
Abstract Transformation of plants is a popular

tool for modifying various desirable traits. Mar-

ker genes, like those encoding for bacterial

b-glucuronidase (GUS), firefly luciferase (LUC)

or jellyfish green fluorescent protein (GFP) have

been shown to be very useful for establishing of

efficient transformation protocols. Due to

favourable properties such as no need of exoge-

nous substrates and easy visualization, GFP has

been found to be superior in to other markers in

many cases. However, the use of GFP fluores-

cence is associated with some obstacles, mostly

related to the diminishing of green fluorescence in

older tissues, variation in fluorescence levels

among different tissues and organs, and occa-

sional interference with other fluorescing com-

pounds in plants. This paper briefly summarizes

basic GFP properties and applications, and de-

scribes in more detail the contribution of GFP to

the establishment, evaluation and improvement

of transformation procedures for plants. More-

over, features and possible obstacles associated

with monitoring GFP fluorescence are discussed.

Keywords Agrobacterium tumefaciens Æ Green

fluorescent protein Æ Particle bombardment Æ Plant
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Abbreviations

GFP Green fluorescent protein

GUS b-Glucuronidase

LUC Firefly luciferase

RT-PCR Reverse transcription polymerase

chain reaction

gfp Green fluorescent protein gene

uidA b-Glucuronidase gene

Introduction

Genetic transformation of plants is a promising

method not only for improving various agronomic

and/or horticultural traits, but also for funda-

mental studies of plant physiology (Bauchera

et al. 1998; Smirnoff and Wheeler 2000), genetics,
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Faculty of Biological Sciences, Department of
Genetics, University of South Bohemia, Branišovská
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molecular and cell biology (Kocábek et al. 1999),

pathology (Franchea et al. 1998; Panstruga 2004)

and other areas. The development of plants with

new qualitative or quantitative traits is the pri-

mary objective of plant transgenesis. The suc-

cessful introduction of new desirable traits usually

requires the development of an efficient and reli-

able transformation protocols. Such protocols

should contribute to the development of the most

efficient strategy for transferring the genes into

plant cells (Chilton et al. 1977; Klein et al. 1987),

selection and regeneration of putative transgenic

cells (Miki and McHugh 2004) and subsequent

recovery of transgenic plant(s). Generally, model

genes, which allow for the critical assessment of

each step in the procedure, are the most suitable

for such fundamental studies. The use of visual

markers, which enable direct observation of

transformation events, results in a more precise

and easier evaluation of various treatments and

procedures. They can increase transformation

efficiency by reducing the time and amount of

material to be handled and screened (Baranski

et al. 2006) allowing the most efficient, reliable

and reproducible transformation protocol to be

established. The ideal marker should possess the

following desirable traits. First, it should be

readily expressed in plant cells or capable of being

engineered for such expression by molecular

biology methods. Second, its expression should be

easily visualized, and finally, the marker should

not be toxic or affect in any way the physiology of

living intact plants. Many genes coding for various

markers are available now. Markers such as

b-glucuronidase (GUS) (Jefferson et al. 1987),

luciferase (LUC) (Ow et al. 1986) or b-galactosi-

dase (LacZ) (Helmer et al. 1984) have become

very popular tools for monitoring gene expression

in transgenic plants. However, these require either

destructive assays of the studied sample or the

addition of exogenous substrates or some other

cofactors for their manifestation. These markers

usually do not offer the possibility of determining

the exact transgenic status of plants, while also

monitoring the transgene expression in real time

and in living plants. On the other hand, green

fluorescent protein (GFP) marker, in principle,

allows for the monitoring of transgene expression

from early stages of the transformation procedure

though the recovery of living transgenic plants.

Moreover, GFP manifestation does not require

the addition of any interfering substances like

exogenous substrates or enzymes. Thus plants can

continue their growth and development, and can

be investigated repeatedly at any growth stage

(Heim et al. 1995; Chiu et al. 1996). This repre-

sents a huge benefit for using GFP as a visual

marker during genetic transformation and regen-

eration of transgenic plants.

