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Introduction

In recent years, accumulating studies have indicated a close 
link between genetic alterations and venous thromboembo-
lism (VTE) occurrence in patients with malignant tumors 
[1–3]. Our team also explored the relationship between 
driver oncogene alterations and VTE event occurrence in 
non-small cell lung cancer (NSCLC) patients through a pro-
spective cohort study. The results showed that the anaplastic 
lymphoma kinase (ALK) gene rearrangement in NSCLC 
conferred a significant increase in VTE risk [4, 5], which 
was consistent with previous retrospective studies. Sequen-
tially, it was also verified again by professor Hanny et al. 
in a cohort study [6]. However, little is known about the 
specific mechanism of ALK rearrangement in NSCLC cells 
regulating VTE occurrence.
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Abstract
Background  Accumulating evidence links the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lym-
phoma kinase (ALK) rearrangement to venous thromboembolism (VTE) in non-small cell lung cancer (NSCLC) patients. 
However, the corresponding mechanisms remain unclear.
Method  High-throughput sequencing analysis of H3122 human ALK-positive NSCLC cells treated with ALK inhibitor/ 
dimethyl sulfoxide (DMSO) was performed to identify coagulation-associated differential genes between EML4-ALK 
fusion protein inhibited cells and control cells. Sequentially, we confirmed its expression in NSCLC patients’ tissues and in 
the plasma of a subcutaneous xenograft mouse model. An inferior vena cava (IVC) ligation model was used to assess clot 
formation potential. Additionally, pathways involved in tissue factor (TF) regulation were explored in ALK-positive cell 
lines H3122 and H2228. Statistical significance was determined by Student t-test and one-way ANOVA using SPSS.
Results  Sequencing analysis identified a significant downregulation of TF after inhibiting EML4-ALK fusion protein activ-
ity in H3122 cells. In clinical NSCLC cases, TF expression was increased especially in ALK-positive NSCLC tissues. 
Meanwhile, H3122 and H2228 with high TF expression exhibited shorter plasma clotting time and higher TF activity versus 
ALK-negative H1299 and A549 in cell culture supernatant. Mice bearing H2228 tumor showed a higher concentration of 
tumor-derived TF and TF activity in plasma and the highest adjusted IVC clot weights. Limiting EML4-ALK protein phos-
phorylation downregulated extracellular regulated protein kinases 1/2 (ERK1/2)-activating the protein-1(AP-1) signaling 
pathway and thus attenuated TF expression.
Conclusion  EML4-ALK fusion protein may enhance venous thrombogenicity by regulating coagulation factor TF expres-
sion. There was potential involvement of the pERK1/2-AP-1 pathway in this process.
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ALK rearrangement is the first somatic oncogene trans-
location discovered in lung cancer. In 2007, a Japanese 
team identified a fusion gene caused by inversion within 
chromosome 2p, comprising portions of the echinoderm 
microtubule-associated protein-like 4 (EML4) gene located 
in p21 and the ALK gene located in p23 in NSCLC cells 
[7, 8]. Basically, the full-length EML4 protein consists of 
the N-terminal coiled-coil trimerization domain and the 
C-terminal of the ALK protein, which contains the kinase 
domain. These domains are able to form a dimer without 
ligand binding, leading to activation of the ALK protein [9, 
10]. And EML4-ALK fusion seems to be unique to NSCLC 
[11, 12]. Sequentially, a transgenic mouse model specifi-
cally expressing EML4-ALK in lung alveolar epithelial 
cells has been established to confirm its potent oncogenic 
activity [13]. Upon transcription of EML4-ALK, Mitogen-
Activated Protein Kinase (MAPK), Janus Kinase with 
Signal Transducer And Activator Of Transcription (JAK-
STAT) and Phosphoinositide-3-Kinase with VAkt Murine 
Thymoma Viral Oncogene Homolog (PI3K-AKT) are con-
stitutively activated. There is evidence that these signaling 
pathways enhance proliferation, survival and angiogenesis 
in cancer cells [9, 14].

Besides, the corresponding targeted small molecule tyro-
sine kinase inhibitors (TKIs) have also led to unprecedented 
survival benefits in NSCLC patients with ALK rearrange-
ment [15, 16]. In 2011, the first-generation ALK-TKI, crizo-
tinib was approved for treatment of advanced ALK-positive 
NSCLC, which is a small molecule ATP-competitive ALK 
inhibitor [17]. In order to overcome crizotinib resistance, 
the second-generation ALK-TKIs, including ceritinib, alec-
tinib and brigatinib were developed [18]. ALK TKIs have 
the potential to inhibit ALK phosphorylation and down-
stream signalling, leading to cell cycle arrest in the G1-S 
phase and apoptosis of cancer cells [19].

Typically, VTE occurs as a result of blood stasis, endo-
thelial or vessel wall injury, and hypercoagulability. While 
cancer patients’ blood stasis and endothelial injury could 
be shared with non-cancer patients, the hypercoagulability 
driven by malignancy-specific pathways is probably unique 
to cancer. Previous studies have reported various mecha-
nisms of hypercoagulation in malignancy, including indi-
rect regulatory mechanisms such as expressing proteins by 
tumor cells that could alter circulating cells [20–23], and 
direct regulatory mechanisms such as expressing procoagu-
lant proteins (TF, podoplanin (PDPN)) which directly acti-
vate the coagulation cascade/platelets [24–27].

