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Abstract
This paper constructs a simple model of decision-making that accounts for the
paradoxes of Ellsberg and Machina. It does so by representing decision makers’
beliefs on the vector space R� R and by providing a reasonable decision rule with
axiomatic foundations. Moreover, the model allows for a characterization that clearly
distinguishes between the two paradoxes. The interesting feature of the paper is that
the ‘resolution’ of the paradoxes is along the lines suggested by the eponymous
authors themselves. This is to say, the decision rule derived from the axioms cor-
responds to Ellsberg’s own rule in the narrow set of circumstances that he explored,
and the decision rule embodies Machina’s injunction that we treat choice under
uncertainty in a similar manner to the way we treat standard consumer theory. That
the paper cleaves to the advice of both authors is a little surprising given that it
utilizes a two-dimensional vector space that neither author deployed.

Keywords Ellsberg paradox · Machina paradox · Allais paradox

1 Introduction

The Ellsberg and Machina paradoxes have somewhat discommoded canonical
decision theory and several putative alternatives. This paper argues that there is a
relatively straightforward extension of the traditional expected utility model which
can account for both paradoxes. Moreover, the proposed model resolves both
paradoxes along the lines suggested by the eponymous authors.

The model proposed here uses the simplest possible extension of the real numbers
to express decision-makers’ beliefs. Specifically, we use the vector space R� R to
represent beliefs—with objective beliefs located on one part of the vector space, and
subjective beliefs located the other part. Decision-makers are then shown to
maximize a form of rank-dependent expected utility given their beliefs. Decision-
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makers whose beliefs are given on R� R and who act in the manner described are
then shown to act in ways consistent with both the Ellsberg and Machina paradoxes.

In demonstrating the model of decision-making and its explanation of the
paradoxes, the paper has the following structure. Section 2 provides a brief literature
review. Section 3 provides a discursive treatment of the paper’s model and how it
explains the given paradoxes. Section 4 describes decision-makers’ beliefs. Section 5
describes the random variables and the lotteries that are the artefacts of interest for
decision-makers. Section 6 describes a reasonable set of axioms that decision-makers
are assumed to conform to, and a representation result is given. Section 7 describes
Ellsberg’s ‘3 colour’ problem, Machina’s ‘reflection’ and ‘50:51’ examples, and
Blavatskyy’s twist of the former; and we show how the model of behaviour
‘resolves’ these paradoxes. Section 8 concludes with some remarks on how the
model can also be used to solve Ellsberg’s n-colour problem and another well-known
paradox.

2 Literature

Ellsberg’s seminal paper (1961) is well known. It utilizes several thought
experiments to undermine the normative force of Savage’s (1954) theory of
subjective probability, which subsequent real experiments have largely verified (the
literature is thoroughly canvassed in Machina & Siniscalchi, 2014, §§13.1 & 13.4).

Somewhat belatedly, a theoretical literature developed which aimed to address the
paradox in a normative (axiomatic) manner.1 Notable among these contributions is
that of Schmeidler (1989), which proposed the model of Choquet expected utility.

Machina’s (2009) paper utilizes several thought experiments to undermine the
model of Schmeidler in a manner “similar to those posed by Ellsberg’s original
counterexamples to the classical subjective expected utility hypothesis” (Machina,
2009, p. 386). Machina’s paradox was experimentally confirmed by L’Haridon and
Placido (2010). Subsequently, Baillon et al. (2011) demonstrated that the paradox
embarrassed several models other than Choquet expected utility, notably maxmin
expected utility (of Gilboa & Schmeidler, 1989), variational preferences (of
Maccheroni et al., 2006), α-maxmin (of Ghirardato et al., 2004), and the smooth
model of ambiguity aversion (of Klibanoff et al., 2005). Machina (2014) provided
further thought experiments to impugn the normative claims of those models.
Blavatskyy (2013a) showed that the paradox also contraindicated the models of
Siniscalchi (2009) and Nau (2006). The models to survive the extinction event are
few. Notably, Segal’s two-stage model survives (Dillenberger & Segal, 2014), and
Gul and Pesendorfer’s (2014) expected uncertain utility theory also fits the data.

To understand the relationship of the model in this paper to the others, we first
observe that this paper survives the Machina filter, which puts it alongside the models
of Dillenberger and Segal (2014), and Gul and Pesendorfer (2014). All three models
avoid the “tail [event] separability” that Machina identifies as being the problematic

1 The normative approach is not universally popular—Al-Najjar and Weinstein (2009) forcefully argue
that while the Bayesian approach to beliefs is normative, the Ellsberg paradox identifies computational
errors only, and the subsequent theoretical literature does not model rational beliefs.
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feature of many models that fail his filter.2 Interestingly, all three survivors are two-
component models—bivalent beliefs in this paper, interval utilities in Gul and
Pesendorfer (2014), and the two-stage model discussed in Dillenberger and Segal
(2014) with non-expected utility functions operating at both stages.3 The model in
this paper stands closer to that of Gul and Pesendorfer than it does to that of
Dillenberger and Segal. In the functional representations of Gul and Pesendorfer
(2014) and in the model presented below, objective probabilities are used as weights
on unambiguous events, while a non-linear ‘distortion’ is applied over utility pairs in
the relevant representative functions to deliver behaviour consistent with Machina’s
paradox (distortion here being understood with respect to the historically normative
expected utility representation). Despite that similarity, the two models differ as to
where the ‘burden’ of representing ambiguity is ultimately borne. In Gul and
Pesendorfer’s case, it is borne by interval utilities, whereas here it is borne by
bivalent beliefs. Thus, although similar in some ways, both models pursue somewhat
different paths to resolve the Ellsberg and Machina paradoxes.

3 Discourse

We can gain an intuitive understanding of the approach taken in this paper to
resolving the Ellsberg and Machina paradoxes by considering the following
discursive and diagrammatic arguments (technical arguments are given in subsequent
sections of the paper).

We begin by clarifying what is meant by the term ‘ambiguity’. In the literature,
ambiguity is generally defined to be a situation where there is no stochastic
description of the world given by objective probabilities (where, by ‘the world’ we
mean a measurable space composed of a set of states, X, and its associated event
space, F ).4 In other words, ‘ambiguity’ in the sense of Ellsberg (1961) is equivalent
to ‘uncertainty’ in the sense of Knight (1921).5 Such situations are distinguished
from situations of ‘risk’, where ‘objective’ or ‘known’ or ‘physical’ probabilities of
events are taken as parametric by decision-makers. [In this latter case of risk,
decision-makers operate within a measure space ðX;F ; pÞ (where p is a probability
measure).]

2 The nature of the tail separability issue is, perhaps, best stated by Dillenberger and Segal (2014, pp. 4–5):
“if two acts pay the same on some event E and if the payoff on E affects the value of each act
independently of its payoffs on other events, then the comparison of these two acts should not depend on
the exact magnitude of the payoff on E, as long as it is the same in both. But changes of the payoffs on E
may change the ambiguity properties of the two acts (e.g., transform any of the acts from being fully
objective to subjective, or vice versa), causing an ambiguity averse decision maker to alter their ranking.”
For a full discussion of this issue, see Machina (2009) and (2014), L’Haridon and Placido (2010), and
Baillon, L’Haridon and Placido (2011).
3 Interestingly, Dillenberger and Segal make use of an earlier paper by Gul (1991) to provide a particular
version of their model that survives the Machina filter.
4 In this paper, we shall generally assume that the set of states is finite in number.
5 Ellsberg, himself, makes this connection explicit at the beginning of his analysis (1961, §I). For a more
general discussion, the reader is referred to the excellent historical review of the ambiguity literature in
Machina and Siniscalchi (2014, §§13.1–13.2).
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This distinction between uncertainty and risk is associated with different objects of
choice in these two domains. In uncertain situations, an ‘act’ or a ‘horse race lottery’
is a mapping from the set of states to a set of ‘outcomes’ or ‘consequences’ or
‘prizes’ (i.e., to each state in X; there is assigned a particular outcome from the set of
possible outcomes, X ). The choice domain is the set of horse race lotteries. In risky
situations, each state in X is similarly assigned a particular outcome, but, since each
state has a known ‘objective’ probability of occurring, the objects of choice can be
represented as vectors of probabilities over outcomes. Each such object is known as
‘roulette wheel’ or a ‘lottery’, and the choice domain is the set of roulette wheels.

In our approach here, we proceed a little differently. We do not adopt the binary
distinction between uncertain worlds and their associated horse race lotteries on the
one hand, and risky worlds and roulette wheels on the other. Rather, we suppose that
these two kinds of world are at the extremes of a spectrum of ambiguity. Typically,
we suppose, decision-makers are in a world in which there is ‘partial objective’
stochastic information. This partial, objective information is encoded in non-additive
probabilities known as capacities.6

Capacities were originally discussed by Choquet (1954), and were introduced into
decision theory, broadly defined, by Shafer (1976), building on the earlier work of
Dempster (1967). They were introduced into economics by Schmeidler (1989). In
their use by those authors, and subsequently, capacities represent decision makers’
subjective beliefs about the world in situations of uncertainty. This approach
contrasts with the approach of subjective Bayesians who argue that decision-makers’
beliefs in situations of uncertainty are probabilities. The canonical texts of subjective
Bayesianism are Savage (1954) and Anscombe and Aumann (1963, who allow
decision-makers to calibrate their subjective beliefs over horse race lotteries by
comparing them with roulette wheels).

In our approach, we make use of both capacities and probabilities, and we argue
that decision-makers have bivalent beliefs. Objective beliefs are encoded by
capacities, and decision-makers ‘complete’ these beliefs by adding their own
subjective judgments to those objective beliefs, and the combined beliefs are
probabilities. A decision-maker’s bivalent beliefs are referred to as capa-bilities (or,
simply, capabilities), a portmanteau of capacities and probabilities.7

To see what we mean, here, we may consider the classic Ellsberg example (which
is discussed more formally below, in Sect. 7). In the Ellsberg example, there is a
single urn containing 90 balls; 30 of those balls are red, and the remaining 60 are
black or yellow in unknown proportions.

