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Abstract In vitro shoots of the commercially important

South-African legume Cyclopia genistoides were grown in

different liquid culture systems [membrane rafts (MR) and a

temporary immersion bioreactor (TIB)] and evaluated for the

accumulation of phenolic secondary metabolites. The major

constituents of the investigated cultures were medicinally

relevant xanthones [mangiferin (M) and isomangiferin (IM)]

and benzophenone derivatives [iriflophenone 3-C-b-gluco-

side (IG)]. The highest concentrations of M, IM and IG in

MR-grown shoots were 1,843.59, 712.02 and 594.29 mg

100 g-1 dry wt, respectively. Bioreactor cultivation pro-

vided higher peak concentrations of M (2,622.70 mg

100 g-1 dry wt), IM (757.40 mg 100 g-1 dry wt) and IG

(648.30 mg 100 g-1 dry wt) which corresponded to the

respective productivities of 5.48, 1.58 and 3.04 mg l-1 d-1.

The results indicate that TIB cultures of C. genistoides may

be utilized as an alternative source of the above constituents,

particularly IM and IG, which are relatively expensive and so

far hardly available from commercial sources.
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Abbreviations

CG Calycosin 7-O-b-glucoside

DW Dry weight

FG Formononetin 7-O-b-glucoside

Gi Growth index

H Hesperidin

IBA Indole-3-butyric acid

IG Iriflophenone 3-C-b-glucoside

IM Isomangiferin

2iP 2-isopentenyladenine

M Mangiferin

MG Maclurin 3-C-b-glucoside

MR Membrane raft

PG Pseudobaptigenin 7-O-b-glucoside

SH Schenk & Hildebrandt

TDZ Thidiazuron

TIB Temporary immersion bioreactor

Cyclopia genistoides (L.) Vent. (Fabaceae) is an endemic,

South-African legume, native to fynbos shrublands of the

Western Cape Province. Together with other representatives

of the genus, C. genistoides is used to manufacture the

‘honeybush’ herbal tea, recognized for distinctive, honey-

like flavour (Joubert et al. 2011). C. genistoides is charac-

terized by exceptionally high content of the xanthone

mangiferin (M), present in the amounts exceeding 5 and

10 % dry weight (DW) in the whole herb and leaves,

respectively (Kokotkiewicz et al. 2012, 2013b; Joubert et al.

2014). This compound is known to exhibit a number of

biological activities including anti-inflammatory, antidia-

betic and chemopreventive (Matkowski et al. 2013), thus

contributing to the health-promoting properties of the hon-

eybush. Two other important C. genistoides constituents,
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isomangiferin (IM) and iriflophenone-3-C-b-glucoside (IG)

constituting ca. 2 and 1 % DW, respectively (Kokotkiewicz

et al. 2012, 2013b; Joubert et al. 2014), have so far not been

extensively studied with respect to their biological effects.

However, both compounds were recently shown to be potent

antioxidants (Malherbe et al. 2014) and also demonstrated

strong pro-apoptotic activity on rheumatoid arthritis syno-

viocytes (Kokotkiewicz et al. 2013b). Moreover, IG and IG-

containing Cyclopia extracts were shown to inhibit adipo-

genesis in 3T3-L1 cell line (Dudhia et al. 2013).

The established biological effects of xanthone and

benzophenone constituents of C. genistoides indicate that

the discussed plant has potential value in the management

of diseases such as rheumatoid arthritis, diabetes and

obesity. Unfortunately, Cyclopia currently faces the risk of

over exploitation due to high demand from overseas mar-

kets. Occasional droughts and fynbos fires additionally

limit the availability of plant material (Joubert et al. 2011).

These problems can be overcome by establishing in vitro

cultures of C. genistoides, which could serve as a renew-

able source of xanthone and benzophenone derivatives for

biological activity studies. In the presented work, in vitro

shoot cultures of C. genistoides were adapted for the

growth in liquid culture systems [membrane rafts (MR) and

temporary immersion bioreactor (TIB)], and evaluated for

the production of phenolic secondary metabolites. For the

authors knowledge, this is the first report on establishing

bioreactor cultures for the production of M, IM and IG.