Whether EML4-ALK fusion protein in NSCLC cells also 
enhances venous thrombogenicity through the mechanisms 
mentioned above is still unclear. We performed the follow-
ing experiments to address this issue further and explore 

possible new targets for anticoagulation therapy in EML4-
ALK-rearranged NSCLC patients.

Materials and methods

Cells and reagents

The ALK-positive human NSCLC cell lines H3122 and 
H2228 (purchased from Jiangsu KeyGEN BioTECH Co., 
Ltd, Jiangsu, China) and ALK-negative human NSCLC 
cell lines H1299 and A549 (purchased from FuHeng Biol-
ogy, Shanghai, China) were maintained under a humidified 
atmosphere of 5% CO2 at 37  °C in RPMI medium 1640 
supplemented with 10% fetal bovine serum, penicillin (100 
U/ml) and streptomycin (0.1  mg/ml). Alectinib (catalog 
#S2762, Selleckchem, Houston, USA), SCH772984 (cata-
log #S7101, Selleckchem, Houston, USA), and T-5224 
(catalog #GC16165, GlpBio, Montclair, USA) were each 
dissolved in dimethyl sulfoxide (DMSO). All reagents were 
stored at -20 °C or -80 °C.

Western blot analysis

H3122 and H2228 cells were immediately lysed before 
use in RIPA Lysis Buffer (Solarbio, Beijing, China) sup-
plied with protease inhibitor cocktails (KeyGEN BioTECH, 
Jiangsu, China) and phosphatase inhibitor cocktail (Key-
GEN BioTECH, Jiangsu, China). Quantification of protein 
was determined by a Bicinchoninic Acid Assay (Thermo 
Fisher Scientific, Waltham, USA). Equal amounts of pro-
tein were subjected to 10% SDS PAGE and then transferred 
onto PVDF membranes. After incubated in blocking solu-
tion (NCM Biotech, Suzhou, China), specific antibodies for 
phospho-ALK (catalog #3341S, rabbit, 1:500, Cell Signal-
ing, Beverly, USA), ALK (catalog #3633T, rabbit, 1:1000, 
Cell Signaling, Beverly, USA), TF (catalog #228,968, rab-
bit, 1:1000, Abcam, Cambridge, USA), phospho-ERK1/2 
(catalog #4370, rabbit, 1:1000, Cell Signaling, Beverly, 
USA), ERK1/2 (catalog #9102, rabbit, 1:1000, Cell Signal-
ing, Beverly, USA), c-FOS (catalog #2250, rabbit, 1:500, 
Cell Signaling, Beverly, USA) and GAPDH (catalog 
#5174S, rabbit, 1:3000, Cell Signaling, Beverly, USA) were 
used to incubate blots overnight at 4℃, then followed by 
incubating in HRP-conjugated goat anti-rabbit antibody for 
1 h at room temperature and detecting the bands with the 
ECL system (Millipore Sigma).

High-throughput sequencing

High-throughput sequencing was performed to detect dif-
ferent mRNA expressions between H3122 treated with 
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Alectinib (100nmol/L, 6 h) and DMSO. CapitalBio Tech-
nology (Beijing, China) used an Illumina NovaSeq 6000 
sequencer with a pair end 150-bp reading length (Illumina, 
San Diego, USA) to sequence mRNA and performed the 
final data analysis. The screening criteria for differential 
genes were: |log2FC|>=1 and p-Value < = 0.05. Cluster 
software was used to depict a heatmap for gene clustering.

RNA isolation, reverse transcription, and 
quantitative RT-PCR

Total RNA extraction was performed by decomposing cells 
in TRIzol (Tiangen Biotech, Beijing, China). A reverse 
Transcription Kit (Takara Bio, Beijing, China) with random 
primers was used to synthesize cDNA. Quantitative real-time 
PCR (RT-PCR) analysis was performed by SYBR Green I 
master (Roche, Basel, Switzerland) and LightCycler480 II 
(Roche, Basel, Switzerland). The primer sequences were 
listed as follows: Human F3: forward primer 5’-GGC-
GCTTCAGGCACTACAAA-3’ and reverse primer 5’- 
CGTGCCAAGTACGTCTGCTT-3’; Human cfos: forward 
primer 5’- CACTCCAAGCGGAGACAGAC-3’ and reverse 
primer 5’- AGGTCATCAGGGATCTTGCAG-3’; Human 
HPRT-1: forward primer 5’-CCTGGCGTCGTGATTAGT-
GAT-3’ and reverse primer 5’- AGACGTTCAGTCCT-
GTCCATAA-3’. The results were calculated using the 
2−ΔΔCT method, and HPRT-1 served as a reference gene. 
Each sample was assayed at least in triplicate.

