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Abstract
Features of graphs that hinder finding closed paths with particular properties, as rep-
resented by the Traveling Salesperson Problem—TSP, are identified for three classes 
of graphs. Removing these terms leads to a companion graph with identical closed 
path properties that is easier to analyze. A surprise is that these troubling graph fac-
tors are precisely what is needed to analyze certain voting methods, while the com-
panion graph’s terms are what cause voting theory complexities as manifested by 
Arrow’s Theorem. This means that the seemingly separate goals of analyzing closed 
paths in graphs and analyzing voting methods are complementary: components of 
data terms that assist in one of these areas are the source of troubles in the other. 
Consequences for standard decision methods are in Sects. 2.5, 3.7 and the compan-
ion paper (Saari in Theory Decis 91(3):377–402, 2021). The emphasis here is on 
paths in graphs; incomplete graphs are similarly handled.

Keywords TSP · Hamiltonian circuits · Greedy algorithm · Closed path 
symmetries · Transitive rankings

1 Introduction

Two challenging decision theory concerns in the social sciences are to find opti-
mal paths in a weighted graph and to understand difficulties that arise with meth-
ods dependent on majority voting. Of surprise is how the approach developed here 
addresses both issues in a similar but complementary manner. The method is to 
identify and remove those aspects of the data that cause difficulties. What remains 
for graph theory, for instance, is a simpler, more easily analyzed companion graph 
(the sharpest possible) that retains all of the original graph’s closed path properties. 

My thanks to George Hazelrigg and Dan Jesse for discussions. This work is part of a National 
Science Foundation project under NSF Award Number CMMI-1923164.

 * Donald G. Saari 
 dsaari@uci.edu

1 University of California, Irvine, CA 92697-5100, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11238-024-09981-z&domain=pdf


 D. G. Saari 

1 3

These two themes are connected in that the theory for majority voting over pairs 
is complementary to finding the companion graphs. That is, the data portions that 
assist advances in one of these areas create problems in the other. Readers primarily 
interested in voting theory can treat the graph discussion as describing the structure 
of terms that complicate voting and decision theory, while those primarily interested 
in graph theory would have the opposite priority.

Beyond simplifying the analysis of these topics, eliminating the superfluous data 
components exposes what information a decision process actually uses; this intro-
duces new tools to understand their many different applications. As a pairwise vot-
ing example, removing the unnecessary data parts reveals a new type of transitivity 
that uncovers mysteries from related topics and applications, and it can quickly iden-
tify weaknesses of several widely used decision techniques. In the same spirit know-
ing what data features are actually used to find paths in graphs partly explains the 
difficulties experienced by some path-finding algorithms. As currently being done 
with certain topics that rely on voting and path procedures, knowing what informa-
tion truly is relevant for an application provides fresh insights about it.

To illustrate the companion graph comment, associated with the undirected sym-
metric graph Fig. 1a is its companion (Fig. 1c) and a factor (Fig. 1b) of 66. The con-
nection (Sect. 3) is that the length of any Fig. 1a Hamiltonian circuit (a connected 
closed path that passes through each vertex once) is the circuit’s Fig. 1c length plus 
66. The simplicity of Fig. 1c makes it much easier to analyze; e.g., while it is not 
immediately obvious which Fig.  1a Hamiltonian path is the shortest, the greedy 
algorithm (GA; it selects the locally optimal available choice at each step) shows 
that Fig. 1c’s shortest Hamiltonian path is V1

−4
⟶V2

−2
⟶V4

0
⟶V6

−4
⟶V3

−2
⟶V5

0
⟶V1 

of length −12 . This path, then, also is the shortest Fig. 1a Hamiltonian circuit but 
with length 66 − 12 = 54. The companion graphs are developed and explained 
in this paper. Decision and voting theory consequences of this structure are in 
Sects. 2.5, 3.7 and the associated paper (Saari, 2021).

Searching for optimal paths (e.g., shortest or longest) underscores the complex-
ity of a graph’s path dependent structures. But the graph’s path-independent struc-
ture is what causes difficulties. This assertion is proved by decomposing a relevant 
space of graphs into a subspace where all paths are independent and its orthogo-
nal complement where all paths are dependent. One class of graphs, for instance, 
is identified with the space of asymmetric paired comparisons. A “decision theory” 
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Fig. 1  A graph and its companion
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decomposition (Saari, 2021) divides this space into a linear subspace1 with a suf-
ficiently strong form of transitivity to ensure path-independence and its normal bun-
dle defined by a specific type of cycles.

Voting and decision methods seek transitive outcomes, so the cyclic components 
introduce complexities as manifested by Arrow’s Impossibility Theorem (Arrow, 
1963; Saari, 2019). Projecting the data to the transitive subspace eliminates these 
difficulties and simplifies analyzing voting methods (Saari, 2021, Sect.  2.5). But 
cycles, not linear orders, are central for closed paths, so the path-independent com-
ponents hinder the analysis. Orthogonally projecting the data to the cyclic subspace 
lowers the degrees of freedom (the number of relevant variables), removes trouble-
causing terms, reveals what variables truly are responsible for a stated issue, uncov-
ers the system’s inherent symmetries, and simplifies finding optimal paths. This 
decomposition resembles (and is motivated by) one for game theory (Jessie & Saari, 
2019) where one component of a game has all (and only) information needed to find 
all pure and mixed Nash strategic properties, and another one has the information to 
capture coordination, cooperation, etc.

Three classes of graphs are examined. The first uses the differences from the aver-
age cost between vertices. The second and third are, respectively, the standard undi-
rected symmetric and the directed asymmetric cost settings. Symmetry structures for 
these classes differ; e.g., the symmetries for the first type of graphs (Sect. 2.1, Theo-
rem 2) are three-cycles where a A, B, C cycle’s costs of going from A to B, B to C, 
and C to A are identical. Symmetries for the standard symmetric case (Sect. 3) are 
a form of four-cycles. Symmetries for the asymmetric setting (Sect. 4) are the more 
complicated product of three and four cycles. Some sample features are derived 
to illustrate how these symmetries simplify finding and analyzing path properties. 
Most proofs are in Sect. 6.

2  Asymmetric excess costs

Reimbursing a salesperson for the average cost of traveling between cities creates 
an incentive for the salesperson to select routes with below average costs. For nota-
tion, it takes 30 min to walk from home, H, to campus, C; returning uphill requires 
40 min, so the average is 35. The “excess cost function” registers differences from 
the average where C

5
⟶H also denotes H

−5
⟶C. To connect this notation with 

N voter pairwise voting, let C
5

⟶H be where candidate C beats H with five votes 
above the average of N

2
 , while H loses to C with five votes below N

2
.

Graphs in the space of asymmetric weighted, n-vertex graphs (no loops) that are 
considered in this section, �n

A
 , are complete (i.e., each pair of vertices is connected 

with paths) and

1 For this article, treat the linear subspace as a vector space and its normal bundle as another vector sub-
space where all vectors in one subspace are orthogonal to all vectors in the other one. This generalizes 
the x-y plane and the orthogonal z axis.
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Only an arc’s positive cost direction (in voting, this is who wins and by how much) 
need be represented because moving counter to an arrow identifies a “below aver-
age” cost (Eq. 1). So V2 in Fig. 2a is a “source” (in voting theory, a Condorcet win-
ner) because all positive value directions point away; it is a “sink” with the negative 
value directions. Conversely, V4 is a sink (Condorcet loser) with positive value direc-
tions and a source for negative value directions. Subscripts A and S indicate, respec-
tively, asymmetric and symmetric cases.

Figure 2 depicts the approach; graph G5
A
 is uniquely decomposed into a “closed 

path independent” component G5
A,cpi

 (Definition 1), which is central for analyzing 
voting methods, and a cyclic component G5

A,cyclic
 , which is G5

A
 ’s simpler compan-

ion graph, to define G5
A
= G

5
A,cpi

+ G
5
A,cyclic

. The goal is to decompose any n-vertex 
G
n
A
∈ �

n
A
 into its path-independent and dependent terms

Definition 1 For n ≥ 3 , Gn
A,cpi

∈ �
n
A
 is “closed path independent” (cpi) iff all closed 

paths have length zero. A graph is “strongly transitive” iff the path lengths of any 
triplet {Vi,Vj,Vk} satisfy

Both Eq.  (3) paths start at Vi and end at Vk , so the equality designates equal 
path lengths. “Strong transitivity” comes from voting and decision theory (Saari, 
2021).

Theorem  1 A graph is strongly transitive iff it is cpi. Strongly transitive graphs 
(equivalently, cpi graphs) with n vertices define a (n − 1)-dimensional linear sub-
space �� n

A
⊂ �

n
A
.

To check that Fig.  2b is strongly transitive, select any triplet, say {V1,V3,V5}, 
and determine whether this triangle’s leg lengths, V1

5
⟶V3

3
⟶V5 and V1

8
⟶V5 , 

satisfy the Eq. (3) triangle equality, which they do. This property ensures (Sect. 1) 
that the arc directions define the desired linear ordering for voting theory. For 

(1)Vj

x
⟶Vk represents both Vj

x
⟶Vk and Vk

−x
⟶Vj.

(2)G
n
A
= G

n
A,cpi

+ G
n
A,cyclic

.

(3)Vi

x
⟶Vj

y
⟶Vk = Vi

z=x+y
⟶Vk.
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Fig. 2  Cyclic component; G5

A,cyclic



1 3

Closed paths in graphs vs. voting theory  

instance, identifying positive arc directions with “ ≻ ” in Fig. 2b defines the transitive 
V1 ≻ V2 ≻ V3 ≻ V5 ≻ V4 ranking. To equate strong transitivity with cpi, reversing 
V1

8
⟶V5 defines the closed path V1

5
⟶V3

3
⟶V5

−8
⟶V1 with zero length.

While the proof of Theorem 1 is in Sect. 6, proving that �� n
A
 is a linear subspace 

is an exercise. For the dimensionality assertion,2 strong transitivity ensures that the 
Vi → Vj arc length equals that of Vi

x
⟶V1

y
⟶Vj where Vi → Vj is rerouted to pass 

through V1 . As all arc lengths for Gn
A,cpi

∈ ��
n
A
 are determined by the {V1 → Vk}

n
k=2

 
lengths, �� n

A
 has dimension (n − 1).

As asserted next, Gn
A,cpi

 is Gn
A
 ’s path-independent component described in the 

Sect. 1.

Corollary 1 For Gn
A,cpi

∈ ��
n
A
 , all paths starting at Vi and ending at Vj have length 

equal to the Vi → Vj arc that connects the endpoints.

