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Abstract
In this paper, we provide two novel expected utility theorems by suitably adjusting
the independence and continuity axioms. Our first theorem characterizes expected
utility preferences using weak versions of the independence axiom (with varying
mixture weights) and a new weak continuity axiom. Our second theorem charac-
terizes these preferences using weaker versions of the independence axiom (with
mixture weights fixed at 1/2) and a strong topological continuity axiom. We provide
useful examples to illustrate the tightness of these characterizations.

Keywords Expected utility · Independence · Continuity · Even-chance
mixtures

1 Introduction

The expected utility model has been part of the standard toolkit of economics ever
since (von Neumann & Morgenstern, 1947)’s seminal work on the theory of games.
Two key implications of the expected utility preferences are well-known, the
independence and continuity axioms. In this paper, we derive a number of expected
utility theorems using different forms of independence and continuity axioms.

In satisfying above objectives, two fundamental representation results are
illuminating: one by von Neumann and Morgenstern (1947) and another by Herstein
and Milnor (1953). These two results characterize the same expected utility model,
but with a certain tradeoff between them: the von Neumann and Morgenstern (1947)
result uses an order-theoretic Archimedean continuity, but requires a stronger
independence (IND), while the Herstein and Milnor (1953) result uses a weaker
independence, but requires a topological mixture continuity. This suggests that while
weakening or strengthening the continuity axiom, we may consider a suitable inde-
pendence axiom to characterize the expected utility model.
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We start our analysis by noting that the independence axiom can be decomposed
into a number of weaker axioms (Proposition 1): translation independence (tIND)
together with scale independence (sIND) or betweenness (BET). While violations of
tIND reflect the common consequence effect and violations of sIND coincide with
the common ratio effect, the BET axiom is compatible with these two effects.1

Moreover, although sIND or BET together with tIND imply IND, we note that the
two of them together (sIND and BET) do not necessarily imply IND (Example 1).
However, we also show that when these two axioms are equipped with a novel weak
continuity (wCON) axiom, then the preference order has an expected utility
representation (Theorem 1). This result shows that under wCON, the IND axiom is
equivalent to any two of the three weaker independence axioms, tIND, sIND, and
BET.

Next, we consider a strong continuity (sCON) axiom, which is a topological
mixture continuity that implies wCON. By Proposition 1 and Theorem 1, we know
that any two of the weaker independence conditions, tIND, sIND, and BET, can be
equivalent to IND under the weak continuity axiom. By employing sCON, we further
show that tIND must be equivalent to sIND and BET together. That is, under sCON,
the tIND axiom becomes equivalent to IND implying that we can weaken the IND
axiom using tIND (or sIND and BET together) to obtain an expected utility
representation. In fact, we show that when sCON is assumed, a substantially weaker
form of these axioms can be used, in which the mixture weight is fixed at 1/2
(Theorem 2).

The tIND axiom is related to the weak certainty independence axiom used by
Maccheroni et al. (2006) who appeal to Herstein and Milnor (1953) to obtain a linear
representation. A weaker form of the sIND axiom was used by Safra and Segal
(1998) and Diecidue et al. (2009) to characterize rank-dependent utility models. The
sIND axiom is also related to the best-outcome independence axiom of Maccheroni
(2002) who derives a non-expected utility model that takes the minimum of a set of
expected utilities. The BET axiom is used by Chew (1983), Dekel (1986), and Gul
(1991) to obtain non-expected utility models allowing for common consequence and
ratio effects. Shapley and Baucells (1998) and Dubra et al. (2004) use the sCON
axiom together with IND while dropping completeness to obtain a multi-expected
utility representation. Our approach of obtaining an expected utility representation
differs from these works, especially for Theorem 1, since we use wCON and BET
axioms to obtain an indifference set and use the sIND axiom to conclude that all
possible indifference sets must be parallel to each other implying that there is an
expected utility representation.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
framework. Section 3 provides a brief overview of some of the earlier expected
utility theorems. In Sect. 4, we provide our analysis of the expected utility by
employing different forms of independence and continuity axioms. In Sect. 5, we
discuss the relation of independence and continuity axioms in varying degrees of

1 In fact, a strand of literature on non-expected utility theory has utilized BET to offer choice models
compatible with the common consequence and ratio effects, which are known as Allais (1953) paradoxes.
For earlier accounts of this literature, see, e.g., survey articles by Machina (1987) and Starmer (2000).

123

K. Ozbek



strength together with a diagram depicting all implications discussed in this paper.
Proofs of all results including observations noted by examples are provided in an
Appendix.

2 Framework

Let I denote the set f1; 2; :::; ng and let I0 ¼ I [ f0g, where n� 2. In the following, X
is a finite set of nþ 1 prizes, with typical elements xi 2 X for i 2 I0 called outcomes;
P is the set of all probability distributions on X with typical elements p; q; r 2 P
called lotteries.2 With slight abuse of notation, we denote a lottery yielding an
outcome x 2 X for sure by x 2 P. We denote by pi the probability of outcome xi
under lottery p. For any a 2 ½0; 1�, let paq denote a mixed-lottery, which is the
mixture of lotteries p and q. That is, paq is the lottery r 2 P such that ri ¼
api þ ð1� aÞqi for all i 2 I0.

Our primitive is a binary relation % on the set of lotteries, with asymmetric part
denoted as � and symmetric part denoted as � . We interpret this binary relation %
as the DM’s risk preferences and assume that it is a preference order (i.e., a complete
and transitive binary relation). We also assume that the outcomes are ordered such
that xn�p�x0 for any p 2 P with pi [ 0 for some i 2 I n fng. Without loss of
generality, assume that xi % xj if and only if i� j. Let U denote the set of normalized
utilities that are monotone with respect to the DM’s preferences % over X; that is,
xi�xj if and only if ui [ uj. More formally, let U ¼ fu 2 Rnþ1 : u0 ¼ 0; un ¼
1; ui [ uj iff xi�xjg.

For any p 2 P and u 2 Rnþ1, let u(p) denote the product u � p 2 R. In particular,
when u 2 U , let uðpÞ 2 ½0; 1� denote the expected utility of p under u. We say that %
has a representation if there exists a function f : P ! R such that p�q if and only if
f ðpÞ[ f ðqÞ. We say f is an expected utility representation if there exists u 2 U such
that for all p 2 P, we have f ðpÞ ¼ uðpÞ. Note that whenever there is a normalized
utility u 2 U providing an expected utility representation, then it must be unique in
U .

3 Basic axioms and expected utility theorems

In this section, we briefly review some of the well-known expected utility theorems.

3.1 von Neumann–Morgenstern expected utility theorem

The following axiom is the key behavioral implication of the expected utility model.

Axiom (Independence, IND) For any p; q; r 2 P and a 2 ð0; 1Þ, p�q (resp. p� q)
implies par�qar (resp. par� qar).

2 We consider a finite outcome setting for ease of exposition and its practicality for experimental work.
Our results will easily extend to an infinite outcome setting as long as there is a worst or a best outcome.
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Independence says that mixing two lotteries with a common lottery should not
alter the preference for any mixture weight or common lottery used. In addition to
IND, a continuity axiom is needed to establish an expected utility representation.3

The following continuity axiom is arguably the simplest one used in the literature for
this purpose.