Immunohistochemical analysis of human specimens

Human NSCLC tissues were obtained from patients at the 
Beijing Chao-Yang Hospital, Capital Medical University, 
with the approval of the institutional review board. For 
all patients involved in this study, amplification refractory 
mutation system polymerase chain reaction (ARMS-PCR) 
and Ventana immunohistochemistry were performed to 
detect ALK rearrangement. And the patients with ALK-rear-
rangement were confirmed by fluorescence in situ hybrid-
ization (FISH). The patients’ demographic and clinical data 

are presented in Table 1. The cancer tissues were formalin-
fixed and paraffin-embedded. Anti-Tissue Factor antibody 
(catalog #228,968, 1:500; Abcam, Cambridge, USA) was 
used to detect TF. Images were obtained using a Leica TCS 
SP5 (Wetzlar, Hesse, Germany), and immunohistochemi-
cal staining of TF was determined using Images-Pro Plus 
version 6.0 software (IPP6) to assess the integrated optical 
density (IOD) and mean density of the immunohistochemi-
cal staining section. Finally, the mean IOD and density of 
cancer tissue immunohistochemical staining from five ran-
domly selected fields (magnification, ×400) were recorded 
and analyzed.

Flow cytometry and immunofluorescence

Cells (H3122, H2228, H1299 and A549) were surface-
stained with BD Pharmingen™ PE Mouse anti-human 
CD142 (catalog #550,312, BD Bioscience, Franklin Lakes, 
USA) for 20 min at 4 °C and washed with PBS. Then cells 
were resuspended in a cell buffer solution at a concentration 
of 1 × 106/mL for flow cytometric analysis (FACSCanto II; 
BD Bioscience) and analyzed using BD FCSDiva Software 
and FCS Express 5 software (De Novo Software, Los Ange-
les, USA).

H3122 cells in 6 wells were fixed in 4% paraformal-
dehyde and incubated with immunofluorescence mAbs 
against TF (Affinity Biosciences, Cincinnati, USA) over-
night at 4 ℃, then followed by incubating in Alexa Fluor® 
488-labeled goat anti-rabbit IgG for 1 h at room temperature 
and DAPI solution for 7 min. Images were obtained using a 
Leica TCS SP5 (Wetzlar, Hesse, Germany).

Plasma clotting assay

Plasma clotting assay was performed to measure the plasma 
clotting time induced by lung cancer cells supernatant. Lung 
cancer cells (1 × 106) were cultured in a complete medium 
for 24  h. Then, the cell culture supernatant was collected 
in an Eppendorf and centrifuged (3000 rpm for 10 min at 
4℃) to remove cell debris. 200 ul of cell culture superna-
tant and 200 ul of 25 mM/L CaCl2 were added to 200 ul of 
citrated human plasma (healthy volunteers) at 37℃ to initi-
ate the plasma clotting process. Samples contained both TF, 
pro-coagulants-bearing extracellular vesicles and tumor-
secreted soluble pro-coagulants. Clotting time was recorded 
visually by noting when the liquid formed a semisolid gel 
that did not flow during tube turning over [24].

Mouse model

The animal experiments were approved by the Institutional 
Animal Care and Use Committee of the Beijing Chaoyang 

Table 1  Information of patients for immunohistochemistry
Characters Groups ALK posi-

tive NSCLC
Fraction

ALK 
negative 
NSCLC
Fraction

Age(y) < 60 6/10 2/17
≥ 60 4/10 15/17

Sex Male 4/10 5/17
Female 6/10 12/17

Tumor 
histology

Adenocarcinoma 10/10 17/17
Non-adenocarcinoma 0/10 0/17

Stage I-IIIA 10/10 17/17
IIIB-IV 0/10 0/17
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Results

Targeting phosphorylated EML4-ALK fusion protein 
activity inhibits coagulation factor TF expression

The schematic figure of the study is shown in Fig. 1.A. Treat-
ing H3122 cells, a validated EML4-ALK-positive NSCLC 
cell line, with Alectinib (100nmol/L, 6 h) [30]. Alectinib is a 
highly selective ALK inhibitor that showed strong antitumor 
activity against cancer cells which could achieve target inhi-
bition of EML4-ALK fusion protein autophosphorylation, 
and substantially change the mRNA expression profile com-
pared with DMSO in high-throughput mRNA sequencing 
analysis (Fig. 1.B). Besides, among the genes involved in 
aforementioned tumor-related coagulation [23, 31, 32], F3 
gene was significantly downregulated in Alectinib-treated 
group (logFC =-1.54, P < 0.001) (Fig.  1.B). Subsequen-
tially, using RT-PCR and immunoblotting, we confirmed 
that F3 mRNA expression and TF protein were much lower 
in H3122 cells after being treated with Alectinib (Fig. 1.C 
and Fig. 1.D).

To further investigate the expression and localization of 
TF in H3122 cells, immunofluorescence and flow cytom-
etry were performed, and the results indicated that TF was 
mainly presented in the cell membrane (Fig. 1.E), and the 
mean fluorescence intensity (MFI) of anti-TF antibody in 
H3122 cells was also significantly decreased in Alectinib-
treated group (P = 0.038) (Fig. 1.F and Fig. 1.G).

ALK-positive lung cancer cell with high TF 
expression enhances clot formation

Given the effect of Alectinib on regulating TF expres-
sion, we further sought to explore the expression of TF in 
ALK-positive and ALK-negative NSCLC patients and cell 
lines. First, we determined the expression of TF in NSCLC 
patients, and the characteristics of the patients were listed 
in Table  1. Ten ALK-positive NSCLC patients and 17 
ALK-negative NSCLC patients were included, and the 
immunohistochemical staining results showed that TF was 
predominantly expressed at the tumor site in ALK-positive 
NSCLC (Fig. 2.A). Furthermore, quantifying the immuno-
chemical staining results with IPP6, we also observed that 
ALK-positive NSCLC presented a higher IOD value than 
ALK-negative NSCLC (Fig.  2.B, P = 0.001), which was 
proportional to the total amount of expression of TF. How-
ever, there was no significant difference in the mean optical 
density value (Fig. 2.B, P = 0.096), which reflects the inten-
sity of TF protein.

