Skip to main content
Log in

On-treatment platelet reactivity through the thromboxane A2 or P2Y12 platelet receptor pathways is not affected by pelacarsen

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Background

Pelacarsen decreases plasma levels of lipoprotein(a) [Lp(a)] and oxidized phospholipids (OxPL). It was previously reported that pelacarsen does not affect the platelet count. We now report the effect of pelacarsen on on-treatment platelet reactivity.

Methods

Subjects with established cardiovascular disease and screening Lp(a) levels ≥60 mg per deciliter (~ ≥150 nmol/L) were randomized to receive pelacarsen (20, 40, or 60 mg every 4 weeks; 20 mg every 2 weeks; or 20 mg every week), or placebo for 6–12 months. Aspirin Reaction Units (ARU) and P2Y12 Reaction Units (PRU) were measured at baseline and the primary analysis timepoint (PAT) at 6 months.

Results

Of the 286 subjects randomized, 275 had either an ARU or PRU test, 159 (57.8%) were on aspirin alone and 94 (34.2%) subjects were on dual anti-platelet therapy. As expected, the baseline ARU and PRU were suppressed in subjects on aspirin or on dual anti-platelet therapy, respectively. There were no significant differences in baseline ARU in the aspirin groups or in PRU in the dual anti-platelet groups. At the PAT there were no statistically significant differences in ARU in subjects on aspirin or PRU in subjects on dual anti-platelet therapy among any of the pelacarsen groups compared to the pooled placebo group (p > 0.05 for all comparisons).

Conclusion

Pelacarsen does not modify on-treatment platelet reactivity through the thromboxane A2 or P2Y12 platelet receptor pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsimikas S, Fazio S, Ferdinand KC et al (2018) NHLBI Working Group Recommendations to reduce lipoprotein(a)-Mediated risk of Cardiovascular Disease and aortic stenosis. J Am Coll Cardiol 71:177–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsimikas S, Moriarty PM, Stroes ES (2021) Emerging RNA therapeutics to lower blood levels of lp(a): JACC Focus Seminar 2/4. J Am Coll Cardiol 77:1576–1589

    Article  CAS  PubMed  Google Scholar 

  3. Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I et al (2020) Lipoprotein(a) reduction in persons with cardiovascular disease. N Engl J Med 382:244–255

    Article  CAS  PubMed  Google Scholar 

  4. O’Donoghue ML, Rosenson RS, Gencer B et al (2022) Small interfering RNA to reduce lipoprotein(a) in Cardiovascular Disease. N Engl J Med 387:1855–1864

    Article  PubMed  Google Scholar 

  5. Nissen SE, Wolski K, Balog C et al (2022) Single ascending dose study of a short interfering RNA targeting lipoprotein(a) production in individuals with elevated plasma lipoprotein(a) levels. JAMA 327:1679–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Graham MJ, Viney N, Crooke RM, Tsimikas S (2016) Antisense inhibition of apolipoprotein (a) to lower plasma lipoprotein (a) levels in humans. J Lipid Res 57:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Viney NJ, van Capelleveen JC, Geary RS et al (2016) Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 388:2239–2253

    Article  CAS  PubMed  Google Scholar 

  8. Karwatowska-Prokopczuk E, Lesogor A, Yan JH et al (2022) Efficacy and safety of pelacarsen in lowering lp(a) in healthy japanese subjects.J Clin Lipidol

  9. Price MJ, Berger PB, Teirstein PS et al (2011) Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA 305:1097–1105

    Article  CAS  PubMed  Google Scholar 

  10. Gross L, Aradi D, Sibbing D (2016) Platelet function testing in patients on Antiplatelet Medications. Semin Thromb Hemost 42:306–320

    Article  CAS  PubMed  Google Scholar 

  11. Roe MT, Armstrong PW, Fox KA et al (2012) Prasugrel versus clopidogrel for acute coronary syndromes without revascularization. N Engl J Med 367:1297–1309

    Article  CAS  PubMed  Google Scholar 

  12. Crooke ST (2017) Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther 27:70–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Benson MD, Waddington-Cruz M, Berk JL et al (2018) Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 379:22–31

    Article  CAS  PubMed  Google Scholar 

  14. Witztum JL, Gaudet D, Freedman SD et al (2019) Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N Engl J Med 381:531–542

    Article  CAS  PubMed  Google Scholar 

  15. Tsimikas S, Viney NJ, Hughes SG et al (2015) Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 386:1472–1483

    Article  CAS  PubMed  Google Scholar 

  16. Baker BF, Xia S, Partridge W et al (2023) Integrated Assessment of phase 2 data on GalNAc(3)-Conjugated 2’-O-Methoxyethyl-modified antisense oligonucleotides. Nucleic Acid Ther 33:72–80

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Fu D, Luo Y, Peng D (2022) Independent association of lp(a) with platelet reactivity in subjects without statins or antiplatelet agents. Sci Rep 12:16609