Axiom (Archimedean continuity, aCON) For any p; q; r 2 P, p�q�r implies par�q
and q�pbr for some a; b 2 ð0; 1Þ.

Archimedean continuity states that there is no lottery so good (resp. bad) that
when mixed with a lottery worse (resp. better) than another lottery, the mixture is
always better (resp. worse) than the intermediate lottery. As is well-known, these two
axioms imply an expected utility representation.

Theorem (von Neumann–Morgenstern) A preference order % satisfies IND and
aCON if and only if it has an expected utility representation.

This result, given by von Neumann and Morgenstern (1947), provided the first
axiomatic foundation for the expected utility model.4

3.1.1 Herstein–Milnor expected utility theorem

Another well-known expected utility theorem uses a topological mixture continuity
axiom instead (rather than the order-theoretic aCON) while it weakens the
independence requirement.

Axiom (Mixture continuity, mCON) For any p; q; r 2 P, the sets fa : par% qg and
fa : q% parg are closed.

Mixture continuity implies that the preference ordering is continuous in
probability distributions by requiring above two sets to be closed with respect to
the standard topology. To establish an expected utility representation, mCON is
associated with an independence condition.

Axiom (Herstein–Milnor independence, hm-IND) For any p; q; r 2 P, p� q implies
p1=2r� q1=2r.

The Herstein–Milnor independence axiom fixes the mixture weight at 1/2 and
requires independence to hold only for the indifference relation. Herstein and Milnor
(1953) showed that these two axioms imply an expected utility representation.

3 IND alone is not enough to guarantee a representation for a preference order. For instance, let % be a
preference order such that p% q if uðpÞ ; vðpÞð Þ� Lð uðqÞ ; vðqÞ Þ for any p; q 2 P, where � L is the
lexicographic order defined on R2, and u(.) and v(.) are two distinct expected utility functions in U .
Clearly, this preference order satisfies IND but it has no real-valued representation, expected utility or not.
4 Although von Neumann and Morgenstern (1947) provided the first expected utility representation result,
the independence axiom was implicit in their result. The first explicit statement of the independence axiom
appeared in Marschak (1950), Nash (1950), and Malinvaud (1952); see, e.g., Hammond (1998) and
Bleichrodt et al. (2016) for details. Also see our discussions in Sect. 5 on independence and continuity. I
thank an anonymous reviewer for their observation on the history of the independence axiom used for
characterizing expected utility preferences.
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Theorem (Herstein–Milnor) A preference order % satisfies hm-IND and mCON if
and only if it has an expected utility representation.

Although these two results characterize the same expected utility model, we see a
certain tradeoff between them: the von Neumann and Morgenstern (1947) result uses
an order-theoretic continuity, but requires a stronger independence, while the
Herstein and Milnor (1953) result uses a weaker independence, but requires a
topological continuity. This suggests that by strengthening or weakening the
continuity requirement, we can obtain a suitable independence axiom to establish an
expected utility representation. In the next section, we will investigate these
possibilities in more detail.

4 Analysis

In this section, we provide our analysis of the expected utility model. We first discuss
how IND can be decomposed into weaker conditions. We then show how one can
obtain the expected utility model using these weaker conditions under a weak and a
strong continuity axiom.

4.1 Shades of independence

The IND axiom has been extensively scrutinized in the literature given that it is the
signifying behavioral implication of the expected utility model. In fact, starting with
the Allais (1953) thought experiments, numerous experimental results show that the
IND axiom can often be violated by the experimental subjects. Two such
experimental results are well-known: common consequence and ratio effects.

The common consequence (CC) effect can be summarized as the violation of the
following weak independence axiom.

Axiom (Translation independence, tIND) For any p; q; r; s 2 P and a 2 ð0; 1Þ,
par% qar implies pas% qas.

Translation independence reflects the idea that the preferences between mixtures
of two lotteries with a common lottery should stay the same as long as the weight of
the two lotteries is fixed across comparisons while the common lottery can vary.
Unlike IND, the tIND axiom allows for a change of preferences whenever the
weights also vary, and so it is a weaker independence condition than IND.

The common ratio (CR) effect, on the other hand, is about the failure of the
following weak independence axiom.

Axiom (Scale independence, sIND) For any p; q 2 P and a 2 ð0; 1Þ, p�q (resp.
p� q) implies pax0�qax0 (resp. pax0 � qax0).

123

Expected utility, independence, and continuity



Scale independence says that when mixing two lotteries with the worst-outcome
lottery, the preference between the lotteries do not change whenever the mixture
weights vary.5 Unlike IND, the sIND axiom allows the preferences to change when
the common lottery is different than the worst-outcome lottery, and so it is a weaker
independence condition than IND.

To rationalize the CC and CR effects, a strand of literature on decision-making
under risk proposed models which can violate both tIND and sIND, but satisfy the
following weak form of independence.6

Axiom (Betweenness, BET) For any p; q 2 P and a 2 ð0; 1Þ, p�q (resp. p� q)
implies p�paq�q (resp. p� paq� q).

Betweenness reflects the idea that the mixture of two lotteries should stay in
between them in terms of preference order; that is, the better (resp. worse) lottery
should be deemed better (resp. worse) against the mixture of lotteries no matter what
mixing weight is used. Clearly, each of the axioms above, tIND, sIND, and BET, are
implied by the IND axiom. We note that together these axioms are equivalent to the
IND axiom.

Proposition 1 A preference order % satisfies (i) IND if and only if (ii) it satisfies
tIND and sIND if and only if (iii) it satisfies tIND and BET.

Proposition 1 shows that we can decompose IND into two weaker axioms; either
tIND together with sIND or tIND together with BET.

4.1.1 Discussion

We now demonstrate some implications of tIND, sIND, and BET for the case n ¼ 2.
Consider Fig. 1a and suppose that tIND holds. Suppose we have p0 � q0 and p, q, r
are such that p0 ¼ par and q0 ¼ qar for some a 2 ð0; 1Þ. Suppose also that p00; q00; s
are such that p00 ¼ pas and q00 ¼ qas. Then tIND implies that p00 � q00. Notice that the
distance between p0 and p00, and q0 and q00 are equal to each other. Thus, given that all
these parameters (i.e., r, s, and a) are arbitrary, indifference curves must be parallel to
each other. Moreover, since these curves must be parallel to each other along any
direction, the indifference curves must be straight lines. But notice also that these
straight lines do not need to be solid lines. That is, there could be gaps in indifference
sets. To see this, suppose p, q, r are such that p0 ¼ p1=2r and q0 ¼ q1=2r. Then, by
tIND, we must have p� q1=2p and p1=2q� q implying that p, q and their midpoint
p1/2q must be on the same indifference curve. This argument, however, does not
need to hold for an arbitrary point in between p and q. The preference order given in
Example 4 below shows that this can indeed be the case; that is, indifference sets can
have arbitrarily many gaps in them.

