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Abstract
We present a new axiomatization of the classical discounted expected utility model,
which is primarily used as a decision model for consumption streams under risk. This
new axiomatization characterizes discounted expected utility as a model that satisfies
natural extensions of standard axioms as in the one-period case and two additional
axioms. The first axiom is a weak form of time separability. It only requires that the
choice between certain constant consumption streams and lotteries should be made
by just taking into account the time periods where the consumption is different. The
second axiom, the time–probability equivalence, requires that risk and timepreferences
basically work in the same way. Moreover, we prove that preferences satisfying the
natural extensions of the standard axioms as well as the first axiom can be represented
in a simple form relying on three functions linked to the risk or time preferences in
simple situations. Finally, we illustrate that several examples that are not fully time
separable satisfy all our axioms except for the time–probability equivalence.

Keywords Expected utility theory · Discounted utility · Choice under risk ·
Intertemporal choice · Axiomatization

1 Introduction

In many economic problems, an agent has to choose between alternatives that yield
payoffs in several periods of time. Examples for this include household saving and
investment decisions as well as corporate decisions on project investments. In most
applications, discounted expected utility is used to model “sensible” preferences of an
agent. In the static one-period case, expected utility has been characterized by natural
normative axiomsVonNeumann&Morgenstern (1953). In the intertemporal case, sev-
eral axiomatizations of expected utility with exponential (Koopmans, 1960; Epstein,
1983; Bleichrodt et al., 2008; Anchugina, 2017), hyperbolic (Hayashi, 2003; Olea &
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Strzalecki, 2014; Anchugina, 2017) or general discounting (Blavatskyy, 2020) in the
non-stochastic as well as the stochastic case have been introduced. All these axiom-
atizations require some form of time separability. This time separability is achieved
by independence conditions as in Debreu (1959) that require that the preferences for
outcomes in time periods from a set A are independent of the outcomes in the other
periods. This requirement is not as compelling from a normative perspective as the
analogous requirement for states in the one-period case. Indeed, whereas states are
mutually exclusive, time periods are not. In particular, any formulation relying on
such a condition cannot capture substitution or smoothing effects. In this light, axiom-
atizations of preferences with such properties have been introduced: Gilboa (1989)
introduced an axiomatization of preferences that can capture preferences regarding the
variation of outcomes in the time dimension and Wakai (2008) proposed an axioma-
tization that allows to prefer the spread of good and bad outcomes over time.

Another important and related question is how risk and time preferences in intertem-
poral decisions can be disentangled. This question has receivedmuch attention starting
with Kreps and Porteus (1978). However, most preferences that have been considered
so far in this regard take not only risk and time preferences into account, but also
preferences about the timing of the resolution of uncertainty (Kreps & Porteus, 1978;
Epstein & Zin, 1989). The axiomatization of Kreps and Porteus (1978) yields that
whenever the agent is non-indifferent to the resolution of uncertainty, the preferences
can be represented by a recursive expected utility function that combines the previous
consumption, the current consumption and a certainty equivalent of the possible future
consumptions. However, in the case that the agent is indifferent with respect to the
resolution of uncertainty, the preferences of the agent are represented by the expecta-
tion of a utility function on the space of all intertemporal consumption streams, which
does not yield any insights into the relation of risk and time preferences.

In this paper, we propose a new axiomatization of general discounted util-
ity that provides additional insights regarding both questions raised above. We
assume that all uncertainty is resolved at time zero to investigate only the rela-
tion of risk and time preference with no role for dynamic decision principles.
Note that this assumption is often reasonable in applications. For example, con-
sider irreversible investment decisions where the agent can only take an action
before the first payment. In this context, assuming sensible extensions of the clas-
sical axioms (completeness, transitivity, independence, continuity, dominance), we
show that discounted expected utility is characterized by two additional axioms. The
first axiom requires that the agent’s preferences when choosing between a constant
consumption stream (x1, . . . , xt−1, a, xt+1, . . .) and a lottery over the two streams
(x1, . . . , xt−1, I+, xt+1, . . .) and (x1, . . . , xt−1, I−, xt+1, . . .) are independent of the
consumption in other periods, i.e., only depend on what happens at time point t . This
axiom is a weak form of time separability compared to a Debreu-type independence
condition, utility independence as in Keeney and Raiffa (1976) and also risk indepen-
dence as in Epstein (1983) and Hayashi (2003): indeed, all these conditions require
that even for deterministic consumption streams, the choice between two consumption
streams that only differ in one period should be independent of past and future con-
sumption, which is not covered by our relatively mild assumption. Nonetheless, our
axiom does still not cover all effects that might be reasonable. Indeed, our assumption
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cannot cover the effect that agents might be more risk loving when the payoffs in
the other periods are low than if they are high. Note that recursive utility preferences
(Backus et al., 2005) do not satisfy our assumption because there the utility depends
on the certainty equivalent of the future consumption.

This first additional axiom alone yields a handy characterization of a utility function
characterizing the preferences. This characterization is similar to the decomposition
results in multiattribute utility theory (see Keeney and Raiffa (1976), Chapter 6 and
Farquar (1977) for an overview), where under various independence assumptions,
decompositions of the utility function into simpler parts are obtained.Our characteriza-
tion is more general than the decomposition resulting from their utility independence.
Moreover, our parts have a clear interpretation in the context of inter-temporal decision
making. This characterization allows us to describe several examples of preferences
that satisfy all the axioms described so far, but which are not representable by dis-
counted expected utility. This changes when we introduce an additional second axiom,
the time–probability equivalence, which basically states that risk and time preferences
work in the same way. Indeed, in this case we obtain that any preference satisfying
the classical axioms as well as our two additional axioms is of discounted expected
utility type.

Our new axiomatization now includes a weak form of time separability. Indeed,
we can describe preferences that satisfy all axioms except for the time–probability
equivalence and that are not fully time separable (Example 4.2 and 4.3). In this sense,
we provide a new axiomatization of discounted expected utility that in particular
emphasizes that the strong link of risk and time preferences is a characteristic property
of preferences described by discounted expected utility.

