloration.

The transgenic lines carrying the MdMYB10/GFP43 
fusion gene under the control of the F3′H promoter showed 
much less coloration. Although leaves, stems and recepta-
cles remained uncolored as in the wt plants, all transgenic 
lines obtained showed a faint coloration in the tissues of 
the stamen, petals and/or sepals. A varying occurrence of 
MdMYB10/GFP43 gene transcripts was observed in the 
different plant tissues of these lines. This confirms that the 
isolated 1.7 kb long 5′-flanking region is sufficient to con-
trol the expression of the reporter gene as expected from 
sequence analysis and comparison with other F3′H promot-
ers (Sun et al. 2015; Yuan et al. 2014). However, the con-
trol by the F3′H promoter was not as effective as desired 
as our isolated putative F3′H promoter was not active 
in all the lines in the organs. This could indicate that the 
F3′H promoter is a weak promoter in comparison with the 
CaMV 35S promoter. It can be excluded that the observed 
effects were based on a negative interference by the native 

Fig. 7   Selected examples of 
the evaluation of MdMYB10/
GFP43 transgene expression in 
different tissues of p9N::F3′H-
MdMYB10-GFP43 transgenic 
strawberry plants. SM, Gene 
Ruler™ 100 bp DNA Ladder 
Plus (ThermoFisher Scientific, 
Schwerte, Germany) with frag-
ment sizes of 100, 200, 300, 
400, 500 (bold), 600, 700, 800, 
900, 1000 (bold), 1200, 1500, 
2000, and 3000 bp; Blank, 
H2O instead of DNA used 
as negative control; Plasmid, 
DNA of the plasmid used for 
plant transformation as positive 
control. The white arrow marks 
the 1974 bp PCR fragment 
expected for genomic DNA con-
taining both introns. The black 
arrow marks the 1462 bp PCR 
fragment expected for mRNA 
without introns
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Fragaria F3′H promoter that is also present in the trans-
genic plants because of the low sequence identity (approx. 
40%) to the Fragaria F3′H promoter and very short 
stretches of sequence identity found (below 8 nucleotides).

Another explanation could result from the fact that the 
F3′H promoter, as flavonoid formation in general, could be 
influenced by UV (Harborne and Williams 2000; Sun et al. 
2015). As the plants were grown under greenhouse condi-
tions it is possible that we did not completely exploit the 
potential of the F3′H promoter. Analysis of the 5′-flank-
ing region of F3′H predicted several cis-regulatory ele-
ments which suggest the regulation of expression mainly in 
response to light and biotic/abiotic stress factors (e.g. high/
low temperature, elicitors, drought, wounding, abscisic acid 
and ethylene) which is in accordance with the findings for 
e.g. the promoter regions of Vitis F3′H (Sun et al. 2015) or 
Tulipa F3′H (Yuan et al. 2014) and F3′H expression data of 
Sorghum bicolor (Shih et al. 2006).

In contrast to the MdMYB10 reporter gene, no GFP sig-
nal was microscopically detected although GFP43 was 
detected at transcriptional level by RT-PCR in the trans-
genic plants. GFP fusion proteins have however been previ-
ously reported to show divergent success when transformed 
in plants. Fusion with a gene of interest as N- or C-terminal 
tag in some cases have no effect and in some others affect 
expression of GFP itself or the fused gene. The expression 
of anthocyanin2 (AN2) fused with GFP under control of the 
CaMV 35S promoter showed an altered phenotype but GFP 
could not be detected by confocal microscopy or immuno-
blot analysis in 35S:AN2-GFP lines (Quattrocchio et  al. 
2013). This was interpreted as a result of too low transgene 
expression or undesired fusion protein cleavage yielding 
unstable GFP fragments. Whether an N-terminal fusion 
of GFP43 to MdMYB10 would lead to a microscopically 
detectable GFP expression or not, cannot be stated. At this 
stage, it remains open why the GFP43 component of the 
fusion gene turned out to be inactive. Splicing variations 
cannot be blamed for the non-functionality as GFP activity 
could also not be detected in F143 and the F3′H-promoter 
lines, in which GFP was correctly spliced. Although 
this part of the study remained therefore unachieved, the 
reporter gene construct allowed us to evaluate the suitabil-
ity of the MdMYB10/GFP43 gene as reporter gene for pro-
moter analysis.

Conclusion

Our studies have demonstrated the limited suitability of 
the MdMYB10 gene as a reporter gene for promoter stud-
ies because in the case of a weak promoter, differences 
between the transgenic plants and the wild type lines can 
hardly be distinguished, particularly in tissues showing 

a strongly colored background such as green leaves. In 
addition it has to be stated that the benefit of a visualiza-
tion without the need for fluorescence or light imaging can 
probably not completely compensate for possible undesired 
side effects such as influence on anthocyanin formation 
caused by biotic and abiotic factors (Harborne and Wil-
liams 2000) or possible physiological effects of anthocya-
nins on the plants (Taylor and Grotewold 2005).
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