5 An analogous-scale independence axiom can be defined using the best-outcome xn. In general, when the
set of outcomes is bounded below (resp. above) such that there is a worst (resp. best) outcome, then the
worst (resp. best) outcome can be used to define the scale independence axiom.
6 See, e.g., Karni and Safra (1989), Crawford (1990), and Epstein and Zin (2001) for betweenness
applications, and Camerer and Ho (1994) and Hey and Orme (1994) for experimental evidence on
betweenness and related axioms.
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Now consider Fig. 1b above, and suppose that sIND holds. Suppose we have
p� q and p0; q0 are such that p0 ¼ pax0 and q0 ¼ qax0 for some a 2 ð0; 1Þ. Then, by
sIND, we must have p0 � q0. Notice that the slope of the line passing through p and q
is the same as the slope of the line passing through p0 and q0. Since all these
parameters are arbitrary, we conclude that indifference curves must be parallel to
each other along the rays starting from x0.

Finally, consider Fig. 1c and suppose that BET holds. Suppose we have p� q.
Then, by BET, clearly we have p� r for any r ¼ paq for some a 2 ð0; 1Þ. Now
suppose also that p0; q0 are such that p ¼ p0bq and q ¼ q0cp for some b; c 2 ð0; 1Þ.
Then, by BET, we must have p0 � p because otherwise, by BET, we will have
p0bq�q or q�p0bq, a contradiction. A similar argument applies for q0, and so q0 � q.
In sum, BET implies that indifference sets must be straight lines (but not necessarily
parallel to each other as depicted in Fig. 1c above), and whenever they are not
singletons, they must be solid.

We see that two key implications of tIND, parallel and straight indifference sets,
are also implied by sIND and BET together. Given this, it might seem plausible to
expect that sIND and BET together imply tIND. Example 1, however, shows that in
general sIND and BET together do not necessarily imply tIND.

Example 1 Suppose n ¼ 2 and let % be a preference order over P such that for all
p; q 2 P,

p% q if ðwðpÞ; cðpÞÞ� LðwðqÞ; cðqÞÞ;
where � L is the lexicographic order defined on R

2, cðrÞ ¼ r2 þ r1 for any r in P, and
wðrÞ ¼ r2

r2þr1
whenever r2 þ r1 [ 0 and wðrÞ ¼ 0 otherwise for any r in P. }

In the Appendix, we show that the preference order defined in Example 1 satisfies
both sIND and BET, yet it fails to satisfy tIND, and therefore IND.7

4.2 Independence with weak continuity

In this section, we establish an expected utility theorem by weakening independence
by requiring only sIND and BET, while also employing a novel weak continuity

Fig. 1 Illustration of independence axioms

7 We have assumed n ¼ 2 in this example for simplicity. The example can be easily extended to any finite
outcome space with n� 3.
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axiom. We also give counter examples demonstrating that further weakening or
replacing these axioms will not guarantee an expected utility representation.

4.2.1 A weak continuity axiom

Example 1 shows that sIND and BET together are not strong enough to imply IND.
In fact, this preference order does not even have a representation because it does not
allow for substitutions; some of the outcomes are infinitely desirable over others. To
avoid these type of preference orders, we do propose the following weak continuity
axiom.

Axiom (Weak continuity, wCON) For any distinct i; j 2 I , there exist p; q 2 P with
p� q and pk ¼ qk ¼ 0 for all k 2 Infi; jg such that ðpi � qiÞðqj � pjÞ[ 0.

Weak continuity axiom allows for compensation between likelihoods of any two
different outcomes xi; xj 2 X for i; j 2 I, while the worst outcome’s likelihood is used
to balance the accounting.8 It is clear that the mCON axiom directly implies wCON.
Next, we will use this weak continuity axiom to obtain an expected utility
representation.

4.2.2 An expected utility theorem

The following result shows that an expected utility representation can be obtained by
requiring only a weaker set of independence axioms and a weak continuity axiom.

Theorem 1 A preference order % satisfies sIND, BET, and wCON if and only if it
has an expected utility representation.

The proof we provide for this result is relatively short while we believe it is also
instructive. To prove Theorem 1, we first construct an indifference set passing
through outcome x1. The indifference set is a convex hyperplane such that any point
in P can be projected onto it using outcome x0.

9 We then define all utility weights
u 2 U , and by considering the projections and using the two axioms sIND and BET,
we show that u 2 U provides a representation for the preference order.

To demonstrate the intuition, suppose n ¼ 2 and consider Fig. 2a above. By
wCON, there exist some p; q 2 P such that p� q and ðp1 � q1Þðq2 � p2Þ[ 0.
Without loss of generality, suppose that ðp1 � q1Þ; ðq2 � p2Þ[ 0 as depicted in
Fig. 2a above. Consider line A which passes through p00 ¼ x1 and q00 ¼ x2

q2�p2
p1�q1

x0.

When a ¼ q2�p2
p1q2�p2q1

[ 0, both p0 ¼ pax0 and q0 ¼ qax0 must be on A. By sIND, we

must have pax0 � qax0. As we argued before (with the help of Fig. 1c above), we

8 The wCON axiom is a type of solvability axiom. There are many studies in the literature which use
solvability axioms to derive an expected utility representation, such as Dekel (1986). For a recent work on
expected utility representation using solvability (in a Savage framework), see Abdellaoui and Wakker
(2020).
9 In applying our proof method, requiring scale independence with respect to the worst outcome is crucial
since we need to be able to project any lottery onto the indifference set passing through outcome x1. A
common lottery by which this is possible is the worst outcome x0; another possibility is the best outcome
xn.
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must have x1 � pax0 and qax0 � x2
q2�p2
p1�q1

x0 by BET, and so x1 � x2
q2�p2
p1�q1

x0 implying

that A is an indifference set passing through x1. Since x2�x1�x0, we must have
q2�p2
p1�q1

2 ð0; 1Þ by BET. Let u 2 U such that u0 ¼ 0, u2 ¼ 1, and u1 ¼ q2�p2
p1�q1

. By

definition, we have uðrÞ ¼ u1 if and only if r 2 A. Moreover, for any r 2 P with

uðrÞ[ u1, we have r u1
uðrÞ x0 2 A and for any r 2 P with uðrÞ\u1, we have r ¼

s uðrÞu1
x0 for some s 2 A. Using sIND and BET, we then show that p�q if and only if

uðpÞ[ uðqÞ for any p; q 2 P. For instance, consider Fig. 2b above and let

uðpÞ[ uðqÞ[ u1 as depicted. Then we have ðpbx0Þax0; qax0 2 A, where b ¼ uðqÞ
uðpÞ

and a ¼ u1
uðqÞ, and so p uðqÞ

uðpÞ x0 � q by sIND. Since p�x0, by BET, we have p�q. By

applying similar arguments, we complete the proof.
Notice that either sIND or BET can be replaced with tIND in Theorem 1 given that

any two of these axioms imply the third one when wCON holds.

Corollary 1 A preference order % satisfies (i) tIND, BET, and wCON if and only if
(ii) it satisfies sIND, tIND, and wCON if and only if (iii) it has an expected utility
representation.