A Fig.  2b example of Corollary  1 is that the 4 length of 
V2

7
⟶V5

3
⟶V4

−10
⟶V2

10
⟶V6

−6
⟶V3 , where paths can revisit vertices, equals the arc 

length connecting the endpoints V2

4
⟶V3 . With majority voting over pairs, this 

expression is where the sum of differences of tallies from N
2
 over a sequence of pairs 

of candidates always equals this tally difference between the first and last listed 
candidates.

2.1  Cyclic normal bundle

As Theorem 3 (below) asserts, the Gn
A,cpi

 linear orderings conceal Gn
A
 ’s closed path 

properties (Eq. 2). This means that all closed path properties are embedded in the 
normal bundle of �� n

A
 . The �n

A
 and �� n

A
 dimensions are 

(

n

2

)

 and (n − 1) , so �� n
A
 ’s 

normal subspace, ℂn
A
 , has dimension 

(

n−1

2

)

 . As described next, ℂn
A
 is determined by 

three-cycles.

Theorem  2 (Saari, 2021) For n ≥ 3 , the linear subspace orthogonal to �� n
A
 , ℂn

A
 , 

has dimension 
(

n−1

2

)

 . A basis for ℂn
A
 , which consists of three-cycles with equal costs 

between successive vertices, is

More generally, if CBn
A
 is a set of 

(

n−1

2

)

 three-cycles, where each arc in a three-cycle 
has length 1 and each three-cycle has one arc that is not in any other CBn

A
 three-

cycle, then CBn
A
 is a ℂn

A
 basis.

(4){V1

1
⟶Vj

1
⟶Vk

1
⟶V1}1<j<k≤n.

2 The dimension of the vector space, so the x-y plane has dimension 2 and the z axis has dimension one.
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According to Theorem  2, the G
n
A,cyclic

∈ ℂ
n
A
 structure is governed by 

three-cycles. To motivate their Eq.  (4) form, strong transitivity requires 
V1

x
⟶Vj

y
⟶Vk = V1

z
⟶Vk , which defines the equation x + y − z = 0 . The 

path form of the gradient of this equation, (1, 1,−1) , is the Eq.  (4) three-cycle 
V1

1
⟶Vj

1
⟶Vk

1
⟶V1 . Of importance is that all Hamiltonian and closed paths in 

G
n
A,cpi

 have the same length of zero. This means that these Gn
A,cpi

 paths provide 
minimal to no information that can distinguish between paths. Instead the infor-
mation that can differentiate between paths comes from the three-cycles. These 
cycles, which measure how a triplet’s Gn

A
 data deviates from its cpi “zero length,” 

are the only parts of Gn
A
 that reflect path properties. That is, Gn

A,cyclic
 identifies all of 

the intrinsic relevant parts of Gn
A
 needed to determine closed path properties.

This discussion motivates and leads to a central result asserting that the goal 
expressed in the Sect. 1 and Eq. (2) has been realized (Eq. 5). The theorem’s con-
cluding statement is crucial for what follows.

Theorem 3 Space �n
A
 is divided into a linear subspace �� n

A
 and its orthogonal com-

plement ℂn
A
 . For Gn

A
∈ �

n
A
 , there are unique Gn

A,cpi
∈ ��

n
A
 and Gn

A,cyclic
∈ ℂ

n
A
 so that

G
n
A,cpi

 and Gn
A,cyclic

 are, respectively, the orthogonal projections of Gn
A
 to �� n

A
 and to  

ℂ
n
A
.

The length of a closed path in Gn
A
 equals its length in Gn

A,cyclic
.

The critical last statement (identifying Gn
A,cyclic

 as Gn
A
 ’s companion graph) essen-

tially repeats the observation that all closed paths in Gn
A,cpi

 have the same length, 
so Gn

A,cpi
 offers no relevant information about closed path properties. This asser-

tion follows from the linearity of Eq. (5), which requires the length of a path in 
G
n
A
 to equal the sum of its lengths in Gn

A,cpi
 and Gn

A,cyclic
. By design, a closed path’s 

length in Gn
A,cpi

 is zero, so a path’s length in Gn
A
 and in Gn

A,cyclic
 must agree. As 

G
n
A,cpi

 consists of those portions of Gn
A
 entries that contribute nothing substantive to 

closed path lengths, it can be dropped. Thus, all relevant closed path information 

(5)G
n
A
= G

n
A,cpi

+ G
n
A,cyclic

;

V1 V2

V3

8

12 10

a. G3
A

=

V1 V2

V3

6

14 8

b. G3
A,cpi

+

V1 V2

V3

2

2 2

c. G3
A,cyclic

Fig. 3  Interpreting Gn
A,cyclic
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for Gn
A
 is encoded in the three-cycles of Gn

A,cyclic
 . Stated differently, closed paths 

of Gn
A
∈ �

n
A
 reflect Gn

A,cyclic
 ’s three-cycle structure while Gn

A,cpi
 can camouflage this 

information. Removing Gn
A,cpi

 (i.e., dropping the obscuring terms) makes it eas-
ier to find closed paths or optimal Hamiltonian circuits by analyzing the simpler 
G
n
A,cyclic

 (e.g,, Fig. 2c) rather than Gn
A
 (e.g., Fig. 2a).

To expand on the comment that the G
n
A,cpi

 entries contrib-
ute nothing substantive about closed path lengths, computing the 
V1

8
⟶V2

10
⟶V3

−12
⟶V1 length of 6 in Fig.  3a involves a subtraction. To ana-

lyze this structure, let the unknown optimal values of the cancelled terms 
be u, v, and w from, respectively, arcs V̂1V2 , V̂2V3 , and V̂3V1 . That is, 
(8 − u) + (10 − v) + (−12 − w) = 6, where the canceled terms u + v + w = 0 define 
a zero-length closed path. This cancellation applies to all triplets for n ≥ 3 , so the 
extracted values define a �� n

A
 graph. Thus, when computing path lengths, treat 

the subtractions as removing Gn
A
 terms that define a linear order.

The optimal way to eliminate all Gn
A
 terms creating a linear order is to 

select the �� n
A
 graph that most closely resembles Gn

A
 . This is its orthogo-

nal projection Gn
A,cpi

 (Theorem  3). With Fig.  3b, the G3
A,cpi

 component extracts 
u + v + w = 6 + 8 − 14 = 0 . These entries make no substantive contribution 
to closed path properties, so the remaining arc portions, which define G3

A,cyclic
 , 

become the operative values that determine path lengths and properties. Using 
G
3
A,cyclic

 rather than G3
A
 to find properties, it follows immediately that the path 

length of Fig. 3c’s cycle V1

2
⟶V2

2
⟶V3

2
⟶V1 is 6.

This behavior holds in general; e.g., each Fig. 2b triplet identifies the optimal 
cancellation when computing G5

A
 path lengths. By removing all linear ordering 

effects, the remaining Gn
A,cyclic

 terms become the operative intrinsic path compo-
nents. For instance, the simplest closed path is a triplet; if it is an isolated cycle, 
then Eq.  (4) provides all of its properties and arc lengths. If it is not isolated, 
its properties come from the algebra of these fundamental cycles. (For instance, 
V2

2
⟶V1 in Fig. 2c is the sum of this arc’s length in two cycles.) Removing the 

G
n
A,cpi

 clutter leaves the more tractable Gn
A,cyclic

.
Slightly modifying Theorem 3 yields a simple expression for the length of any 

connected path. But, if the path is not closed, information from Gn
A,cpi

 is needed.

Corollary 2 The length of a path in Gn
A
 that connects Vj with Vk is the length of this 

path in Gn
A,cyclic

 plus the length of the Vj → Vk arc in Gn
A,cpi

.

Proof The length of a path in Gn
A
 equals the sum of its lengths in Gn

A,cpi
 and Gn

A,cyclic
 . 

According to Corollary 1, the length of a connected path in Gn
A,cpi

 starting at Vj and 
ending at Vk equals the length of the Vj → Vk arc connecting the endpoints. So the 
length of the path in the two components equals its Gn

A,cyclic
 length plus the length of 

the Vj → Vk arc to complete the proof.   ◻
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To illustrate, the path length of 15 for V1

14
⟶V4

−6
⟶V3

−4
⟶V1

8
⟶V5

3
⟶V4 in 

G
5
A
 (Fig.  2a), which can meet vertices multiple times, equals the easier computed 

length of 4 for V1

3
⟶V4

0
⟶V3

1
⟶V1

0
⟶V5

0
⟶V4 in G5

A,cyclic
 plus 11 from the G5

A,cpi
 

arc V1

11
⟶V4 . For majority voting, this expression shows that adding the “difference 

from average” tallies for a sequence of paired comparisons equals adding the cyclic 
portion of these values to the strictly transitive portion of the tally between the first 
and last listed candidate. The Fig. 3a arc length of 18 for V1

8
⟶V2

10
⟶V3 equals this 

path’s length of four in Fig. 3c plus the V1

14
⟶V3 length of 14 in Fig. 3b.

To show that the Gn
A,cyclic

 structures determine path properties, notice that 
a closed path can be shorter than the path that stops at the penultimate step. 
The reason is that a closed curve cancels all Gn

A,cpi
 terms, but Gn

A,cpi
 values 

remain if a path stops prematurely (Corollary  2). For instance, the Fig.  2a path 
V1

−1
⟶V2

3
⟶V3

6
⟶V4

−3
⟶V5

−8
⟶V1 has length −3 , but if the path ends at V5 , its 

length is 5.
As another example, it is stated in the Sect. 1 that knowing what portions of a 

graph contribute, or do not, to the path lengths introduces a way to understand dif-
ficulties of numerical approaches developed to find optimal outcomes. While there 
are many of these path finding methods (e.g., see Cook, 2012), because of sim-
plicity of the greedy algorithm (GA), only it is used here. Using GA shows that 
V1

3
⟶V4

3
⟶V2

2
⟶V5

2
⟶V3

1
⟶V1 of length 11 is the longest G5

A,cyclic
 (Fig. 2c) Ham-

iltonian path. (According to Eq.  1, its reversal of length -11 is the shortest.) But 
when GA is applied to G5

A
 , it fails to find this path. The source of this failure is that 

the G5
A,cpi

 values divert the GA algorithm. To support this assertion, applying GA to 
G
5
A
 to find its longest Hamiltonian path yields the incorrect

To explain this error, apply GA to the path-independent terms of G5
A,cpi

 . The fact that 
it generates the same Eq. (6) path verifies that G5

A,cpi
 is the sole cause of this particu-

lar GA problem.
The above uses the fact (Eq. 1) that finding the longest and shortest Gn

A,cyclic
 Ham-

iltonian paths (which also are those of Gn
A
 ) coincide. This is stated formally.