The following table (Table 1) represents the beliefs of a decision-maker for whom
objective beliefs are defined by the minimum chance of each event occurring, and for

6 A capacity, B, is a real-valued function on the event space that satisfies: B £ð Þ ¼ 0, B Xð Þ ¼ 1, and
B Bð Þ�B Að Þ whenever B � A, where £;A;B;X 2 F . In our analysis below, we use a particular kind of
capacity to represent objective stochastic information, namely a convex capacity, which is a capacity that in
addition to satisfying the above criteria satisfies the following weak inequality:
B A [ Bð Þ þB A \ Bð Þ�B Bð Þ þB Að Þ.
7 The algebraically minded reader may prefer to refer to such beliefs as basic kinds of tensor probabilities
for reasons that will become obvious in Sect. 5.
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whom subjective beliefs are determined by the principle of indifference (or, if one
prefers, the principle of insufficient reason).8,9

The objects of choice in this set up are ‘urn draws’, where an urn draw is a
gamble, such that each state—as represented by the colour of a ball drawn from the
urn—delivers a certain prize from the set of possible outcomes (X ). Suppose that the
individual faces a choice between two urn draws, the first of which delivers $100 if a
red or yellow ball is drawn and $0 otherwise, while the second urn draw delivers
$100 if a black or yellow ball is drawn and $0 otherwise. Suppose further that the
decision-maker is a ‘consequentialist’ in the sense that she cares only about
outcomes; and, when it comes to money, she prefers more money to less.

In the situation just described, if the decision-maker sees no operational difference
between objective and subjective beliefs, then it is natural to think that she will be
indifferent between the two gambles, since the two gambles will seem the same to
her (as they offer the same payoffs for the same odds). Experimentally speaking, this
is not what Ellsberg observed. Rather, he found that decision-makers generally
preferred gambles with higher objective beliefs, ceteris paribus (i.e., in those
situations when the combined beliefs and payoffs are the same across urn draws).
This is to say, he found that people were ambiguity averse.

In our model, we model this preference over beliefs directly. This means that in
binary (win-lose) lotteries of the kind just described, decision-makers are supposed to
have preferences over the two different kinds of beliefs. To see what is meant by this,
consider Fig. 1. That diagram represents the vector space, R2, with objective beliefs
regarding a ‘win’ measured on the horizontal axis and subjective beliefs regarding a
win measured on the vertical axis.

Utility increases as the odds of winning increase regardless of whether the
increase in odds is in objective or subjective beliefs. The downward sloping lines are
‘indifference curves’ showing the decision-maker’s preferences over those two kinds
of belief. That the indifference curves have a uniform gradient of −1 means that the
decision-maker thinks that objective and subjective beliefs are equivalent. An
individual with such preferences will be indifferent between the two gambles just
described, since she will regard them as wholly equivalent. [Observe that the
indifference curve that goes through the belief-pair, (1/3, 1/3), is the same one that
goes through (2/3, 0) (where (1/3, 1/3) are the odds of winning in the first urn draw,
and (2/3, 0) are the odds of winning in the second urn draw).] This is the position of a
subjective Bayesian.

Next, consider Fig. 2.
In Fig. 2, the decision-maker’s indifference curves have a uniform gradient greater

(in absolute terms) than −1. This means that the decision-maker consistently
discounts the subjective odds of winning relative to the objective odds of winning.
Such a person exhibits ambiguity aversion and prefers the urn draw where $100 is
paid on a black or yellow ball being drawn to the urn draw where $100 is paid if a red

8 It is straightforward to verify that the objective beliefs given in the table are a (convex) capacity if we
also assume that: B £ð Þ ¼ 0 and B red [ black [ yellowð Þ ¼ 1.
9 Although we use the principle of indifference to determine subjective beliefs in this discursive section of
the paper, the formal model given later does not need it.
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or yellow ball is drawn [the indifference curve passing through the ‘mixed’ odds of
(1/3, 1/3) is lower than the indifference curve passing through the ‘pure’ objective
odds of (2/3, 0)].

As our analysis in subsequent sections shows, the representation of preference by
linear indifference curves on the space of binary lotteries is sufficient to capture
ambiguity aversion in the cases discussed by Ellsberg. However, more general forms
of preference representation are required to capture ambiguity aversion in the sense
of Machina. It turns out that curvilinear indifference curve maps are needed to
account for the Machina paradoxes. To grasp the intuition of how curvilinear
indifference curves can explain the Machina paradox, consider Figs. 3 and 4.

In both cases, the gradients of the indifference are everywhere greater than −1 (in
absolute terms), so the decision-maker is ambiguity averse (i.e., subjective beliefs are
discounted relative to objective beliefs). However, in the former case, the
indifference curves are strictly convex to the origin, and, in the latter, they are
strictly concave. Convex preferences indicate that the decision-maker has a

Fig. 1 Linear preferences over ambiguity—indifference to ambiguity

Fig. 2 Linear preferences over ambiguity—ambiguity aversion
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diminishing marginal rate of substitution between beliefs. A decision-maker with
such preferences, and who is indifferent between two gambles (say, gambles ‘1’ and
‘2’), will strictly prefer a third gamble (‘3’) whose odds of winning are given by a
convex combination of the odds of the two indifferent gambles (i.e., in standard
notation: 3 � 1 � 2). Conversely, concave preferences indicate an increasing
marginal rate of substitution between beliefs. A decision-maker with such
preferences, and who is indifferent between two gambles (‘1’ and ‘2’), will strictly
prefer both of those gambles against a third gamble (‘3’) whose odds of winning are
given by a convex combination of the odds of the two indifferent gambles (i.e.,
1� 2�3).

Next, consider the following diagram, Fig. 5.
In Fig. 5, we have a linear indifference curve and a concave indifference curve,

each representing the preferences of different ambiguity averse individuals. Both
curves go through the points (1/3, 1/3) and (1/2, 0). This means that each person is
indifferent to the following two urn draws: in the first urn draw, $100 is paid if a red

Fig. 3 Curvilinear preferences over ambiguity—convex preferences

Fig. 4 Curvilinear preferences over ambiguity—concave preferences
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or yellow ball is drawn from the Ellsberg urn described above; and, in the second urn
draw, there is another urn where there is an objective 50% chance of winning $100
(this other urn contains, say, 50 white balls and 50 blue balls, and $100 is paid if a
blue ball is drawn and $0 is paid otherwise).

According to our representation of Ellsberg’s model, an individual who is
indifferent between these two gambles ought also to be indifferent to an urn draw
whose objective and subjective odds of winning $100 are given by the ordered pair:
(5/12, 1/6). These odds are given at point A in the diagram.10 On our interpretation,
what Machina shows by way of several examples, is that a person who is indifferent
to the gambles whose odds of winning are (1/3, 1/3) and (1/2, 0) need not necessarily
be indifferent to the gamble indicated by point A. Such a person might have, for
example, the strictly convex indifference curve indicated in Fig. 5; in which case, she
strictly prefers the gamble with odds of (5/12, 1/6) to either of the gambles between
which she is indifferent [i.e., the gambles with winning odds of (1/3, 1/3) and (1/2,
0)]. One could, alternatively, imagine an individual with concave indifference curves
who prefers either of the two indifferent gambles to the one whose winning odds are
given by (5/12, 1/6). Machina’s own reflective discussion of his thought experiments
suggests that he thinks that people have convex (rather than concave) preferences
over ambiguity (to use the language of the model we are discussing).

To summarize, in the terms of the model described in this paper, Ellsberg found
that subjective beliefs trade at a discount relative to objective beliefs—which is to
say, he found ambiguity aversion as such. In his approach to decision-making, he
assumed that the marginal rate of substitution between the two kinds of belief was
constant (i.e., indifference curves over the odds of winning are linear). On our
understanding, Machina has shown that the marginal rate of substitution is not
necessarily constant.

Fig. 5 Linear and curvilinear preferences compared

10 An urn containing 12 balls, of which at least 5 are purple, 4 are purple or pink, and the remainder are
green, will generate the given odds if $100 is paid on the drawing of a purple ball and $0 is paid otherwise
(assuming that the principle of indifference is applied).
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This concludes our informal discussion of the model of the paper. We turn, now,
for the next three sections, to a more formal analysis before proceeding to look at
applications of the theory to instances of the paradoxes in the final two sections.

4 Beliefs

To begin our analysis, take a measurable space, ðX;FÞ, where X is the sample space
and F ¼ 2X (F is finite). Next, suppose that there is a mapping, B, with the
following characteristics.

Definition 1 An objective information mapping, B : F ! ½0; 1�, is a convex
capacity, normalized to unity (B Xð Þ ¼ 1), and whose empty set is null (B £ð Þ ¼ 0).

The interpretation of B goes as follows: B Að Þ is the objective belief in favour of
A; which is to say, it is the belief in A that is warranted by the objective information
to which decision-makers have access. For example, in the classic Ellsberg urn
described in Table 1 of the previous section, the objective beliefs are:
B £ð Þ ¼ 0,B redð Þ ¼ 1=3, B blackð Þ ¼ B yellowð Þ ¼ 0, B red [ blackð Þ ¼
B red [ yellowð Þ ¼ 1=3, B black [ yellowð Þ ¼ 2=3, and B red [ black[ð
yellowÞ ¼ 1.

Given a convex capacity, B, there is set of numbers, b Að Þf gA2F , with
b Að Þ 2 ½0; 1�, so that Bþ b is a probability. The set of all such probabilities is
referred to as the core of B (and is denoted: coreðBÞ). In general, this set of
probabilities is not a singleton; B is its lower bound. The interpretation of b goes as
follows: b Að Þ is the subjective belief in favour of A; which is to say, it is the belief in
A that is attributed by the decision-maker on subjective grounds. For example, in the
Ellsberg urn described in Table 1 of the previous section, the decision-maker’s
subjective beliefs are as follows: b £ð Þ ¼ 0, b redð Þ ¼ 0, b blackð Þ ¼
b yellowð Þ ¼ 1=3, b red [ blackð Þ ¼ b red [ yellowð Þ ¼ 1=3, b black [ yellowð Þ ¼ 0,
b Xð Þ ¼ 0.

The objective and subjective beliefs of the decision-maker can be represented as a
(row) vector in the following way.

Definition 2 An imprecise belief is a vector-valued mapping, l : F ! R� R, with:
l Að Þ ¼ B Að Þ; b Að Þð Þ � B; bð Þ Að Þ, for all A 2 F ; and lb c,Bþ b is a probability
(i.e., lb c ;ð Þ ¼ 0, lb c Xð Þ ¼ 1, lb c Að Þ� 0, for all A 2 F , and lb c A [ Bð Þ ¼
lb c Að Þ þ lb c Bð Þ when A \ B ¼ ; for all A;B 2 F ).

For example, in the urn described above, the beliefs of the individual are:
l £ð Þ ¼ ð0; 0Þ, l redð Þ ¼ ð1=3; 0Þ, l blackð Þ ¼ l yellowð Þ ¼ ð0; 1=3Þ, l red [ blackð Þ
¼ l red [ yellowð Þ ¼ ð1=3; 1=3Þ, l black [ yellowð Þ ¼ 2=3; 0ð Þ; l Xð Þ ¼ ð1; 0Þ:

In other words, objective beliefs are measured on the first dimension of the vector
space, while subjective beliefs are measured on the second dimension. As mentioned
in the previous section, we shall use the portmanteau, capability, to describe an
imprecise belief, since the vector-valued mapping, l, explicitly describes a capacity,
B, and implicitly describes a probability, Bþ b.
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5 Artefacts

In this section, we describe the objects that decision-makers are cognizant of when
making choices. In the next section, we propose a set of axioms which describe how
decision-makers configure these artefacts in their reasoning.