4.2.3 Counter examples

We know by Example 1 that when obtaining an expected utility representation in
Theorem 1, we cannot drop wCON. Can we weaken any of the two axioms, sIND
and BET, or replace them with tIND, and still establish an expected utility
representation? The following three examples show that this is not possible. Thus,
our axioms used in Theorem 1 are tight.

Example 2 given below shows that the sIND axiom cannot be replaced with the
following weak scale independence axiom to obtain an expected utility
representation.

Axiom (Weak scale independence, wsIND) For any p; q 2 P and a 2 ð0; 1Þ, p�q
implies pax0�qax0.

Unlike sIND, the wsIND axiom allows to have p� q and pax0�qax0 (or
qax0�pax0) for some p; q 2 P and a 2 ð0; 1Þ.

Fig. 2 Illustration of Theorem 1
proof
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Example 2 Let % be a preference order such that for any p; q 2 P,

p% q if vðpÞ� vðqÞ;
where for any r 2 P, vðrÞ ¼ P

i2I0 uðxi; vðrÞÞri for some function uð:; :Þ : X �
½0; 1� ! R which is continuous in its arguments, and increasing in the preference
ordering on X such that uðx0; aÞ ¼ 0 and uðxn; aÞ ¼ 1 for any a 2 ½0; 1�. }

The preference order defined in Example 2, which is also called an implicit
expected utility, was first proposed and axiomatically characterized by Dekel (1986)
to allow behavior compatible with Allais (1953) paradoxes. In the Appendix, we
show that the preference order defined in Example 2 satisfies wsIND, BET, and
wCON, but satisfies sIND only when it has an (explicit) expected utility
representation; that is, whenever it has a “proper” implicit expected utility
representation, then it fails to satisfy sIND. Thus, we cannot replace sIND with
wsIND in Theorem 1.

Example 3 given below shows that the BET axiom cannot be replaced in
Theorem 1 with the following weak betweenness axiom.

Axiom (Weak betweenness, wBET) For any p; q 2 P and a 2 ð0; 1Þ, p% q implies
p% paq% q.

Notice that unlike BET, the wBET axiom allows to have p�q and p� paq (or
paq� q) for some p; q 2 P and a 2 ð0; 1Þ.
Example 3 Let % be a preference order such that for any p; q 2 P,

p% q if uðpÞ; kðpÞð Þ� Lð uðqÞ; kðqÞ Þ;
where � L is the lexicographic order defined on R2, u(.) is an expected utility
function defined on P, and kð:Þ is an indicator function defined on R such that for all
p 2 P, kðpÞ ¼ 1 if vðpÞ� vðx0Þ and kðpÞ ¼ 0 if vðpÞ\vðx0Þ for some v 2 Rn with
vðxiÞ\vðx0Þ\vðxjÞ for some i; j 2 I . }

In the Appendix, we show that the preference order defined in Example 3 satisfies
sIND, wBET, and wCON, yet fails to satisfy BET, and therefore does not have a
representation. Thus, we cannot replace BET with wBET in Theorem 1 to obtain an
expected utility representation.

Can tIND imply the two weak independence axioms, sIND and BET, when
wCON also holds? The following example shows that this is not true. Thus, we
cannot replace sIND and BET with tIND in Theorem 1.

Example 4 Let % be a preference order such that for any p; q 2 P,

p% q if uðpÞ; uðp1 � q1Þð Þ� Lð uðqÞ; 0 Þ;
where � L is the lexicographic order defined on R2, u(.) is an expected utility
function defined on P, and uð:Þ is an indicator function defined on R. Specifically,
uðrÞ ¼ 1 if r 2 A, uðrÞ ¼ 0 if r 2 Q, and uðrÞ ¼ �1 if r 2 B, where Q is the set of
rational numbers while A and B decompose the set of irrationals I into two sets
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satisfying the following properties: (i) A ¼ �B, (ii) a; a0 2 A implies aþ a0 2 A,
and (iii) a 2 A and r 2 Q implies aþ r 2 A.10 }

In the Appendix, we show that the preference order given in Example 4 satisfies
tIND and wCON, but violates both sIND and BET because of the second criterion in
its definition. Clearly, this preference order has no representation due to its
lexicographic nature.

4.3 Independence with strong continuity

In this section, we further consider the relation between tIND, and sIND, and BET.
We first discuss that whenever we employ a strong form of mixture continuity axiom,
tIND becomes equivalent to sIND and BET combined. We then provide an
alternative expected utility theorem, which is obtained using the stronger mixture
continuity axiom but weaker form of independence axioms, tIND, or sIND and BET
together, with mixture weights fixed at 1/2.

4.3.1 A strong continuity axiom and equivalence result

The following is a form of mixture continuity axiom that we will use.

Axiom (Strong continuity, sCON) For any p; q; r; s 2 P, the set fa : par% qasg is
closed.

In contrast to mCON, strong continuity allows both sides of the preference
comparison to vary as the mixture weight varies.11 In fact, it is clear that sCON
implies mCON. The following result shows that there is a direct relation between
tIND and sIND together with BET whenever the preference order satisfies sCON
instead of wCON.

Lemma 1 Let % be a preference order satisfying sCON. Then % satisfies tIND if
and only if it satisfies sIND and BET.

Lemma 1 shows that the tIND axiom becomes equivalent to the sIND and BET
axioms combined whenever sCON holds.

4.3.2 An alternative expected utility theorem

We have seen in Sect. 3 that for a given continuous preference order, IND is both
sufficient and necessary to have an expected utility representation. On the other hand,
Theorem 1 shows that the full strength of IND is not needed to characterize expected
utility preferences when the wCON axiom is assumed; verifying only sIND and BET

10 For a proof of the existence of these two sets decomposing the set of irrationals, see Mitra and Ozbek
[2020, Theorem 3].
11 Strong continuity axiom was first used by Shapley and Baucells (1998) to study a model of multi-
expected utility. Dubra et al. (2004) call this axiom weak continuity and show that this axiom is equivalent
to having closed upper and lower contour sets whenever the outcome space is finite and the preference
relation satisfies a weak form of independence axiom (see the sa-IND axiom defined in footnote 14).
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is enough. Moreover, Lemma 1 implies that both sIND and BET can be replaced with
tIND whenever the stronger continuity axiom, sCON, is assumed. In fact, in that
case, we can consider even weaker versions of the weak independence axioms, tIND,
sIND, and BET, by requiring that the mixture weights a 2 ð0; 1Þ to be fixed at 1/2.

We call these weaker form independence axioms, respectively, even-chance
translation independence (ec-tIND), even-chance scale independence (ec-sIND), and
even-chance betweenness (ec-BET). To be more precise, % satisfies (i) ec-tIND if
for any p; q; r; s 2 P, we have p 1

2 r% q 1
2 r implies p 1

2 s% q 1
2 s, (ii) ec-sIND if for any

p; q 2 P, we have p�q (resp. p� q) implies p 1
2 x0�q 1

2 x0 (resp. p 1
2 x0 � q 1

2 x0), and

(iii) ec-BET if for any p; q 2 P, we have p�q (resp. p� q) implies p�p 1
2 q�q (resp.

p� p 1
2 q� q).12

The following theorem shows that the expected utility preferences can be
characterized with the use of above weaker even-chance independence axioms
together with the sCON axiom.