Corollary 3 If the length of a path in Gn
A,cyclic

 is x, the length of its reversal is −x.

2.2  Decomposition

We now know that Gn
A,cpi

∈ ��
n
A
 causes difficulties, so we need to discover how to 

find it. As Gn
A,cpi

 is the orthogonal projection of Gn
A
 , this is a linear algebra exercise 

(Saari, 2021) with computations of the order O(n2).

(6)V1

14
⟶V4

−3
⟶V5

−1
⟶V3

−3
⟶V2

1
⟶V1.
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To associate graphs with vectors, let dn
A
∈ ℝ

(n
2
)

A
 be

the semicolons designate where the first subscript changes. To identify �n
A
 with 

ℝ
(n
2
)

A
 , let di,j be the arc length Vi

di,j
⟶Vj. As Vi

di,j
⟶Vj defines Vj

−di,j
⟶Vi , it follows that 

dj,i = −di,j . Let �� n
A
⊂ �

n
A
 also denote the (n − 1)-dimensional (strongly transitive) 

subspace of ℝ(
n

2
)

A
 where each triplet {i, j, k} satisfies di,j + dj,k = di,k . As such, ℝ(

n

2
)

A
 and 

�
n
A
 are interchangeable.

Definition 2 For vertex Vj of Gn
A
∈ �

n
A
 , let SA(Vj) be the sum of the arc lengths leav-

ing vertex Vj , j = 1,… , n.

Theorem  4 (Saari, 2021) For Gn
A
∈ �

n
A
 , the Gn

A,cpi
 path length from Vi to Vj is 

di,j =
1

n
[SA(Vi) − SA(Vj)] , i, j ∈ {1,… , n} . Both Gn

A
 and Gn

A,cpi
 satisfy 

∑n

j=1
SA(Vj) = 0 . 

Graph Gn
A,cyclic

 is given by Gn
A,cyclic

= G
n
A
− G

n
A,cpi

 . All Gn
A,cyclic

 vertices satisfy the 
stronger SA(Vj) = 0. Conversely, if all vertices of Gn

A
∈ �

n
A
 satisfy SA(Vj) = 0, then 

G
n
A
= Gn

A,cyclic
∈ ℂ

n
A

(7)d
n
A
= (d1,2, d1,3,… , d1,n;d2,3,… , d2,n;d3,4,… ;dn−1,n), where di,j = −dj,i;

V1 1
5

3

4

V6

1 7

V2

7

3
4

2
V3

35

1 V4

7

V5

7

a. G6
A

V1 1
3

1

2

V6

5 2

V2

2

3
4

4
V3

52

1 V4

6

V5

7
=

b. G6
A,cpi

V1 0
2

4

2

V6

4 5

V2

5

0
0

2
V3

23

0 V4

1

V5

0
+

c. G6
A,cyclic

Fig. 4  Decomposition of a G6

A
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4
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V3

1624

5 V4

13

V5

9

a. G6
A

V1 3
4

15

20

V6

28 1

V2

12

17

25

11
V3

1624

5 V4

13

V5

8

b. G6
A,cpi

V1 0
0

0

1

V6

1 2

V2

2

0

0

2
V3

00

0 V4

0

V5

1
= +

c. G6
A,cyclic

Fig. 5  Advantages of Gn
A,cyclic
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The concluding statement follows from Theorem  4’s first sentence. This is 
because SA(Vj) = 0 for all vertices requires all di,j legs of Gn

A,cpi
 to equal zero. As 

G
n
A,cpi

= 0 , Gn
A
 equals Gn

A,cyclic
.

To illustrate Theorem 4 with G6
A
 (Fig. 4a), the SA(Vj) values (called ‘Borda Val-

ues’ in Saari, 2021) are

Thus (Theorem 4), the G6
A,cpi

 values (Fig. 4b) are d1,2 =
1

6
[S

A
(V1) − S

A
(V2)] = −1,

d1,3 = 3, d1,4 = 1, d1,5 = 2, d1,6 = −5, d2,3 = −2, d2,4 = 2, d2,5 = 3, d2,6 = −4, d3,4 = 4,

d3,5 = 5, d3,6 = −2, d4,5 = 1, d4,6 = −6, d5,6 = −7. The crucial graph G6
A,cyclic

 (Fig. 4c) 
follows from G6

A,cyclic
= G

6
A
− G

6
A,cpi

.
In Fig. 4, the redundant G6

A,cpi
 (Fig. 4b) dominates G6

A
 ’s structure even though 

the simpler G6
A,cyclic

 (Fig. 4c) determines all of G6
A
 ’s closed path properties. Namely, 

when analyzing G6
A
 paths, the G6

A,cpi
 terms only contribute to the complexity. As 

such, similarities between the graphs G6
A,cpi

 and G6
A
 signal that G6

A
 computations of 

closed path lengths experience many cancellations. The actual G6
A
 path properties 

are determined by G6
A,cyclic

.
Figure 5 illustrates how seriously Gn

A,cpi
 can cloud a path analysis. Path proper-

ties are determined by the exceptionally simple G6
A,cyclic

 (Fig. 5c), but this clarity is 
absent from G6

A
 (Fig. 5a), which resembles the associated G6

A,cpi
 . As indicated with 

the help of Corollary 4, this is a general phenomenon.

Definition 3 Two graphs G
n
A1
,Gn

A2
∈ �

n
A
 are “closed path equivalent” iff 

G
n
A1,cyclic

= G
n
A2,cyclic

.

Corollary 4 The “closed path equivalent” relationship is an equivalence relation. 
Two graphs are equivalent iff their difference is a graph in �� n

A
 . Thus, an equiva-

lence class of this relationship is the sum of a Gn
A,cyclic

 and the (n − 1)-dimensional 
linear subspace �� n

A
.

Clearly, for a given Gn
A,cyclic

 , most of the Gn
A,cpi

 choices from the vast offerings of 
the (n − 1)-dimensional �� n

A
 dictate the form of Gn

A
 and obscure properties of the 

relevant Gn
A,cyclic

.

2.3  Structure of triplets

Closed path properties of Gn
A
 involve the algebraic structure of the Gn

A,cyclic
 cycles. 

This requires identifying Gn
A,cyclic

 ’s three-cycles, which is described next.

(8)
S
A
(V1) = (−1 − 5 − 3 + 4 − 1) = −6,S

A
(V2) = 0,S

A
(V3) = 12,S

A
(V4)

= −12,S
A
(V5) = −18,S

A
(V6) = 24.
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Theorem 5 For Gn
A,cyclic

 , only one three-cycle of a Theorem 2 basis has a V̂jVk arc. 

The cycle’s multiple is the Vj

dj,k
⟶Vk weight in Gn

A,cyclic
.

Proof Arc Vj

dj,k
⟶Vk in Gn

A,cyclic
 appears only in Vs

x
⟶Vj

x
⟶Vk

x
⟶Vs of the CBn

A
 basis. 

As all weights in a three-cycle agree, this is the cycle’s multiple.   ◻

To illustrate, Fig.  2c has the three three-cycles 
V1

3
⟶V4

3
⟶V2

3
⟶V1, V1

1
⟶V2

1
⟶V3

1
⟶V1 and 

V2

2
⟶V5

2
⟶V3

2
⟶V2 . Figure  4c has the four three-cycles 

V2

5
⟶V4

5
⟶V3

5
⟶V2,V1

4
⟶V6

4
⟶V4

4
⟶V1,V3

3
⟶V4

3
⟶V6

3
⟶V3, and 

V1

2
⟶V5

2
⟶V3

2
⟶V1. In a Hamiltonian path, at most two arcs of a three-cycle can 

be used; otherwise the path returns prematurely to a vertex. With this caveat, GA 
can succeed with Gn

A,cyclic
 but fail with Gn

A
 . For instance, the GA delivers the long-

est Fig.  4c Hamiltonian path V3

5
⟶V2

5
⟶V4

4
⟶V1

4
⟶V6

0
⟶V5

2
⟶V3 with length 

20,  which equals its G6
A
 (Fig. 4a) path length (Theorem 3). For Gn

A
∈ �

n
A
 , its shortest 

Hamiltonian route reverses the longest.
To further illustrate how path properties reflect those of the ℂn

A
 basis, if a vertex 

is a source or sink, it imposes an obstacle in finding optimal paths; e.g., if Vj is a 
sink for negative cost directions (as is V6 in Fig.  4a), then all options to leave Vj 
require selecting a positive cost direction. As Theorem 6 asserts, this Gn

A
 sink/source 

problem is inherited from Gn
A,cpi

 . And Gn
A,cpi

 almost always has them! So, if Gn
A
 has a 

source and/or sink, expect that its structure is strongly influenced by Gn
A,cpi

.

Theorem  6 While Gn
A
 can have a sink and/or a source, this is impossible for a 

G
n
A,cyclic

 . In contrast, if all Gn
A,cpi

 cost directions are non-zero, then both the positive 
and negative cost directions have a sink and a source. For either positive or negative 
costs, Gn

A
 has at most one source and one sink.

V1 5
5

16

11

V6

5

V2

17

1
5 V3

5

V4

8

V5

12

a. G6
A

V1 6
7

13

9

V6

2 1

V2

7

3
4

6
V3

25

4 V4

11

V5

7
=

b. G̃6
A,cpi

V1 1
2

3

2

V6

2 6

V2

10

4
1

6
V3

75

4 V4

3

V5

5
+

c. G̃6
A,cyclic

Fig. 6  An incomplete G6

A
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2.4  Incomplete graphs

Because the arc lengths of Gn
A,cyclic

 are the operative data portions, it follows that 
incomplete graphs inherit portions of these simpler companion graphs. An 
approach, then, is to complete an incomplete graph and use only the relevant potions 
of its cyclic components. To illustrate, G6

A
 (Fig. 6a) excludes arcs V̂1V6 , V̂3V4 , V̂3V6 , 

and V̂4V5 , so complete G6
A
 by replacing the gaps with arcs of arbitrarily lengths. (In 

Fig. 6a, zero length arcs are added.) Denote the completed graph by G̃6

A
 , and com-

pute G̃6

A,cpi
 (Fig.  6b) and G̃6

A,cyclic
 (Fig.  6c). Theorem  7 asserts that the length of a 

closed path in G6
A
 equals its length in G̃6

A,cyclic
 . (The Fig. 6b, c dashed arrows are for-

bidden arcs.) Thus the GA generated path V2

10
⟶V4

3
⟶V6.

5
⟶V5

7
⟶V3

2
⟶V1

−1
⟶V2 

of length 26, which uses 7 of the 9 largest allowed G̃6

A,cyclic
 leg lengths, is the longest 

G
6
A
 Hamiltonian path.