Molecular structure, properties and use of GFP

GFP was isolated from the pacific jellyfish

Aequorea victoria and first described by Prasher

et al. (1992). GFP transforms the luminescent

blue light emitted by another hydromedusas

protein, aequorin, into green light. The fluo-

rescing chromophore of GFP is formed by post-

translational modification in which a tripeptide

Ser65-Tyr66-Gly67 is cyclized and later oxi-

dized. This chromophore is in the geometric

centre of the protein to which it is covalently

attached (Shinomura 1979; Cody et al. 1993).

Eleven b sheets form a barrel structure that is

capped with a-helices on the top and bottom of

the protein. a-helices also form a scaffold for

the centrally placed chromophore. GFP repre-

sents a new class of proteins called ‘‘beta can’’.

Wild type GFP is a dimer consisting of two

monomer units, each consisting of 238 amino

acids with a relative molecular weight of

27 kDa. The diameter of the barrels is 30 Å and

length is 40 Å (Yang et al. 1996a). This wild

type GFP emits light after excitation by UV

(k = 360–400 nm) or blue (k = 440–480 nm)

light with emission spectra at k = 509 nm and

with a minor peak at k = 540 nm. GFP does not

require any endogenous cofactors and substrates

or exogenous compounds for fluorescence

manifestation, because the formation of the

chromophore is either an autocatalytic process

or it requires only ubiquitous cellular compo-

nents (Heim et al. 1994; Misteli and Spector

1997). GFP possesses a rigid structure with a

broad stability range in pH 5–11 at tempera-

tures up to 65�C (Tsien 1998). It maintains its

fluorescence even in the presence of strong
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denaturing agents such as 6 M guanidine HCl,

8 M urea or 1% sodium dodecyl sulphate (Yang

et al. 1996a).

Due to its favourable features, GFP rapidly

became a popular tool in various applications in

biology research. During the last decade, it has

been introduced into a wide range of organisms,

including bacteria, yeasts (Morschhäuser et al.

1998), nematodes (Chalfie et al. 1994), insects

(Wang and Hazelrigg 1994), fish (Kinoshita 2004),

mammals (Zolotukhin et al. 1996) and plants

(Chiu et al. 1996). Its suitability for plant trans-

formation was first demonstrated by Niedz et al.

(1995), who successfully inserted wild type GFP

into sweet orange (Citrus sinensis) protoplasts.

Transformation of other plant species soon fol-

lowed, but complications with low expression and

quenching of fluorescence occurred (Hu and

Cheng 1995). Detail sequence analysis performed

by Haseloff et al. (1997) revealed the existence of

a cryptic intron in the wild type GFP gene se-

quence. Its presence resulted in aberrant splicing

between nucleotides 380–463 during processing in

plant cells and finally the loss of the 84-nucleotide

region. A new variant, denoted mGFP4, was de-

rived by altered codon usage, maintaining the

same spectral characteristics as wild type GFP,

but resulting in enhanced protein fluorescence

(Haseloff et al. 1997). Subsequently, many other

GFP variants have been developed, differing in

their spectral characteristics, fluorescence inten-

sity or cell targets, e.g. nucleus, endoplasmic

reticulum, plastids (reviewed by Stewart 2001).

Different colour GFP variants offer simultaneous

tracking and study of various biological events

(Baumann et al. 1998; Haseloff 1999). GFP has

been used for various purposes in plant research,

e.g. for the study of the expression patterns of

promoters (Sheen et al. 1995; Nagatani et al.

1997), protein tagging (Chytilova et al. 1999;

Shiina et al. 2000), disease tracking (Itaya et al.

1997), developmental studies (Misteli and Spector

1997), expression studies and ecological moni-

toring of transgene spread (Halfhill et al. 2001).

GFP is being increasingly used for various pur-

poses associated with the transformation of plants

(Baranski et al. 2006; Yong et al. 2006). Nowa-

days, many GFP homologues originating from

various organisms are available, allowing for

broad range of use in biology (Chudakov et al.

