Skip to main content

Advertisement

Log in

Empagliflozin activates JAK2/STAT3 signaling and protects cardiomyocytes from hypoxia/reoxygenation injury under high glucose conditions

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

The morbidity and mortality rates of cardiovascular disease are markedly higher in patients with diabetes than in non-diabetic patients, including patients with ischemia–reperfusion injury (IRI). However, the cardiovascular protective effects of Empagliflozin (EMPA) on IRI in diabetes mellitus have rarely been studied. In this study, we established a cardiomyocyte hypoxia/reoxygenation (H/R) injury model to mimic myocardial I/R injuries that occur in vivo. H9C2 cells were subjected to high glucose (HG) treatment plus H/R injury to mimic myocardial I/R injuries that occur in diabetes mellitus. Next, different concentrations of EMPA were added to the H9C2 cells and its protective effect was detected. STAT3 knockdown with recombinant plasmids was used to determine its roles. Our results showed that H/R injury-induced cell apoptosis, necroptosis, oxidative stress, and endoplasmic reticulum stress were further promoted by HG conditions, and HG treatment plus an H/R injury inhibited the activation of JAK2/STAT3 signaling. EMPA was found to protect against H/R-induced cardiomyocyte injury under HG conditions and activate JAK2/STAT3 signaling, while down-regulation of STAT3 reversed the protective effect of EMPA. When taken together, these findings indicate that EMPA protects against I/R-induced cardiomyocyte injury by activating JAK2/STAT3 signaling under HG conditions. Our results clarified the mechanisms that underlie the cardiovascular protective effects of EMPA in diabetes mellitus and provide new therapeutic targets for IRI in diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are available in the published article.

References

  1. The L (2017) Diabetes: a dynamic disease. Lancet 389(10085):2163

    Google Scholar 

  2. Brody H (2012) Diabetes. Nature 485(7398):S1

    PubMed  Google Scholar 

  3. Thomas R, Halim S, Gurudas S et al (2019) IDF Diabetes Atlas: a review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018. Diabetes Res Clin Pract 157:107840

    CAS  PubMed  Google Scholar 

  4. Napoli R, Formoso G, Piro S et al (2020) Management of type 2 diabetes for prevention of cardiovascular disease. An expert opinion of the Italian Diabetes Society. Nutr Metab Cardiovasc Dis 30(11):1926–1936

    PubMed  Google Scholar 

  5. Booth G, Kapral M, Fung K et al (2006) Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet (Lond, Engl) 368(9529):29–36

    Google Scholar 

  6. Newman J, Schwartzbard A, Weintraub H et al (2017) Primary prevention of cardiovascular disease in diabetes mellitus. J Am Coll Cardiol 70(7):883–893

    PubMed Central  PubMed  Google Scholar 

  7. Wanner C, Lachin J, Inzucchi S et al (2018) Empagliflozin and clinical outcomes in patients with type 2 Diabetes Mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 137(2):119–129

    CAS  PubMed  Google Scholar 

  8. Vaidya V, Gangan NandSheehan J (2015) Impact of cardiovascular complications among patients with Type 2 diabetes mellitus: a systematic review. Expert Rev Pharmacoecon Outcomes Res 15(3):487–497

    PubMed  Google Scholar 

  9. Eltzschig HandEckle T (2011) Ischemia and reperfusion–from mechanism to translation. Nat Med 17(11):1391–1401

    Google Scholar 

  10. Yellon DandHausenloy D (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135

    Google Scholar 

  11. Anaya-Prado R, Toledo-Pereyra L, Lentsch A et al (2002) Ischemia/reperfusion injury. J Surg Res 105(2):248–258

    PubMed  Google Scholar 

  12. Zhao D, Yang JandYang L (2017) Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes. Oxid Med Cell Longev 2017:6437467

    PubMed Central  PubMed  Google Scholar 

  13. Li W, Li W, Leng Y et al (2020) Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol 39(2):210–225

    CAS  PubMed  Google Scholar 

  14. Wang C, Zhu L, Yuan W et al (2020) Diabetes aggravates myocardial ischaemia reperfusion injury via activating Nox2-related programmed cell death in an AMPK-dependent manner. J Cell Mol Med 24(12):6670–6679