We suppose that there is a function: X : X ! R, which determines the allocation
of ‘outcomes’ or ‘consequences’ or ‘prizes’ to states. In a minor abuse of notation,
we let X also denote the set of all possible prizes, with the typical prize being:
xi 2 X . We suppose that prizes are totally ordered, with: x1 � 0; xi [ xi	1i ¼ 2; . . .; n;
and n\1.

It is natural to take X to be a set of dollar prizes as we have done in Sect. 3. We
shall use one of the simple binary Ellsberg urn draws described in that section to
provide examples of the definitions given immediately below. The particular urn
draw we use is the one where $100 is paid if a red or yellow ball is drawn and $0 is
paid otherwise.

The objective belief that X takes on a particular value, say xi, is given by

B X ¼ xið Þ ¼ B x 2 X : X xð Þ ¼ xif gð Þ ¼ B xið Þða scalar numberÞ:

For example, in our Ellsberg urn draw, we have: B X ¼ 0ð Þ ¼ 0; and:
B X ¼ 100ð Þ ¼ 1=3.

The objective and subjective belief that X takes on a particular value, xi, is given
by

B; bð Þ X ¼ xið Þ ¼ l X ¼ xið Þ ¼ l x 2 X : X xð Þ ¼ xif gð Þ
¼ l xið Þða 2	 dimensional (rowÞ vectorÞ:

For example, in our Ellsberg urn draw, we have: B; bð Þ X ¼ 0ð Þ ¼ ð0; 1=3Þ; and:
B; bð Þ X ¼ 100ð Þ ¼ ð1=3; 1=3Þ.
And the combined belief that X takes on a particular value, xi, is given by

lb c X ¼ xið Þ ¼ lb c x 2 X : X xð Þ ¼ xif gð Þ ¼ lb c xið Þ ða scalar; with : l xið Þ
¼ Bþ bð Þ xið Þ:

For example, in our Ellsberg urn draw, we have: lb c X ¼ 0ð Þ ¼ 1=3; and:
lb c X ¼ 100ð Þ ¼ 2=3.

Table 1 Beliefs for the Ellsberg 3-colour problem

Event Objective belief Subjective belief Combined belief

(Red) 1/3 0 1/3

(Black) (yellow) 0 1/3 1/3

(Red or black) (red or yellow) 1/3 1/3 2/3

(Black or yellow) 2/3 0 2/3
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We also make use of the following notation to describe complementary
cumulative distribution functions:

B X � xið Þ ¼ B x 2 X : X xð Þ� xif gð Þ ¼ B xi; xiþ1; xiþ2; . . .; xnf gð Þ
¼ B Xið Þ a scalarð Þ:

For example, in our Ellsberg urn draw, we have: B X � 0ð Þ ¼ 1; and
B X � 100ð Þ ¼ 1=3.

l X � xið Þ ¼ l x 2 X : X xð Þ� xif gð Þ ¼ l xi; xiþ1; xiþ2; . . .; xnf gð Þ
¼ l Xið Þ a rowð Þ2	 vectorð Þ:

For example, in our Ellsberg urn draw, we have: l X � 0ð Þ ¼ ð1; 0Þ; and:
l X � 100ð Þ ¼ ð1=3; 1=3Þ.

Finally, we have

lb c X � xið Þ ¼ lb c x 2 X : X xð Þ� xif gð Þ ¼ lb c xi; xiþ1; xiþ2; . . .; xnf gð Þ
¼ lb c Xið Þ a scalarð Þ:

For example, in our Ellsberg urn draw, we have: lb c X � 0ð Þ ¼ 1; and:
lb c X � 100ð Þ ¼ 2=3.
The expression lb c X � xið Þ is a probability value, since lb c is a probability. We

use this notation when lb c is constructed from a given mapping, l. In more general
settings, we shall have cause to use the following notation (noting that p is a
probability):

p X � xið Þ ¼ p x 2 X : X xð Þ� xif gð Þ ¼ p xi; xiþ1; xiþ2; . . .; xnf gð Þ
¼ p X ið Þða scalarÞ:

In general, there will be more than one function that maps from states to prizes.
The different functions are indexed by h. In our discussion below, when the context is
clear that we are talking about a particular function, we will drop this indexing
subscript to avoid clutter.

A function, X h, defines a ‘lottery’, which is a distribution of beliefs across the
range of prizes. Formally, we have the following definition(s).

Definition 3 A capacity lottery, L, is a (column) vector of n capacity values

L, B x1ð Þ;B x2ð Þ; . . .;B xið Þ; . . .;B xnð Þ½ �h ¼ B½ x1ð Þh;B x2ð Þh; . . .;B xið Þh; . . .;B xnð Þh�;

with: 1�Pn
i¼1B xið Þ:

For example, for our Ellsberg urn draw which pays $100 on the drawing of a red
or yellow ball (indexed, h ¼ 1), we have: B 0ð Þ;B 100ð Þ½ �1 ¼ ½0; 1=3�1.

It is worth noting that in our model, a decision-maker may discriminate between
two capacity lotteries, even though they generate the same vector of capacities over
prizes. For example, let there be two urns, one with black balls and white balls, and
the other with red balls and blue balls. In each case, the proportion of balls is
unknown and $100 is paid on the draw of a black ball in the first instance and a red
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ball in the second instance. The decision-maker could, in principle, strictly prefer one
urn draw to the other.

The set of capacity lotteries is denoted by L, with: L 2 L.
A special subset of L is the set of capacity lotteries that satisfy:

Pn
i¼1B xið Þ ¼ 1:

This is the set of probability lotteries (also referred to as ‘roulette lotteries’); which is
to say, it is the set of lotteries where the objective information allows the distribution
of prizes to be represented by a canonical probability. Formally, we have the
following definition.

Definition 4 A probability lottery, L 2 L 
 L, is a (column) vector of n probability
values:

L, p x1ð Þ; p x2ð Þ; . . .; p xið Þ; . . .; p xnð Þ½ �;
with: 1 ¼Pn

i¼1p xið Þ.
Let us take lb c X ¼ xið Þ as defined for the Ellsberg urn draw as our example

probability, then we would have: p 0ð Þ; p 100ð Þ½ � ¼ ½1=3; 2=3�.
In general, decision-makers do not discriminate between probability lotteries that

yield the same vector of objective probabilities over prizes.
Finally, we will make use of the following concept.

Definition 5 A capacity-and-probability lottery—also known as a capability lottery
—is a (column) vector of n pairs

K, l x1ð Þ; l x2ð Þ; . . .; l xið Þ; . . .; l xnð Þ½ � � ½ B;bð Þ x1ð Þ; B; bð Þ x2ð Þ; . . .; B; bð Þ xið Þ; . . .; B;bð Þ xnð Þ�;

with: 1 ¼Pn
i¼1 lb c xið Þ:

For example, for our Ellsberg urn draw, we have: l 0ð Þ; l 100ð Þ½ � ¼
½ð0; 1=3Þ; ð1=3; 1=3Þ].

In this last kind of lottery, lb c ¼ Bþ b is a probability; however, the objective
part of belief (B) and the subjective part of belief (b) are kept separate. This is the
key distinction between the approach to belief given in this paper and canonical
decision theory.

If we let Lxi � xi be the probability lottery that puts 1 in the ith row of the vector
and 0 in all the other rows—so that xi is the lottery that yields the prize, xi, for sure—
then the given definitions of capacity, probability, and capability lotteries allow us to
write

L ¼ B x1ð Þx1 þB x2ð Þx2 þ � � � þB xið Þxi þ � � � þB xnð Þxn;

L ¼ p x1ð Þx1 þ p x2ð Þx2 þ � � � þ p xið Þxi þ � � � þ p xnð Þxn;

K ¼ l x1ð Þ � x1 þ l x2ð Þ � x2 þ � � � þ l xið Þ � xi þ � � � þ l xnð Þ � xn;

where � is the Kronecker product; and we have dropped the subscript, h, in the first
equality.

Note that each of these expressions and the corresponding expressions given in
definition 3–5 are the same objects (respectively) from the decision-maker’s point of
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view—each is a vector that defines, respectively, a capacity lottery, a probability
lottery, and a capability lottery.

We also make use of the following notation.

Definition 6 The (column) vector of complementary cumulative probabilities for
each prize is denoted by: M, p X 1ð Þ; p X 2ð Þ; . . .; p X ið Þ; . . .; p X nð Þ½ �.

This definition then allows us to define the relevant concept of dominance.

Definition 7 A (probability) lottery, L00, dominates lottery, L0, if: M 00 [M 0; i.e., if
pL

00
Xið Þ� pL

0
Xið Þ for all i, and pL

00
Xið Þ[ pL

0
Xið Þ for some i.

For future reference, we denote the vector of complementary cumulative
probabilities for a degenerate lottery, x0, by: Mx0 ; and we note that: Mx00 [Mx0 if
x00 [ x0.

Finally, we introduce an alternative way of representing capability lotteries in
which the complementary cumulative capabilities express the likelihoods of
obtaining increments in prizes. In that case, the capability of getting at least the
increment x1 	 0 is: l X 1ð Þ; and the capability of getting at least the increment
x2 	 x1 is: l X 2ð Þ; and so on. The object which ‘delivers’ the increment, ðxi 	 xi	1Þ;
is the difference between the lotteries xi and xi	1, and is denoted by: xi 	 xi	1.
Consequently, we have the following.