Theorem 2 A preference order % satisfies (i) ec-tIND and sCON if and only if (ii) it
satisfies ec-sIND, ec-BET, and sCON if and only if (iii) it has an expected utility
representation.

Theorem 2 shows that, as long as the sCON axiom holds, we can substantially
weaken the independence requirement when characterizing the expected utility
model by considering only equal-chance mixtures. In proving this result (in the
Appendix), we first strengthen the relations given in Lemma 1. We show that
whenever the preference order satisfies ec-tIND, then it satisfies sIND and BET, and
likewise, whenever it satisfies ec-sIND and ec-BET, then it satisfies tIND (Lemma 2).
We then invoke the fact that sCON directly implies wCON and finally appeal to
Theorem 1 to establish an expected utility representation.

5 Discussion

In this section, we briefly review some independence and continuity axioms used in
the literature, and provide a discussion about their relation to the independence and
continuity axioms that we used for our expected utility characterizations.

5.1 Independence axioms

Many modern textbooks use the IND axiom to characterize expected utility
preferences. For instance, Mas-Colell et al. (1995) use mCON, while (Gilboa,

12 In a finite Savage space framework, Mackenzie (2020) considers a set of axioms on preferences over
acts and shows that an induced preference relation over subjective lotteries does satisfy a midpoint-
independence property, a counterpart to the equal-chance independence axiom that we consider in our
framework. Mackenzie (2020) then uses this property together with a topological strong continuity axiom
to obtain an expected utility representation. This suggests that our Theorem 2 can be utilized in establishing
similar theories, especially when there is lack of richness in the setting.
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2009, 2010) use aCON together with IND to establish a von Neumann–Morgenstern
expected utility theorem.13 The IND is clearly comprise the following weaker
independence axioms, first axiom due to Marschak (1950), Nash (1950), and
Malinvaud (1952), and second axiom due to Jensen (1967).

Axiom (Marschak–Nash–Malinvaud independence, mnm-IND) For any p; q; r 2 P
and a 2 ð0; 1Þ, p� q implies par� qar.

The Marschak–Nash–Malinvaud independence axiom requires independence for
the symmetric part of the preference order. This axiom clearly implies the hm-IND
axiom that Herstein and Milnor (1953) used. The strict counterpart of mnm-IND is
formulated as below.

Axiom (Jensen independence, j-IND) For any p; q; r 2 P and a 2 ð0; 1Þ, p�q
implies par�qar.

The Jensen independence axiom requires independence for the asymmetric part of
the preference order.14 Kreps (1988) uses j-IND together with aCON to establish an
expected utility representation. In particular, Kreps (1988) shows that j-IND and
aCON imply mnm-IND, and therefore, IND.

In our first theorem, our objective was to keep the independence axiom as strong
as possible, while having a continuity axiom as weak as possible. It turns out that
even the wCON axiom permits some weakening of the IND axiom by replacing IND
with sIND and BET. However, we have also shown that sIND cannot be further
weakened to wsIND, or BET cannot be further weakened to wBET. It is an open
question whether IND can be replaced with j-IND in Theorem 1.15 Notice that j-IND
directly implies wsIND and the following strict betweenness axiom.

Axiom (Strict betweenness, sBET) For any p; q 2 P and a 2 ð0; 1Þ, p�q implies
p�paq�q.

Figure 3 below shows how various independence and continuity axioms are
related to each other, which helps put in to perspective some of our contributions in
this paper. In particular, continuity axioms are given within brackets next to the
independence implication they are needed for. Arrows with two bases show that the
two axioms at each base together form the implication.

13 Marschak (1950), Samuelson (1952), and Malinvaud (1952) pointed out that in von Neumann and
Morgenstern (1947), characterization use of an independence axiom was implicit. Since (von Neumann &
Morgenstern, 1947)’s seminal work, many expected utility theorems have been given by employing
different independence and continuity axioms.
14 Another independence axiom, which is related to both mnm-IND and j-IND, is due to Samuelson
(1983). The Samuelson independence (sa-IND) axiom states that for any p; q; r 2 P and a 2 ð0; 1Þ, p% q
implies par% qar. Clearly, sa-IND directly implies mnm-IND. Moreover, since % is complete, sa-IND is
equivalent to the opposite implication given in j-IND; that is, sa-IND can be equivalently stated as for any
p; q; r 2 P and a 2 ð0; 1Þ, par�qar implies p�q.
15 A similar question can be raised for mnm-IND or sa-IND. However, our hunch is that this is not
possible for mnm-IND or sa-IND unless a topological continuity axiom is assumed.
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5.1.1 Continuity axioms

So far, we have mentioned many continuity axioms used in the literature for
decision-making under risk. It will be helpful to clarify their relation. Basically, there
are two types of continuity axioms, either topological or order theoretic. The
following solvability axiom belongs to the latter category.

Axiom (Solvability, SOL) For any p; q; r 2 P, p�q�r implies par� q for some
a 2 ð0; 1Þ.

Dekel (1986) uses the solvability axiom in characterizing the class of preference
orders that we used in Example 2. Given that we assume xi�xj for all i[ j, it is
immediate to see that SOL implies our wCON axiom. In fact, the following
proposition sets the relation of continuity axioms that we have utilized so far.

Proposition 2 Let % be a preference order. Then (i) if % satisfies sCON, then it
satisfies mCON, (ii) if % satisfies mCON, then it satisfies aCON and SOL, and (iii) if
% satisfies SOL, then it satisfies wCON.

Proposition 2 shows that while sCON is the strongest, wCON is relatively the
weakest continuity axiom as summarized also in Fig. 3 above.16

Fig. 3 Independence and continuity axioms

16 We note that while all preference orders given in Sect. 4.2 satisfy wCON, the orders given in
Examples 3 and 4 fail to satisfy aCON. This provides evidence that wCON axiom is somewhat weaker
than aCON, at least in the presence of weaker independence axioms, tIND, or sIND, and wBET together. It
is an open question whether in general aCON does imply wCON.
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A Appendix

A.1 Preliminary results

In this section, we provide some preliminary results that we use to prove our main
results.

ec-tIND implies milder forms of sIND and BET

We can define a milder form of sIND and BET by requiring mixture weights to be
only binary rationals, which we call them b-sIND and b-BET, respectively.17 A
binary (or dyadic) rational is a rational number that can be expressed as a fraction
whose denominator is a power of two (e.g., 1

2, or
5
8, or

27
32, etc.). The set of binary

rationals is dense in reals. Moreover, a binary rational number has a finite binary
representation. In particular, a binary rational between 0 and 1 can be expressed as a
convex combination of 0 and 1 in a finite number of steps with equal weights (on
each end) at each step. This means for any binary rational a 2 ð0; 1Þ, the mixture
lottery paq can be expressed as a convex combination of p and q in a finite number of
steps with equal weights (on each end) at each step.

The following result shows that ec-tIND implies both the b-sIND and b-BET
axioms.