Let us finally compare our approach to Blavatskyy (2020), which also provides an
axiomatization of general discounted expected utility for lotteries. Blavatskyy (2020)
first derives a set of axioms (including a Debreu-type independence condition) that
yield a general time-additive utility function. Thereafter, also an axiom linking the
time and risk preference is described and it is shown that this additional axiom yields
a discounted expected utility formulation. The approach of Blavatskyy (2020) and our
approach can therefore be seen as addressing two different sides of the problem: he
characterizes discounted expected utility as the only time-additive preference relation
that links time and risk preferences in a certain way. We characterize discounted
expected utility (for more general lotteries) as the only preference relation where first
the risk preference in certain situations only depends on the consumption in periods
that are affected by the choice and second time and risk preferences are linked in a
certain way.

The remainder of the paper is organized as follows: In Sect. 2, we present the new
axiomatization and state our main results. Section 3 provides the proofs of the main
results and in Sect. 4 we describe three examples that satisfy all axioms except for the
time–probability equivalence. Section 5 concludes the study.
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2 Axiomatization andmain results

We consider consumption streams x = (x1, x2, . . . , xT ) of length T , where xt is
from the compact interval I = [I−, I+] ⊂ R. Let (�,A, P) be an arbitrary proba-
bility space. Let X denote the set of all (I T ,B(I T ))-valued random variables defined
on (�,A, P), where B(I T ) is the Borel-σ -algebra on I T , and let Xl denote the set
of all lotteries over consumption streams (i.e., random variables with finitely many
values). As usual, we equip the space X with the topology of weak convergence,
which makes the space X a compact metric space. We will denote with small letters
x = (x1, . . . , xT ) the deterministic outcome x ∈ I T and with capital letters we denote
the lottery or general random variable X ∈ X . For t ∈ {1, . . . , T } we will write Xt

for the projection of X onto the t-th coordinate.
Let � describe a preference relation on X . As usual we write X ∼ Y if X � Y and

Y � X and X � Y if X � Y and not X ∼ Y . In what follows, we will formulate the
axioms necessary for our characterization of discounted expected utility. At first, we
will introduce extensions of the usual axioms in the one-period model. Thereafter, we
set up the two axioms that characterize discounted expected utility.

Let us start with a simple monotonicity axiom that states that an agent prefers
a deterministic consumption stream with a larger outcome in each time period to a
deterministic consumption stream with a smaller outcome in each time period.

Axiom 0 (Monotonicity) For all x, y ∈ I T such that xt ≥ yt for all t ∈ {1, . . . , T }
we have x � y.

Now, let us introduce the natural multi-period counterparts of completeness, tran-
sitivity, independence, dominance and continuity.

Axiom 1 (Completeness) Let X , Y ∈ X , then X � Y or Y � X.

Axiom 2 (Transitivity) Let X , Y , Z ∈ X and X � Y and Y � Z, then X � Z.

Axiom 3 (Independence) Let X , Y ∈ X such that X � Y . Then for all Z ∈ X and
all p ∈ (0, 1), we have pX + (1 − p)Z � pY + (1 − p)Z.

Axiom 4 (Dominance) Let X , Y , Z ∈ X and A ∈ B(I T ) such that P(X ∈ A) = 1. If
Y � x for all x ∈ A, then we have Y � X. Analogously, if x � Z for all x ∈ A, then
we have X � Z.

Axiom 5 (Continuity) Let X ∈ X , then {Y : Y � X} and{Y : X � Y } are closed.1

If we would restrict our attention to the space Xl of lotteries, then as in the one-
period case, Axiom 4 would no longer be necessary. Moreover, in this case we could
weaken the continuity condition by just requiring the following axioms:
Axiom 5a (First intertemporal continuity axiom) For any t ∈ {1, . . . T } and x ∈ I T ,

there exists p := p(x1, . . . , xt−1, xt+1, . . .) ∈ [0,1] such that:

1 Note that this condition is equivalent to the following. Let Xn , X , Yn , Y ∈ X for all n ∈ Nwith Xn → X
and Yn → Y and Xn � Yn for all n ∈ N. Then X � Y .
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(x1,...,xt−1, xt , xt+1,...) ∼

(x1, . . . , xt−1, I−, xt+1, . . .)

1-p

(x1, . . . , xt−1, I+, xt+1, . . .)

p

.

Axiom 5b (Second intertemporal continuity axiom) Let a ∈ I T , then there exists
c ∈ I such that (a1, . . . , aT ) ∼ (c, . . . , c).
Axiom 5c (Global continuity) For every c ∈ I = [I−, I+], there exists φ ∈ [0,1] such
that

(c, . . . , c) ∼

(I−, . . . , I−)

1− φ

(I+, . . . , I+)

φ

.

Remark 2.1 Note that Axiom 5 implies Axioms 5a, 5b and 5c.

With these natural extensions of the standard axioms, we can now turn to the
characterization of discounted expected utility. A first natural requirement is that the
risk preference in one time period does not depend on the payoffs from previous or
future time periods. Indeed, it will turn out that it suffices to require this only for the
choices as in Axiom 5a. We remark that here in Axiom 6, the choice of p does not
depend on x1, . . . , xt−1, xt+1, . . . , xT , whereas in Axiom 5a such a dependence is
allowed. In particular, we note that Axiom 6 implies Axiom 5a.

Axiom 6 (Uniform first intertemporal continuity axiom) For any t ∈ {1, . . . , T } and
a ∈ I , there is a p ∈ [0, 1] such that

(x1,...,xt−1, a, xt+1,...) ∼

(x1, . . . , xt−1, I−, xt+1, . . .)