Definition 8 The alternative representation of the capability lottery, K, is given
by:K,

l X1ð Þ � x1 	 0ð Þ þ l X2ð Þ � x2 	 x1ð Þ þ � � � þ l Xið Þ � xi 	 xi	1ð Þ þ � � � þ l Xnð Þ
� xn 	 xn	1ð Þ:

As with K, K is a vector of vectors; specifically, it is an n-dimensional vector of
pairs. Re-arranging terms on the right-hand side of the above expression allows us to
re-write K as a vector of differences of complementary cumulative capabilities

K ¼ l X1ð Þ 	 l X2ð Þð Þ; l X2ð Þ 	 l X3ð Þð Þ; . . .; l Xið Þ 	 l Xiþ1ð Þð Þ; . . .; l Xnð Þ 	 0ð Þ½ �:

For example, for our Ellsberg urn draw, we have, as noted above:
K ¼ l 0ð Þ; l 100ð Þ½ � ¼ ½ð0; 1=3Þ; ð1=3; 1=3Þ] and l X � 0ð Þ ¼ 1; 0ð Þ;
l X � 100ð Þ ¼ ð1=3; 1=3Þ. Hence, it is easy to verify that:
K ¼ ½ð2=3;	1=3Þ; ð1=3; 1=3Þ].11

11 The reader will, perhaps, be curious about the negative value for the second term in the first pair of K.
This is a corollary of the fact that, while objective beliefs are monotonic capacities (see fn.6 above),
subjective beliefs are not. Indeed, the non-monotonicity of subjective beliefs is implied by the
monotonicity of objective beliefs coupled with the fact that objective and subjective beliefs sum to a
probability. Since subjective beliefs are not monotonic, taking differences of complementary cumulative
capabilities to construct K may result in negative values. This is an interesting but inconsequential quirk of
the non-additive probabilities that are used to described ambiguous worlds.
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The intuition with regards to the alternative representation of a lottery can be
grasped if we think of the special case where capabilities are probabilities. In that
case, the representation implies that: l X ið Þ ¼ p X ið Þ; 0ð Þ: We then immediately see
that: K ¼ K, since: l X ið Þ 	 l X iþ1ð Þ ¼ l xið Þ 2 R� 0. In the general case, where
capabilities are given on R� R, this equality does not hold, although we do always
have lb c Xið Þ 	 lb c Xiþ1ð Þ ¼ lb c xið Þ; and we can always recover the capabilities of K
from the complementary cumulative capabilities of K given our knowledge of the
function, X , and the objective information, B.

We are now able to state the axioms.

6 Axioms

In this section of the paper, we discuss the axioms that govern the decision-maker’s
behaviour. Our approach here is neither prescriptive—as per canonical decision
theory—nor purely descriptive—as per behavioural economics. Rather, we take a
middle ground whereby we suppose that there are principles of behaviour that are
coherent and plausible, and which allow us to understand decision-makers’
behaviour; however, we do not argue that a decision-maker must act in accord
with those principles under pain of acting irrationally. Nor, conversely, do we think
that decision-makers are consistently incoherent (as behavioural economics allows).
Perhaps, the best way to understand our approach is by way of analogy with grammar
—we suppose that there are rules of grammar that allow us to infer the speaker’s
intended meaning, but we do not demand, for example, that infinitives never be split.

With regards to the formalism of what follows, the arguments are broadly in the
spirit of Sarin and Wakker (1997).

The first of our axioms states the nature of the decision-maker’s preferences over
L.

Axiom 1 Ordering: there is a complete and transitive preference ordering, % , over
L.

The second axiom—continuity over probability lotteries—provides the relevant
continuity axiom.

Axiom 2 Continuity: for any probability lotteries, L; L0; L00 2 L with: Lʺ≿L≿Lʹ, there
is a unique real number: k 2 0; 1½ � 
 R, such that: kL00 þ 1	 kð ÞL0 � L.

The next axiom connects the preferences over lotteries to a numerical order
normalized with respect to best and worst lotteries. To state the axiom, we assume
that there is a best possible prize, x, which is identified with the best degenerate
lottery, Lx � x; and there is also a worst possible prize, x, which is identified with
the worst degenerate lottery, Lx � x; with x�x and x % xi % x for all i. We then
have the following definition.

Definition 9 The monotonicity property holds if, whenever we have: L0 � k
0
x þ

1	 k0ð Þx and L00 � k
0 0
x þ 1	 k

0 0� �
x, then: L00 % L0 () k00 � k0.
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Axiom 3 Monotonicity: the monotonicity property holds, and preferences are
monotone with respect to the total order on prizes, i.e., L00 % L0 () k00 � k0 and
Mx00 [Mx0 ) x00�x0.

The next two axioms deal with the way in which the decision-maker compares
capacity lotteries and probability lotteries and how she uses that comparability to
construct capability lotteries. To state the axioms, we need the following definition.

Definition 10 A binary lottery yields the maximum prize, x, in the case of a
specified event and the minimum prize, x, otherwise; there are three subordinate
denotational definitions which are as follows.

Definition 10.1 A binary capacity lottery for specified event, A, is denoted:
BA; :½ �A � ½B xð Þ;B xð Þ�A 2 L, where h ¼ A denotes the fact that x is delivered
on event A and x is delivered on event AC (the complement of A).

For example, the binary capacity lottery that delivers x if a yellow ball is drawn
from the Ellsberg 3-colour urn is denoted: By; :

� �
y ¼ 0; :½ �y 2 L, and, similarly, the

binary capacity lottery that delivers x if a red ball is drawn from the Ellsberg
3-colour urn is denoted: Br; :½ �r ¼ 1=3; :½ �r 2 L. As noted above, we will drop the
subscript index when the context allows.

Definition 10.2 A binary probability lottery that yields probability pʹ of delivering
x is denoted: ½p0

xð Þ; :� 2 L; and, whenever we have: BA; :½ �A � ½p0
xð Þ; :�, the latter

(i.e., the probability) lottery is denoted as: [pA� ; :�.
For example, the binary probability lottery that delivers x on the call of heads on

a fair coin toss is denoted: p
0
xð Þ; :� � ¼ ½1=2; :�, and, if drawing a red or yellow ball

from the Ellsberg 3-colour urn delivers x and if this capacity lottery is indifferent to
the coin toss that delivers x on a correct call, then we
have: Br[y; :

� �
r[y ¼ 1=3; :½ �r[y � 1=2; :½ � ¼ ½pr[y� ; :�.

Definition 10.3 A binary capability lottery that yields capability ðB;bÞ0 of
delivering x is denoted: ½ðB; bÞ0 xð Þ; :�.

For example, the binary capability lottery for the draw of a red or yellow ball is
ð1=3; 1=3Þ; :½ �.
We can now state the promised axiom.

Axiom 4 Comparability: for each binary capacity lottery, BA; :½ �A , there is a unique
binary probability lottery, [pA� ; :�, such that: BA; :½ �A � ½pA� ; :�, with
½pA� ; 1	 pA� �� ½B xð Þ;B xð Þ�A .

For example, in our Ellsberg example, we have: Br[y; :
� �

r[y � ½pr[y� ; :�,
¼ ½1=2; :�; and we observe that: pr[y� ; 1	 pr[y�

h i
¼ 1=2; 1=2½ � � 1=3; 0½ �r[y

¼ ½B xð Þ;B xð Þ�r[y .
Now, whenever BA; :½ �A � ½pA� ; :�, we can always find a pair of real numbers,

ðaA; bAÞ with aA [ 0 and 1� bA � 0, such that: BA þ bA=aA ¼ pA� . Let the set of
such pairs be denoted: fðaA;bAÞg.
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The next axiom provides further constraints on decision-makers’ preferences.

Axiom 5 Additivity: for disjoint A and B where: BA; :½ �A � ½pA� ; :�,
BB; :½ �B � ½pB� ; :� and BA[B; :½ �A[B � ½pA[B� ; :�, there is a triplet of pairs of real
numbers, ð aA; bAð Þ; aB; bBð Þ; aA[B; bA[Bð ÞÞ; such that

BA þ bA=aA; : �� ½pA� ; :½ �;

BB þ bB=aB; : �� ½pB� ; :½ �;

BA[B þ bA[B=aA[B; : �� ½pA[B� ; :½ �;

BA[B þ bA[B; :½ � � BA þ bA þBB þ bB; :½ �:

A partial example of this axiom is given by our Ellsberg urn draw. Let A ¼ red,
B ¼ yellow, and set aA ¼ aB ¼ 2 (i.e., the indifference curves in the Ellsberg
example all have a slope of − 2 (as depicted in Fig. 2)). We have the objective
beliefs: BA ¼ 1=3, BB ¼ 0, and BA[B ¼ 1=3. The following subjective beliefs and
probabilities are consistent with the axiom: bA ¼ 0, bB ¼ 1=3, bA[B ¼ 1=3,
pA� ¼ 1=3, pB� ¼ 1=6, and pA[B� ¼ 1=2.

There are a couple of remarks to be made about this axiom. First, all the lotteries
stated in the four indifference relations given above are probability lotteries. Second,
the first three indifference relations in the axiom follow directly from the reflexivity
of � (since BA þ bA=aA ¼ pA� , etc. by construction). Finally, the import of the
axiom lies in the final indifference relation, which allows us to state the following
proposition (proof in Appendix 1).

Proposition 1 Bþ b is a probability.

Axiom 5 implies that we focus our attention on the set of pairs in fðaA; bAÞg that
make Bþ b a probability. This set is not a singularity—there may be more than one
set of pairs that make Bþ b a probability. However, it turns out that a further axiom
will reduce the set to a unique set of pairs.

Before stating that axiom, it is worth noting that ambiguity averse decision-makers
prefer probability lotteries to capacity lotteries in some well-defined sense, since the
former provide a complete characterization of risk, whereas the latter provide only a
partial characterization of risk. The next axiom provides the appropriate definiteness
of the sense in which decision-makers prefer probability lotteries to capacity lotteries
(and, thereby, the sense in which they are ambiguity averse).

We proceed by supposing that a decision-maker’s relative aversion to ambiguity
gives rise to a ‘discount factor’, meaning that a lower expected payoff on a
probability lottery is indifferent to a higher expected payoff on an otherwise
equivalent capacity lottery. Specifically, we make the following supposition.

Axiom 6 Aversion: for any binary capacity lottery, BA; :½ �A � ½pA� ; :�, there exists a
unique real number,cA, with1� cA [ 0, such that: pA� ; :½ � � BA þ bA=aA; :½ �
� ½ðBA þ bAÞcA; :�.
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The import of the axiom lies in it allowing us to state the following proposition
(proof in Appendix 1).

Proposition 2 For each set, A, the pair, ðaA; bAÞ, is unique.
The implication of proposition 2 is that each binary capacity lottery, BA; :½ �A , can

be identified with a binary capability lottery, ðBA; bAÞ; :½ �A . Moreover, since binary
capacity lotteries are ordered by a preference relation (% ), there is an implied
preference relation (<) between binary capability lotteries, such that:
BA; :½ �A % BB; :½ �B () ðBA; bAÞ; :½ �A< ðBB; bBÞ; :½ �B . Furthermore, the implied
preference relation over binary capability lotteries contains information about the
decision-maker’s degree of ambiguity aversion.