The source of plant material were C. genistoides mi-

croshoot cultures, maintained on solidified (0.6 % w/v

agar) Schenk & Hildebrandt (SH) medium supplemented

with 3.0 % w/v sucrose, 9.84 lM 2-isopentenyladenine

(2iP) and 1.0 lM thidiazuron (TDZ). These cultures are

deposited in the Higher Plants Biotechnology Laboratory at

the Department of Pharmacognosy, Medical University of

Gdansk, Poland, and is available to other researchers. As

demonstrated in previous study (Kokotkiewicz et al. 2012),

C. genistoides microshoots accumulated xanthones (M and

IM), flavanone hesperidin (H), as well as three isoflavone

glucosides [7-O-b-glucosides of calycosin (CG), formo-

nonetin (CG) and pseudobaptigenin (PG)], absent in intact

plant material but otherwise characteristic for undifferen-

tiated cultures of Cyclopia (Kokotkiewicz et al. 2013a,

2014). However, since the current research focused on

establishing an in vitro source of xanthones and benz-

ophenones, the experiments were conducted using SH

medium enriched with indole-3-butyric acid (IBA), which

was previously shown to enhance the accumulation of

phenolics typical for field-grown plants (Kokotkiewicz

et al. 2012). Unfortunately, attempts to obtain shaker cul-

tures proved unsuccessful, probably due to high sensitivity

of the investigated biomass to mechanical stress and/or

explant browning, triggered by excessive contact with the

growth medium (Kokotkiewicz et al. 2012). Therefore, it

was decided to grow the shoots using the MR system,

which provides the advantages of liquid cultures (enhanced

exchange of nutrient and metabolites between plant tissues

and the growth medium) without exerting mechanical

stress on the explants (Vágner et al. 2005).

For the experiment, 2.5 g portions of shoot primordia

(taken on 30 d of the growth cycle) were transferred into

polycarbonate ‘Magenta’ vessels, equipped with ‘LifeRaft’

cell/tissue support system (floating raft with bottom made

of hydrophilic microporous membrane which prevents

plant tissues from sinking and coming into direct contact

with the medium). The growth containers were subse-

quently filled with 50 ml of the SH medium, supplemented

with 4.92 lM IBA and 1.5 % w/v sucrose. ‘Magenta’

vessels, membrane rafts and culture reagents were obtained

from Sigma-Aldrich (St. Louis, US-MO). The cultures

were maintained at 24 ± 1 �C under continuous light

(88 ± 8 lmol m-2 s-1, TLD 35 W white fluorescent

tubes, Philips, Amsterdam, the Netherlands). Biomasses

and media samples were collected in 4-day intervals. The

length of growth period (60 d) was set based on the results

of the previous studies concerning C. genistoides micro-

propagation which showed substantial increase in xanthone

levels in explants elongated for 2 months on IBA-supple-

mented medium (Kokotkiewicz et al. 2012). The harvested

shoots were evaluated for polyphenol content according to

the previously described methodology (Kokotkiewicz et al.

2012, 2013a).

As presented in Fig. 1a–c, during the first 24 days of the

experiment MR-grown shoots showed intensive growth,

accompanied by a marked increase in xanthones content.

The peak concentrations of M and IM were achieved on 36

d which corresponded to the stationary phase, and

decreased shortly afterwards. Maximum concentration of

IG preceded those of M and IM (Fig. 1b–d), suggesting the

incorporation of IG into xanthone derivatives. However,

such translocation has so far not been reported in other

species (Joubert et al. 2014) and establishing whether the

reaction(s) occurs in Cyclopia would require further stud-

ies. Except for CG, whose concentration showed an initial

increase until 12 d of experiment, isoflavones content

gradually decreased during the culture period (Fig. 1f–h),

whereas the concentrations of H remained fairly unchan-

ged, and relatively low, in the course of experiment

(Fig. 1e). None of the investigated compounds was detec-

ted in the media samples.

In general, the results confirmed our previous finding

which linked the removal of exogenous cytokinins from

the medium, and the accompanying changes in auxin/

cytokinin balance and shoot morphology (elongation and

reduction of hyperhydricity), with increased accumulation

of phenolics typical for C. genistoides intact plant
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(Kokotkiewicz et al. 2012). Interestingly, other studies

concerning in vitro cultures of mangiferin-producing

plants (e.g. Gentiana spp.) did not show the inhibitory

effect of the purine-type cytokinin (6-benzyladenine) on

xanthone biosynthesis (Menković et al. 2000; Dević

et al. 2006). Therefore, decreased biosynthesis of

mangiferin in C. genistoides microshoots grown on the

cytokinin-supplemented medium may be either species-

specific, or result from the presence of TDZ, the phe-

nylurea derivative not included in the cited Gentiana

studies.