2005) (Table 1).

Although some concerns about the possible

toxicity of GFP to plants were raised, these have

not been confirmed (reviewed by Stewart 2001).

GFP did not appear to have any adverse effects

on plant growth, development and fertility

(Maximova et al. 1998; Ghorbel et al. 1999;

Harper et al. 1999; Jordan 2000; Kaeppler et al.

2000; Murray et al. 2004). Moreover GFP has

been found to be non-toxic to rats when ingested

in purified form or in transgenic plants (Richards

et al. 2003a).

GFP as a tool for evaluation of transformation

parameters

Although many different approaches to plant

transformation are available, most of them in-

volve the insertion of exogenous DNA into plant

nucleus via Agrobacterium-mediated transfer

(Chilton et al. 1977) or particle bombardment

(Klein et al. 1987). Transformation methods dif-

fer in their suitability for various purposes and

plant species (Finer et al. 1999; Repellin et al.

2001), DNA integration patterns (Christou 1995;

Birch 1997; Christou 1997) and their efficiency

(Snape 1998). It has been shown by many authors

that the development of any of transformation

procedures may be much faster and more efficient

if proper signal gene(s) are used throughout the

study (Birch 1997; Baranski et al. 2006).

Compared to other signal genes, GFP has an

advantage of wide range of applications covering

whole areas of transformation and regeneration

procedures. The transformation events, formation

of calli followed by the emergence of fluorescing

shoots can all be observed sequentially in each

step of transformation and during different pha-

ses of development by fluorescence microscopy.

GFP-expressing cells and tissues can easily be

distinguished from untransformed ones, without

destroying the studied material (Kamaté et al.

2000). The ratio between fluorescing and non-

fluorescing cells, shoots and various organs as a

measure of transformation efficiency has been

successfully used to improve the various stages

and procedures in transformation protocols.
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Steps, such as the selection of the most suitable

Agrobacterium strain for transient and stable

expression studies (Galperin et al. 2003; Tang and

Newton 2005), determination of the suitable

acetosyringone concentration in co-cultivation

medium (Jeoung et al. 2002; Tang and Newton

2005; Wang and Ge 2005), or the optimisation of

other various pre-cultivation, co-cultivation

(Zhou et al. 2004) and post-transformation steps

(Eady et al. 2000; Cardoza and Stewart 2003),

including e. g. the effect of the antibiotic treat-

ment on explant viability, were critically assessed

using the GFP marker (Tang and Newton 2005).

Based on differences in GFP fluorescence, the

effect of desiccation of co-cultivated explants on

efficacy of transformation has also been analysed

(Polin et al. 2006). For example, Baranski et al.

(2006) successfully employed the GFP fluores-

cence for critical assessment of the whole trans-

formation procedure of the Agrobacterium

rhizogenes-mediated transformation of carrot.

Based on the green fluorescence intensity they

selected the most virulent Agrobacterium strain,

effective acetosyringone concentration and the

most suitable carrot genotype for transformation.

Moreover, they were able to assess other param-

eters, such as the effect of delayed inoculation on

the number of adventitious roots production.

In order to achieve higher efficacy of direct

transformation, the gfp expression has been suc-

cessfully used as an efficient tool for evaluation

and subsequent modification of various parame-

ters and procedures associated with particle

bombardment transformation, such as the selec-

tion of appropriate tissue to be bombarded

(Huber et al. 2002; Tee et al. 2003), modification

of gene gun settings (Richards et al. 2001), opti-

misation of bombardment parameters (Jordan

2000), and evaluation of various promoters (Cho

et al. 2002; Tee et al. 2003).

Monitoring the gfp expression in primary
transformed tissues

At the beginning of the tissue transformation the

GFP fluorescence is usually visible in the cuts or

other wounded sectors (Zhou et al. 2004), but

sometimes it can be confused with a false

autofluorescence of wounded tissues (Molinier

et al. 2000). For example, high levels of back-

ground green fluorescence were observed in both,

untransformed (control) and transformed flax

hypocotyls. This precluded their use in GFP

studies and therefore different plant organs were

chosen for this purpose. Moreover, in some cases,

transformed tissue could possess so strong auto-

fluorescence, that green fluorescence could not be

easily distinguished (Hraška and Rakouský 2005).