To see this, let us introduce the function, u, that sends: ðBA; bAÞ7!pA� for all
A 2 F . We shall suppose that u has a special quasi-linear form:
u BA; bAð Þ ¼ BA þ /ðbAÞ, so that: / bAð Þ ¼ bA=aA. The function, u, tells us the
rate at which the decision-maker transforms the uncertainty of a capability lottery
into the equivalent risk in a probability lottery. ‘Equivalent’ here means that the
binary capability lottery whose odds of winning are given by, ðBA; bAÞ, is indifferent
to the binary capability lottery whose odds of winning are given by,
ðBA þ / bAð Þ; 0Þ, which is the representation of the winning odds of the probability
lottery, ½BA þ / bAð Þ; 0�. The example described immediately below will clarify this
logic.

Take the simplest kind of case, which is where: aA ¼ a for all A 2 F , so that

/ð0Þ ¼ 0, and /
0 ¼ a	1\1, a 2 R. An instance of this kind of case is the Ellsberg

urn draw considered in Sect. 3 and depicted in Fig. 2. We recall that the Ellsberg urn
that we have been using awards the best prize if a red or yellow ball is drawn from
the urn and awards the worst prize if a black ball is drawn, where the urn contains 90
balls, of which 30 are red, and 60 are either black or yellow in unknown proportions.
In such a situation as that, the constant value, a, measures the rate of exchange or the
trade-off between uncertainty and risk for the decision-maker. Recalling Table 1, we
see that the decision-maker determines that the capability of winning (i.e., of getting
xÞ is: B; bð Þ xð Þ ¼ ð1=3; 1=3Þ.12 Now, if the decision-maker has: a ¼ 2, then the
(somewhat uncertain) binary capability lottery is equivalent to the (purely risky)
binary probability lottery that has probabilities of 1=2 for winning and 1=2 for losing.
Note that: 1=3þ 1=3 ¼ 2=3[ 1=2, which implies that the combined probability of
winning in the original, capability lottery is greater than the probability of winning in
the equivalent probability lottery. This implies that the decision-maker has
discounted the odds of winning given by the uncertain lottery, so that it is equivalent
to a risky lottery with lower total odds of winning. This is characteristic of an
ambiguity averse decision-maker.

12 In any set of binary lotteries, we can characterize each lottery simply in terms of the chances of winning
(where ‘chances’ here is placeholder for ‘capacity’, ‘probability’, or capability’ depending on the specific
kind of lotteries being considered). The reason for this is that, in binary lotteries, the decision-maker only
cares about the chances of winning since receipt of a prize at least as good as the worst prize is assured with
absolute certainty. The only question of interest is: what is the chance of doing better? For capability
lotteries, this means that once the decision-maker has determined the capability of winning, B; bð Þ xð Þ, the
capability of losing, B;bð Þ xð Þ, is a kind of residual belief that satisfies: Bþ bð Þ xð Þ ¼ 1	 Bþ bð Þ xð Þ.
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Speaking more generally, if a decision-maker dislikes ambiguity, we have:
/ðbÞ\b over the whole domain; and if / bð Þ[ b, the decision-maker prefers
ambiguity. If the individual is indifferent to ambiguity, we have: / bð Þ ¼ b. Figure 1
in Sect. 3 depicts this last situation of indifference to ambiguity. Figure 2 in that
section depicts a situation where the decision-maker is ambiguity averse and has:

/ð0Þ ¼ 0, /
0 ¼ a	1\1. This is the simplest possible case of ambiguity aversion.

However, as noted in our discussion of Sect. 3, the ‘indifference curves’ that
characterize the decision-maker’s attitude to ambiguity will not be linear in general.
Consider, again, the preferences depicted in Figs. 3 and 4 in that earlier section. In
both cases, we everywhere have: /ðbÞ\b, and, furthermore, we suppose that:

/ð0Þ ¼ 0, /
0 ðbÞ\1 over the whole domain. Therefore, the decision-maker is

ambiguity averse; but in the former case, the indifference curves are convex to the
origin, and, in the latter, they are concave.

In all these cases, the decision-maker is everywhere ambiguity averse. However, it
may be that she is everywhere ambiguity avid. In that case, her indifference curves
will ensure that: / bð Þ[ b, but their curvature may be linear or convex or concave,
depending on her attitude to increasing amounts of uncertainty.

Finally, we note that the decision-maker needs not be firmly ambiguity avid or
ambiguity averse over the whole domain. Rather, her attitude may vary, so that, for
example, she becomes relatively more ambiguity averse as the capability, B; bð Þ,
increases. A set of preferences consistent with this thought is depicted in Fig. 6.

The final axiom is the substitution axiom, and it is best understood with the help of
a diagram along with the definition(s) given immediately below which amplify the
diagrammatic logic. The relevant diagram is given in Fig. 7.

Before outlining the logic of the axiom, we note that it has a more ‘dynamic’
structure than is usual for axioms of this type. Two comments are worth making here.
The first is that, owing to the non-modularity of decision-makers’ beliefs under
uncertainty, operations on beliefs do not commute, in general, so the logical sequence
of the way in which decision-makers structure their thinking becomes more salient.

Fig. 6 Avid and averse preferences over ambiguity
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The second point is that we are trying to recover the tacit nature of decision-makers’
logic rather than prescribing norms; therefore, if decision-makers have dynamic
thought processes, then that is how we must proceed.

We proceed as follows. First, we have the following definition.

Definition 11 A capacity lottery, L, is decomposable into sub-lotteries if there are
lotteries, fL1;L2; . . .Lj; . . .g and probabilities, fp1; p2; . . .pj; . . .g; such that:
L ¼PjpjLj.

It is sufficient for our purposes in this section and the next to take the relevant
decomposition to be unique. The more general case is discussed in Appendix 2.

Second, to understand a key step in the subsequent definition and axiom, we need
to know how to construct the capability lottery that corresponds with a capacity
lottery. To see how this is done, consider the capacity lottery

L ¼ B x1ð Þ;B x2ð Þ; . . .;B xið Þ; . . .;B xnð Þ½ �:

Label the events that ‘deliver’ the prizes, x1; x2; . . .; xi; . . .; xn as, respectively,
events: 1, 2, …, i, …, n. For each event, i, construct the binary capacity lottery,
Bi; :½ �i . Utilize the discussion leading up to and including proposition 2 to find the
subjective belief associated with event i, b ið Þ. Then, the capability lottery, K, that
corresponds to the capacity lottery, L, is

Fig. 7 Indicative logic of the substitution axiom
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K ¼ B; bð Þ 1ð Þ; B; bð Þ 2ð Þ; . . .; B; bð Þ ið Þ; . . .; B; bð Þ nð Þ½ �
¼ l 1ð Þ; l 2ð Þ; . . .; l ið Þ; . . .; l nð Þ½ �:

Further, if
P

jpjLj is a decomposed capacity lottery, then
P

jpjKj is the

corresponding decomposed capability lottery.
We are now able to understand the following definition, which characterizes the

components of Fig. 7 in order of implication.

Definition 12 Given a capacity lottery, L, (such as lottery, L00, in Fig. 7):

1.
P

jpjLj is the representation of the lottery obtained by decomposing L into its J

component sub-lotteries;
2.

P
jpjKj is the decomposed capability lottery that corresponds to

P
jpjLj;

3.
P

jpjKj is the alternative representation of the decomposed capability lottery,P
jpjKj;

4.
P

jpjKj is the alternative representation of the decomposed capability lottery

that results from substituting kix þ 1	 kið Þx for xi in each Kj, where we note
that:

xi � kix
 þ 1	 kið Þx

Kj ¼ 1; 0ð Þ � x 	 0ð Þ þ ðBj; bjÞ � x 	 xð Þ, and:
ðBj; bjÞ ¼

Pn
i¼1 B X ið Þ ki 	 ki	1ð Þ;Pn

i¼1 b X ið Þ ki 	 ki	1ð Þ� �
j
;

5.
P

jpjKjis the standard representation of
P

jpjKj, obtained by setting: Kj ¼
ðBj; bjÞ � x þ 1	 ðBj þ bjÞ; 0

� �� x for each j;

6.
P

jpjLj is the sum of probability sub-lotteries obtained by setting: Lj �
pj x

ð Þ; :
h i

¼ ½Bj þ / bj
� �

; :� where: ½ðBj; bjÞ xð Þ; :� � ½ðBj þ / bj
� �

; 0Þ
xð Þ; :� for each j (where: ½ðBj; bjÞ xð Þ; :� � Kj; and we note that setting Lj
given Kj in this step (i.e., implementing: Kj ! Lj) is executed before the
probability-weighted sub-lotteries are summed (the execution of the sum occurs
in the next step))13;

7. L,
P

jpjLj is a binary probability lottery.

With that in hand, we can state what the diagram depicts, viz.:

Axiom 7 Substitution: given a pair of capacity lotteries, L0 and L00, we can construct

a pair of binary probability lotteries, L
0
 and L

00
, such that L00 %L0 () L

0 0
 % L

0
.

13 The reader should note that Lj � pj xð Þ; :
h i

¼ ½Bj þ / bj
� �

; :� is a binary probability lottery,

whereas ½ðBj;bjÞ xð Þ; :� and ½ðBj þ / bj
� �

; 0Þ xð Þ; :� are binary capability lotteries.
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In other words: there is an isotone correspondence between the given capacity
lotteries and the constructed binary probability lotteries.

The intuition for the logic underlying axiom 7 goes as follows. The decision-
maker begins using the objective information to construct a capacity lottery. Where
possible, this lottery is broken up into its modular components (the decomposition
into component sub-lotteries). The motivation here is to make explicit the objective
probabilities of the decision problem. The decision-maker then forms subjective
beliefs to put alongside the objectively given information (and this allows for the
formation of capability lotteries). These lotteries are then put in a form that makes
clear the incremental impacts of beliefs on obtaining prizes (which warrants the use
of the alternative representation of the capability lotteries).14 To allow a comparison
across lotteries, this representation is normalized by putting all lotteries in terms of
the capabilities of obtaining best and worst prizes (by way of substitution).
Subsequent parts of the logical structure (on the right-hand side of the diagram)
ultimately render all lotteries in the form of binary probability lotteries for purposes
of comparison.

Two points are worth making about axiom 7 and the axioms preceding it. First, the
axioms are not taken to be constitutive of ‘rational’ decision-making—they merely
describe a kind of ‘grammar of decision making’ which is internally coherent and
behaviourally plausible. Second, it is not supposed that decision-makers are
explicitly aware of the logic of their decision-making processes. Just as competent
language speakers need not be grammarians, neither need competent decision-
makers be logicians.

That being said, we are now in a position to state the following theorem, which
follows from the seven axioms stated above (proof in Appendix 1).