1-p

(x1, . . . , xt−1, I+, xt+1, . . .)

p

for all x ∈ I T .
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Before we move on, let us briefly emphasize that the axiom is a weak form of time
separability. Here, we only require that preferences between lotteries between maxi-
mal and minimal outcomes in one period, and constant consumptions in this period
are independent of the fixed levels of wealth in the other components. Classical utility
independencewouldmean that preferences for all lotteries randomizing over outcomes
in one period are independent of the consumption levels in all other periods. In partic-
ular, classical utility independence means that the preferences between two constant
consumption streams (x1, . . . , xt−1, a, xt+1, . . .) and (x1, . . . , xt−1, b, xt+1, . . .) are
independent of the choice (x1, . . . , xt−1) and (xt+1, . . . , xT ), which does not have to
hold in our setting.

To motivate our last axiom, let us consider the following example showing that
Axiom 6 is not sufficient to characterize discounted expected utility preferences (see
Sect. 4 for details and further examples):

Example 2.2 Take T = 2, I = [0,1]. Assume a risk averse person with (a, 1 − a) ∼
(b, 1 − b) for all a, b ∈ I . Then this person cannot be described by standard EUT.
To see this, recall that risk aversion in the classical model implies a preference for
consumption smoothing, thus indifference over all distributions in time is not possible.

More generally, standard EUT does not allow the elasticity of intertemporal sub-
stitution to be independent of risk aversion: risk aversion and time preferences are
coupled in the classical model. This observation leads us to the definition of an axiom
which we call time–probability equivalence. To formally define this axiom, we need
the following definitions:

Definition 2.3 We define πt : I → [0,1] such that for all x ∈ I T and all a ∈ I =
[I−,I+]:

(x1,...,xt−1, a, xt+1,...) ∼

(x1, . . . , xt−1, I−, xt+1, . . .)

1− πt (a)

(x1, . . . , xt−1, I+, xt+1, . . .)

πt(a
)

.

Definition 2.4 We define φ : I → [0, 1] such that for all c ∈ I :

(c, c, . . . , c) ∼

(I−, . . . , I−)

1− φ(c)

(I+, . . . , I+)

φ(c)
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Definition 2.5 We further define F : I T → I such that for all a ∈ I T :

(a1, . . . , aT ) ∼ (F(a), . . . , F(a)).

We can interpret the functions πt , φ and F as follows: The function πt describes
the risk preference in time period t , the function φ describes the risk preference for all
time periods and F describes the time preference for constant consumption streams.

Remark 2.6 By Axioms 5a–5c and 6, the functions πt , F and φ exist. By Axioms 0
and 3, the functions are weakly increasing.

We are now able to define the central axiom of our axiomatization:

Axiom 7 (Time–probability equivalence) If a, b ∈ {I−,I+}T and if {t ∈
{1, . . . , T }|at = I+ and bt = I+} = ∅, then

φ(F(a)) + φ(F(b)) = φ(F(max(a1, b1),max(a2, b2), . . . ,max(aT , bT ))).

Let us first emphasize that also this axiom only makes a statement for a small class
of choices, namely, only for pairs of consumption streams a and b such that in each
time period the agent either gets the minimal (I−) or the maximal outcome (I+) and,
moreover, he gets the maximum outcome either in the consumption stream a or in the
consumption stream b, but not in both.

With this in mind, let us look at the axiom from a different perspective to make it
clearer. First note that, by Definitions 2.4 and 2.5, the function φ(F(a)) is a transfor-
mation of a deterministic time-varying consumption stream into an equally preferred
lottery over the two consumption streams (I−, . . . , I−) and (I+, . . . , I+). Let us write
A = {t ∈ {1, . . . , T } : at = I+} and B = {t ∈ {1, . . . , T } : bt = I+} for the
set of time points, at which the consumption stream a and b, respectively, gives I+.
The axiom now states that the sum of the lotteries φ(F(a)) and φ(F(b)), which are
the risk–time transformations of the consumption streams with maximal outcomes at
the (disjoint) time points in A and B, respectively, should be equally preferred to the
lottery φ(F(max(a1, b1), . . . ,max(aT , bT ))), which is the risk– time transformation
of the consumption stream that gives the maximal outcome at the time points in A∪ B.
This means that Axiom 7 requires that the time–risk transformation φ(F(·)) respects
the additivity in time points for this special type of lotteries.

To get a better intuition for this axiom, let us now focus on the case T = 2: Indeed,
the axiom states that for a = (I+,I−) and b = (I−,I+) and

a ∼

(I−, I−)

1− p

(I+, I+)

p

, b ∼

(I−, I−)

1− q

(I+, I+)

q

,
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it has to hold that p + q = 1. This requirement is indeed natural. Let us write (p; I+)

for the lottery where with probability p, we get I+ in both periods and otherwise I−
in both periods. Then we can rewrite the indifference relations as (I+, I−) ∼ (p; I+)

and (I−, I+) ∼ (q; I+) and we note that the two indifference relations state that we
are indifferent between the outcome fluctuation in time on the left side of the equations
and the risky lottery on the right side (i.e., fluctuations of the outcomes between states).
Now, consider the sum of the outcomes on the left. It is (I+, I+) = (1; I+). The sum
of the outcomes on the right, however, is (p + q; I+). If we assume that adding the
outcomes that differ over time and adding risky lotteries have the same effect, then
we should also be indifferent between these two sums, i.e., (1; I+) ∼ (p + q; I+).
This is, however, only the case when p + q = 1. In the general case, the same idea
holds: equivalence of our preferences between time and state–risk fluctuations implies
Axiom 7.

Let us finally compare Axiom 7 to the axiom in Blavatskyy (2020) that links risk
and time preferences: Whereas the risk-time reversal in Blavatskyy (2020) requires a
link of risk and time preferences for all possible lotteries, it is in our case sufficient
to have a similar condition for all extreme lotteries randomizing over minimal and
maximal outcomes.