Theorem 7 For an incomplete Gn
A
 , replace all non-admissible arcs with arcs of arbi-

trary lengths to define G̃n

A
 ; compute G̃n

A,cyclic
 . The length of a closed path in Gn

A
 equals 

its length in G̃n

A,cyclic
.

The length of an admissible connected path starting at Vj and ending at Vk in the 
incomplete Gn

A
 is its length in G̃n

A,cyclic
 plus the length of the Vj → Vk arc in G̃n

A,cpi
.

The concluding Theorem 7 assertion allows the Vj → Vk arc in G̃n

A,cpi
 to be a for-

bidden Gn
A
 choice. As a Fig. 6 example, the G6

A
 path V6

12
⟶V5

5
⟶V3 has length 17. In 

G̃
6

A,cyclic
 this path V6

5
⟶V5

7
⟶V3 has length 12, which is added to the 5 length from 

the banned V6

5
⟶V3 arc in G̃6

A,cpi
.

Proof A closed path’s length in Gn
A
 is the same in G̃n

A
 and (by Theorem 3) in G̃n

A,cyclic
.

A connected path’s length in Gn
A
 is the same in G̃n

A
 , which equals the sum of its 

lengths in G̃n

A,cpi
 and G̃n

A,cyclic
 . Its G̃n

A,cpi
 length is that of its Vj → Vk arc, which com-

pletes the proof.   ◻

For a technical explanation of Theorem  7, according to Theorem  4, adding 

Vi

x
⟶Vj to Gn

A
 (perhaps to complete Gn

A
 ) adds arc Vi

2x

n

⟶Vj and the (n − 2) paths 

{Vi

x

n

⟶Vk

x

n

⟶Vj}k≠i,j to G̃n

A,cpi
 , plus the (n − 2) cycles {Vi

x

n

⟶Vj

x

n

⟶Vk

x

n

⟶Vi}k≠i,j to 

G̃
n

A,cyclic
 . If x = 0 , only the Vi

0
⟶Vj arc is involved. If x ≠ 0 , the new cycles change 

certain G̃n

A,cyclic
 arc weights to reflect the algebra of overlapping cycles. But when 

computing the length of a closed path that does not include the V̂iVj arc, the added 
terms cancel. This is because if, say, Vi is a vertex of the closed path, one connecting 
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arc with the added x
n
 weight leaves Vi while another connecting arc, with the added 

−
x

n
 , enters.

2.5  Voting, statistics

It is unfortunate for standard voting and decision theory concerns that the set of tran-
sitive vectors is not a linear space. For instance, both d∗

1,2
= d∗

2,3
= 3, d∗

1,3
= 1 and 

d#
1,2

= d#
2,3

= d#
1,3

= −2 are transitive, but the sum is not. This weakness can be partly 
circumvented because (Theorem 3) a transitive vector is the unique sum of a strongly 
transitive and a cyclic vector. Not only do cyclic terms create difficulties when seek-
ing a linear order, but as no alternative is favored in a A

x
⟶B,B

x
⟶C,C

x
⟶A cycle, 

it is arguable that cycles should not contribute to the outcome. Thus, a goal in vot-
ing or non-parametric statistics should be to replace data containing cycles with the 
closest strongly transitive choice—the orthogonal projection Gn

A,cpi
.

This projection corresponds to widely accepted methods. In voting, the Borda 
Count resembles the four-point grading system because a n-candidate ballot is tallied 
by assigning n − j points to the jth ranked candidate, j = 1,… , n. As known, a can-
didate’s Borda tally agrees with the sum of points received in majority vote paired 
comparisons over all other candidates; e.g., if dk,j registers how candidate Vk ’s tally 
differs from the N

2
 average in a {Vk,Vj} majority vote election with N voters, then 

Vk ’s Borda tally (Definition 2) is 
∑

j≠k{dk,j +
N

2
} = S(Vk) +

(n−1)N

2
. Consequently the 

Borda and Gn
A,cpi

 rankings must agree. Similarly, Haunsperger (1992) proved that the 
ranking obtained by the Kruskal–Wallis test in non-parametric statistics (it converts 
data into paired comparisons) is equivalent to the Borda rule, so its outcomes also 
agree with the Gn

A,cpi
 ranking.

2.6  Lower degrees of freedom

As developed, the space �n
A
 separates into components that affect paths in different 

ways. The first, �� n
A
 , consists of terms that obscure analyzing paths and their proper-

ties as they define linear orders that add nothing of value for closed paths. This sub-
space, however, is central for resolving certain voting and statistical concerns. The 
second, ℂn

A
 , has all (and only) closed path information, which means that all remain-

ing complexity problems about paths are consequences of the algebra of these 
cycles. This simplifies deriving closed path properties, computing lengths, design-
ing algorithms with the (somewhat predictive) algebra of three-cycles and removing 
components that only add to the complexity of finding path properties. General path 
properties come from the ℂn

A
 basis, which characterizes all Gn

A,cyclic
 choices. When 

seeking general closed path properties, ℂn
A
 is a best possible refined component. This 

is because the simplest closed path is a triplet, so that three-cycle must be in ℂn
A
.
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3  Symmetric cost settings

Turn now to the important �n
S
 , which is the space of n-vertex complete symmet-

ric weighted (no loops) graphs. Its wide array of practical applications explains the 
strong interest in finding the minimal length paths. As nicely described in Cook 
(2012, Chap. 3), these applications include the organization of data, the aiming of 
telescopes, lasers, and X-rays, the guiding of industrial machines, the mapping of 
genomes, and on and on.

The goal in this section is to identify and eliminate those terms that cause prob-
lems when searching for optimal paths. Mimicking what is developed for �n

A
 , a 

graph is replaced with a simpler companion graph. In the space �n
S
 , “symmetric” 

requires di,j ≡ dj,i , where di,j could be the distance between cities Vi and Vj that is the 
same in both directions. Or, consider a warehouse where all material is moved with 
pairs of machines; here di,j could represent the combined weight of what is handled 
by the {Vi,Vj} pair.

Following the lead of Eq. (2), a Gn
S
∈ �

n
S
 is divided into

where Gn
S,cpi

 collects all path independent terms (hence all of these paths have the 
same length) that create difficulties. Similar to what was found in Sect.  2, all Gn

S
 

closed path properties come from Gn
S
 ’s companion graph Gn

S,cyclic
 , which measures 

deviations from “sameness.” Thus its arc lengths become the essential and operative 
values that determine all closed path properties of Gn

S
∈ �

n
S
.

The �n
S
 cpi definition differs from that of �n

A
 ; e.g., rectangles replace triangles. 

For instance, G4
S
∈ �

4
S
 (Fig. 7a) is cpi iff all Hamiltonian paths have the same length. 

Of the six routes, three reverse the other three, so this condition requires the three 
Fig. 7b routes to have equal length. Cancellations force the sums of the vertical, the 
horizontal, and the diagonal lengths to agree, or

Any Hamiltonian path for G4
S
∈ �

4
S
 consists of two of the pairs of diagonal, vertical, 

or horizontal edges. As such, the two smallest Eq. (10) sums for a given G4
S
 define 

the shortest path with length equal to the sum of their sums. Illustrating with Fig. 7d, 
x1 + x2 = 10, y1 + y2 = 11, z1 + z2 = 9 , so the shortest Hamiltonian circuit uses 
the diagonal and horizontal edges to define the path V1

7
⟶V3

9
⟶V4

2
⟶V2

1
⟶V1 of 

(9)G
n
S
= G

n
S,cpi

+ G
n
S,cyclic

,

(10)x1 + x2 = y1 + y2 = z1 + z2.

G ∈

x1

y2

x2

y1
z2 z1

V1 V2

V4 V3

a. G4
S

V1
x1−→ V2

y2−→ V3
x2−→ V4

y1−→ V1

V1
z1−→ V3

x2−→ V4
z2−→ V2

x1−→ V1

V1
y1−→ V4

z2−→ V2
y2−→ V3

z1−→ V1

b. Equal path lengths
ω1+ω2

ω2+ω3

ω3+ω4

ω1+ω4

ω2+ω4

ω1+ω3

ω1 ω2

ω4 ω3

c. G4
S,cpi representation

1

10

9

1
2

7

V1 V2

V4 V3

d. Example

Fig. 7  Closed path independence for �4

S
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length 19. (Should three vertices define a triangle with the fourth in the interior, the 
three pairs are defined by the triangle’s three vertices. A pair is the arc from a vertex 
to the interior point coupled with the leg of triangle that is opposite the vertex.)

All cpi graphs in �4
S
 satisfy two independent equations (Eq. 10) in six variables. 

One solution has zero leg lengths, so all solutions (i.e., all cpi graphs G4
S,cpi

 ) are char-
acterized by Eq.  (10)’s four-dimensional kernel. A choice uses weights {�j}

4
j=1

 

where the �j assigned to vertex Vj , j = 1,… , 4 defines the V̂jVk length of �j + �k 
(Fig. 7c); values that satisfy Eq. (10). For �4

S
 , these are the ‘closed path independ-

ent’ graphs. The common path length depends on how often a vertex is visited; e.g., 
a G4

S,cpi
 closed path that visits each of the three vertices {Vi}

3
i=1

 twice has length 
4
∑3

j=1
�j ; all Hamiltonian paths in G4

S,cpi
 have length T(G4

S,cpi
) = 2

∑4

j=1
�j . Every-

thing extends to n ≥ 4.

Definition 4 A graph Gn
S
∈ �

n
S
 is ‘closed path independent’ iff for each set of vertices 

D , all closed paths that pass once through each vertex of D have the same length.

Theorem 8 For n ≥ 4 , Gn
S,cpi

∈ �
n
S
 is a cpi graph if, for each j = 1,… , n, a weight �j 

is assigned to vertex Vj where the V̂jVk length is �j + �k , j ≠ k . A closed path pass-
ing once through the vertices {Vj}j∈D has length 2

∑

j∈D �j , thus all Hamiltonian 
path lengths in Gn

S,cpi
 are 2

∑n

j=1
�j.

A goal specified in the Sect. 1 is to find the path independent components of a 
G
n
S
 . As the following verifies, it is Gn

S,cpi
 , which is expected because all Hamiltonian 

circuits in Gn
S,cpi

 have the same length.

Corollary 5 For Gn
S,cpi

 and a set of vertices D that includes {Vj,Vk} , all paths starting 
at Vj and ending at Vk that pass once through each vertex of D have the same length.