Theorem Axioms 1–7 imply that there exists a vector-valued belief function,
l : F ! R� R; a real-valued utility function, u : X ! R; and a probability-
weighted, ambiguity-adjusted, rank-dependent utility function such that, for any two
(capacity) lotteries

L
0 0 %L

0 ()

XJ
0 0

j
0 0 ¼1

pj0 0u
Xn
i¼1

lK
0 0
j X ið Þ u xið Þ 	 u xi	1ð Þð Þ

 !
�
XJ

0

j
0 ¼1

pj0u
Xn
i¼1

lK
0
j X ið Þ u xið Þ 	 u xi	1ð Þð Þ

 !
:

Remark If we let: El u xð Þ½ �,Pn
i¼1 l

K X ið Þ u xið Þ 	 u xi	1ð Þð Þ, and let E½:� denote the
standard expectation operator, then the decision-maker’s problem is to find:

maxE u El u xð Þ½ �� �� �

14 For a general discussion of the importance of this way of rendering information, see Wakker, 2010,
ch.5.
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A few special cases are of interest. If: u B; bð Þ ¼ Bþ /ðbÞ, and / 0ð Þ ¼ 0 and

/
0 ¼ 1 over the whole domain (R2

þ under the unit simplex), then

u El u xð Þ½ �� � ¼ E ub c xð Þ½ �,Pn
i¼1 lK
� 	

xið Þu xið Þ, and the problem reduces to
expected utility maximization. This is the case assumed in subjective expected
utility theory where any difference between objective and subjective beliefs is elided,
and the former are subsumed by the latter. It is the canonical case of ambiguity
neutrality.

More generally, if / 0ð Þ ¼ 0 and /
0 ¼ a	1; a 2 R over the whole domain, then:

u El u xð Þ½ �� � ¼ E ub c xð Þ½ � þ a	 1ð ÞEB u xð Þ½ � where:

EB u xð Þ½ �,Pn
i¼1 B

L X ið Þ u xið Þ 	 u xi	1ð Þð Þ. The problem then reduces to maximizing
a weighted sum of expected utility and Choquet expected utility:

max E ub c xð Þ½ � þ a	 1ð ÞE EB u xð Þ½ �½ �:

In this special case, the greater is the degree of ambiguity aversion—as given by
the parameter, a—the greater is the emphasis on Choquet expected utility. This puts
increasing emphasis on the objective information and diminishes the significance of
purely subjective beliefs in the decision maker’s appraisal. If a ¼ 1, the Choquet
term vanishes, and the decision problem becomes one of maximizing expected utility
as earlier noted. Notably, this additive form corresponds to—i.e., generalizes—the
functional form suggested by Ellsberg (1961, pp. 664–65). As we shall now see, this
is the form appropriate for solving his paradoxes, although the more general form is
needed to solve Machina’s paradoxical cases.

7 Paradoxes

In this section, we successively explore the paradoxes posed by Ellsberg and
extended by Machina. The first case is the familiar Ellsberg three-colour paradox
(Ellsberg, 1961), and the second and third cases are Machina’s ‘reflection’ and
‘50:51’ examples (Machina, 2009). Finally, we examine Blavatskyy’s (2013a)
interesting twist of the reflection example. These cases are sufficiently representative
of the paradoxes to be adequate for our arguments here. The reader will see that the
logic applies to other examples provided by Ellsberg and Machina.

In each case, we proceed in three stages: first, a verbal description of the decision
situation is given along with a table that represents the situation; second, the beliefs
of the decision-maker are specified for the relevant events; and, finally, the decision
rule is used to determine the optimal (pairwise) choices.

7.1 The Ellsberg 3-colour problem

In this decision problem, there is a single urn containing 90 balls. 30 of those balls
are red, and the remaining 60 are black or yellow in unknown proportions. The
payoffs are as given in the table. Acts f and g are to be compared, and f 0 and g0 are to
be compared. Decision-makers who maximize expected utility utilizing (real-valued)
probabilities obey the choice relation: f is chosen over g if and only if f 0 is chosen
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over g0. Evidence has shown that this implication often fails to hold in practice
(Table 2).

The beliefs of the decision-maker which are relevant to her decision-making are

l ;ð Þ ¼ ð0; 0Þ; l redð Þ ¼ 1=3; 0ð Þ; l blackð Þ ¼ l yellowð Þ ¼ 0; 1=3ð Þ;
l red [ blackð Þ ¼ l red [ yellowð Þ ¼ 1=3; 1=3ð Þ; l black [ yellowð Þ ¼ 2=3; 0ð Þ:

We may assume that the decision-maker has: /ð0Þ ¼ 0, /
0 ¼ a	1\1 over the

whole domain; furthermore, we may, without prejudice, identify utilities with dollar
payoffs, in which case, we have the following (the magnitude following each lottery
is the value of the lottery):

f :
100

3
g :

100

3a

f 0 :
100

3
þ 100

3a
g0 :

200

3
:

Thus, f is chosen over g, and g0 is chosen over f 0, which is the behaviour to be
explained. The kinds of preferences that give rise to this choice are depicted in Fig. 2.

This example has become the canonical example of Ellsberg’s paradox. Less well
known is the fact that we can account for the decision-maker’s choices by utilizing
the additive formula that Ellsberg proposes. This is equivalent to saying that the
decision-maker’s degree of ambiguity aversion can be reduced to the parameter a.

7.2 The Machina reflection example

In this decision problem, there is a single urn, containing 100 balls. 50 of the balls are
labelled E1 or E2 and are distributed in unknown proportions, while the remaining 50
balls are labelled E3 and E4, and are also distributed in unknown proportions. The
payoffs are as given in the table. Acts f and g are to be compared, and f 0 and g0 are to
be compared. Decision-makers who maximize expected utility utilizing (real-valued)
probabilities obey the choice relation: f is chosen over g if and only if f 0 is chosen
over g0. Evidence has shown that this implication can fail to hold in practice
(l’Haridon & Placido, 2010) (Table 3).

The beliefs of the decision-maker which are relevant to her decision-making are

Table 2 The Ellsberg 3-colour
problem

Red: 30 balls Black or yellow: 60 balls

f $100 $0 $0

g $0 $100 $0

f 0 $100 $0 $100

g0 $0 $100 $100
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l ;ð Þ ¼ ð0; 0Þ; l E1ð Þ ¼ l E2ð Þ ¼ l E3ð Þ ¼ l E4ð Þ ¼ 0; 1=4ð Þ;

l E1 [ E2ð Þ ¼ l E3 [ E4ð Þ ¼ 1=2; 0ð Þ; l E1 [ E3ð Þ ¼ l E2 [ E4ð Þ ¼ 0;
1

2


 �
:

We may assume that /ð0Þ ¼ 0, /
0 ðbÞ\1; furthermore, and without prejudice, we

may identify utilities with dollar payoffs (divided by 1000), in which case, we have

f : 2þ / 2ð Þ g : 2þ 1

2
/ 4ð Þ

f 0 : 2þ 1

2
/ 4ð Þ g0 : 2þ / 2ð Þ:

Thus, g is chosen over f , if and only if f 0 is chosen over g0; and f is chosen over g,
if and only if g0 is chosen over f 0, which is the behaviour to be explained. Note that if
we have: / 4ð Þ\/ 2ð Þ þ /ð2Þ, then the indifference curves will be convex to the
origin as in Fig. 3, and the decision-maker will prefer f to g and g0 to f 0; conversely,
if: / 4ð Þ[/ 2ð Þ þ /ð2Þ, then the indifference curves will be concave to the origin as
in Fig. 4, and the decision-maker will prefer g to f and f 0 to g0.

These explanations accord with Machina’s own. Formally speaking, we note that
the general representation of preferences is used—the special case that utilizes the
Choquet expectation, EB :½ �, does not give the requisite pairs of choices. Second, and
speaking now intuitively, the motivation for choosing, say g against f , is that g
concentrates all the ambiguity over events E3 and E4, while the outcome of events E1

and E2 is unambiguous. This accords with a preference for situations that are clearly
uncertain or are clearly risky rather than a mixture of the two. This is just as depicted
in Fig. 4, and the explanation accords with our standard intuition about the shape of
indifference curves.

7.3 The Machina 50:51 example

In this decision problem, there is a single urn, containing 101 balls. 50 of the balls are
labelled E1 or E2 and are distributed in unknown proportions, while the remaining 51
balls are labelled E3 and E4, and are also distributed in unknown proportions. The
payoffs are as given in the table. Acts f and g are to be compared, and f 0 and g0 are to
be compared. Decision-makers who maximize expected utility utilizing (real-valued)
probabilities obey the choice relation: f is chosen over g if and only if f 0 is chosen

Table 3 The Machina reflection
example

50 balls 50 balls

E1 E2 E3 E4

f $4000 $8000 $4000 $0

g $4000 $4000 $8000 $0

f 0 $0 $8000 $4000 $4000

g0 $0 $4000 $8000 $4000
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over g0. Hypothetical reasoning suggests that this implication might be expected to
fail to hold in practice; specifically, it is reasonable to suppose that an ambiguity
averse decision-maker will prefer f to g, but will generally prefer g0 to f 0 (Machina,
2009) (Table 4).

The beliefs of the decision-maker which are relevant to her decision-making are

l ;ð Þ ¼ ð0; 0Þ; l E1ð Þ ¼ l E2ð Þ ¼ 0; 50=202ð Þ; l E3ð Þ ¼ l E4ð Þ ¼ 0; 51=202ð Þ;
l E1 [ E2ð Þ ¼ 100=202; 0ð Þ; l E3 [ E4ð Þ ¼ 102=202; 0ð Þ;

l E1 [ E3ð Þ ¼ l E2 [ E4ð Þ ¼ 0;
101

202


 �
:

We may, without prejudice, identify utilities with dollar payoffs, in which case, we
have

f : 4þ 200

101
g : 4þ / 2ð Þ

f 0 :
400

101
þ / 2ð Þ; g0 : 200

101
þ / 4ð Þ:

Thus: f is chosen over g if 200=101[/ð2Þ, and g0 is chosen over f 0 if
/ 4ð Þ[ 200=101þ /ð2Þ. These conditions will occur if:
/ 4ð Þ[ 400=101[/ 2ð Þ þ /ð2Þ. This accounts for the behaviour to be explained.
The preferences that are consistent with this outcome are depicted in Fig. 4.

7.4 The Blavatskyy twist of the Machina reflection example

In this decision problem, there is a fair coin, and a bag containing an unknown
number of black and white marbles. There are four possible states:
fheads and black; heads and white; tails and black; and tails and whiteg. In the
table, the top-left quadrant describes act, f 1, which is to be compared to act, g1, in
the top right of the table; while acts, f 2 and g2, in the bottom half of the table, are to
be compared. It is assumed that $4,000<$x. Hypothetical reasoning suggests that, if
f 1 is chosen over g1, then f 2 is chosen over g2; however, many decision models
cannot generate this choice profile (Blavatskyy, 2013a) (Table 5).