Proposition 3 If a preference order % satisfies ec-tIND, then it must satisfy b-sIND
and b-BET.

Proof Let % be a preference order satisfying ec-tIND. Let p; q 2 P and let a 2 ð0; 1Þ
be a binary rational.

ec-tIND implies b-sIND: We want to show that p% q if and only if pax0 % qax0. By
above arguments on binary rationals, if we show that p% q if and only if p 1

2 x0 % q 1
2 x0,

then by employing a recursive argument, we would be done. To prove that p% q if and
only if p 1

2 x0 % q 1
2 x0, first notice that we must have p% q implies p% p 1

2 q% q. To see

this, first let p% q and suppose for contradiction that (i) p 1
2 q�p or (ii) q�p 1

2 q. In case

(i), wemust have q�q 1
2 p by ec-tIND, and so q�pby transitivity, a contradiction; in case

(ii), wemust have q 1
2 p�p by ec-tIND, and so q�p by transitivity, a contradiction. Thus,

we have p% q if and only if p% p 1
2 q% q. By ec-tIND, we have p 1

2 q% q if and only if

p 1
2 x0 % q 1

2 x0 (if and only if p% p 1
2 q). Combining all these equivalences, we conclude

by transitivity that we must have p% q if and only if p 1
2 x0 % q 1

2 x0 as desired.

ec-tIND implies b-BET: We want to show that p% q (resp. p�q) implies
p% paq% q (resp. p�paq�q). From above arguments, we know that p% q if and
only if pax0 % qax0. Thus, if p% q (resp. p�q), then by ec-tIND, we have paq% q

17 To be more precise, a preference order % satisfies (i) b-sIND if for all p; q 2 P and for all binary
rationals a 2 ð0; 1Þ, we have p�q (resp. p� q) implies pax0�qax0 (resp. pax0�qax0) and (ii) b-BET if for
all p; q 2 P and for all binary rationals a 2 ð0; 1Þ, we have p�q (resp. p� q) implies p�paq�q (resp.
p� paq� q).
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(resp. paq�q). Since 1� a is a binary rational whenever a is a binary rational, if
p% q (resp. p�q), then pð1� aÞx0 % qð1� aÞx0 (resp. pð1� aÞx0�qð1� aÞx0) by
the above argument. But then, if p% q (resp. p�q), by ec-tIND, we have p% qð1�
aÞp ¼ paq (resp. p�paq). Combining paq% q (resp. paq�q) and p% paq (resp.
p�paq), we have p% paq% q (resp. p�paq�q), completing the proof. h

Relation of independence conditions under sCON

The following result shows that whenever sCON holds, much weaker even-chance
independence conditions do imply relatively stronger forms of independence.

Lemma 2 Let % be a preference order satisfying sCON. Then (i) if % satisfies ec-
tIND, it also satisfies sIND and BET and (ii) if % satisfies ec-sIND and ec-BET, it
also satisfies tIND.

Proof Let % be a preference order that satisfies sCON.

ec-tIND implies sIND and BET: Suppose % satisfies ec-tIND. We want to show
that % satisfies sIND and BET. By Proposition 3, we know that % satisfies b-sIND
and b-BET. Thus, let p; q 2 P and a 2 ð0; 1Þ be an arbitrary number that is not a
binary rational. Since the set of binary rationals are dense in reals, we can find a
sequence fang 	 ð0; 1Þ of binary rationals converging to a.

By b-sIND, for all an, we have p% q if and only if panx0 % qanx0. Thus, by sCON,
we must have p% q if and only if pax0 % qax0 showing that % satisfies sIND. By b-
BET, for all an, we have p% q (resp. p�q) implies p% panq% q (resp. p�panq�q).
Thus, by sCON, we must have p% q (resp. p�q) implies p% paq% q (resp.
p�paq�q) showing that % satisfies BET.

ec-sIND and ec-BET imply tIND: Assume that the preference order % satisfies
ec-sIND and ec-BET. By the proof of Proposition 3, we know that % satisfies b-
sIND and b-BET. Since % satisfies sCON, by the arguments we employed in
previous part, % satisfies sIND and BET. Since % satisfies sCON, it satisfies
mCON, and so wCON by Proposition 2. Since % satisfies sIND, BET, and wCON,
by Theorem 1, % has an expected utility representation. Thus, clearly % satisfies
IND, and therefore tIND as we noted by Proposition 1. h

A.2 Proofs of main results

In this section, we provide proofs for our results given in the main text.

Proof of Proposition 1

Let % be a preference order. Clearly, when % satisfies IND, then it satisfies tIND,
sIND, and BET. As such, first suppose that % satisfies tIND and sIND. We want to
show that % satisfies IND. Let p; q; r 2 P and a 2 ð0; 1Þ. Then by sIND p% q if and
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only if pax0 % qax0. By tIND, pax0 % qax0 if and only if par% qar. Combining these
two, we obtain p% q if and only if par% qar showing that IND holds.

Now suppose that % satisfies tIND and BET. We want to show that % satisfies
IND. Let p; q; r 2 P and a 2 ð0; 1Þ. First suppose that p% q. Then, by BET, we have
p% paq% q. Using tIND, we have par% qar showing one direction of IND. Now for
the opposite direction, suppose that par% qar, but also suppose, for contradiction,
that q�p. Then, by BET, q�qð1� aÞp�p, and so, by tIND, qar ¼ rð1� aÞ
q�rð1� aÞp ¼ par, a contradiction, which completes the proof. h

Proof of statements about Example 1

Let % be a preference order defined as in Example 1. We want to show that %
satisfies sIND and BET but fails to satisfy tIND and wCON. Let p; q 2 P and
a 2 ð0; 1Þ. If p ¼ q or q ¼ x0, then all implications below trivially hold. Thus,
assume that p 6¼ q and q 6¼ x0.

By definition, we have (i) p2
p2þp1

� q2
q2þq1

if and only if ap2
ap2þap1

� aq2
aq2þaq1

. Moreover,

if (ii) p2
p2þp1

¼ q2
q2þq1

, we have p2 þ p1 � q2 þ q1 if and only if ap2 þ ap1 � aq2 þ aq1.

Combining (i) and (ii), by definition, we obtain p% q if and only if pax0 % qax0
showing that sIND holds.

Now we want to show that BET holds. Suppose p�q. We must have either (i)
p2

p2þp1
[ q2

q2þq1
or (ii) p2

p2þp1
¼ q2

q2þq1
and p2 þ p1 [ q2 þ q1. In case (i), we have

p2
p2 þ p1

[
ap2 þ ð1� aÞq2

aðp2 þ p1Þ þ ð1� aÞðq2 þ q1Þ [
q2

q2 þ q1
;

and so p�paq�q; in case (ii), we have p2
p2þp1

¼ ap2þð1�aÞq2
aðp2þp1Þþð1�aÞðq2þq1Þ ¼

q2
q2þq1

and p2 þ
p1 [ aðp2 þ p1Þ þ ð1� aÞðq2 þ q1Þ[ q2 þ q1 and so p�paq�q showing that BET
holds.