Further part of the research focused on establishing

bioreactor cultures of C. genistoides. Given the previously

reported sensitivity of the investigated culture to mechan-

ical stress, it was decided that the shoots will be grown in

the temporary immersion system. TIBs were successfully

used for maintaining in vitro cultures of numerous

medicinally-relevant plants, serving as a source of cardiac

glycosides (Pérez-Alonso et al. 2012), anticancer alkaloids

(Sankar-Thomas and Lieberei 2011) and bioflavonoids

(Zobayed et al. 2004). The details of the structure and

operation mode of the TIB employed for the experiments

Fig. 1 Changes in growth

index (a) and concentrations of

phenolic secondary metabolites

(b–h) in membrane raft-grown

C. genistoides shoot cultures.

Growth indices were calculated

using the formula:

Gi = ([Gn - G0]/G0) 9 100 %

where Gn and G0 are fresh

weights on the nth and 0 day of

experiment, respectively.

Different letters indicate

significant differences among

means (n = 3) based on

Tukey’s range test (p B 0.05)
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were presented in Fig. 2. In order to minimise mechanical

stress the shoot explants were subjected to, the growth

medium was aerated only in the reservoir while low-speed

magnetic stirrer provided gentle mixing during the

immersion phase. The bioreactor was inoculated in the

same manner as MR cultures (1:20 shoots:medium ratio).

According to the results of previous studies (Kokotkiewicz

et al. 2012), the experiment time was set to 32 and 60 days.

As presented in Fig. 3a, TIB-grown shoots showed slightly

higher growth rates than cultures maintained using MR sys-

tem. M, IM and H concentrations exceeded those recorded in

MR-grown shoots, but were achieved only on the 60th day of

experiment (Fig. 3b, c, f). Regardless of the harvest time, IG

content of TIB-grown shoots was higher than that of MR

cultures (Fig. 3d). Interestingly, bioreactor- grown shoots

also accumulated low amounts of the benzophenone MG

(Fig. 3e), previously identified in C. genistoides intact plant

material (Kokotkiewicz et al. 2013b) but absent in MR cul-

tures of the examined plant. Isoflavone glucosides (CG, PG

and FG) were present in small amounts only in 32-d TIB

culture.

The productivities of C. genistoides in vitro systems in

terms of three major phenolic derivatives (M, IM anf IG) were

included in Table 1. In general, it was shown that compared to

MR cultures, TIB-grown shoots maintain the ability to produce

significantly higher amounts of the investigated compounds

during a 60-day-long experiment. On the other hand, 32-day-

long cultivation significantly favoured the production of M, IM

and IG in MR cultures, as well as IG in the TIB system. The

calculated productivities of IM and IG, which are much less

abundant than mangiferin (and consequently, more expen-

sive), may be interesting from a practical perspective. The

obtained results indicate that C. genistoides shoot cultures

could be successfully maintained in commercially available

and easily multipliable temporary-immersion (RITA) (Zob-

ayed et al. 2004) or raft (Growtek) bioreactor systems (Sharma

et al. 2011), and utilized for the production of biologically

active xanthone and benzophenone derivatives.

Fig. 2 The temporary

immersion bioreactor (TIB)

employed for the maintenance

of C. genistoides shoot cultures.

a System overview, b shoots

grown for 32 d and c schematic

diagram of the bioreactor: 1

glass culture vessel (150 mm id,

200 mm h, 300 ml working

volume), 1a stainless steel

basket for biomass

immobilization

(120 9 100 mm, 8 mm mesh),

positioned to provide 1 cm

shoots submersion depth during

the immersion phase), 2

magnetic stirrer, 3 time

controller, 4,5 peristaltic pumps,

6 air pump, 7 air prefilter, 8

flowmeter, 9 air humidifier,

10,11 air sterilisation filters, 12

medium reservoir (1,000 ml

total medium volume). White

and black arrows indicate the

direction of air and medium

flow, respectively. The

bioreactor was operated in

45/45 min immersion cycles.

Aeration (0.4 vvm) and mixing

(38 9 8 mm cylindrical stirrer

bar, 200 rpm) were provided

only during the immersion

phase
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