Low levels of background fluorescence of var-

ious compounds in intact, wounded and untrans-

formed tissues and/or in Agrobacterium strains do

not usually impede the successful detection of

GFP fluorescence and can be restricted by

implementation of suitable filter systems (Max-

imova et al. 1998; Elliott et al. 1999).

A strong GFP fluorescence signal is usually

visible within a few hours after co-cultivation,

indicating high levels of transient gfp expression,

which usually decrease within a few days (Elliott

et al. 1999; Mercuri et al. 2001; Jeoung et al 2002;

Pishak et al. 2003). This has also been reported if

other marker genes, (e.g. GUS) were used

(Rakouský et al. 1997). Detailed study of gfp

transient expression in transformed apple leaf

explants showed an increase in GFP fluorescence

after 9 days of bacterial infection, followed by

decrease and stabilization of fluorescence be-

tween 11th and 15th day. This was most probably

the result of degradation of non-integrated

T-DNA or gene silencing of integrated T-DNA.

The fluorescence increased at 15 days after

transformation, indicating growth of stably

transformed cells and transgenic calli formation.

Another observed event was the high number of

fluorescing cells associated with the cut vascular

tissues. This was explained as being due to a

higher cell number and density in vascular tissue

or due to vascular tissues being more susceptible

to Agrobacterium infection (Maximova et al.

1998).

The level of GFP fluorescence differs depend-

ing on target genotype and tissue, gfp variant and

the promoter used. For example, if barley

immature embryos were transformed with gfp

gene driven by either rice actin gene (Act1) pro-

moter or endosperm-specific hordein promoter,

they exhibited stronger transient gfp expression

Plant Cell Tiss Organ Cult (2006) 86:303–318 307
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when driven by Act1 promoter than by the second

one. On the other hand, endosperm-specific-

hordein-promoter-driven gfp possesses more sta-

ble expression in T1 progeny than Act1 driven gfp

(Cho et al. 2002).

Following the transformation and subsequent

regeneration, only a small number of fluorescing

foci stay fluorescent for periods, long enough to

indicate stable genetic transformation. This event

has been reported for many plant species such as

wheat (Jordan 2000), barley (Ahlandsberg et al.

1999; Carlson et al. 2001), oat (Cho et al. 2003),

soybean (Ponappa et al. 1999), papaya (Zhu et al.

2004), Dendrobium orchid (Tee et al. 2003) and

tobacco (Li and Yang 2000). No correlation be-

tween the level of transient expression and the

subsequent level of stable transformation has

been observed (Huber et al. 2002).

Monitoring of the gfp expression in trans-

formed tissue can be used to improve the selec-

tion efficiency during the subsequent plant

regeneration. For example, if the GFP fluores-

cence was observed during the regeneration of

explants cultivated on media supplemented with

hygromycin as a selective agent, it resulted in

stringent, 4.5% transformation efficiency of red

fescue and 82% regenerability, giving an effective

transformation frequency 3.7% (Cho et al. 2000).

The following example presents quite a different

story: monitoring of green fluorescence was used

as a tool for critical comparison of the efficacy of

two strategies for rhododendron transformation,

Agrobacterium-mediated and direct transforma-

tion. Successful Agrobacterium-mediated trans-

formation of Rhododendron was previously

reported by many authors (Ueno et al. 1996;

Pavingerová et al. 1997; Tripepi et al. 1999).

Knapp et al. (2001) reported a surprisingly low

transformation efficacy (0.2%) after using the

particle bombardment of rhododendron leaves as

compared with the Agrobacterium-mediated

transformation efficacy of 5% reported by Ueno

et al. (1996). Based on these findings some pos-

sible reasons such as the difficulties of penetration

of hard and waxy leave cells by gold particles, cell

death caused by wounding by gold particles or

degradation of naked DNA, were hypothesised

and subsequently the transformation protocol was

refined (Table 2).