We now show that tIND fails. To see this, suppose p1 ¼ kq1 and p2 ¼ kq2 for
some k[ 1. By definition, we have p�q. Since % satisfies sIND, we must have

pax0�qax0. Let r ¼ pax2 and s ¼ qax2. We have r2
r2þr1

¼ ap2þð1�aÞ
ap2þap1þð1�aÞ and

s2
s2þs1

¼ aq2þð1�aÞ
aq2þaq1þð1�aÞ. Notice that we have r2

r2þr1
\ s2

s2þs1
if and only if k[ 1, which

is true by our supposition. Thus, by definition, we have qax2�pax2 showing that %
violates tIND.

Finally, notice that whenever p� q, by definition, we must have p ¼ q implying
immediately that wCON cannot hold. h

Proof of Theorem 1

It is clear that whenever a preference order % has an expected utility representation
for some u 2 U , then it satisfies sIND, BET, and wCON. Thus, we omit this part of
the proof. Now let % be a preference order that satisfies sIND, BET, and wCON. We
want to show that % has an expected utility representation for some u 2 U .
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Let i; j 2 I such that i\j. By wCON, there exist some p; q 2 P such that p� q
with pk ¼ qk ¼ 0 for all k 6¼ i; j; 0 and ðpi � qiÞðqj � pjÞ[ 0. Similar to our
discussion in Sect. 4.2 using Fig. 2, by applying sIND and then BET, we derive that
for all i; j 2 I such that i\j, we have xi � xjaijx0 where aij ¼ qj�pj

pi�qi
. Since xj�xi�x0 for

all i\j, by BET we must have aij 2 ð0; 1Þ. Let rk;i ¼ xkð
Qk�1

m¼i amðmþ1ÞÞx0 for all

k[ i, for all i 2 I . By iterative application of sIND, we have rk;i � xi for all k[ i and

i 2 I . By BET, we must have ain ¼
Qn�1

m¼i amðmþ1Þ for all i 2 I .
Now let u 2 Rn such that u0 ¼ 0, un ¼ 1, and ui ¼ ain for all i 2 Infng. Since

ain ¼
Qn�1

m¼i amðmþ1Þ for all i 2 I , we have 0\ui\uj\1 for all i\j and so u 2 U . Let

r1;1 ¼ x1 and A ¼ coðfrk;1 : k 2 IgÞ. By BET, we have r� x1 for any r 2 A.
Moreover, by definition of u, we have uðrÞ ¼ u1 [ 0 if and only if r 2 A. Clearly, for
any p 2 P, we have either (i) uðpÞ[ u1, or (ii) uðpÞ ¼ u1, or (iii) uðpÞ\u1. Note that
in case (i), there exists some r 2 A such that r ¼ pð u1

uðpÞÞx0, while in case (iii), there

exists some r 2 A such that p ¼ rðuðpÞu1
Þx0.

Now let p; q 2 P such that p�q. Suppose, for contradiction, that uðqÞ� uðpÞ. If
uðqÞ ¼ uðpÞ[ u1, we have qð u1

uðqÞÞx0; pð u1
uðpÞÞx0 2 A and so qð u1

uðqÞÞx0 � pð u1
uðpÞÞx0 by

definition. Then, by sIND, we must have q� p, a contradiction. Similarly, if

uðqÞ ¼ uðpÞ\u1, we have p ¼ rðuðpÞu1
Þx0 and q ¼ sðuðqÞu1

Þx0 for some r; s 2 A. By

sIND, we must have q� p, a contradiction. And clearly, when uðqÞ ¼ uðpÞ ¼ u1, we
have p� q by definition, a contradiction.

Thus, suppose that uðqÞ[ uðpÞ. First, if uðpÞ� u1, then we have

ðq uðpÞ
uðqÞ x0Þ u1

uðpÞ x0 2 A and pð u1
uðpÞÞx0 2 A. By definition, we have

ðq uðpÞ
uðqÞ x0Þ u1

uðpÞ x0 � pð u1
uðpÞÞx0, and so by sIND, q uðpÞ

uðqÞ x0 � p. Since we have q�x0, by

BET q�q uðpÞ
uðqÞ x0 implying that q�p, a contradiction. Now suppose uðqÞ� u1 [ uðpÞ.

By similar arguments as above, we have q% x1. Moreover, since u1 [ uðpÞ, we have
p ¼ rðuðpÞu1

Þx0 for some r 2 A. Since we have r�x0, by BET r�rðuðpÞu1
Þx0 and so q�p, a

contradiction. Finally, when u1 � uðqÞ[ uðpÞ, we have q ¼ sðuðqÞu1
Þx0 and p ¼

ðr uðpÞ
uðqÞ x0Þ uðqÞu1

x0 for some r; s 2 A. By BET, we have r�r uðpÞ
uðqÞ x0 and so s�r uðpÞ

uðqÞ x0
implying by sIND q�p, a contradiction. Hence, we must have uðqÞ[ uðpÞ. Clearly,
by above arguments, whenever uðpÞ[ uðqÞ, we must have p�q, which shows that
u 2 U provides an expected utility representation for the given preference order. h

Proof of statements about Example 2

Let % be a preference order defined as in Example 2. We want to show that %
satisfies wsIND, BET, and wCON, but fails to satisfy sIND whenever v is not an
explicit, but an implicit expected utility; that is, for some i 2 I , uðxi; aÞ 6¼ uðxi; bÞ for
some a 6¼ b. Dekel (1986) shows that % satisfies wsIND, BET, and SOL. By
Proposition 2, % satisfies wCON. Now suppose that % satisfies sIND. Let i\j. By
our assumption, we have xj�xi�x0. By SOL, we have xi � xjbx0 for some b 2 ð0; 1Þ.
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Using the representation, we derive vðxiÞ ¼ uðxi; vðxiÞÞ ¼ buðxj; vðxiÞÞ. Now let
a 2 ð0; 1Þ. By sIND, we have xiax0 � xjabx0. This implies that
vðxiax0Þ ¼ auðxi; vðxiax0ÞÞ ¼ abuðxj; vðxiax0ÞÞ. Since a 2 ð0; 1Þ is arbitrary and we
have uðxi; vðxiax0ÞÞ ¼ buðxj; vðxiax0ÞÞ, we must have vðxiax0Þ ¼ avðxiÞ for all a 2
ð0; 1Þ implying that v is an expected utility. h

Proof of statements about Example 3

Let % be a preference order defined as in Example 3. We want to show that %
satisfies (i) sIND, (ii) wCON, and (iii) wBET, but fails to satisfy (iv) BET, (v) tIND,
and (vi) aCON. Let p; q; r 2 P and a 2 ð0; 1Þ.

(i) Suppose p% q. Then, by definition uðpÞ� uðqÞ and kðpÞ� kðqÞ if uðpÞ ¼ uðqÞ.
Thus, either uðparÞ� uðqarÞ, or uðparÞ ¼ uðqarÞ and kðparÞ� kðqarÞ. Hence, by
definition, we have par% qar showing one direction of sIND. Now, suppose that
par% qar. Then, by definition, uðparÞ� uðqarÞ and kðparÞ� kðqarÞ if
uðparÞ ¼ uðqarÞ. Thus, either uðpÞ� uðqÞ, or uðpÞ ¼ uðqÞ and kðpÞ� kðqÞ. Hence,
by definition, we have p% q showing the other direction of sIND.