Proof This is the common length of closed paths in D (Definition 4) minus �j + �k .  
 ◻

To determine the structure of Gn
S,cpi

 , identify �n
S
 with ℝ(

n

2
)

S
 . Here, ℝ(

n

2
)

S
 differs from 

ℝ
(n
2
)

A
 (Eq. 7) because in �n

A
 (Sect. 2.2), di,j = −dj,i , but in �n

S
 , di,j = dj,i . Thus,

Theorem 9 The space of Gn
S,cpi

 graphs, denoted by ℂℙ𝕀n
S
 , is a n-dimensional linear 

subspace of �n
S
 , or, equivalently, of ℝ(

n

2
)

S
. Let Bn

j
∈ ℝ

(n
2
)

S
 be where dj,k = 1 for all 

k ≠ j, k = 1,… , n ; all other du,v = 0 . A basis for ℂℙ𝕀n
S
 is {Bn

j
}n
j=1

.

(11)
d
n

S
= (d1,2, d1,3,… , d1,n;d2,3,… , d2,n;d3,4,… ;dn−1,n) ∈ ℝ

(n
2
)

S
, where di,j = dj,i;
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As Gn
S,cpi

 identifies the components of Gn
S
 entries with linear structures that 

cloud the analysis of closed paths, attention shifts to the companion graph 
G
n
S,cyclic

= G
n
S
− G

n
S,cpi

 . The dimensions of �n
S
 and ℂℙ𝕀n

S
 are 

(

n

2

)

 and n, so ℂℙ𝕀n
S
 ’s nor-

mal subspace, ℂn
S
 , has dimension n(n−3)

2
 . (For a comparison, the dimension of ℂn

A
 is 

(

n−1

2

)

=
n(n−3)

2
+ 1 .) Space ℂn

A
 has a four-cycle structure (Theorem 10), which identi-

fies what symmetries define Gn
S
 ’s closed paths.

Theorem 10 Let vector cn
i,j,k,s

 be where di,j = 1, dj,k = −1, dk,s = 1, ds,i = −1 ; all other 
du,v = 0 . Space ℂn

S
 is spanned by all {cn

i,j,k,s
} . It has dimension n(n−3)

2
 and it is orthog-

onal to ℂℙ𝕀n
S
 . One basis is

To motivate the cn
i,j,k,s

 vectors, if the arc lengths of the route around the perimeter 
of Fig. 7a satisfy the Eq. (10) cpi requirement, then x1 − y2 + x2 − y1 = 0 . The path 
form of this equation’s gradient, (x1, y2, x2, y1) = (1,−1, 1,−1) , is c4

1,2,3,4
 . In general, 

cn
i,j,k,s

 defines the four-cycle

where each vertex has one leg of length 1 and one of length −1 . With Fig. 7a, the 
c4
1,2,3,4

 and c4
1,4,2,3

 multiples are, respectively, 1

4
{(x1 + x2) − (y1 + y2)} and 

1

4
{(y1 + y2) − (z1 + z2)} . Namely, cn

i,j,k,s
 measures how Gn

S
 data deviate from cpi same-

ness. In doing so, it identifies which data edges of a four-tuple form ridges or val-
leys, which is critical information about the data structure. Indeed, as all Hamilto-
nian circuits in Gn

S,cpi
 have identical lengths, the Gn

S,cpi
 component provides limited 

information about path structures. Instead, all valued particulars come from Gn
S,cyclic

.

Proof That cn
i,j,k,s

 is orthogonal to each Bn

t
 is immediate. If t ≠ i, j, k, s , the scalar 

product is zero. If t is one of these indices, say t = j , then one component of cn
i,j,k,s

 
with vertex Vj is positive and the other component is negative, so the scalar product 
with Bn

t
 is zero.

Establishing the linear independence of Eq. (12) follows a switching pattern. Iter-
atively, it will be shown that all coefficients of 

∑

2<j<k≤n 𝛼j,kc
n
1,2,j,k

= 0 must equal 
zero. For each of the 

(

n−3

2

)

 top vectors in An
1,2

 (i.e., j, k ≥ 4 ), only vector cn
1,2,j,k

 has a 
non-zero dj,k , so �j,k = 0. For all remaining vectors, either j or k equals 3. Of these, 
only the top Bn

1,2
 vector of cn

1,2,n,3
 has a non-zero d2,n , so �n,3 = 0 . The top remaining 

A
n
1,2

 vector is cn
1,2,3,n

 , where, with the removal of cn
1,2,n,3

 , only cn
1,2,3,n

 has non-zero d3,n , 
so �3,n = 0 . The obvious induction argument of switching between remaining An

1,2
 

and Bn
1,2

 vectors continues. That is, if s is the upper bound of the remaining j, k val-
ues, then only cn

1,2,s,3
∈ B

n
1,2

 has a non-zero d2,s term, so �s,3 = 0 . The top remaining 
A

n
1,2

 vector is cn
1,2,3,s

 ; as cn
1,2,s,3

 was removed, only cn
1,2,3,s

 of the remaining vectors has 

(12)A
n
1,2

∪ B
n
1,2

where An
1,2

= {cn
1,2,j,k

}2<j<k≤n, B
n
1,2

= {cn
1,2,j,3

}n
j=4

.

(13)cn
i,j,k,s

= Vi

1
⟶Vj

−1
⟶Vk

1
⟶Vs

−1
⟶Vi
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a non-zero d3,s term, so �3,s = 0 and s − 1 is the largest remaining j, k value. This 
completes the proof.   ◻

3.1  Decomposing �n
S

Theorem 11 summarizes the above; it is the �n
S
 version of Theorem 3.

Theorem  11 For n ≥ 4 , �n
S
 has an n-dimensional linear subspace ℂℙ𝕀n

S
 and an 

orthogonal n(n−3)
2

 dimensional linear subspace ℂn
S
 . A Gn

S
∈ �

n
S
 has a unique decom-

position Gn
S
= G

n
S,cpi

+ G
n
S,cyclic

 where Gn
S,cpi

∈ ℂℙ𝕀
n
S
 and Gn

S,cyclic
∈ ℂ

n
S
 are, respec-

tively, the orthogonal projection of Gn
S
 to ℂℙ𝕀n

S
 and to ℂn

S
.

Before computing Gn
S,cpi

 and the crucial Gn
S,cyclic

 , Fig.  8 is used to explain their 
roles and to relate Gn

S,cpi
 and Gn

A,cpi
. According to Theorem 11, Gn

S,cpi
 is the ℂℙ𝕀n

S
 graph 

that most closely resembles Gn
S
 , which is apparent from Fig. 8a, b. A defining feature 

of Gn
A,cpi

∈ ��
n
A
 and Gn

S,cpi
∈ ℂℙ𝕀

n
S
 is that for both and any set of vertices, the length 

of all closed paths in the respective graph that meet each vertex once is the same. 
Without any difference in lengths, these details are redundant when selecting among 
paths. The decompositions of �n

A
 and �n

S
 remove these path independent values to 

focus on the companion graphs Gn
A,cyclic

 and Gn
S,cyclic

 with the relevant data from the 
original graph ( Gn

A
 or Gn

S
).

The sum of the Fig.  8b vertical edges, horizontal edges, and diagonals each 
equals 30. Thus, all G4

S,cpi
 (Fig. 8b) Hamiltonian paths have length 60. Three of the 

six Fig.  8a Hamiltonian circuits are V1

17
⟶V2

17
⟶V3

17
⟶V4

13
⟶V1 with length 64, 

V1

17
⟶V2

12
⟶V4

17
⟶V3

14
⟶V1 with length 60, and V1

14
⟶V3

17
⟶V2

12
⟶V4

13
⟶V1 with 

length 56; the other three circuits are reversals. The average length of these paths 
is 60, which agrees with its Fig. 8b value. This comparison accurately suggests that, 
for any set of vertices used to define closed paths, what happens in  Gn

S,cpi
 is the 

average of what happens in Gn
S
. Thus, path lengths in the companion Gn

S,cyclic
 (e.g., 

Fig. 8c) measure differences from the average. Trivially, V1

−2
⟶V3

0
⟶V2

−2
⟶V4

0
⟶V1 

V1 V2

V3V4

17

13 17

17

14
12

a. G4
S

=

V1 V2

V3V4

15

13 17

15

16
14

b. G4
S,cpi

+

2V1 V2

V3V4

0 0

2

−2
−2

c. G4
S,cyclic; 2b1,2,4,3

+

Fig. 8  Interpreting Gn
S,cyclic
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in Fig. 8c has the shortest length of −4 ; it is the shortest Fig. 8a path with length −4 
from the average of 60, or 56.

3.2  Computing Gn
S,cpi

 and Gn
S,cyclic

It remains to find and use Gn
S,cyclic

 . The O(n2) computations needed to determine Gn
S,cpi

 
and Gn

S,cyclic
 follow the lead of Sect. 2.2. This is because Gn

S,cpi
 is the orthogonal pro-

jection of Gn
S
 to ℂℙ𝕀n

S
 where a basis is known (Theorem  9). Entries for Gn

S,cpi
 and 

G
n
S,cyclic

 are based on the following.

Definition 5 For Vj of Gn
S
∈ �

n
S
 , let SS(Vj) be the sum of the arc lengths attached to 

vertex Vj , j = 1,… , n. Let T(Gn
S
) =

1

n−1

∑n

j=1
SS(Vj).

The average length of the (n − 1) arcs with Vj as a vertex is 1

n−1
S(Vj) , so T(Gn

S
) is 

the average Gn
S
 Hamiltonian path length. As Gn

S,cyclic
 consists of cn

i,j,k,s
 cycles, each 

cn
i,j,k,s

 arc entering a vertex has a leaving arc with the same weight but opposite sign 
(Eq. 13); thus SS(Vj) = 0 . This equation means that all SS(Vj) values for Gn

S
 and Gn

S,cpi
 

agree. As T(Gn
S
) sums the 1

n−1
SS(Vj) values, the average Hamiltonian path lengths in 

G
n
S
 and in Gn

S,cpi
 agree, or (as suggested with Fig. 8)

Agreement between SS(Vj) values in GS and Gn
S,cpi

 provides equations to find the 
unknowns {�j}

n
j=1

 . Illustrating with Fig. 9a, as SS(V1) = 81 for G5
S
 , the same value 

holds for G5
S,cpi

 , which means that 
∑5

j=2
(�1 + �j) = 4�1 +

∑5

j=2
�j = 81 . In general, 

the unknown {�j}
n
j=1

 satisfy

Using T(Gn
S
) = T(Gn

S,cpi
) (Eq. 14), the values of the Gn

S,cpi
 weights are

These �j weights, which define Gn
S,cpi

 and Gn
S,cyclic

 , lead to a central result about path 
lengths.