GFP manifestation in regenerating shoots and

mature plants

Following the recovery of a new transgenic plant,

GFP fluorescence is usually visible in new

emerging shoots and young tissues or organs,

whereas it declines to give a weak signal in older

ones (Kamaté et al. 2000; Tamura et al. 2003;

Zhou et al. 2004). On the other hand, the vari-

ability in green fluorescence in early transforma-

tion stages was reported by some authors (Eady

et al. 2000; Taniguchi et al. 2005). During sub-

sequent regeneration the fluorescence normally

declines to the extent that it is not visible in older

tissues or organs. Weak or no fluorescence has

normally been observed in mature leaves (Ka-

maté et al. 2000; Cho and Widholm 2002; Cui

et al. 2003; Zhou et al. 2004; Taniguchi et al.

2005), with the occasional occurrence of small

fluorescing regions in some cells (Eady et al.

2000) or organs, e.g. trichomes (Mercuri et al.

2001; Han et al. 2005) or stomatal guard cells

(Kim et al. 2004). On the other hand, GFP fluo-

rescence was normally visible in inflorescences,

petals, stamens and pistils (Cui et al. 2003; Zhou

et al. 2004), roots (Elliot et al. 1999; Zhou et al.

2004), whole flowers, plantlets and seedlings

(Kamaté et al. 2000; Zhou et al. 2004), suggesting

that the reason for low levels of GFP fluorescence

in older leaves is associated with the increasing

content of chlorophyll, which possess strong red

autofluorescence, or other flourescing com-

pounds.

Lowering of overall gfp expression level during

the growth and development of organs may not

be the sole reason for diminishing of fluorescence.

Some authors studied this event in a more de-

tailed way. For instance, Zhou et al. (2004) also

reported high GFP fluorescence in young Medi-

cago truncatula, var. A17 leaves and lowering of

the fluorescence in older leaves. Based on it they

decided to study mRNA levels in leaves of dif-

ferent age. Semi-quantitative RT-PCR showed

similar RNA transcript spectra in all samples,

indicating that the lack of expression is not the

reason. An important fact is that, for many stud-

ies gfp driven by constitutive promoters such as

CaMV 35S or Act1 were mainly used, and

although their constitutive features in transgenic
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plants have been reported (Benfey et al. 1989;

Battraw and Hall 1990), recent studies revealed

that some differences in expression can occur

(Williamson et al. 1989; Malik et al. 2002; Sun-

ilkumar et al. 2002).

Therefore, some spatial or other fluctuations

are possible. Such presumption was confirmed by

Zhou et al. (2004), who reported different gfp

expression patterns in Medicago truncatula plants.

It is not clear whether an aberrant activity of

CaMV 35S promoter is the reason for fluores-

cence quenching, and/or production of a

quenching substance such as protease could also

be involved (Zhou et al. 2004). Finally, the

expression of gfp might be influenced by the

positional effect of inserted transgenes or by co-

suppression due to the higher transgene copy

number (Tamura et al. 2003).

Instrumentation and approaches for GFP

visualization, occurrence of interfering factors
and diminishing of green fluorescence

The fluorescence properties of GFP allow for

detection of gene expression in whole living

plants with some simple UV lamp or more precise

visualization of various events in living cells using

fluorescence microscopy (Haseloff 1999).