We can now state the main result of this paper:

Theorem 2.7 Assume that Axioms 0–6 hold. Then the functions F, φ and πt defined
in Definitions 2.2, 2.3 and 2.4 are (weakly) increasing and satisfy

0 = πt (I−) = φ(I−) 1 = πt (I+) = φ(I+)

I− = F(I−, . . . , I−) I+ = F(I+, . . . , I+)

for t = 1, . . . , T . Moreover, a utility function U : X → R exists and is given by

U (X) =
∑

σ∈{I−,I+}T

E

[
T∏

t=1

(
σ ′

t πt (Xt ) + (1 − σ ′
t )(πt (Xt ))

)
φ(F(σ ))

]
, (1)

where σ ′
t = σt −I−

I+−I− (for I = [0, 1] we have σ ′
t = σt ). Conversely, assume that

πt : I → [0, 1] (t ∈ {1, . . . , T }) are continuous and (weakly) increasing functions
and that F : I T → I and φ : I → [0, 1] are (weakly) increasing functions such that

0 = πt (I−) = φ(I−) 1 = πt (I+) = φ(I+)

I− = F(I−, . . . , I−) I+ = F(I+, . . . , I+)

for t = 1, . . . , T . Moreover, let �U be given by X �U Y if and only if U (X) ≥ U (Y )

with U given as in (1). Then �U satisfies Axioms 0–6.

This first result means that by describing functions π , φ and F, it is possible
to describe a utility function satisfying Axioms 0–6. Note, however, that not the full
functionsφ and F showup in theutility representation (1), but only thevaluesφ(F(σ )),
whichmeans that the shapes of F and φ only partly influence the behavior of the utility
function.
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Theorem 2.8 Assume that Axioms 0–7 hold. Then a utility function U : X → R exists
and is given by

U (X) =
T∑

τ=1

δτ E[uτ (Xτ )] (2)

with δτ = φ(F(eτ )) (eτ is the τ -th unit vector of length T ) and uτ = πT being (weakly)
increasing. Conversely, let (δt )t∈{1,...,T } ∈ R

T≥0\{0} and ut : I → R (t ∈ {1, . . . , T })
be continuous and (weakly) increasing. Then the preferences �U given by X �U Y if
and only if U (X) ≥ U (Y ) with U as in (2) satisfy Axioms 0–7.

We highlight that this result makes the idea precise that any preferences admitting
an discounted expected utility representation fixes risk and time preferences. Namely,
any preference admitting an discounted expected utility representation satisfies that
F (capturing the time preference) and φ (capturing the risk preference) are linked in
a certain way.

Remark 2.9 Both theorems are only almost “if and only if” statements, since for the
second implication we additionally need to assume that πt and ut (t ∈ {1, . . . , T })
are continuous, respectively, which does not follow from the axioms. Indeed, it might
happen that a preference relation where π exhibits jump discontinuities exists (but
these are the only possible discontinuities since π and u are weakly increasing).

Remark 2.10 If one would consider the space Xl consisting of lotteries and not the
space X of general probability measures on I T , then it is not necessary to assume
Axioms 4 and 5, instead it suffices to require Axioms 5a–5c.

3 Proofs

In this section, we prove the two main results. As a first step, we will prove that the
axioms imply the utility representation for lotteries. Thereafter, we will generalize the
statement for general probability measures. Finally, we prove that preferences induced
by a utility function given in (1) or (2), respectively, satisfy the Axioms 0–6 or 0–7,
respectively.

Proposition 3.1 Let the Axioms 0–3, 5a–5c as well as Axiom 6 hold. Then a utility
U (X) exists for all X ∈ Xl and is given by

U (X) =
n∑

i=1

⎛

⎝pi

∑

σ∈{I−,I+}T

T∏

t=1

(
σ ′

t πt (xti ) + (1 − σ ′
t )(1 − πt (xti )

)
φ(F(σ ))

⎞

⎠ (3)

=
∑

σ∈{I−,I+}T

E

[
T∏

t=1

(
σ ′

t πt (Xt ) + (1 − σ ′
t )(1 − πt (Xt )

)
φ(F(σ ))

]
(4)

where F, φ and πt are given as in Definition 2.3–2.5.
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Assuming additionally time–probability equivalence (Axiom 7), we obtain the clas-
sical time-separated expected utility

U (X) =
T∑

τ=1

δτ E [uτ (Xτ )] , (5)

where δτ = φ(F(eτ )), eτ is the τ -th unit vector of length T and uτ = πτ .

Proof Without loss of generality, we assume for simplicity that I = [0,1].
The lottery X can be written as a lottery over n deterministic consumption streams

xi = (x1i , . . . , xT i ) for i = 1, . . . , n, each with respective probability pi , i.e.,

x =

(x1n, . . . , xT n)

pn

(x11, . . . , xT 1)

p1

.

Let πt : I → [0,1], φ : I → [0,1] and F : I T → I be given as in Definitions 2.3–2.5.
Using Axioms 5a and 6, we obtain

(x11, x21, x31, . . .) ∼

(0, x21, x31, . . .)

1− π1 (x11 )

(1, x21, x31, . . .)

π1(
x11

)

.

Again, applying Axioms 5a and 6 now together with the Independence Axiom 3,
we obtain

(x11, x21, x31, . . .) ∼

(0, x21, x31, . . .)

(1 − π1 (x11 )

(1, 0, x31, . . .)
π1(x11)(1 − π2(x21))

(1, 1, x31, . . .)

π1(x11
)π2(x21

)

.
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and another application of the Axioms 3, 5a and 6 yields

(x11, x21, x31, . . .) ∼

(0, 0, x31, . . .)

(1− π1 (x11 ))(1− π2 (x21 ))

(0, 1, x31, . . .)

(1 − π1(x11))π2(x21)

(1, 0, x31, . . .)

π1(x11
)(1 − π2(x21

))

(1, 1, x31, . . .)

π1(
x11

)π2(
x21

)

.

Proceeding in this fashion for all n possible outcomes and combining the results
using Axiom 3, we obtain that X is equivalent to a lottery with possible outcomes
σ ∈ {0, 1}T where each outcome σ has the probability q(σ ) given by

q(1, . . . , 1) = (π1(x11) · π2(x21) · · · · · πT (xT 1)) · p1
+ (π1(x12) · π2(x22) · · · · · πT (xT 2)) · p2
+ . . .