Theorem 12 For Gn
S
∈ �

n
S
 , Eq. (16) defines the weights of its Gn

S,cpi
 component. Let 

G
n
S,cyclic

= G
n
S
− G

n
S,cpi

. The Gn
S
 length of a Hamiltonian circuit equals T(Gn

S
) plus its 

G
n
S,cyclic

 path length.

(14)T(Gn
S
) = T(Gn

S,cpi
) = 2

n
∑

j=1

�j.

(15)

SS(Vj) =
∑

k≠j

(�j + �k) = (n − 1)�j +
∑

k≠j

�k = (n − 2)�j +

n
∑

k=1

�k = (n − 2)�j +
1

2
T(Gn

S,cpi
).

(16)�j =
1

n − 2
[SS(Vj) −

1

2
T(Gn

S
)], j = 1, 2,… , n.
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Proof A Gn
S
 path length is the sum of its Gn

S,cpi
 and Gn

S,cpi
 lengths. All Gn

S,cpi
 Hamilto-

nian paths have length T(Gn
S,cpi

) = T(Gn
S
) , so Theorem 12 follows.   ◻

To illustrate Theorem  12, the Fig.  9a computations from G
5
S
 are 

SS(V1) = 81, SS(V2) = 60, SS(V3) = 42, SS(V4) = 90, SS(V5) = 63 , so T(G5
S
) = 84. 

Consequently (Eq.  16) �1 =
1

3
[81 − 42] = 13, �2 = 6, �3 = 0, �4 = 16, �5 = 7, 

from which G5
S,cpi

 and the central G5
S,cyclic

 of Fig. 9b, c follow.
The Fig.  1 values are �1 = 7,�2 = 7,�3 = 9,�4 = 1,�5 = 1,�6 = 8, 

which yield the Fig.  1b value of 66. Similarly, for Fig.  10, the G6
S,cpi

 weights are 
�1 = 6,�2 = 3,�3 = 5,�4 = 9,�5 = 14,�6 = 8. As required by Definition  4, for 
any rectangle in G6

S,cpi
 (Fig. 10b), the sums of its horizontal edges, its vertical edges, 

and its diagonals agree. For any five vertices, the lengths of all G6
S,cpi

 closed curves 
that meet all five vertices once are the same. As all G6

S,cpi
 Hamiltonian paths have the 

same length, they have nothing that can be used to compare paths. As Fig. 10 shows 
(similar to Corollary 4), the Gn

S,cpi
 complexities can dominate the Gn

S
 structure.

Turning to the critical Gn
S,cyclic

 , negative arc values normally are avoided with 
symmetric costs to avoid cycling that can generate an arbitrarily small path length. 
This problem is sidestepped here because cycling increases the “average value,” 
which replaces T(Gn

S,cpi
) in Theorem 12 with a larger value; e.g., if each vertex is met 

twice, T(Gn
S,cpi

) is replaced with 2T(Gn
S,cpi

) = 2(2
∑n

j=1
�j) . This means that Gn

S,cyclic
 

entries identify how the arc lengths “differ from the average,” so following arcs with 
negative lengths corresponds to following “below average cost” arcs.

V1 14
11

15

17

V6

12 9

V2

9

15
10

13
V3

1913

26 V4

18

V5

24

a. G6
S

V1 9
11

15

20

V6

14 8

V2

12

17
11

14
V3

1913

23 V4

17

V5

22
=

b. G6
S,cpi

V1 5
0

0

-3

V6

-2 1

V2

-3

-2
-1

-1
V3

00

3 V4

1

V5

2
+

c. G6
S,cyclic

Fig. 10  A G6

S

V1 V2

V3

V4

V5

3

924

189

12
42
27

213

a. Original; G5
S

= +

V1 V2

V3

V4

V5

19

620

1623

13
29
13

227

b. G5
S,cpi

V1 V2

V3

V4

V5

−16

34

2-14

-1
13
14

-1
-4

c. G5
S,cyclic

Fig. 9  Decomposition of a G5

S
∈ �

5

S
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Again, GA may be successful with Gn
S,cyclic

 but fail with Gn
S
 . This is because the 

G
n
S,cpi

 terms can divert GA. With Fig.  9c, GA identifies the shortest Gn
S,cyclic

 Ham-

iltonian circuit of V1

−16
⟶V2

−1
⟶V4

−14
⟶V5

−4
⟶V3

−1
⟶V1 , which clearly is the shortest 

because it uses all five negative cost arcs to have length −36 . Its G5
S
 length (Theo-

rem 12) is T(G5
S
) − 36 = 84 − 36 = 48. The G5

S,cpi
 terms, however, throw GA off the 

track when it is applied to G5
S
 (Fig. 9a).

Similarly, the GA identifies the shortest Fig.  10c Hamiltonian path 
V1

−3
⟶V5

−2
⟶V2

−3
⟶V4

−1
⟶V3

0
⟶V6

−2
⟶V1 of −11 . With the �j values for Fig.  10b, 

T(G6
S,cpi

) = 90, so the shortest Hamiltonian path in Fig. 10a is 11 below this average, 
or 90 − 11 = 79. Again, GA fails for G6

S
 only because the G6

S,cpi
 entries divert it.

3.3  Finding shortest paths

The Gn
S,cyclic

 arc lengths reflect “difference from the average,” which leads to an eas-
ily computed lower bound for Hamiltonian path lengths.

Corollary 6 For Gn
S
 , let the adjustment A(Gn

S,cyclic
) be the sum of the n small-

est arc lengths in Gn
S,cyclic

 . All Gn
S
 Hamiltonian path lengths are bounded below by 

T(Gn
S
) +A(Gn

S,cyclic
) . The shortest Hamiltonian graph is bounded above by T(Gn

S
).

The last statement follows because T(Gn
S
) is the average length of a Hamiltonian 

path. Thus some Hamiltonian path length equals or is smaller than T(Gn
S
) . For Fig. 9, 

A(G5
S,cyclic

) = −36 , so the lower bound is 84 − 36 = 48 , which is the length of its 
shortest Hamiltonian path. With Fig. 10, A(G5

S,cyclic
) = −12 for the lower bound of 

90 − 12 = 78 , but the shortest Hamiltonian path has the larger length of 79. The dif-
ference arises because the −1 length of V̂2V6 is not used in the path. As the example 
suggests, sharper Corollary 6 estimates follow from the four-cycle geometry.

Again, GA may find optimal paths when applied to Gn
S,cyclic

 and fail with Gn
S
 . 

Figure  11, for instance, shows the GA paths for Figs.  9 and 10. To further illus-
trate, find the shortest closed path in Fig.  10, that passes once through each of 

V1 V2

V3

V4

V5

−16

34

2-14

-1
13
14

-1
-4

a. From Fig. 9c
V1 5

0

0

-3

V6

-2 1

V2

-3

-2
-1

-1
V3

00

3 V4

1

V5

2

b. From Fig. 10c.

Fig. 11  Finding paths
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the four vertices {V1,V2,V4,V5} . The six G6
S,cyclic

 arc lengths of these vertices are 
{−3,−3,−2, 0, 3, 5} where GA is not needed because the first four terms define the 
minimal closed path V2

−3
⟶V4

0
⟶V1

−3
⟶V5

−2
⟶V2 of length −8 . The T value for this 

set is 2(�1 + �2 + �4 + �5), which, in G6
S,cpi

 , is the sum of the rectangle’s vertical 
and horizontal legs or 64. So the length of this shortest G6

S
 closed path over these 

vertices in G6
S
 is 64 − 8 = 56.

3.4  Four cycle structure

As all essential closed path properties of Gn
S
 reflect the four-cycle symmetries (Theo-

rem 12), general properties characterizing paths and Gn
S,cyclic

 are useful.

Corollary 7 If Gn
S
 has the property that SS(Vj) = 0 , j = 1,… , n , then Gn

S
∈ ℂ

n
S
.

If a cycle in Gn
S,cyclic

 has the property that each vertex in the cycle has only two 
non-zero arcs connected to it, then the cycle has an even number of vertices and the 
arc lengths have the same magnitude where signs change in an alternating manner.

Proof The condition of the first assertion requires T(Gn
S
) = 0 (Definition  5) and 

�j = 0 , j = 1,… , n (Eq. 16). As Gn
S,cpi

= 0 , it follows that Gn
S
= G

n
S,cyclic

.
The second assertion follows from the SS(Vj) = 0 property. If a vertex has only 

two non-zero arcs, then one is the negative of the other. The path’s next vertex has 
one of these weights, so the magnitudes continue. As the negative value is every 
other arc, there must be an even number of vertices in order for the starting vertex to 
have the SS(Vj) = 0 property.   ◻

According to Corollary  7, the Gn
S,cyclic

 symmetries restrict the form of certain 

cycles. Consider the partial cycle V1

1
⟶V2

−1
⟶V3

1
⟶V4

−1
⟶V5

1
⟶V?. If the cycle 

had an odd number of vertices where V? = V1 , then both non-zero arcs for V1 have 
length 1, which violates SS(V1) = 0 . Therefore, another vertex is needed leading 
to the cycle’s end being “ …V5

1
⟶V6

−1
⟶V1. ” This six-vertex cycle expressed with 

the basis is c1,2,3,4 + c1,4,5,6 where the contributions of these vectors to the V̂1V4 arc 
length cancel.

What can complicate the Gn
S,cyclic

 algebra are overlapping four-cycles. This com-
plexity can be handled with the switching, iterative approach used in the proof of 
Theorem 10.

Theorem 13 To express a Gn
S,cycle

∈ ℂ
n
S
 in terms of the basis in Eq. (12), for 4 ≤ j < k , 

the multiple of cn
1,2,j,k

∈ A
n
1,2

 is dj,k from the Vj

dj,k
⟶Vk arc in Gn

S,cycle
 . (If the arc is not in 

the graph, its value is zero.) After determining the multiple of a basis vector, remove 
the associated four-cycle from the graph. In what remains, the multiple of the top 
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cn
1,2,n,3

∈ B
n
1,2

 is the negative of the d2,n value in the of V2

d2,n
⟶Vn arc in the reduced 

graph. After removing this four-cycle, the top remaining An
1,2

 vector is cn
1,2,3,n

 ; its 

coefficient is the length in V3

d3,n
⟶Vn in the reduced graph, which leaves n − 1 as the 

largest remaining index in the reduced graph. In general, if the largest remaining 
index is s, the multiple of the top remaining Bn

1,2
 vector, cn

1,2,s,3
 , is the negative of d2,s 

from the reduced graph’s V2

d2,s
⟶Vs arc. The top of the remaining An

1,2
 vectors is 

cn
1,2,3,s

 ; its multiple is the d3,s value of the V3

d3,s
⟶Vs arc in the reduced graph.