Various observation systems are being used to

study the GFP fluorescence. These usually consist

of an excitation source, detection or observation

device and usually appropriate filter sets. Previous

investigations of GFP fluorescence mostly utilised

high-power microscopes, but recent studies usu-

ally found that low-power microscopes and vari-

ous hand-held UV or blue light sources could be

sufficient too (Elliot et al. 1999; Li et al. 2001; Cui

et al. 2003). Some instruments, because they ex-

hibit a wide range of broad-wavelengths and wide

light-diffusion angles, and therefore possess only

limited energy in the wavelengths required for

GFP excitation, can be used in situations of high

gfp expression levels only (Vain et al. 1998). In

addition, various confocal laser scanning micro-

scopes are used for more detailed studies, e.g. of

the precise sub-cellular GFP localization, allowing

for the reconstruction for three-dimensional

structures (Haseloff 1999; Belluci et al. 2003;T
a
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Pérez-Clemente et al. 2004). The use of the

appropriate observation and excitation system is a

prerequisite for successful GFP study. For exam-

ple, Ponappa et al. (1999) reported weaker fluo-

rescent signals after excitation of soybean

embryogenic cultures when 50 W mercury lamp

was used instead of stronger 100 W source.

Intact plant tissue represents a complicated

subject for common fluorescence microscopy.

Deep layers of highly refractile walls and aqueous

cytosol coupled with the occurrence of various

autofluorescence and light scattering compounds

also make confocal microscopy a difficult mission.

To circumvent these obstacles, fixing and clarifi-

cation of studied samples in a high refractive index

medium (1) or the use of suitable optic set (2) is

recommended (Haseloff 1999). Nevertheles, in the

case of Arabidopsis wholemounts, the first ap-

proach was associated with the loss of GFP fluo-

rescence (Haseloff and Amos 1995). It should be

noted in this context that direct visualization of

GFP fluorescence does not require any fixation,

staining or addition of some substrates, and allows

for study of various events within the living cells

such as cytoplasmatic streaming. Moreover, the

presence of various autofluorescent organelles and

compounds can be employed as a useful counter

staining tool. This can be enhanced by addition of

some exogenous substrates (Haseloff 1999).

On the other hand, loss of, or lack of GFP

fluorescence is not always associated with the

interference of various undesirable signals co-

emitted along with the GFP signal. It can also be

caused by pigment, which is opaque to exciting

UV or blue light and thus negatively affects the

effect of exciting light. Mercuri et al. (2001), who

detected sufficient levels of GFP protein in

transgenic Limonium flowers, failed to detect

macroscopic green fluorescence due to the pres-

ence of various floral pigments. Another cause of

the GFP fluorescence quenching in older leaves

may be a change in cytoplasmic density of cells.

This may explain, why the GFP manifestation is

visible better in young cells and organs, than in

older ones, especially leaves, since the vacuoles

devoid of GFP constitute the largest part of

the cell and finally ‘‘dilute’’ the GFP content

(Maximova et al. 1998; Molinier et al. 2000; Cho

and Widholm 2002). As can be seen from the

above discussion, the quenching of GFP signal in

mature or older transformed tissues and organs

commonly occurs.

However, the most important cause seems to be

the chlorophyll red autofluorescence interfering

with the GFP green fluorescence, which finally

obscures the GFP manifestation, so that it is often

only visible in albino tissues lacking the chloro-

phyll such as roots (Cho et al. 2000; Carlson et al.

2001; Huber et al. 2002). The same observations

were published by many other authors (van der

Geest and Petolino 1998; Vain et al. 1998; Pon-

appa et al. 1999; Kaeppler et al. 2000; Jordan

2000; Cho et al. 2002; Zhou et al. 2005), suggest-

ing that the chlorophyll autofluorescence pre-

cludes the GFP visualization in tissues with high

chlorophyll content. In some cases the GFP fluo-

rescence is visible through the chlorophyll back-

ground (Goldman et al. 2003). This can be

effectively enhanced by using appropriate filter

sets cutting off the undesirable autofluorescence

(Ahlandsberg et al. 1999; Jordan 2000; Kamaté

et al. 2000; Molinier et al. 2000; Richards et al.

2001; Taniguchi et al. 2005). A brief list of various

observation devices coupled with suitable filters is

given in Table 3. A different approach was re-

ported by Wahlroos et al. (2003), who used laser-

scanning microscopy for study of putative Brassica

rapa plants, which possess a strong background

fluorescence after the illumination with a hand-

held long-wave UV lamp to confirm the transgene

expression and transgenic status of plants.