Next, TF expression was evaluated in ALK-positive 
NSCLC lung cancer cell lines (H3122 and H2228) and 
ALK-negative NSCLC lung cancer cell lines (H1299 and 

Hospital, the Capital Medical University. Four-week old 
male athymic nude mice (BALB/c Nude, Vital River Lab-
oratory Animal Technology, Beijing, China) were used 
to prepare the xenograft model. Human lung cancer cells 
(H2228, H1299) at a concentration of 1 × 107 cells in 200uL 
of suspension were injected using 1 ml syringe into the sub-
cutaneous tissue on the backs of mice (n = 6). And the con-
trol group was injected with PBS (n = 6). The tumor size 
was measured weekly until the volume was 200mm3 (about 
3–4 weeks). When the tumor volume reached 200mm3, IVC 
model was developed. The inferior vena cava (IVC) ligation 
model was performed as described in the previous study [28, 
29]. IVC was separated from the aorta after the laparotomy, 
and was ligated distal to the renal veins by using a 6 − 0 silk 
suture. To induce thrombus formation within the IVC, the 
tributaries surrounding the IVC were also ligated to create a 
total stasis environment. And 48 h later, clots were collected 
from the IVC and weighed. The clot weight was adjusted by 
body weight (clot weight/body weight).

Blood collected from the orbital sinus of mice was pipet-
ted into sodium citrate tubes and placed in a centrifuge at 
3000 rpm for 10 min at 4℃ to separate the plasma. Blood 
samples were not performed to remove pro-coagulants-
bearing extracellular vesicles and tumor-secreted soluble 
pro-coagulants.

The experiments above were repeated three times.

TF activity assay

TF procoagulant activity was assessed using a Tissue Fac-
tor Chromogenic Activity Kit (catalog #CT1002b, ASSAY-
PRO, Missouri, USA) as the manufacturer’s protocol.

Statistics

Summary statistics are presented as mean ± SEM (standard 
error of the mean). A Student t-test and one-way ANOVA 
followed by LSD or Tamhane test were performed to ana-
lyze statistical comparisons between groups. IBM SPSS 
Statistics 22 software (IBM SPSS Statistics, IBM, Chi-
cago, IL, USA) was used for data analysis and Graph Pad 
Prism 7 software (San Diego, CA, United States) was used 
for graphing. Statistical significance was assessed at the P 
<0.05 level.
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Next, the expression of tumor-derived TF in circula-
tion was further examined. As soon as the xenograft model 
tumor volume reached 200 mm3, plasma was collected 
for ELISA detection of tumor-derived TF concentration. 
Meanwhile, TF activity (tumor-derived and mice-derived) 
in the plasma of mice bearing H2228 is highest (H2228 
vs. H1299, P = 0.021; H2228 vs. blank control, P = 0.006), 
followed by H1299 and blank control (H1299 vs. blank 
control, P < 0.001) (Fig.  2.F). After that, the IVC ligation 
model was also developed on blank mice and mice bearing 
H1299 and H2228 tumors. The results indicated that clot 
weight increased in mice with NSCLC when compared to 
blank mice after adjusting body weight (clot weight/body 
weight) (blank control vs. H1299, P = 0.025; blank con-
trol vs. H2228, P < 0.001). Also, consistent with the level 
of TF concentration and activity of NSCLC cell lines, the 
clot weight in mice bearing H2228 tumors was significantly 
higher than those bearing H1299 tumors (H2228 vs. H1299, 
P = 0.005) (Fig. 2G).

A549). RT-PCR showed that ALK-positive NSCLC cell 
lines exhibited a higher level of F3 mRNA expression, espe-
cially the H2228 cell line, whose expression level was about 
625-fold higher than that of the H1299 cell line (Fig. 2.C). 
Consistent with the RT-PCR results, flow cytometry also 
confirmed that the H2228 cell line expressed the highest 
TF protein (Fig. 2.D). Similarly, the TF activity of culture 
supernatant obtained from H2228 cultures was the highest 
(79.2 ± 5.0pM), followed by H3122 (22.9 ± 3.5pM), A549 
(12.4 ± 1.1pM), and H1299 (10.5 ± 0.4pM) (Fig.  2.E). In 
addition, we also performed a plasma clotting assay using 
the culture supernatant of each NSCLC cell line to assess 
their prothrombotic potent, as TF in the culture supernatant 
can activate coagulation factors in platelet-poor plasma and 
finally lead to insoluble fibrin formation. Consistent with 
the level of TF expression in NSCLC cell lines, the plasma 
clotting time of culture supernatant obtained from H2228 
cultures was the shortest (45.3 ± 1.9s), followed by H3122 
(121.7 ± 9.6s), A549 (602 ± 2s) and H1299 (621.7 ± 26.3s) 
(Supplementary Fig. 1.A).