+ (π1(x1n) · π2(x2n) · · · · · πT (xT n)) · pn

=
n∑

i=1

pi

T∏

t=1

πt (xti )

q(1, . . . , 1, 0) =
n∑

i=1

pi

(
T −1∏

t=1

πt (xti )

)
(1 − πT (xT i ))

. . .

For an arbitrary σ ∈ {0, 1}T we therefore get:

q(σ ) =
n∑

i=1

pi

⎛

⎝
∏

{t |σt =1}
πt (xti )

⎞

⎠

⎛

⎝
∏

{t |σt =0}
(1 − πt (xti ))

⎞

⎠ .

Using Axiom 5b, we have

(1, . . . , 1) ∼ (F(1, . . . , 1), . . . , F(1, . . . , 1)),

(1, . . . , 1, 0) ∼ (F(1, . . . , 1, 0), . . . , F(1, . . . , 1, 0)),

etc.
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or more generally

σ ∼ (F(σ ), . . . , F(σ )).

Applying this andAxiom 3, we obtain that x is equivalent to a lottery between constant
consumption streams, where with probability q(σ ) the constant consumption stream
(F(σ ), F(σ ), . . . , F(σ )) is obtained.

Using global continuity (Axiom 5c) and independence (Axiom 3), we therefore
obtain the existence of a probability q ∈ [0,1] such that

X ∼

(0,…,0)

1-q

(1,…,1)

q

.

In fact, this probability q can be computed as follows:

q =
∑

σ∈{0,1}T

q(σ )φ(F(σ ))

=
∑

σ∈{0,1}T

n∑

i=1

pi

⎛

⎝
∏

{t |σt =1}
πt (xti )

⎞

⎠

⎛

⎝
∏

{t |σt =0}
(1 − πt (xti ))

⎞

⎠φ(F(σ ))

=
n∑

i=1

pi

∑

σ∈{0,1}T

T∏

t=1

(
σtπt (xti ) + (1 − σt )(1 − πt (xti ))

)
φ(F(σ )). (6)

By independence (Axiom 3) and monotonicity (Axiom 0), we moreover have that
the lotteries

L(p) =

(0,…,0)

1-p

(1,…,1)

p

, p ∈ [0, 1],

satisfy L(p) � L(p′) if and only if p ≥ p′. Since the previous argument shows that
X ∼ L(q), this proves that U (X) = q is indeed a utility function.
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Assuming additionally time–probability equivalence (Axiom 7), we have

φ(F(σ )) =
T∑

τ=1

στφ(F(eτ )),

where eτ ∈ {0, 1}T is the τ -th unit vector of length T , i.e., given by

(eτ )t :=
{
1 t = τ

0 t �= τ
.

Therefore, we can rewrite (6) as

q =
n∑

i=1

pi

⎡

⎣
∑

σ∈{0,1}T

(
T∑

τ=1

T∏

t=1

(
σtπt (xti ) + (1 − σt )(1 − πt (xti ))

)
φ(F(eτ ))στ

)⎤

⎦ .

This can be simplified as follows:

q =
n∑

i=1

⎡

⎣pi

T∑

τ=1

∑

σ∈{0,1}T

T∏

t=1

(
σtπt (xti ) + (1 − σt )(1 − πt (xti ))

)
φ(F(eτ ))στ

⎤

⎦

=
n∑

i=1

⎡

⎢⎢⎣pi

T∑

τ=1

⎛

⎜⎜⎝φ(F(eτ )) ·
∑

σ∈{0,1}T

στ =1

T∏

t=1

(
σtπt (xti ) + (1 − σt )(1 − πt (xti ))

)
⎞

⎟⎟⎠

⎤

⎥⎥⎦ .

(7)

Before we conclude our proof, we need the following lemma:

Lemma 3.2 Let T ∈ N and s ∈ R
T , then

∑

σ∈{0,1}T

T∏

t=1

(
σt st + (1 − σt )(1 − st )

)
= 1.

Proof (of the lemma)We prove the statement by induction. The statement is obviously
true for T = 1:

1∑

σ1=0

(
σ1s1 + (1 − σ1)(1 − s1)

)
= s1 + (1 − s1) = 1.

Assuming that the statement holds for T − 1, we prove that it also holds for T :

∑

σ∈{0,1}T −1

T∏

t=1

(
σt st + (1 − σt )(1 − st )

)
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=
∑

σ∈{0,1}T −1

1∑

σT =0

(
T −1∏

t=1

(σt st + (1 − σt )(1 − st ))

)
·
(
σT sT + (1 − σT )(1 − sT )

)

=
∑

σ∈{0,1}T −1

T −1∏

t=1

(
σt st + (1 − σt )(1 − st )

)
(sT + (1 − sT ))︸ ︷︷ ︸

=1

=
∑

σ∈{0,1}T −1

T −1∏

t=1

(
σt st + (1 − σt )(1 − st )

)
= 1,

where the last equality holds by assumption for T − 1. �
Using this lemma (on the relabelled indices) and defining uτ = πτ and δτ :=

φ(F(eτ )), we finally obtain

q =
n∑

i=1

pi

T∑

τ=1

φ(F(eτ ))πτ (xτ i )
∑

σ∈{0,1}T

στ =1

T∏

t=1
t �=τ

σtπt (xti ) + (1 − σt )(1 − πt (xti ))

︸ ︷︷ ︸
=1

=
n∑

i=1

pi

T∑

τ=1

δτ uτ (xτ i ).

In other words, this yields

q =
T∑

τ=1

δτ

n∑

i=1

pi uτ (xτ i ) =
T∑

τ=1

δτ E [uτ (Xτ )] .

Defining our utility by U (X) := q completes the proof of the theorem. �
As in the one-period case (see Fishburn (1970), Ch.10 or Savage (1972), Sect. 5.4),

we now extend our result for lotteries to arbitrary random variables:

Proposition 3.3 Let Axioms 0–6 hold. Then a utility U (X) exists for all X ∈ X and
is given by

U (X) =
∑

σ∈{I−,I+}T

E

[
T∏

t=1

((
σ ′

t πt (Xt ) + (1 − σ ′
t )(1 − πt (Xt )

))
φ(F(σ ))

]
,

where F, φ and πt are given as in Definition 2.3, 2.4 and 2.5.