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Yang Z, Li C, Wang Y et al (2018) Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol 125:185–194

    CAS  PubMed  Google Scholar 

  16. Dong X, Liu H, Zhang M et al (2019) Postconditioning with inhaled hydrogen attenuates skin ischemia/reperfusion injury through the RIP-MLKL-PGAM5/Drp1 necrotic pathway. Am J Transl Res 11(1):499–508

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Inzucchi S, Bergenstal R, Buse J et al (2015) Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38(1):140–149

    PubMed  Google Scholar 

  18. La-Sala L, Pontiroli AE (2020) Prevention of diabetes and cardiovascular disease in obesity. Int J Mol Sci 21(21):8178

    PubMed Central  PubMed  Google Scholar 

  19. Wright E, Loo DandHirayama B (2011) Biology of human sodium glucose transporters. Physiol Rev 91(2):733–794

    CAS  PubMed  Google Scholar 

  20. Gerich J (2010) Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabetic Med 27(2):136–142

    CAS  PubMed  Google Scholar 

  21. Abdul-Ghani MandDeFronzo R (2008) Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in type 2 diabetes mellitus. Endocr Pract 14(6):782–790

    Google Scholar 

  22. Wilding J (2014) The role of the kidneys in glucose homeostasis in type 2 diabetes: clinical implications and therapeutic significance through sodium glucose co-transporter 2 inhibitors. Metabolism 63(10):1228–1237

    CAS  PubMed  Google Scholar 

  23. Frampton J (2018) Empagliflozin: a review in type 2 diabetes. Drugs 78(10):1037–1048

    CAS  PubMed  Google Scholar 

  24. Tikkanen I, Narko K, Zeller C et al (2015) Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care 38(3):420–428

    CAS  PubMed  Google Scholar 

  25. Perrone-Filardi P, Avogaro A, Bonora E et al (2017) Mechanisms linking empagliflozin to cardiovascular and renal protection. Int J Cardiol 241:450–456

    PubMed  Google Scholar 

  26. Goerg J, Sommerfeld M, Greiner B et al (2021) Low-dose empagliflozin improves systolic heart function after myocardial infarction in rats: regulation of MMP9, NHE1, and SERCA2a. Int J Mol Sci 22(11):5437

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Lu Q, Liu J, Li X et al (2020) Empagliflozin attenuates ischemia and reperfusion injury through LKB1/AMPK signaling pathway. Mol Cell Endocrinol 501:110642

    CAS  PubMed  Google Scholar 

  28. Hu Z, Ju F, Du L et al (2021) Empagliflozin protects the heart against ischemia/reperfusion-induced sudden cardiac death. Cardiovasc Diabetol 20(1):199

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kappel B, Lehrke M, Schütt K et al (2017) Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation 136(10):969–972

    CAS  PubMed  Google Scholar 

  30. Levine M (2017) Empagliflozin for type 2 diabetes mellitus: an overview of phase 3 clinical trials. Curr Diabetes Rev 13(4):405–423

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Woo V (2020) Cardiovascular effects of sodium-glucose cotransporter-2 inhibitors in adults with type 2 diabetes. Can J Diabetes 44(1):61–67

    PubMed  Google Scholar 

  32. Amin E, Rifaai RandAbdel-Latif R (2020) Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative-inflammatory-apoptotic pathway. Fundam Clin Pharmacol 34(5):548–558

    CAS  PubMed  Google Scholar 

  33. Saeedi P, Petersohn I, Salpea P et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 edition. Diabetes Res Clin Pract 157:107843

    PubMed  Google Scholar 

  34. Cheng GandLi L (2020) High-glucose-induced apoptosis, ROS production and pro-inflammatory response in cardiomyocytes is attenuated by metformin treatment via PP2A activation. J Biosci 45:1–11

    Google Scholar 

  35. Kosuru R, Cai Y, Kandula V et al (2018) AMPK contributes to cardioprotective effects of pterostilbene against myocardial ischemia- reperfusion injury in diabetic rats by suppressing cardiac oxidative stress and apoptosis. Cell Physiol Biochem 46(4):1381–1397