Fig. 1  Targeting phosphorylated EML4-ALK fusion protein activity 
inhibits coagulation factor TF expression. (A) Schematic figure of the 
study. (B) Next-generation mRNA sequencing showed Treatment of 
ALK rearrangement human lung cancer cell line H3122 with Alec-
tinib (100nmol/L, 6  h) substantially change the mRNA expression 
profile compared with DMSO-treated (vehicle-treated) H3122 cells; 
Among the genes involved in tumor-related coagulation, F3 gene was 
significantly downregulated in Alectinib-treated group (logFC =-1.54, 
P < 0.001). (C) mRNA expression of F3 gene in H3122 cells treated 

with Alectinib /DMSO was quantified by quantitative RT-PCR (n = 5). 
(D) Western blot of TF in H3122 cells treated with Alectinib /DMSO 
(n = 3). (E) H3122 cells stained with immunofluorescent anti-TF mAb 
to identify the localization of TF. (F) Flow cytometric analysis of TF 
expression at H3122 cell surface. (G) The mean fluorescence intensity 
(MFI) of anti-TF antibody in flow cytometry significantly decreased 
in Alectinib-treated group (P = 0.038) (n = 3). Data are presented as 
means ± SEM. *p < 0.05, ***p < 0.001, determined by Student t test
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Besides, the upper regulatory pathway of AP-1 overlapped 
with the downstream pathway of EML4-ALK at the node of 
ERK1/2 [37, 38].

The results verified that cfos gene expression was down-
regulated with F3 in Alectinib-treated H3122 cells through 
RT-PCR (Fig. 3.A, left panel). Further, pERK1/2 and cfos 
protein expression were also decreased in Alectinib-treated 
H3122 using Western Blot (Fig. 3.A, right panel).

Next, we determined TF and cfos expression in H3122 
cells after SCH772984 treatment. SCH772984 is a selec-
tive inhibitor of ERK1/2, which adopts a unique kinase 
binding mode in ERK1/2 [39]. Pretreated H3122 cells with 
SCH772984 (2 μm/L, 24 h) to downregulate ERK1/2 phos-
phorylation, and compared cfos and TF protein expression 

EML4-ALK fusion protein regulates TF expression 
through the pERK1/2-AP-1 pathway in NSCLC cells

The promoter region of the F3 gene contains multiple ele-
ments for diverse transcription factors binding [33], and 
phosphorylated EML4-ALK fusion protein in NSCLC 
cells could activate multiple downstream pathways [15]. 
We further analyzed the results of high-throughput mRNA 
sequencing for transcription factors that may regulate F3 
gene expression and KEGG pathways in which EML4-
ALK fusion protein is involved. The results implied that 
cfos mRNA expression, whose protein product was one of 
the subunits comprising F3 gene transcription factor AP-1 
[34–36], was also down-regulated along with the F3 gene. 

Fig. 2  ALK-positive lung cancer cell with high TF expression 
enhances clot formation. (A) Primary lung cancer tissues obtained 
from ALK positive and ALK negative lung cancer patients. Tissue sec-
tions were stained immunohistochemically with anti-TF mAb. ALK 
positive NSCLC cancer cells express TF protein mainly on the cell 
membrane (upper panel); TF protein were negatively expressed in 
most ALK negative NSCLC cancer cells (lower panel). (B) Quanti-
fying the immunochemical staining results with IPP6. ALK positive 
NSCLC tissues presented higher IOD value (left panel, P = 0.001). 
There was no significant difference in mean optical density value (right 
panel, P = 0.096). (C) The mRNA expression of F3 gene in ALK posi-

tive NSCLC lung cancer cell lines (H3122 and H2228) and negative 
NSCLC lung cancer cell lines (H1299 and A549) was quantified by 
quantitative RT-PCR (n = 3). (D) The expression of TF protein in ALK 
positive and negative NSCLC cell lines was quantified by Flow cytom-
etry analysis. (E) TF activity of culture supernatant obtained from cell 
line cultures. (F) TF activity in plasma of mice bearing NSCLC cell 
lines and blank controls. (G) Clot weight in mice bearing different 
NSCLC cells and blank control after adjusted body weight (each n = 3 
to 6). Data are presented as means ± SEM. *p < 0.05, **p < 0.01, NS, 
no significance, determined by Student t test or one-way ANOVA fol-
lowed by Bonferroni test
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indicated that pERK1/2 and cFOS proteins were decreased 
with TF downregulation (Fig.  4A, middle panel). Also, 
mRNA expression of cFOS and F3 genes was both reduced 
after Alectinib treatment (Fig. 4A, right panel). In addition, 
ERK1/2 and AP-1 inhibitors also reduced the expression of 
TF mRNA and protein in H2228 cells (Fig. 4B and C).

Discussion

In recent decades, an increasing number of studies have 
found that ALK-rearranged NSCLC patients have a higher 
risk of VTE occurrence [41, 42]. Besides, a large propor-
tion of these VTE events are developed in newly diagnosed 

with DMSO control. The results showed that cfos and TF 
proteins were downregulated when ERK1/2 phosphoryla-
tion was inhibited (Fig. 3B). Also, in line with the ERK1/2 
inhibitor, pretreated H3122 cells with T-5224 (400nmol/L, 
24 h), a small molecule selective inhibitor that selectively 
inhibits c-Fos/AP-1 binding to DNA [40], TF expression 
was downregulated compared to DMSO control (Fig. 3C).