Proof In the following, we construct for each X ∈ X two sequences (Xl
n)n∈N and

(Xu
n )n∈N in Xl such that

• Xl
n � Xl

n+1 � X � Xu
n+1 � Xu

n for all n ∈ N and
• U (X) = limn→∞ U (Xl

n) = limn→∞ U (Xu
n ).
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The existence of these sequences then yields the desired claim:
Assume first that U (X) > U (Y ). Then, by the previous construction, there is an

N ∈ N such that U (Xl
n) > U (Y u

n ) for all n ≥ N . Thus, again by construction,

X � Xl
n � Y u

n � Y .

Now, let U (X) = U (Y ). Then we find subsequences

(
Xl

n1k

)

k∈N
and

(
Y l

n2k

)

k∈N
such

that

Xl
n1k

� Y l
n2k

� Xl
n1k+1

� Y l
n2k+1

for all k ∈ N. Indeed, given Xl
n1k
, we can define ε = (U (X) − U (Xl

n1k
))/2 and obtain

that there is a N ∈ N such that U (Y ) − U (Yn) < ε for all n ≥ N , which in particular
yields that U (Xl

n1k
) < U (Y l

N ) and thus Xl
n1k

� Y l
N . Now, we have

lim
k→∞ Xl

n1k
� lim

k→∞ Y l
n2k

� lim
k→∞ Xl

n1k+1
,

which, by Axiom 5, means that X ∼ Y .
So let us construct the sequences: for each n ∈ N and each i ∈ N

T such that
1 ≤ it ≤ 2n for all t ∈ {1, . . . , 2n} define the set

Mi1,...,iT ,n =
{

x ∈ I T : I− + (it − 1) · (I+ − I−)

2n
< xt < I− + it · (I+ − I−)

2n

for all t ∈ {1, . . . , T }
}
.

Then independence (Axiom 3) yields that

X ∼
2n∑

i1,...,iT =1

P(X ∈ Mi1,...,iT ,n)X Mi1,...,iT ,n ,

where X Mi1,...,iT ,n is the randomvariablewith distributionP(X Mi1,...,iT ,n ∈ A) = P(X ∈
A|X ∈ Mi1,...,iT ,n). Utilizing dominance (Axiom 4), we obtain that

2n∑

i1,...,iT =1

P(X ∈ Mi1,...,iT ,n)X Mi1,...,iT ,n

�
2n∑

i1,...,iT =1

P(X ∈ Mi1,...,iT ,n)

(
I− + (ik − 1)

(I+ − I−)

2n

)

k∈{1,...,T }
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and that

2n∑

i1,...,iT =1

P(X ∈ Mi1,...,iT ,n)X Mi1,...,iT ,n

�
2n∑

i1,...,iT =1

P(X ∈ Mi1,...,iT ,n)

(
I− + ik · (I+ − I−)

2n

)

k∈{1,...,T }
.

Let us now define Xl
n as the lottery over the consumption streams(

I− + (ik − 1) (I+−I−)
2n

)

k∈{1,...,T } (i1, . . . , iT ∈ {1, . . . , 2n}), which are each chosen

with probability P(X ∈ Mi1,...,iT ,n), and Xu
n as the lottery over the consumption

streams
(

I− + ik
(I+−I−)

2n

)

k∈{1,...,T } (i1, . . . , iT ∈ {1, . . . , 2n}), which are each cho-

sen with probability P(X ∈ Mi1,...,iT ,n). By construction and dominance (Axiom 4),
we immediately obtain Xl

n � Xl
n+1 and Xu

n � Xu
n+1. Moreover, by monotone con-

vergence, we obtain U (X) = limn→∞ U (Xl
n) and U (X) = limn→∞ U (Xu

n ), which
proves the claim. �

Exactly the same proof also yields the desired extension for lotteries X ∈ X to
general probability measures X ∈ X for the second part of Proposition 3.1:

Proposition 3.4 Let Axioms 0–7 hold. Then a utility U (X) exists for all X ∈ X and is
given by

U (X) =
T∑

τ=1

δτ E[uτ (Xτ )].

Let us now turn to prove the second parts of both statements:

Proposition 3.5 Let πt : I → [0, 1] (t = 1, . . . , T ) be (weakly) increasing and
continuous functions and F : I T → I and φ : I → [0, 1] be (weakly) increasing
functions such that

0 = πt (I−) = φ(I−) 1 = πt (I+) = φ(I+)

I− = F(I−, . . . , I−) I+ = F(I+, . . . , I+)

for t = 1, . . . , T . Let � be a preference relation on X given by X � Y if and only if
U (X) ≥ U (Y ) with U as in (3), i.e.,

U (X) = E

⎡

⎣
∑

σ∈{I−,I+}T

T∏

t=1

(
σ ′

t πt (xti ) + (1 − σ ′
t )(1 − πt (xti ))

)
φ(F(σ ))

⎤

⎦ .

Then, � satisfies Axioms 0–6.
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Proof Axiom 1 is satisfied, since any two numbers U (X), U (Y ) are comparable in
R. Axiom 2 holds by the transitivity of ≤ on R. Axiom 5 directly follows from the
continuity of U .

To prove that Axiom 0 is satisfied, it suffices to show that the function
(a1, . . . , an) �→ U (a1, . . . , an) with

U (a1, . . . , an) =
∑

σ∈{I−,I+}T

T∏

t=1

(
σ ′

t πt (at ) + (1 − σ ′
t )(1 − πt (at ))

)
φ(F(σ ))

is increasing in ai for each i = 1, . . . , T . Indeed, the more I+ are in σ, the larger is
φ(F(σ )). Thus, the function itself is increasing when permutations σ ∈ {I−, I+}T

with more I+ get a larger weight. This happens when πt (at ) is larger, which happens
when at is increasing. This monotonicity and the monotonicity of the expectation
moreover directly yield that Axiom 4 holds.