Table 4 The Machina 50:51
example

50 balls 51 balls

E1 E2 E3 E4

f $8000 $8000 $4000 $4000

g $8000 $4000 $8000 $4000

f 0 $12,000 $8000 $4000 $0

g0 $12,000 $4000 $8000 $0
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The beliefs of the decision-maker which are relevant to her decision-making
are:l £ð Þ ¼ ð0; 0Þ,l hbð Þ ¼ l hwð Þ ¼ l tbð Þ ¼ l twð Þ ¼ ð0; 1=4Þ, l }heads}ð Þ ¼
l }tails}ð Þ ¼ ð1=2; 0Þ, and l }black}ð Þ ¼ l }white}ð Þ ¼ ð0; 1=2Þ.

We may, without prejudice, identify utilities with dollar payoffs; and we may
delete the magnitude, u0, which is common to all payoffs. In that case, we have

f1 :
1

2
u4 	 u0ð Þ g1 : /

1

2
u4 	 u0ð Þ


 �

f2 :
1

2
u4 	 u0ð Þ þ 1

2
/

1

2
ux 	 u0ð Þ


 �

g2 :
1

2
u4 	 u0ð Þ þ 1

2
/

1

2
ux 	 u4ð Þ


 �
þ /

1

2
u4 	 u0ð Þ


 �
 �
:

Thus: f 1 is chosen over g1 if the decision-maker is ambiguity averse; and f 2 is
chosen over g2 if the decision-maker has an increasing marginal rate of substitution
between beliefs, which is implied by: / 1

2 ux 	 u0ð Þ� �
[/ 1

2 ux 	 u4ð Þ� �
þ/ 1

2 u4 	 u0ð Þ� �
. This accounts for the behaviour to be explained. The preferences

that are consistent with this outcome are depicted in Fig. 4.

7.5 Observations

We conclude this section by delivering on our introductory promissory note, which
warranted two claims. First, we were supposed to explain both the Ellsberg and the
Machina paradoxes in terms consistent with the authors’ own proposals. Second, we
were supposed to be able to discriminate between the two paradoxes.

With regards to the first point, we have already observed that the functional form
proposed by Ellsberg, suitably generalized, is appropriate for explaining his paradox.
This form is the additive function

max E ub c xð Þ½ � þ a	 1ð ÞE EB u xð Þ½ �½ �:

Moreover, we have shown that this form is inadequate to account for the paradox
(es) of Machina. In general, a non-additive functional form, derived from non-linear
indifference curves on the space of binary capability lotteries is required to account

Table 5 Blavatskyy’s twist of Machina’s reflection example

f 1 Black White g1 Black White

Heads $4000 $4000 Heads $4000 $0

Tails $0 $0 Tails $4000 $0

f 2 Black White g2 Black White

Heads $4000 $4000 Heads $4000 $x

Tails $x $0 Tails $4000 $0
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for the Machina examples. In accounting for these cases, we have tried to adhere to
the author’s admonition that: “the study of choice under uncertainty should proceed
in a manner similar to standard consumer theory” (Machina, 2009, p. 390). Our
discussion of varying degrees of ambiguity aversion in terms of the decision-maker’s
indifference curves over the space of binary beliefs has been undertaken with this
advice in mind.

With regards to the matter of distinguishing between the Ellsberg and the Machina
paradoxes, we summarize the conclusions in the following Table 6.

The model we have proposed allows us to discriminate between the two
paradoxes, and it allows us to place them in a comprehensible architecture of
decision-making.

8 Further paradoxes

In this section, we want to look at two further paradoxes and show that our model can
elucidate these cases, too. The first paradox is another one of Ellsberg’s—viz., the n-
colour problem.

8.1 The Ellsberg n-colour problem

In his 1962 dissertation, but not in his 1961 article, Ellsberg posed what has come to
be known as the n-colour problem (Ellsberg, 1962, pp. 199–209; see also the
discussion in Machina & Siniscalchi, 2014, pp. 747–48, which our presentation
largely follows). In this problem, which is described in Table 7, there are two urns,
each containing 100 balls. In urn I, 10 balls are coloured red, 10 balls are coloured
yellow, 10 balls are coloured black, etc., through to the 10 balls that are coloured
mauve. In urn II, the range of the colours of the balls is the same as in urn I, but they
are distributed in unknown proportions. The payoffs are as given in the table. Options
f and f 0 are to be compared, and g and g0 are to be compared.

Ellsberg argued that decision-makers whose degree of ambiguity aversion is
constant for all their decisions must obey the choice relation: f is chosen over f 0 if
and only if g is chosen over g0. This is so since the degree of ambiguity aversion that
makes f more attractive than f 0 is the same degree of ambiguity aversion that makes
g more attractive than g0. He also suggested that, in practice, while decision-makers

Table 6 The Ellsberg and Machina paradoxes

Phenomenon addressed Shape of indifference curves on space of binary
capability lotteries

Functional form

Ellsberg Ambiguity aversion
(constant rate)

Linear Additive

Machina Ambiguity aversion
(variable rate)

Concave or convex Non-additive in
general
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might prefer f over f 0, because they are ambiguity averse in that instance, and they
might also prefer g0 over g, because they are ambiguity avid at the low levels of
expected utility that characterize this choice. Thus, he argued that the decision-
makers’ attitude to ambiguity changes as the value of the lottery changes, and,
specifically, that decision-makers become relatively more ambiguity averse as value
increases. This hypothesis has received some support in the subsequent empirical
literature (see Machina & Siniscalchi, 2014, pp. 747–48, for a thorough review).

We may, without prejudice, identify utilities with dollar payoffs, and we have two
different values for the gradients of the linear indifference curves, a90 and a10, as per
the fanning out hypothesis; consequently, we have the following expected utilities for
each act:

f : 90 f 0 : 90=a90;

g : 10 g0 : 10=a10:

Thus, if f is chosen over f 0, we have a90 [ 1, and the decision-maker is ambiguity
averse; and, if g0 is chosen over g, we have a10\1, in which case the decision-maker
is ambiguity avid. This is the variation in a values that our fanning out hypothesis
supposes. Hence, our account is consistent with the behaviour predicted by Ellsberg.

Our account is also consonant with the recent analysis of Baillon and Placido
(2019), whose empirical investigations lead them to remark: “Our findings seem to
encourage the use of ambiguity models that are flexible enough to accommodate
changes in ambiguity attitudes at increased utility levels” (Baillon & Placido, 2019,
p. 325). The model of fanning out preferences is an instance of just the flexibility that
their empirical results warrant.

Table 7 The Ellsberg n-colour problem

Urn I

10 balls
Red

10 balls
Yellow

10 balls
Black

10 balls
Green

10 balls
Blue

10 balls
Purple

10 balls
White

10 balls
Grey

10 balls
Orange

10 balls
Mauve

f $0 $100 $100 $100 $100 $100 $100 $100 $100 $100

g $100 $0 $0 $0 $0 $0 $0 $0 $0 $0

Urn II

100 balls

Red Yellow Black Green Blue Purple White Grey Orange Mauve

f 0 $0 $100 $100 $100 $100 $100 $100 $100 $100 $100

g0 $100 $0 $0 $0 $0 $0 $0 $0 $0 $0
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8.2 The Allais paradox

Interestingly, this case brings us to the Allais paradox (Allais, 1953). We do not wish
to undertake a total treatment of that paradox here, but we do want to show how the
model proposed in this paper might be able to account for it. The argument here is
necessarily of a more provisional kind than that made above for reasons that will
become clear as the argument progresses. Nevertheless, the proposed account is
suggestive of fruitful ways of thinking about the Allais paradox. We restrict ourselves
to the common consequence version—the reader will see that the suggested method
applies also to the common ratio version.

Here is the Allais paradox in tabular form. Canonical decision theory requires that,
if f is chosen in preference to g, then f 0 must be chosen over g0, and vice versa. It is
well known that this is often honoured in the breach (Table 8).

The crucial issue is how decision-makers construct beliefs. The supposition is that
individuals treat higher order magnitudes of fractions qualitatively differently from
lower order ones. The reason for this is that higher order magnitudes are felt to be
more ‘robust’ or ‘reliable’, whereas the lower order magnitudes are felt to be less
definite. On the supposition that decision-makers treat given probabilities in this way
in the Allais case gives us the following set of beliefs:l £ð Þ ¼ ð0; 0Þ,
l Að Þ ¼ ð0; 0:01Þ, l Bð Þ ¼ ð0:8; 0:09Þ, l Cð Þ ¼ ð0:1; 0Þ, l A [ Bð Þ ¼ ð0:9; 0Þ,
l A [ Cð Þ ¼ ð0:1; 0:01Þ, l B [ Cð Þ ¼ ð0:9; 0:09Þ, and l A [ B [ Cð Þ ¼ 1.

In what follows, utilities of dollar amounts are identified by their subscript, and we
suppose that the rate at which ‘unreliable’ stochastic values are discounted relative to
‘reliable’ stochastic values is given by the parameter, a. Consequently, we have the
following (rank-dependent) expected utilities for each act:

f : u1

g : 0:1u0 þ 0:8u1 þ 0:1u5 þ 0:09 u1 	 u0½ �=a

f 0 : 0:9u0 þ 0:1u1 þ 0:01 u1 	 u0½ �=a

g0 : 0:9u0 þ 0:1u5

The first thing to say is that if a ¼ 1, so that there is no discounting of ‘unreliable’
stochastic information, then if f is chosen over g, we must have f 0 chosen over g0 (i.
e., we obtain the choice pairs predicted by expected utility theory). However, we will
have the pairing: f is chosen over g, and yet g0 is chosen over f 0 under the following

Table 8 The Allais paradox
(common consequence)

A: 1% B: 89% C: 10%

f $1,000,000 $1,000,000 $1,000,000

g $0 $1,000,000 $5,000,000

f 0 $1,000,000 $0 $1,000,000

g0 $0 $0 $5,000,000
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configuration of parameters: a ! 1 and 0:1u1 þ 0:1u5 � 0:2u1 � 0:1u0 þ 0:1u5
(where we note that a ! 1 implies that ‘unreliability aversion’ is very high).

It should be emphasized here that this way of explaining the Allais paradox is
consistent with the broadly non-judgmental, ‘grammatical’ approach that we have
applied hitherto. In the Allais case, we have supposed that there is a propensity of
individuals to treat different orders of magnitudes of objective probabilities in
different ways, which accords with a widespread intuition about what motivates the
paradox. It may or may not be rational to behave in this way—it is an open question
as to whether the appropriate algebra for epistemic calculations in this kind of case
should be R, or R� R (or perhaps even higher orders of direct products of R).15 For
our earlier paradoxes, however—those of Ellsberg and Machina—it seems that the
algebra, R� R, has found its métier.