After evaluating the mechanism of EML4-ALK regulat-
ing TF through the ERK1/2 /AP-1 axis in H3122 cells, we 
further verified these observations in H2228 cells. When 
H2228 was pretreated with the same concentration of Alec-
tinib, flow cytometry analysis showed that TF expression 
was significantly down-regulated at 18 h and even more evi-
dent at 24 h (Fig. 4.A, left two panels). Western Blot results 

Fig. 3  EML4-ALK fusion protein 
regulates TF expression through 
pERK1/2/AP-1 pathway in 
H3122 cells. (A1) The mRNA 
expression of cfos gene in H3122 
cells treated with Alectinib 
and DMSO was quantified by 
quantitative RT-PCR (n = 6). 
(A2) The expression of pERK1/2 
and cfos protein in H3122 cells 
treated with Alectinib and DMSO 
was quantified by Western Blot 
(n = 3). (B1-3) Pretreating H3122 
cells with ERK1/2 inhibitor 
(SCH772984) downregulated 
ERK1/2 phosphorylation, cfos 
and TF protein expression 
compared with DMSO control 
which identified by Western 
Blot and flow cytometry (n = 3). 
(C1-3) Pretreating H3122 cells 
with AP-1 inhibitor (T-5224) 
also attenuated TF expression 
compared with DMSO control 
which identified by Western Blot 
and flow cytometry (n = 3). Data 
are presented as means ± SEM. 
**p < 0.01, ***p < 0.001, deter-
mined by Student t test
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demonstrated that TF might be the key regulator of throm-
bus formation in EML4-ALK rearranged NSCLC in both in 
vitro and vivo experiments. Meanwhile, we also observed 
in vitro that EML4-ALK fusion protein in NSCLC cells 

NSCLC patients, supporting the underlying cancer-specific 
biology as a causal factor. According to previous clinical 
studies, the association between EML4-ALK rearrangement 
and VTE occurrence is verified. Thus, in this study, we firstly 

Fig. 4  EML4-ALK fusion protein regulates TF expression through 
pERK1/2/AP-1 pathway in H2228 cells. (A1-2) Pretreating H2228 
with the same concentration of Alectinib in H3122. Flow cytometry 
analysis showed that TF expression was significantly down regulated 
at 18 h and even more obvious at 24 h (n = 3). (A3) Western Blot was 
observed decreased pERK1/2 and cFOS along with TF down regula-
tion (n = 3). (A4) F3 gene and cFOS mRNA expression were similarly 
reduced compared with DMSO control which quantified by quanti-

tative RT-PCR (n = 4). (B1-4) Pretreating H2228 cells with ERK1/2 
inhibitor (SCH772984, 2  μm/L)) downregulated ERK1/2 phosphor-
ylation, cfos and TF protein expression compared with DMSO con-
trol both at RNA (n = 6) and protein level (n = 3). (C1-4) Pretreating 
H2228 cells with AP-1 inhibitor (T-5224, 400 μm/L) also attenuated 
TF expression compared with DMSO control both at RNA (n = 6) and 
protein level (n = 3). Data are presented as means ± SEM. **p < 0.01, 
***p < 0.001, determined by Student t test
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These mainly included cancer cells expressing proteins that 
could alter the number of platelets and leukocytes in circu-
lation (such as IL6, MUC1, MUC16, and MUC5AC) [46] 
and the expression of procoagulant proteins such as TF and 
PDPN, which could directly activate the coagulation cas-
cade and upregulation of antifibrinolytic/anticoagulation 
proteins (PAI1 and HPSE) [47–50].

TF protein is a 47  kDa transmembrane protein that is 
highly expressed in many human cancers, including glioma, 
pancreatic, head, neck, lung, cervical, and prostate cancers, 
as well as leukemia [51]. Besides, an alternative spliced (as) 
form of TF that lacks the transmembrane domain can be 
released from cells. But studies about procoagulant activity 
of asTF are inconsistent [52–54]. So, the researches mostly 
focus on the full-length TF (TF). Studies have shown that 
tumor growth and angiogenesis are mediated by TF expres-
sion, and that TF expression correlates directly with onco-
genic status, while circulating TF-positive extracellular 
vesicle level correlates with oncogenic status as well [55]. 
And tumor TF expression level is proven to influence cancer 

enhanced venous thrombogenicity via pERK1/2 mediating 
AP-1-TF signaling. Consequentially, tumor-derived TF in 
the circulation triggered a coagulation cascade (Fig. 5).

This research indicated that the EML4-ALK-pERK1/2-
AP-1-TF axis might be a potential mechanism of VTE in 
ALK-rearranged NSCLC patients. The nodes of this axis 
also play essential roles in cancer initiation and progression 
[43–45], and both of them are therapeutically targetable 
proteins, which implies an important translational potential 
for the treatment of cancer-associated VTE.

Cancer-specific mechanisms of VTE in EML4-ALK 
fusion NSCLC cells

VTE occurrence in malignant patients could be due to mul-
tiple factors, including patient characteristics (like age, sex, 
and co-morbidities), cancer treatment (like chemotherapy, 
radiotherapy, and anti-vascular therapy), and cancer itself. 
Recent studies have discovered various cancer-specific 
mechanisms of VTE in brain, pancreatic, and colon cancer. 