To prove Axiom 3, let X , Z ∈ Xl be arbitrary. Write

U (X) =
nx∑

i=1

px
i

∑

σ∈{I−,I+}T

T∏

t=1

(
σ ′

t πt (xti ) + (1 − σ ′
t )(1 − πt (xti ))

)
φ(F(σ )),

U (Z) =
nz∑

i=1

pz
i

∑

σ∈{I−,I+}T

T∏

t=1

(
σ ′

t πt (zti ) + (1 − σ ′
t )(1 − πt (zti ))

)
φ(F(σ )).

Then for p ∈ (0, 1), we have

U (pX + (1 − p)Z)

=
nx∑

i=1

(p · px
i )

∑

σ∈{I−,I+}T

T∏

t=1

(
σ ′

t πt (xti ) + (1 − σ ′
t )(1 − πt (xti ))

)
φ(F(σ ))

+
ny∑

i=1

((1 − p) · pz
i )

∑

σ∈{I−,I+}T

T∏

t=1

(
σ ′

t πt (zti ) + (1 − σ ′
t )(1 − πt (zti ))

)
φ(F(σ ))

= pU (X) + (1 − p)U (Z).

Thus, if X , Y ∈ Xl are such that U (X) ≥ U (Y ) and Z ∈ Xl as well as p ∈ (0, 1) are
chosen arbitrarily, we obtain

U (pX + (1 − p)Z) = pU (X) + (1 − p)U (Z) ≥ pU (Y ) + (1 − p)U (Z)

= U (pY + (1 − p)Z).

The construction in the proof of Theorem 3.3 now immediately yields that Axiom 3
also holds for X , Y , Z ∈ X .

To show that Axiom 6 is satisfied, assume that x ∈ I T , t ∈ {1, . . . , T } and a ∈ I .
Let us write
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Lt (p) =

(x1, . . . , xt−1, I−, xt+1, . . .)

1− p

(x1, . . . , xt−1, I+, xt+1, . . .)

p

.

Now, direct calculations yield

U (x1, . . . , xτ−1, a, xτ+1, . . . , xT )

=
∑

σ∈{I−,I+}T

φ(F(σ ))

(∏

t �=τ

(
σ ′

t πt (xt ) + (1 − σ ′
t )(1 − πt (xt ))

)

· (σ ′
τ πτ (a) + (1 − σ ′

τ )(1 − πτ (a))

)

and

U (Lt (p))

= p
∑

σ∈{I−,I+}T

φ(F(σ ))

(∏

t �=τ

(
σ ′

t πt (xt ) + (1 − σ ′
t )(1 − πt (xt ))

)

· (σ ′
τ πτ (1) + (1 − σ ′

τ )(1 − πτ (1)))

)

+ (1 − p)
∑

σ∈{I−,I+}T

φ(F(σ ))

(∏

t �=τ

(
σ ′

t πt (xt ) + (1 − σ ′
t )(1 − πt (xt ))

)

· (σ ′
τ πτ (0) + (1 − σ ′

τ )(1 − πτ (0)))

)

=
∑

σ∈{I−,I+}T

φ(F(σ ))

(∏

t �=τ

(
σ ′

t πt (xt ) + (1 − σ ′
t )(1 − πt (xt ))

)

· (pσ ′
τ + (1 − p)(1 − σ ′

τ ))

)
,

which shows that for p = πt (a) the two utilities coincide. �
Proposition 3.6 Let (δt )t=1,...,T ∈ R

T≥0\{0} and ut : I → R for all t = 1, . . . , T be
continuous and (weakly) increasing functions. Let � be a preference relation on X
defined by X � Y if and only if U (X) ≥ U (Y ) for

U (X) =
n∑

τ=1

δτ E[uτ (Xτ )].
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Then � satisfies Axioms 0–7.

Proof Axiom 1, 2 and 5 follow as in the previous proof. Axiom 3 directly follows
from the linearity of the expectation. For Axiom 0, note that uτ is (weakly) increasing
for all t ∈ {1, . . . , T }. Since the function U is a weighted sum of these functions with
non-negative weights, it is also (weakly) increasing. Thus, Axiom 0 holds. This and
the monotonicity of the expectation directly yield that Axiom 4 is satisfied.

To prove that Axiom 6 holds, let x ∈ I T , τ ∈ {1, . . . , T } and a ∈ I . Then for
p = (uτ (a) − uτ (I−))/(uτ (I+) − uτ (I−)), we have

U (x1, . . . , xτ−1, a, xτ+1, . . . , xT )

=
∑

t �=τ

δt ut (xt ) + δτ uτ (a)

=
∑

t �=τ

δt ut (xt ) + δτ (puτ (I+) + (1 − p)uτ (I−))

= U (Lt (p)),

where Lt (p) is as in the proof of Proposition 3.5.
To prove Axiom 7, let a ∈ {I−, I+}T be arbitrary. Then, by definition of F(a), we

have

U (a1, . . . , aT ) =
T∑

τ=1

δτ uτ (aτ ) =
T∑

τ=1

δτ uτ (F(a)) = U (F(a), . . . , F(a)).

Moreover, by definition of φ(F(a)), we have

U (L(φ(F(a)))) = φ(F(a))

T∑

τ=1

δτ uτ (I+) + (1 − φ(F(a)))

T∑

τ=1

δτ uτ (I−)

=
T∑

τ=1

δτ uτ (F(a)) = U (F(a), . . . , F(a)).