Appendix 1

Proof of Proposition 1 By the reflexivity of � we have:
BA[B þ bA[B ¼ BA þ bA þBB þ bB. We then consider the following two cases:
first, set A ¼ £, then B£ ¼ p£� ¼ 0 implies:b£ ¼ 0; second, set A ¼ £ and
B ¼ X, then BX ¼ pX� ¼ 1 implies bX ¼ 0. Hence, we obtain: Bþ bð Þ £ð Þ ¼
0; Bþ bð Þ Xð Þ ¼ 1; and Bþ bð Þ A [ Bð Þ ¼ Bþ bð Þ Að Þ þ Bþ bð Þ Bð Þ for disjoint A
and B, which establishes that Bþ bð Þ is a probability. □

Proof of Proposition 2 (Proof is by contradiction.). If BA; :½ �A � ½pA� ; :�, then
bA=aA is unique, since BA þ bA=aA ¼ pA� and BA and pA� are given. Suppose that
ðaA; bAÞ0 is consistent with axiom 6, and suppose that there exists another
pair,ðaA; bAÞ00, that is also consistent with axiom 6 but which has:

aA; bAð Þ00 [ ðaA; bAÞ0 (with, of course:ðb0 0
A=a

0 0
A ¼ b

0
A=a

0
A ¼ bA=aA). Therefore, then,

by axiom 6, we must have: pA� ; :½ � � BA þ bA=aA; :½ � � ½ðBAþ
b

0
AÞc

0
A; :� � ½ðBA þ b

0 0
AÞc

0 0
A; :�. However, if b

0 0
A [ b

0
A thenc

0
A [ c

0 0
A, contradicting the

assumption that cA is unique. Similar arguments apply in the case

where aA; bAð Þ0 [ ðaA; bAÞ00; hence, we must infer that there is only one pair,ðaA; bAÞ,
consistent with axiom 6. □

Proof of Theorem We begin by showing that the first three axioms can be used to
determine a real-valued utility function that accomplishes: ux0 0 � ux0 () x00 % x0,
where ux0 0 ; ux0 2 R are the values that solve: x00 � ux0 0x

 þ 1	 ux0 0
� �

x
� �

and

x0 � ux0x
 þ 1	 ux0

� �
x

� �
, respectively. □

To see this, we note that the first two axioms, ordering and continuity, imply that the
two indifference relations given in the preceding sentence are well posed, with:

15 It may be that decision-makers’ use of higher orders of Rn to generate increasingly approximate
calculations of (rank dependent) expected utility can account for other versions of the Allais paradox where
the “apparent similarity (or inconsequentiality) of probabilities” is absent (for a discussion of such cases,
see Blavatskyy, 2010, and Blavatskyy, 2013b (from where the above quote was taken, p.60)).
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ux0 0 ; ux0 ; 1	 ux0 0
� �

; 1	 ux0
� � 2 R. The statement that: ux0 0 � ux0 () x00 % x0 follows

directly from the monotonicity axiom.
Consistent with the monotonicity axiom, we have: ux [ ux . In what follows, we set:
ux ¼ 1, and ux ¼ 0.
Next, we note that the existence of a (unique) vector-valued belief function is shown
in the two propositions.
In the following, major part of the argument, we want to show how preferences over
lotteries are related to comparisons of rank-dependent utility functions as stated in the
theorem. We do so by exploring how lotteries are decomposed and the substitution
effected in the stages given in definition 12 and Fig. 7. In that definition and figure,
stages 1 and 2 of the process are straightforward, so we begin at stage 3 and consider
the alternative description of the decomposed capability lottery. In particular, we
focus on just one of the decomposed sub-lotteries—sub-lottery J

Kj ¼ lKj X1ð Þ � x1 	 0ð Þ þ lKj X2ð Þ � x2 	 x1ð Þ þ � � � þ lKj Xið Þ � xi 	 xi	1ð Þ
þ � � �

By substituting uxix
 þ 1	 uxið Þx for xi for each i (as per stage 4), we obtain

Kj ¼ lKj X1ð Þ � ux1x
 þ 1	 ux1ð Þx½ �ð Þ þ lKj X2ð Þ � ux2x

 þ 1	 ux2ð Þx½ � 	 ux1x
 þ 1	 ux1ð Þx½ �ð Þ

þ � � � lKj Xnð Þ � uxnx
 þ 1	 uxnð Þx½ � 	 uxn	1x

 þ 1	 uxn	1ð Þx½ �ð Þ
¼ lKj X1ð Þ � ux1 x 	 xð Þð Þ þ 1; 0ð Þ � x þ lKj X2ð Þ � ux2 	 ux1ð Þ x 	 xð Þð Þ

þ � � � lKj Xnð Þ � uxn 	 uxn	1ð Þ x 	 xð Þð Þ

¼ 1; 0ð Þ � x 	 0ð Þ þ
Xn
i¼1

lKj Xið Þ uxi 	 uxi	1ð Þ
 !

� x 	 xð Þ;

where; ux0 � 0 and lKj X 1ð Þ ¼ ð1; 0Þ.
Consequently, we have (per stage 5 of definition 12)

Kj ¼
Xn
i¼1

lKj Xið Þ uxi 	 uxi	1ð Þ � x þ 1	
Xn
i¼1

lKj
� 	

Xið Þ uxi 	 uxi	1ð Þ; 0
 !

� x;

Kj is a binary capability lottery. To see this, note that

1� Pn
i¼1 lKj
� 	

Xið Þ uxi 	 uxi	1ð Þ� 0, which follows from the fact that lKj
� 	

xið Þ is a
probability and 1� uxi 	 uxi	1 � 0 for all i, by construction. Also, given the discus-

sion in Sect. 5, we have ð1; 1Þ� lKj X ið Þ ¼ ðBKj ; bKjÞ X ið Þ� 0; 0ð Þ; and, of course:Pn
i¼1 lKj
� 	

Xið Þ uxi 	 uxi	1ð Þ þ 1	Pn
i¼1 lKj
� 	

Xið Þ uxi 	 uxi	1ð Þ� � ¼ 1 (which is to
say that the sum of the combined beliefs that are the multipliers of x and x sum to
unity).
We now move on (to stage 6). To make progress here, recall from stage 4 of
definition 12 that
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ðBj; bjÞ,
Xn
i¼1

B Xið Þ uxi 	 uxi	1ð Þ;
Xn
i¼1

b Xið Þ uxi 	 uxi	1ð Þ
 !

j

¼
Xn
i¼1

lKj Xið Þ uxi 	 uxi	1ð Þ;

(where we have adjusted the notation to set ki ¼ uxi to fit in with the earlier parts of
this proof).
Then, from stage 6 of definition 12, we have

Lj � pj x
ð Þ; :

h i
¼ ½Bj þ / bj

� �
; :�;

where: ½ðBj; bjÞ xð Þ; :� � ½ðBj þ / bj
� �

; 0Þ xð Þ; :� for each j; and

½ðBj; bjÞ xð Þ; :� � Kj:
This says that the binary capability lottery, ½ðBj; bjÞ xð Þ; :�, is indifferent to the

binary capability lottery, ½ðBj þ / bj
� �

; 0Þ xð Þ; :�, where ðBj þ / bj
� �

; 0Þ is the

(unique) representation on R2 of the winning odds of the binary probability lottery
whose winning odds are: Bj þ / bj

� �
.

Re-arranging terms and expanding, we have

Lj ¼ u
Xn
i¼1

lKj X ið Þ uxi 	 uxi	1ð Þ
 !

x þ 1	 u
Xn
i¼1

lKj X ið Þ uxi 	 uxi	1ð Þ
 ! !

x:

Aggregating over all the sub-lotteries (as per stage 7 of definition 12) gives us

L ¼
XJ
j¼1

pjLj ¼
XJ
j¼1

pj u
Xn
i¼1

lKj Xið Þ uxi 	 uxi	1ð Þ
 !

x
 

þ 1	 u
Xn
i¼1

lKj Xið Þ uxi 	 uxi	1ð Þ
 ! !

x

!
:

In the next—and final—phase of the argument, we wish to show how decisions are
made, and how they imply that the representation is valid.

To see that this is so, suppose that there are two lotteries, L
0
and L

0 0
, then, by the

substitution and monotonicity axioms, we have:
L

0 0 %L
0 () L

0 0
 % L

0
 ()

XJ 0 0
j0 0¼1

pj0 0 u
Xn
i¼1

lK
0 0
j X ið Þ uxi 	 uxi	1ð Þ

 ! !
�
XJ 0
j0¼1

pj0 u
Xn
i¼1

lK
0 0
j X ið Þ uxi 	 uxi	1ð Þ

 ! !
:

This proves the theorem. □
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Appendix 2

Non-uniqueness

In this appendix, we discuss the non-uniqueness of lottery decomposition. To make
the discussion concrete, we utilize an example of Zhang (2002, p. 162) and tweak it,
so that it resembles the Machina reflection example. The result is given in Table 9.

In the table, we see that 50 balls are labelled E1 or E2, and E3 or E4 (as in the
Machina reflection example), but, in addition, we are told that 50 balls are labelled E2

or E3, and E1 or E4. In this case, we see that it is possible to find decompositions of
lotteries f and g which yield the same value (this will occur if we use the latter
partition), and there are decompositions of lotteries f and g which yield different
values (this will occur if we use the former partition). To obviate the issue of
conflicting advice, we suppose that decision-makers employ a principle of charity
when ascertaining the value of a lottery. Specifically, we suppose that, of all the
possible values of a lottery obtained by the different decompositions, the one which
is chosen to represent the lottery is the maximum value.

In that case, the logic of definition 12 holds true but is supplemented in the
following way. For any lottery, L, let there be K different decompositions,
k ¼ 1; . . .;K. Then

L,max
X
j

pjkLjk :

As can readily be checked, the arguments of the proof given in Appendix 1 go
through utilizing the value of L just discussed.

Acknowledgements I wish to thank the participants at the Econometrics Society Australasian Meeting,
2019 for their comments, which have improved the paper, especially those of Marciano Siniscalchi. Two
referees provided very helpful advice which resulted in significant improvements.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Data availability No new datasets or experimental results were generated during the current study.

Table 9 The Zhang example
50 balls

50 balls 50 balls

E1 E2 E3 E4

f $4000 $8000 $4000 $0

g $4000 $4000 $8000 $0

f 0 $0 $8000 $4000 $4000

g0 $0 $4000 $8000 $4000
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