To explain one of the sign changes, the associated arc for cn
1,2,n,3

 is 

V1

1
⟶V2

−1
⟶Vn

1
⟶V3

−1
⟶V1 , so for V2

d2,n
⟶Vn to hold, the coefficient for cn

1,2,n,3
 must 

be the negative of d2,n.

Proof The proof is essentially that of Theorem  10; removing basis vectors in the 
specified manner leaves, at each stage, a single du,v value of a certain type. Because 
ℂ

n
S
 is the sum of these four-cycles, the existence of this du,v ≠ 0 requires the associ-

ated cn
1,2,k,s

 to be in the decomposition; the form of this four-cycle requires du,v to 
be the vector’s multiple. A difference is that if du,v identifies a vector from Bn

1,2
 , the 

multiple is the negative of du,v , as required by the form of the associated four-cycle. 
If the vector is from An

1,2
 , then du,v is the multiple.   ◻

Using this approach, the Fig.  9c four-cycles of G5
S,cyclic

 are −14c5
1,2,4,5

 , −c5
1,2, 5,3

 , 
10c5

1,2,3, 5
 , −13c5

1,2, 3,4
 and 15c5

1,2,4,3
.

3.5  Related results

To illustrate that all closed path properties depend on the ℂn
S
 basis, recall that if arc 

costs represent Euclidean distances in the planar problem and if the triangle ine-
quality is satisfied, then minimal Hamiltonian paths cannot have a self intersection 
(Flood, 1956). Where else can this behavior arise? Here the answer involves Gn

S,cpi
.

Theorem 14 For n ≥ 3 , Gn
S,cpi

 satisfies the triangle inequality iff all weights �j are 
non-negative.

If 𝜔k < 0 , then the associated SS(Vk) is bounded above by 1
2
T(Gn

S
) (Eq.  16), so 

the average of arc lengths attached to Vk is much smaller than the average over the 
graph.

Proof The Gn
S,cpi

 arc length for V̂iVk is �i + �k . For a triplet, the sum of the lengths 
of the arcs V̂iVj and V̂jVk is �i + 2�j + �k , which differs from the V̂iVk length by 2�j . 
Thus, the triangle inequality is satisfied iff �j ≥ 0 . This must hold for all legs of all 
triplets, so �j ≥ 0 for all j.   ◻
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Turning to n = 4 and the ℂ4
S
 basis, the terms { uc4

1,4,2,3
+ vc4

1,2,3,4
 } (Fig. 12a) rep-

resent all possible G4
S,cyclic

 structures, it characterizes all closed path properties and 
their lengths for G4

S
∈ �

4
s
 . Assuming the rectangular Fig.  12a faithfully represents 

the modeled concern (e.g., using actual rather than Euclidean costs), the issue is to 
understand which (u, v) values (that is, which choices of G4

S,cyclic
 ) require a shortest 

Hamiltonian path to avoid the crossing diagonals. The answer follows from Fig. 12a 
as this property requires the sum of the diagonal lengths to be greater than the sum 
of the vertical edges and of the horizontal edges, or −u > v, −u > u − v . These val-
ues are depicted by the open, unbounded, shaded Fig. 12b region, which displays a 
surprisingly large selection of G4

S,cyclic
 (hence G4

S
 ) graphs that satisfy this property.

To compare this wedge with what happens should G4
S
 satisfy the triangle inequal-

ity, for any {Vi,Vk,Vj} triangle in G4
S
 , the sum of the V̂iVk and V̂kVj leg lengths is an 

upper bound for the V̂iVj leg length. To illustrate with i = 1, k=4, and j=3, the trian-
gle inequality is

Applying a similar calculation to the three triangles that have if Vk is not on the tri-
angle’s compared edge, then

Theorem 15 For G4
S
 , if any 𝜔k < 0 , then G4

S
 does not satisfy the triangle inequality. 

Let � = min(�1,�2,�3,�4) . The region where G4
S
 satisfies the triangle inequality is 

defined by substituting � for �k in Eq. (17); it is depicted by the closed, bounded, 
shaded triangle in Fig. 12c.

Proof If 𝜔k < 0 , then Eq. (17) cannot be satisfied. The remainder follows from the 
above.   ◻

If � = 0 , the triangle inequality is satisfied only for u = v = 0 , which requires 
G
4
S,cyclic

= 0 so G4
S
= G

4
S,cpi

 . The triangle inequality and the non-crossing of the diago-
nals for the shortest Hamiltonian path hold in the intersection of the shaded portions 
of Fig. 12b, c; this is the Fig. 12b shaded triangle limited on the left by u ≥ −� . 
What remains are regions (i.e., choices of G4

S,cyclic
 ) where the triangle inequality is 

{(u − v) + (�1 + �4)} + {v + (�4 + �3)} ≥ −u + (�1 + �3), or �4 ≥ −u.

(17)�k ≥ −u, �k ≥ v, �k ≥ u − v.

v

v

u-v u-v
u- u-

V1

V4

V2

V3

a. All G4
S,cyclic

v = −u

v = 2u

b. No diagonal crossings

u axis

v axis u = −ω

v = ω
v = u− ω

c. Triangle inequality

u axis

v axis V1 V2

V3

V4

V5

v+y-z

-v+w+zx-y+z

v-w+xw-x+y

-x
-v
-w

-y-z

d. All G5
S,cyclic choices

Fig. 12  Finding properties of Gn
S,cyclic
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satisfied but the shortest Hamiltonian path includes the diagonals, and a sizable 
region (the shaded unbounded Fig. 12b region for u < −𝜔 ) where the diagonals are 
not in the shortest Hamiltonian circuit and the triangle inequality is not satisfied.

The above indicates in a simple setting the kinds of results that are possible. 
Other conclusions for Gn

S,cyclic
 follow in a similar manner. A Fig. 12d basis, which 

captures all G5
S,cyclic

 behaviors, is {vc5
1,2,3,4

+ wc5
2,3,4,5

+ xc5
3,4,5,1

+ yc5
4,5,1,2

+ zc5
5,1,2,3

}.

3.6  Extensions and incomplete graphs

With minor modifications, other Sect. 2 results for the asymmetric �n
A
 transfer to the 

symmetric �n
S
 . For instance, Corollary  2 describes connected paths that start and 

stop at specified vertices; the following is a similar result for Gn
S
.

Theorem 16 Consider the class of paths starting at Vj and ending at Vk , j ≠ k , that 
pass once through each of the other Gn

S
 vertices. The length of such a path in Gn

S
 is its 

path length in Gn
S,cyclic

 plus {T(Gn
S
) − (�j + �k)}.

For an example, consider all Fig.  10 paths that start at V1 , end in V5 , and pass 
through each of V2,V3,V4,V6 once. Because �1 + �5 is the weight of the V̂1V5 leg 
in G6

S,cpi
 , its value is 20. So any path with these conditions has the path’s length in 

G
6
S,cyclic

 plus T(G6
S
) − 20 = 70 . Using Fig. 10b, after removing the solid V̂1V5 arc, the 

shortest path is V1 → V6 → V3 → V4 → V2 → V5 of length −8 , so this path in G6
S
 

(Fig. 10a) has length 70 − 8 = 62.

Incomplete graphs are handled as in Sect. 2. Namely, complete the graph by add-
ing arcs of any desired length to obtain G̃n

S
 , and compute G̃n

S,cpi
 and G̃n

S,cyclic
 For incom-

plete graphs, ∞ is typically assigned to inadmissible arcs; do so only with G̃n

S,cyclic
. 

(That any value can be assigned to the missing arcs underscores the intrinsic values 
of the G̃n

S,cyclic
 arc lengths. An explanation for the impact of different values is similar 

to that following Theorem 7.)

Theorem 17 For an incomplete symmetric graph Gn
S
 , let G̃n

S
 include the missing Gn

S
 

arcs where each has an arbitrary selected length. Compute T(G̃n
S
) and G̃n

S,cyclic
. The 

length of a Gn
S
 Hamiltonian path is T(G̃n

S
) plus its G̃n

S,cyclic
 length.

Adding arcs of zero length simplifies computations because the SS(Vj) values for 
G
n
S
 and G̃n

S
 will agree, and T(Gn

S
) = T(G̃n

S
).

Proof A Hamiltonian path length in Gn
S
 is the same in G̃n

S
 , which equals T(G̃n

S
) plus its 

length in G̃n
S,cyclic. The result follows.   ◻
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As V̂1V4 and V̂2V5 are not admitted in Fig.  13, include them in Fig.  13a with 
zero lengths (the two dashed arcs in Fig.  13a). The SS(Vj) values of G̃n

S
 are 

SS(V1) = 27, SS(V2) = 27, SS(V3) = 39, SS(V4) = 23, SS(V5) = 23, SS(V6) = 51 . Thus 
T(G̃n

S
) = 38, �1 =

1

4
[27 − 19] = 2,�2 = 2,�3 = 5,�4 = 1,�5 = 1,�6 = 8, and 

Fig. 13b, c follow. The two inadmissible Fig. 13c arcs (with length of −3 ) can be 
dropped or replaced with ∞ (Fig. 13c). With the simpler G̃6

S,cyclic
 , its shortest Ham-

iltonian path V1

−2
⟶V3

0
⟶V2

−1
⟶V6

−2
⟶V4

2
⟶V5

0
⟶V1 of length −3 includes all 

allowed arcs with negative costs. This path in G6
S
 has the “below average” length of 

T(G6
S
) − 3 = 35.

3.7  Decisions; transitive rankings

An intent of the Gn
S
 data may be to rank the {Vj}

n
j=1

 in the more complicated setting 
where the data describe joint contributions of pairs rather than their differences. If 
di,j represents the driving distance between cities Vi and Vj , for instance, which cities 
are, in general, farther from others? Should di,j represent the sum of the weights han-
dled by machines Vi and Vj , the decision problem is to rank the effort expended by 
the different machines.

Answers for “linear ordering” questions follow from Eq. (16), which leads to

As 1

n−1
SS(Vj) is the average weight of the arcs attached to Vj , Eq. (18) shows that the 

�j weights reflect the average contribution of each Vj.3 As such, a natural ranking of 
the {Vj}

n
j=1

 choices follows ordering the {�j}
n
j=1

 values. This selection most accu-
rately represents the original data by being the orthogonal projection of Gn

S
 to ℂℙ𝕀n

S
 . 

(This discussion mimics that of Sect. 2.5 for voting and non-parametric statistics.)