Thus,

T∑

τ=1

δτ uτ (aτ ) = 	(F(a))

T∑

τ=1

δτ uτ (I+) + (1 − φ(F(a)))

T∑

τ=1

δτ uτ (I−),

and therefore

φ(F(a)) = 1
∑T

τ=1 δτ (uτ (I+) − uτ (I−))

T∑

τ=1

δτ (uτ (aτ ) − uτ (I−)). (8)
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Now, let a, b ∈ {I−, I+}T such that {t : at = I+ and bt = I+} = ∅. Then by (8), we
have

φ(F(a)) + φ(F(b))

= 1
∑T

τ=1 δτ (uτ (I+) − uτ (I−))

T∑

τ=1

δτ (uτ (aτ ) − uτ (I−))

+ 1
∑T

τ=1 δτ (uτ (I+) − uτ (I−))

T∑

τ=1

δτ (uτ (bτ ) − uτ (I−))

= 1
∑T

τ=1 δτ (uτ (I+) − uτ (I−))

∑

τ :aτ =I+
δτ (uτ (I+) − uτ (I−))

+ 1
∑T

τ=1 δτ (uτ (I+) − uτ (I−))

∑

τ :bτ =I+
δτ (uτ (I+) − uτ (I−))

= 1
∑T

τ=1 δτ (uτ (I+) − uτ (I−))

∑

τ :max{aτ ,bτ }=I+
δτ (uτ (I+) − uτ (I−))

= 1
∑T

τ=1 δτ (uτ (I+) − uτ (I−))

T∑

τ=1

δτ (uτ (max{aτ , bτ }) − uτ (I−))

= φ(F(max{a1, b1}, . . . ,max{aT , bT })).

�

4 Examples

Let us conclude by listing some examples that satisfy Axioms 0–6, but not the time–
probability equivalence (Axiom 7). Note that to define a preference relation that
satisfies Axioms 0–6, it suffices, by Theorem 2.7, to describe continuous and (weakly)
increasing functions πt : I → [0, 1], t ∈ {1, . . . , T } satisfying πt (I−) = 0 and
πt (I+) = 1 for all t ∈ {1, . . . , T } as well as values φ(F(σ )) for all σ ∈ {I−, I+}T

such that φ(F(I+, . . . , I+)) = 1, φ(F(I−, . . . , I−)) = 0 and φ(F(σ )) ≥ φ(F(σ ′))
whenever σt ≥ σ ′

t for all t ∈ {1, . . . , T }.

Example 4.1 Let us reconsider Example 2.2. Indeed, letφ(F(1, 1)) = 1,φ(F(0, 0)) =
0 and φ(F(1, 0)) = F(φ(0, 1)) = c with c ∈ (1/2, 1) and let π1 : [0, 1] → [0, 1] be
an arbitrary continuous and (weakly) increasing function. Moreover, set π2 : [0, 1] →
[0, 1] such that

π2(x) = c − cπ1(1 − x)

π1(1 − x)(1 − 2c) + c
.
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Then these functions and values describe, according to Theorem 2.7, a preference
relation satisfying Axioms 0–6. Its utility function is

U (X) = E

[
π1(X1) (c − cπ1(1 − X2))

π1(1 − X2)(1 − 2c) + c
(1 − 2c)

+c

(
π(X1) + c − cπ1(1 − X2)

π1(1 − X2)(1 − 2c) + c

)]
,

and thus direct calculations yield that U (a, 1− a) = c for all a ∈ [0, 1]. Finally, note
that

φ(F(1, 1)) = 1 �= 2c = φ(F(1, 0) + φ(F(0, 1)),

thus, Axiom 7 is not satisfied.

Example 4.2 As a next example, we propose a preference relation on [0, 1]T such that
(a1, . . . , aT ) ∼ (0, . . . , 0) if and only if ai = 0 for some i ∈ {1, . . . , T }. Indeed, let
πt : [0, 1] → [0, 1], t ∈ {1, . . . , T }, be arbitrary continuous and strictly increasing
functions such that πt (0) = 0 and πt (1) = 1. Moreover, choose φ(F(1, . . . , 1)) = 1
and φ(F(σ )) = 0 for σ �= (1, . . . , 1). By Theorem 2.7, these functions and values
describe a preference relation satisfying Axioms 0-6, whose utility function reads

U (X) = E [π1(X1) · . . . · πT (XT )] .

It is immediate that U (a1, . . . , aT ) = 0 if and only if at = 0 for t ∈ {1, . . . , T }.
Moreover, since

F(φ(1, . . . , 1)) = 1 �= 0 = F(φ(1, 0, . . . , 0)) + F(φ(0, 1, . . . , 1)),

Axiom 7 is not satisfied.

Example 4.3 Let us finally propose an example where, with I = [0, 1], T = 4, we
have

(1, 1, 0, 0) ∼ (0, 0, 1, 1) � (1, 0, 1, 0) ∼ (0, 1, 0, 1),

which are preferences that previously occurred in the analysis of preference that
incorporates consumption smoothing (i.e., Gilboa (1989)). Namely, choose π1(x) =
π2(x) = x for all x ∈ [0, 1] and

φ(F(a1, a2, a3, a4)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |{i : ai = 1}| = 0

0.25 if |{i : ai = 1}| = 1

0.5 if |{i : ai = 1}| = 2 and ai �= ai−1 for all i

0.6 if |{i : ai = 1}| = 2 and ai = ai−1 for some i

0.75 if |{i : ai = 1}| = 3

1 if |{i : ai = 1}| = 4

.
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Then,

U (1, 1, 0, 0) = 0.6 U (0, 0, 1, 1) = 0.6

U (1, 0, 1, 0) = 0.5 U (0, 1, 0, 1) = 0.5

as desired. Moreover, we directly note that Axiom 7 is not satisfied since

φ(F(1, 1, 0, 0)) + φ(F(0, 0, 1, 1)) = 1.2 �= 1 = φ(F(1, 1, 1, 1)).

5 Conclusion

This article has provided an alternative way to axiomatize multi-period expected util-
ity. Moreover, it describes new classes of decision models where the risk preference
in certain situations only depends on the consumption periods that are affected by the
choice. In particular, these new classes describe preferences that might not be fully
time separable. Full time separability is not a compelling requirement in intertempo-
ral decision theory, since it ignores consumption smoothing and variation aversion.
Therefore, the axiomatization and the corresponding characterization of the newmod-
eling class allows for a larger degree of flexibility that will be appropriate in certain
situations.
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