    CAS  PubMed  Google Scholar 

  36. Zhang L, Wang X, Wu Y et al (2018) Maternal diabetes up-regulates NOX2 and enhances myocardial ischaemia/reperfusion injury in adult offspring. J Cell Mol Med 22(4):2200–2209

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Ng K, Lau Y, Dhandhania V et al (2018) Empagliflozin ammeliorates high glucose induced-cardiac dysfuntion in human iPSC-derived cardiomyocytes. Sci Rep 8(1):14872

    PubMed Central  PubMed  Google Scholar 

  38. Seefeldt J, Lassen T, Hjortbak M et al (2021) Cardioprotective effects of empagliflozin after ischemia and reperfusion in rats. Sci Rep 11(1):9544

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Nikolaou P, Efentakis P, Abu Qourah F et al (2021) Chronic empagliflozin treatment reduces myocardial infarct size in nondiabetic mice through STAT-3-mediated protection on microvascular endothelial cells and reduction of oxidative stress. Antioxid Redox Signal 34(7):551–571

    CAS  PubMed  Google Scholar 

  40. Ideishi A, Suematsu Y, Tashiro K et al (2021) Combination of Linagliptin and Empagliflozin preserves cardiac systolic function in an ischemia-reperfusion injury mice with diabetes mellitus. Cardiol Res 12(2):91–97

    PubMed Central  PubMed  Google Scholar 

  41. Lei S, Su W, Xia Z et al (2019) Hyperglycemia-induced oxidative stress abrogates remifentanil preconditioning-mediated cardioprotection in diabetic rats by impairing caveolin-3-modulated PI3K/Akt and JAK2/STAT3 signaling. Oxid Med Cell Longev 2019:9836302

    PubMed Central  PubMed  Google Scholar 

  42. Wang C, Li H, Wang S et al (2018) Repeated non-invasive limb ischemic preconditioning confers cardioprotection through PKC-ε/STAT3 signaling in diabetic rats. Cell Physiol Biochem 45(5):2107–2121

    CAS  PubMed  Google Scholar 

  43. Xu J, Lei S, Liu Y et al (2013) Antioxidant N-acetylcysteine attenuates the reduction of Brg1 protein expression in the myocardium of type 1 diabetic rats. J Diabetes Res 2013:716219

    PubMed Central  PubMed  Google Scholar 

  44. Wang Y, Li H, Huang H et al (2016) Cardioprotection from emulsified isoflurane postconditioning is lost in rats with streptozotocin-induced diabetes due to the impairment of Brg1/Nrf2/STAT3 signalling. Clin Sci (Lond, Engl: 1979) 130(10):801–812

    CAS  Google Scholar 

  45. Deng F, Wang S, Zhang L et al (2017) Propofol through upregulating caveolin-3 attenuates post-hypoxic mitochondrial damage and cell death in H9C2 cardiomyocytes during hyperglycemia. Cell Physiol Biochem 44(1):279–292

    PubMed  Google Scholar 

  46. Visavadiya N, Keasey M, Razskazovskiy V et al (2016) Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun Signal 14(1):32

    PubMed Central  PubMed  Google Scholar 

  47. Zhang W, Jin Y, Wang D et al (2020) Neuroprotective effects of leptin on cerebral ischemia through JAK2/STAT3/PGC-1-mediated mitochondrial function modulation. Brain Res Bull 156:118–130

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by Scientific Research Fund of the Third Affiliated Hospital of Southern University of Science and Technology (No. 2020-D1).

Author information

Authors and Affiliations

Authors

Contributions

FZ and XC designed the research. FZ and XC collected the data. CZ and LC analyzed the data. FZ and XC wrote or revised the manuscript.

Corresponding author

Correspondence to Xiaolin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Cao, X., Zhao, C. et al. Empagliflozin activates JAK2/STAT3 signaling and protects cardiomyocytes from hypoxia/reoxygenation injury under high glucose conditions. J Thromb Thrombolysis 55, 116–125 (2023). https://doi.org/10.1007/s11239-022-02719-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-022-02719-0

Keywords

Navigation