Fig. 5  Summary scheme graphic showing an association between 
EML4-ALK fusion protein mediated cellular pathway and thrombosis. 
Phosphorylated EML4-ALK fusion protein activated downstream the 
ERK1/2 pathway, inducing cFOS expression which was one of subunit 

of transcription factor AP-1. Thus, in turn result in upregulation of TF 
expression. Consequentially, tumor-derived TF in circulation triggered 
coagulation cascade
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above suggest TF as the specific mechanism of EML4-ALK 
fusion in NSCLC-associated VTE.

EML4-ALK-pERK1/2-AP-1-TF axis in EML4-ALK fusion 
NSCLC cells

The EML4-ALK fusion protein is the product of the EML4-
ALK fusion gene caused by chromosome translocation. The 
EML4 locus located in the short arm of chromosome 2 is 
broken, inversed, and fused with the ALK locus located on 
the same chromosome in somatic cells [7]. Thus, the fusion 
protein is composed of the amino-terminal half of EML4 
protein ligating to the intracellular region of the receptor-
type protein tyrosine kinase ALK. This action leads to 
dimerization and autophosphorylation of the ALK kinase 
domain and thus abnormally activates downstream signal-
ing pathways, such as PI3K/AKT, JAK/STAT3, and RAS/
ERK [67, 68], finally acquiring tumor-formation activity 
[13].

The regulatory mechanism of TF expression has been 
reported in many cancer models containing brain, breast, 
and colorectal cancer [2, 24, 69–72]. These studies revealed 
that multiple signaling pathways, transcription factors, and 
microRNAs, such as the Raf-MEK-ERK signaling pathway, 
transcription factor AP-1, and nuclear factor κB (NF-κB) 
could regulate TF expression in cancer cells [70]. And the 
mammalian target of rapamycin (mTOR) kinase pathway 
was identified in human pancreatic neuroendocrine tumor 
cell lines [73].

In the current study, targeted inhibiting EML4-ALK 
fusion protein in NSCLC cells showed downstream sup-
pression of pERK1/2 and reduction of cFOS, a subunit of 
AP-1, accompanied by downregulation of TF. It is similar 
to a previous study within breast cancer cells, in which 
ERK1/2 kinase activity was measured in nuclear extracts 
and shown to be upregulated in MDA-MB-231 breast can-
cer cells with higher expression of TF mRNA [70]. Also, 
both AP-1 and NF-κB are important transcription factors 
for TF expression. However, compared to NF-κb, MDA-
MB-231 nuclear extracts contain a molar excess of AP-1 
[70]. And in our study, targeting ERK1/2, we also observed 
the downregulation of the subunit of AP-1 and TF. Finally, 
after pretreating with an AP-1 inhibitor, there is a significant 
reduction of TF expression both in H3122 and H2228 cell 
lines. Nevertheless, the former study only investigated the 
regulation of TF expression in non-specific breast cancer, 
and in this study, we linked EML4-ALK oncogenic altera-
tion, the activation of downstream signaling pathways, and 
the coagulation cascade. Overall, the current study implies 
that EML4-ALK fusion protein in NSCLC cells may regu-
late the expression of TF through the pERK1/2-AP-1 axis.

prognosis [55]. TF initiates the extrinsic coagulation cascade 
and can be released into circulation through cell-derived 
extracellular vesicles [56]. When TF-positive extracellular 
vesicles shed from cancer cells are associated with coagula-
tion factor VII (FVII), this can trigger the blood coagula-
tion cascade, leading to cancer-associated VTE [55]. There 
is no evidence that cancer cells-derived TF is activated in 
the circulation.

In the current research, as cohort studies indicated a 
heightened risk of VTE occurrence in patients with ALK-
rearranged NSCLC [4, 6], we targeted inhibition of EML4-
ALK fusion protein in NSCLC cells and observed that TF 
expression was significantly decreased. And this finding 
is similar to previous studies that increased cell surface 
expression of TF was associated with higher procoagulant 
activity in malignancies and higher circulating levels in 
vivo [57, 58], which was also shown in breast and ovar-
ian cancer patients [59, 60]. Thus, inhibiting EML4-ALK 
fusion protein in cancer cells might decrease coagulability. 
Previous studies detected tumor-derived TF-positive extra-
cellular vesicles (micropaticles or microvesicles) in the 
plasma of human pancreatic/colorectal tumor cells xeno-
grafted mice and examined venous thrombogenicity in a 
mouse model [61–64]. In addition, we demonstrated the 
function of TF by testing the activity of TF in human ALK-
positive/ALK-negative NSCLC cell lines and also in mice 
bearing tumors derived from the corresponding cell lines. 
Furthermore, EML4-ALK fusion NSCLC cell lines with 
higher TF expression showed shorter clotting time in their 
culture supernatant involving plasma clotting assay. As 
a result, the plasma clotting assay might be influenced by 
samples containing TF-positive extracellular vesicles and 
tumor-secreted soluble procoagulants. And further experi-
ments should be performed to verify this result.