(18)SS(Vj) = (n − 2)�j +
n − 2

2
T(Gn

S
), j = 1, 2,… , n.
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S to G6

S

V1 4
7

3

3

V6
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V2

3

3
10

6
V3

613

2 V4

9

V5

9
=

b. G6
S,cpi

V1 3
-2

∞

0

V6

2 0

V2

1

∞
-1

2
V3

00

2 V4

-2

V5

1
+

c. G6
S,cyclic

Fig. 13  An incomplete G6

S

3 Notice the similarity between SS(Vj) and the Borda value SA(Vj).
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For instance, in Fig.  10b, the G6
S,cpi

 weights are �1 = 6,�2 = 3,�3 = 5,�4 = 9,

�5 = 14,�6 = 8. Because 𝜔5 > 𝜔4 > 𝜔6 > 𝜔1 > 𝜔3 > 𝜔2, a natural ranking is 
V5 > V4 > V6 > V1 > V3 > V2. As in Sect.  2, ranking concerns are addressed by 
projecting Gn

S
 to the path independent structures of ℂℙ𝕀n

S
.

4  Graphs with general asymmetric costs

Other systems can be similarly reduced. Graphs with a path independence property, 
where the lengths of all closed paths passing once through each vertex of a specified 
set are the same, identify components of Gn entries that provide very limited infor-
mation but frustrate analyzing closed paths. The subspace’s normal bundle measures 
deviations from neutrality, so it is critical in determining closed path properties.

This analysis is not necessary for the standard space of graphs with asymmetric 
costs. The reason is that, for each pair, the arc lengths Vj

x
⟶Vk and Vk

y
⟶Vj can 

be represented as an {average cost, excess cost} pair; e.g., {a =
x+y

2
,Vj

x−a
⟶Vk} . By 

applying the Sects. 2 and 3 approaches to each component, the above results about 
incomplete graphs, path lengths, etc., transfer.

To illustrate with Fig. 14, representing the Fig. 14a costs as {average cost, excess 
cost} pairs converts the original graph into G5 = G

5
S
+ G

5
A
∈ �

5
S
× �

5
A
 , where V̂jVk ’s 

length in G5
S
 is the average cost of its arcs, and G5

A
 represents how costs differ from 

the average. Thus, with V1

26
⟶V3 and V3

14
⟶V1 from Fig. 14a, V̂1V3 ’s length in G5

S
 is 

20 and G5
A
 has V1

6
⟶V3.

Analyzing G5
S
+ G

5
A
 follows as above: find each graph’s cpi and cyclic components. 

Removing G5
S,cpi

 and G5
A,cpi

 leaves Fig. 14b, c. A G5 Hamiltonian path length (with G5
S,cpi

 
weights �1 = 10, �2 = 10, �3 = 8, �4 = 12, �5 = 6 ) equals T(G5

S,cpi
) = 92 plus the 

sum of its G5
S,cyclic

 and G5
A,cyclic

 lengths. Expressing G5
S,cyclic

+ G
5
A,cyclic

 in a standard 

Fig.  14d form, its shortest Hamiltonian path of V1

−5
⟶V2

−1
⟶V4

−4
⟶V3

−3
⟶V5

1
⟶V1 

follows. Its G5 path length is T(G5
S,cpi

) − 12 = 80.
Notice for Gn

S,cpi
+ G

n
A,cpi

 and any subset of vertices D , all closed paths that passes 
through each vertex of D once has the same length. This value is the common length 

V1 V2
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V4

V5
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23

12 22
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2519

21

26
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2123
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a. A general G5

→ +
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V5
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2
0
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1
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b. G5
S,cyclic.

V1 V2
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2

00

11

0
2
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2
1

c. G5
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V1 V2
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V4

V5

-1
-5

31

-2
-43

1

2

2-2

-1

3
-1

-3
-1

d. Reduced G5

=

Fig. 14  Decomposing an asymmetric G5
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of these closed paths in Gn
S,cpi

 because the length of each such path in Gn
A,cpi

 is zero. 
A related decision problem is to rank the alternatives with data of the Fig. 14a form. 
The approach is to follow what is done above by using information from the G5

S,cpi
 

and G5
A,cpi

 components. The outcome depends on the adopted criterion; e.g., ranking 
the vertices in terms of average weight of paths entering and leaving each vertex 
leads to the ranking of Gn

S,coi
.

5  Summary

Components of a graph’s entries that hamper finding closed path properties and 
contribute to the NP hard complexity are identified as the subspace of linear inde-
pendent paths; this is where all Hamiltonian paths over any subset of vertices have 
the same length. But if all paths have the same length, this information cannot dis-
tinguish among them. Removing these entries reveals what part of the data gener-
ates differences between paths. In this manner, the graph’s essence is expressed in 
terms of a simpler companion graph with a smaller degree of freedom. In addition, 
as all closed graph properties can be expressed in terms of inherent symmetry struc-
tures, this means that all remaining complexities of finding optimal paths are caused 
by the algebra of these cycles (primarily with overlapping edges). The structure of 
these cycles can change with the kinds of graphs.

6  Proofs

Results not proved above or in Saari (2021) are proved here.

Proofs of Theorem  1, Corollary  1 For triplet {Vi,Vj,Vk} in a cpi graph, the 
closed path Vi

x
⟶Vj

y
⟶Vk

z
⟶Vi has length zero, so x + y = −z. Thus, 

Vi

x
⟶Vj

y
⟶Vk = Vi

−z=x+y
⟶ Vk satisfies Eq.  (3). As all triplets satisfy Eq.  (3), a cpi 

graph is strongly transitive.
A triplet {Vi,Vj,Vs} in a strongly transitive graph satisfies 

Vi

x
⟶Vj

y
⟶Vs = Vi

z
⟶Vs where z = x + y . Applying a fourth alternative Vt to this 

relationship yields

where w = z + u = x + y + u. With the obvious induction argument, it follows that 
any path from Vi to Vk has the same length as the direct path from Vi to Vk . (This 
proves Corollary 1.) A closed path has Vk = Vi , so its length is that of Vi to Vi , or 
zero. Hence, a strongly transitive graph is cpi.

(Vi

x
⟶Vj

y
⟶Vs)

u
⟶Vt = (Vi

z
⟶Vs)

u
⟶Vt = Vi

w
⟶Vt,
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To prove that the set of strongly transitive graphs forms a linear subspace, notice 
that a multiple � of a strongly transitive graph in �n

A
 changes all path lengths by this 

multiple; thus the new graph’s arcs remain strongly transitive. Therefore the mul-
tiple defines another �n

A
 strongly transitive graph. (If 𝜇 < 0 , then positive cost arcs 

in the original graph become negative cost arcs in the new graph.) Similarly, for 
two strongly transitive �n

A
 graphs and any {Vi,Vj,Vk} triplet, the first graph satis-

fies Vi

x
⟶Vj

y
⟶Vk = Vi

x+y
⟶Vk while the second satisfies Vi

x̃
⟶Vj

ỹ
⟶Vk = Vi

x̃+ỹ
⟶Vk. 

Combining these graphs leads to Vi

x+x̃
⟶Vj

y+ỹ
⟶Vk = Vi

(x+y)+(x̃+ỹ)
⟶ Vk , which satisfies 

Eq. (3). Thus the set of strongly transitive graphs in �n
A
 , �� n

A
 , is a linear subspace.  

 ◻

Proof of Theorem 2 With the Eq. (4) basis of {V1

1
⟶Vj

1
⟶Vk

1
⟶V1}1<j<k≤n only the 

three-cycle V1

1
⟶Vs

1
⟶Vk

1
⟶V1 has a V̂sVk arc. For the independence of the arcs, if 

cj,k represents the only CBn
A
 cycle with a V̂jVk arc, it must be shown that 

∑

xj,kcj,k = 0 
iff all xj,k = 0. But as cj,k is the only vector with a non-zero j, k component, xj,k = 0. 
That these cycles are in �� n

A
 ’s normal bundle is proved in Saari (2021). As this set 

consists of 
(

n−1

2

)

 linearly independent elements that are orthogonal to �� n
A
 , it is a 

basis for the normal bundle.   ◻

Proof of Theorem 3 Equation (5) is an immediate consequence of the representation 
of �n

A
 into the orthogonal subspaces �� n

A
 and ℂn

A
 . The last comment is proved above.  

 ◻

Proof of Corollary 4 That Definition 3 relationship defines an equivalence relation-
ship (reflexive, symmetric, transitive) follows from the equality of the cyclic compo-
nents. The difference between two �n

A
 graphs is the difference between their cpi and 

cyclic components. As their cyclic components agree, the difference is between cpi 
components. As �� n

A
 is a linear subspace, this difference is in �� n

A
 .   ◻

Proof of Theorem 6 That Gn
A,cpi

 normally has a sink and source for positive and nega-
tive directions follows from the strong transitivity of all triplets. Thus the n alterna-
tives define a transitive ranking. As no leg has zero length, the transitive ranking has 
no ties, so there is a single top and a bottom ranked term. For positive directions, the 
top alternative is a source, the bottom one is a sink.

That Gn
A,cyclic

 cannot have a source or a sink follows from the fact that SA(Vj) = 0 for 
each vertex. (This statement follows from the property that each three-cycle attached to 
a vertex has one leg pointing in and one leg, of same magnitude, pointing out.) Thus, 
each Gn

A,cyclic
 vertex with non-zero arcs has at least one positive direction pointing in 

and at least one pointing out.
To show that Gn

A
 has a most one source, assume it has two at Vj and Vk . That is, all 

arcs leaving Vj and leaving Vk have positive costs. But the arc connecting Vj to Vk with a 
positive cost contradicts the property for Vk . The proof for sinks is the same.   ◻
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Proof of Theorem 8 As ℂℙ𝕀n
S
 is n-dimensional (Theorem 9) and as the n-independent 

values {�j}
n
j=1

 define an n-dimensional subspace of graphs in �n
S
 with all specified 

properties (Definition 4), the theorem follows.   ◻

Proof of Theorem  9 Set {Bn

j
}n−1
j=1

 is independent because only Bn

j
 has a non-zero dj,n 

coordinate. If {Bn

j
}n
j=1

 is not independent, there is a summation 
∑n−1

j=1
xjB

n

j
= B

n

n
. In the 

sum, each xj = 1 to capture Bn

n
 ’s dj,n = 1 component. But Bn

1
+ B

n

2
 has d1,2 = 2 rather 

than the required zero for Bn

n
 . Thus the linear subspace spanned by {Bn

j
}n
j=1

 is n-dimen-
sional. This space captures the structure of Gn

S,cpi
 graphs because the di,j component of 

∑n

s=1
�sB

n

s
 is the required �i + �j .   ◻

Proof of Theorem  16 A path’s length in Gn
S
 is the sum of its lengths in Gn

S,cpi
 and in 

G
n
S,cyclic

 .   ◻
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