    Article  PubMed  PubMed Central  Google Scholar 

  18. Podrez EA, Byzova TV, Febbraio M et al (2007) Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med 13:1086–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Price MJ, Endemann S, Gollapudi RR et al (2008) Prognostic significance of post-clopidogrel platelet reactivity assessed by a point-of-care assay on thrombotic events after drug-eluting stent implantation. Eur Heart J 29:992–1000

    Article  PubMed  Google Scholar 

  20. Michelson AD (2009) Methods for the measurement of platelet function. Am J Cardiol 103:20A–26A

    Article  CAS  PubMed  Google Scholar 

  21. Gurbel PA, Bliden KP, Butler K et al (2010) Response to ticagrelor in clopidogrel nonresponders and responders and effect of switching therapies. The RESPOND Study, Circulation

    Book  Google Scholar 

  22. Byun YS, Lee JH, Arsenault BJ et al (2015) Relationship of oxidized phospholipids on apolipoprotein B-100 to cardiovascular outcomes in patients treated with intensive versus moderate atorvastatin therapy: the TNT trial. J Am Coll Cardiol 65:1286–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Byun YS, Yang X, Bao W et al (2017) Oxidized phospholipids on apolipoprotein B-100 and recurrent ischemic events following stroke or transient ischemic attack. J Am Coll Cardiol 69:147–158

    Article  CAS  PubMed  Google Scholar 

  24. McLean JW, Tomlinson JE, Kuang WJ et al (1987) cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330:132–137

    Article  CAS  PubMed  Google Scholar 

  25. Gries A, Gries M, Wurm H et al (1996) Lipoprotein(a) inhibits collagen-induced aggregation of thrombocytes. Arterioscler Thromb Vasc Biol 16:648–655

    Article  CAS  PubMed  Google Scholar 

  26. Barre DE (1998) Lipoprotein (a) reduces platelet aggregation via apo(a)-mediated decreases in thromboxane A(2)production. Platelets 9:93–96

    Article  CAS  PubMed  Google Scholar 

  27. Rand ML, Sangrar W, Hancock MA et al (1998) Apolipoprotein(a) enhances platelet responses to the thrombin receptor-activating peptide SFLLRN. Arterioscler Thromb Vasc Biol 18:1393–1399

    Article  CAS  PubMed  Google Scholar 

  28. Zhu P, Tang XF, Song Y et al Association of lipoprotein(a) with platelet aggregation and thrombogenicity in patients undergoing percutaneous coronary intervention.Platelets2020:1–6

  29. Tsironis LD, Mitsios JV, Milionis HJ, Elisaf M, Tselepis AD (2004) Effect of lipoprotein (a) on platelet activation induced by platelet-activating factor: role of apolipoprotein (a) and endogenous PAF-acetylhydrolase. Cardiovasc Res 63:130–138

    Article  CAS  PubMed  Google Scholar 

  30. Salsoso R, Dalcoquio TF, Furtado RHM et al (2020) Relation of high lipoprotein (a) concentrations to platelet reactivity in individuals with and without coronary artery disease. Adv Ther 37:4568–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lacaze P, Bakshi A, Riaz M et al (2022) Aspirin for primary Prevention of Cardiovascular events in relation to lipoprotein(a) genotypes. J Am Coll Cardiol 80:1287–1298

    Article  CAS  PubMed  Google Scholar 

  32. Dou H, Kotini A, Liu W et al (2021) Oxidized phospholipids promote NETosis and arterial thrombosis in LNK(SH2B3) deficiency. Circulation 144:1940–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barre DE (2007) Arginyl-glycyl-aspartyl (RGD) epitope of human apolipoprotein (a) inhibits platelet aggregation by antagonizing the IIb subunit of the fibrinogen (GPIIb/IIIa) receptor. Thromb Res 119:601–607

    Article  CAS  PubMed  Google Scholar 

  34. Koltai K, Kesmarky G, Feher G, Tibold A, Toth K (2017) Platelet aggregometry testing: Molecular Mechanisms, Techniques and clinical implications.Int J Mol Sci; 18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Tsimikas.

Ethics declarations

Disclosures

EKP, SX, and LL are employees of Ionis Pharmaceuticals and ST is an employee of Ionis Pharmaceuticals and UCSD. JLW is a consultant to Ionis Pharmaceuticals. JLW and ST are co-inventors and receive royalties from patents owned by UCSD on oxidation-specific antibodies and of biomarkers related to oxidized lipoproteins and are co-founders and have an equity interest in Oxitope, Inc and Kleanthi Diagnostics, LLC (“Kleanthi”). JY has no relevant conflicts.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karwatowska-Prokopczuk, E., Li, L., Yang, J. et al. On-treatment platelet reactivity through the thromboxane A2 or P2Y12 platelet receptor pathways is not affected by pelacarsen. J Thromb Thrombolysis 56, 226–232 (2023). https://doi.org/10.1007/s11239-023-02818-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-023-02818-6

Keywords

Navigation