Also, several studies within different cancer types indi-
cated that increased tumor-derived TF-positive microvesi-
cles upregulated the VTE incidence and venous clot weight 
in IVC stenosis or ligation mouse models [28, 29, 63]. In 
addition, Zwicker et al. proved that tumor-derived TF-posi-
tive microvesicles are associated with VTE in cancer patients 
[65]. Our findings are consistent with these results. Addi-
tionally, the present study has intensively considered onco-
genic mutation and demonstrated that oncogenic mutation 
is a significant factor influencing cancer hypercoagulation.

We further identified TF expression in ALK-positive 
and ALK-negative NSCLC tissues and observed that ALK-
positive NSCLC tissues exhibited higher TF expression. 
This finding was also indicated in a previous retrospective 
study, and the ALK-positive NSCLC patients in this cohort 
with higher TF expression showed a greater possibility of 
developing VTE compared to patients with EGFR mutation 
and both negative [66]. Collectively, the findings mentioned 
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patients harboring EML4-ALK rearrangement. A non-anti-
coagulant target for VTE treatment might offer a new ref-
erence for thromboprophylaxis and anticoagulation therapy 
for cancer patients, and it might also provide more theoreti-
cal support for a combination treatment strategy of ALK and 
MEK inhibitors.

Limitations

This study has the following limitations. First, the mouse 
model used in this study is a subcutaneous ectopic lung can-
cer model, which cannot fully represent the real pulmonary 
environment with rich blood circulation. This limitation 
can be addressed by building an orthotropic model in the 
future. However, due to differences in the immune response 
and tumour microenvironment between mice and humans, 
animal models may not fully recapitulate human disease 
physiology. Additionally, the complex heterogeneity and 
microenvironmental factors present in clinical settings may 
not be fully reflected in the results obtained from the lim-
ited cell line experiments. Thus, further in vivo experiments 
and clinical studies should be performed to confirm these 
results. And these results should be verified in more types 
of cell lines. Also, there is a lack of evaluation of TF con-
centration in peripheral blood of lung cancer patients in the 
current study, limited by the fact that the number of enrolled 
ALK-rearranged NSCLC patients is too small. A compre-
hensive analysis will be carried out after further expanding 
the sample size in the future.

Conclusion

In summary, we have uncovered that EML4-ALK fusion 
protein in lung cancer cells enhances venous thromboge-
nicity through the pERK1/2-AP-1-tissue factor axis. This 
finding provides more theoretical support for a combination 
treatment strategy of ALK and MEK inhibitors and offers a 
new reference for thromboprophylaxis and anticoagulation 
therapy for cancer patients.
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The translational potential of the EML4-ALK-
pERK1/2-AP-1-TF axis in the treatment of cancer-
associated VTE

Thromboprophylaxis and anticoagulation therapy for can-
cer patients need to consider the risk of bleeding, the impact 
of the anti-tumor treatment process, and the additional sense 
of futility and burden caused by such treatment because it 
seems this action does not extend survival. Despite anti-
coagulation therapy, the incidence of recurrent pulmonary 
embolism (PE) remains relatively high [32, 74]. Hence, 
identifying patients at high risk of VTE is a current research 
focus. Notably, many studies suggested that high levels of 
TF expression were observed in different types of cancer, 
and the level of TF expression was associated with tumor 
progression and hypercoagulability [55]. Thus, TF expres-
sion might be a marker of cancer prognosis. However, little 
research on individualized anticoagulation therapy based 
on specific cancer types. This study aims to identify a non-
anticoagulant target for VTE treatment in NSCLC with a 
specific oncogenic mutation.

This regulatory axis may be an appealing target for can-
cer-associated VTE in EML4-ALK fusion NSCLC patients. 
The nodes of this axis have essential roles in the occurrence 
and development of malignancy, and they all have corre-
sponding specific targeted inhibitors. For example, small 
molecular ATP-competitive ALK inhibitors, which can 
effectively inhibit the autophosphorylation of ALK pro-
tein and suppress downstream signal activation [75, 76], 
have led to unprecedented survival benefits in EML4-ALK 
fusion NSCLC patients [77–79]. Although targeted ERK1/2 
inhibitors are still in preclinical/clinical research [80, 81], 
inhibitors targeting upstream signaling protein MEK (RAS-
RAF-MEK-ERK1/2 pathway) have been approved by FDA 
in the USA for the treatment of various solid tumors and 
have achieved excellent results in clinical [82–84]. Hrust-
anovic, Gorjan, and Tanizaki, J et al. [85, 86] found that 
EML4-ALK fusion NSCLC cells specifically depend on the 
MAPK pathway, and their sensitivity to MEK inhibitors is 
similar to that of KRAS or BRAF-positive lung adenocarci-
noma cells. However, ALK inhibitors are not entirely effec-
tive, and single-drug treatment for long-term use can induce 
the reactivation of the downstream MAPK pathway and 
lead to drug resistance. Thus, a combined treatment strat-
egy of initial ALK and MEK inhibitors is recommended to 
improve the survival rate of patients [87].

Now that the current data support the role of the axis in 
the pathogenesis of cancer-associated VTE in EML4-ALK 
fusion NSCLC cells, the node inhibitors may fulfill a dual 
purpose in patients with EML4-ALK fusion NSCLC. And 
the results suggest that clinicians should give careful con-
sideration to providing thromboprophylaxis to NSCLC 
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