(ii) Let i; j 2 I and let p 2 P such that vðpÞ[ vðx0Þ and pi; pj [ 0. Clearly, we can
find such a lottery. Let q 2 P such that qk ¼ pk for all k 2 Infi; jg, and qi ¼ pi þ �

ui

and qj ¼ pj � �
uj
where �ðvjuj �

vi
ui
Þ\vðpÞ � vðqÞ. Note that such an �[ 0 always exists.

Thus, by construction, we have uðpÞ ¼ uðqÞ and vðqÞ[ vðx0Þ, and so by definition,
we derive p� q showing that wCON holds.

(iii) Suppose p% q. Since uðpÞ� uðqÞ, we have uðpÞ� uðpaqÞ� uðqÞ. In
particular, when uðpÞ ¼ uðqÞ, then kðpÞ� kðqÞ, and so vðpÞ� vðqÞ. In that case,
we have vðpÞ� vðpaqÞ� vðqÞ implying that kðpÞ� kðpaqÞ� kðqÞ. Combining these,
by definition, we have p% paq% q showing that wBET holds.

(iv) Suppose that uðpÞ ¼ uðqÞ, but vðpÞ� vðx0Þ[ vðqÞ and so kðpÞ ¼ 1[ 0 ¼
kðqÞ implying that p�q. Clearly, vðx0Þ[ avðpÞ þ ð1� aÞvðqÞ ¼ vðpaqÞ for some
a 2 ð0; 1Þ. Since we have uðpaqÞ ¼ uðqÞ, we deduce that paq� q showing that BET
does not hold.

(v) Suppose that p� q; that is, suppose uðpÞ ¼ uðqÞ and kðpÞ ¼ kðqÞ. Since u 6¼
kv for some k[ 0, we can pick p, q such that vðpÞ[ vðqÞ. If vðqÞ� vðx0Þ, then let

a 2 ðvðx0Þ�vðxiÞ
vðpÞ�vðxiÞ ;

vðx0Þ�vðxiÞ
vðqÞ�vðxiÞ Þ, where xi 2 X is such that vðxiÞ\vðx0Þ; by definition, we

then have paxi�qaxi, violating tIND. If, on the other hand, vðxoÞ[ vðpÞ, then let

a 2 ðvðxjÞ�vðx0Þ
vðxjÞ�vðpÞ ;

vðxjÞ�vðx0Þ
vðxjÞ�vðqÞ Þ, where xj 2 X is such that vðxjÞ[ vðx0Þ; by definition, we

then have paxj�qaxj, violating tIND.
(vi) Suppose that uðpÞ ¼ uðqÞ[ uðrÞ and kðpÞ[ kðqÞ ¼ kðrÞ. This means we

have p�q�r. Now notice that for any a 2 ð0; 1Þ, we have uðqÞ[ uðparÞ and so
q�par showing that aCON fails. Notice also that the preference order % is of a
lexicographic type. As is well-known, a lexicographic order cannot have a
representation, and so we conclude that % does not have a representation. h
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Proof of statements about Example 4

Let % be a preference order defined as in Example 4. We want to show that %
satisfies (i) tIND and (ii) wCON, but fails to satisfy (iii) sIND and (iv) wBET, and it
does not have a representation.

(i) Let p; q; r; s 2 P and a 2 ð0; 1Þ. By definition, par% qar if and only if (a)
uðparÞ � uðqarÞ[ 0 or (b) uðparÞ � uðqarÞ ¼ 0 and uðp1ar1 � q1ar1Þ� 0. Thus,
par% qar if and only if (a) uðpasÞ � uðqasÞ[ 0 or (b) uðpasÞ � uðqasÞ ¼ 0 and
uðp1as1 � q1as1Þ� 0. Hence, by definition, par% qar if and only if pas% qas,
implying tIND.

(ii) Let i; j 2 I and let p; q 2 P such that qk ¼ pk for all k 2 I n fi; jg, and qi ¼
pi þ �

ui
and qj ¼ pj � �

uj
where �[ 0. In particular, let �

ui
2 Q if i ¼ 1 and �

uj
2 Q if

j ¼ 1. Then, by construction, we have uðpÞ ¼ uðqÞ and p1 � q1 2 Q implying that
p� q by definition. This shows that wCON holds.

(iii) Now let p; q 2 P such that uðpÞ ¼ uðqÞ and p1 � q1 is a rational number. By
definition, we have p� q. Let a 2 ð0; 1Þ be an irrational number. Then we have
aðp1 � q1Þ 62 Q, and so either pax0�qax0 or qax0�pax0, showing that % violates
sIND.

(iv) Now let p; q 2 P and a 2 ð0; 1Þ as in previous part (iii) Then we have p� q,
but clearly paq 6 � q showing that % violates wBET.

Finally, notice that the preference order % is of a lexicographic type. As is well-
known, a lexicographic order cannot have a representation, and so we conclude that
% does not have a representation. h

Proof of Lemma 1

The proof directly follows from Lemma 2. h

Proof of Theorem 2

Clearly, whenever the preference order % has an expected utility representation, then
it satisfies all of the axioms: ec-tIND, ec-sIND, ec-BET, and sCON showing that (iii)
expected utility representation implies (i) ec-tIND and sCON and (ii) ec-sIND, ec-
BET, and sCON. We now show the other directions.

(i) implies (iii): Let % be a preference order which satisfies ec-tIND and sCON.
By Lemma 2 % satisfies sIND and BET and by Proposition 2, it satisfies wCON.
Thus, by Theorem 1, % has an expected utility representation.

(ii) implies (i): Let % be a preference order which satisfies ec-sIND, ec-BET, and
sCON. By Lemma 2, % satisfies tIND, and so ec-tIND. h

Proof of Proposition 2

Let % be a preference order. We want to show that (i) sCON implies mCON, (ii)
mCON implies aCON and SOL, and (iii) SOL implies wCON.

(i) The proof is immediate since we can write q ¼ qaq for all q 2 P and a 2 ½0; 1�.
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(ii) Let p; q; r 2 P such that p�q�r. Let A ¼ fa : par% qg and
B ¼ fa : q% parg. By mCON, both sets are closed. First, we show that % satisfies
aCON. Since A and B are closed, A has a minimum element a[ 0 and B has a
maximum element b\1. Let a 2 ðb; 1Þ and b 2 ð0; aÞ. Since 1 62 B and 0 62 A, we
have par�q and q�pbr, as desired. We now want to show that % satisfies SOL.
Since % is complete, we have A [ B ¼ ½0; 1�. Since A and B are closed and [0, 1] is a
connected set, we must have A \ B 6¼ ;. Since 1 62 B and 0 62 A, there must be some
a 2 ð0; 1Þ such that par� q showing that SOL holds.

(iii) Let i; j 2 I and suppose j[ i. By our assumption, we have xj�xi�x0. By
SOL, we have xi � xjax0 for some a 2 ð0; 1Þ showing that wCON holds. h
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