Other possible reasons for the poor expression

are developmental or cell specific expression of

35S promoter (Ponappa et al. 1999; Zhou et al.

2004), dilution of GFP content in dividing and

growing cells (Zhou et al. 2004) or gene silencing

(Voinnet and Baulcombe 1997).

Attempts to use GFP as an alternative selection

tool in plant transformations

The early visualization and identification of

transgenic events using GFP fluorescence allows

the regeneration of transgenic cells without any

selective (either negative or positive) pressure.

GFP fluorescence can serve as a tool for

rapid discrimination of transformed and non-
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transformed cells, calli and shoots and hence help

to eliminate untransformed cells and shoots from

further cultivation. Unfortunately, this approach

depends on high transformation frequencies,

resulting in the development of sufficiently large

clusters of cells or organs that can be relatively

easily handled. This requires continuous sup-

pression or removal of untransformed cells, fol-

lowed by sub-culturing of transformed cells. Such

approaches have been found to be labour and

time consuming (Ghorbel et al. 1999). Elliott

et al. (1999) tested the use of visual selection

based on GFP fluorescence in comparison with

conventional antibiotic selection. They bom-

barded sugarcane calli and isolated regenerating

green fluorescent calli. However, it was difficult to

maintain preferential growth of transformed cells,

despite the fact that non-fluorescing cells were

removed. Furthermore the sectioning of calli was

reported to alter the direction rate of growth

within individual clusters of cells. After 12 weeks

they obtained 2.4 ± 0.9 (SE) green fluorescent

calli that reached at least 5 mm in diameter. This

was less than average callus formation on genet-

icin (29.6 ± 1.6). They suggested that the con-

ventional selection is more suitable for routine

production of transgenic plants. Quite similar

conclusions were reported by Jordan (2000), who

cultivated bombarded wheat embryos for the first

4 weeks on a medium without antibiotics, but

additional application of antibiotics led to strin-

gent selection of transgenic plants among regen-

erants. On the other hand, Baranski et al. (2006)

were more successful when they screened

A. rhizogenes-transformed adventitious roots

emerged from co-cultivated carrot root discs for

GFP fluorescence. Roots positive for green fluo-

rescence were selected for further regeneration

and it has been shown that such approach can be

an efficient method for the production of trans-

genic carrot. Although possibilities for selection

exclusively based on a screening for GFP fluo-

rescence are limited, due to difficulties in identi-

fication of fluorescent tissues and plants among

large masses of cells or shoots, some recent re-

ports have confirmed that such an approach is

promising for transformation of some objects, and

represents a new alternative to current selection

schemes (Jordan 2000; Baranski et al. 2006).

Conclusion remarks and further prospects

Green fluorescent protein offers a wide range of

applications in plant biology (Leffel et al. 1997;

Stewart 2001). Although the study of green fluo-

rescence in plants embodies its own obstacles, it

possesses many advantages compared with other

marker genes. Monitoring of GFP green fluores-

cence allows for the rapid non-invasive identifi-

cation of transformed cells and, therefore, early

elimination of non-transformed cells. It has been

shown in many cases that GFP fluorescence has

been successfully used for the critical evaluation

of various transformation parameters resulting

in subsequent modifications of transformation

protocols. Therefore, plant transformation could

be faster and less labour intensive and thus

cheaper. Moreover, it may help to identify and

therefore to reduce negative events associated

with plant transformation (e.g. gene silencing) and

to facilitate the successful recovery of transgenic

plant tissues, which stably express the gene of

interest (El-Shemy et al. 2004). Additionally,

various attempts at quantitative or semi-quanti-

tative detection of GFP fluorescence have been

reported recently (Millwood et al. 2003; Hraška

et al. 2005), allowing for the early identification of

homozygotes (Molinier et al. 2000) or estimation

of recombinant protein content in transgenic

plants (Halfhill et al. 2003; Richards et al. 2003a,

b). Such new methods represent an additional

asset of GFP use to plant transgenesis.
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