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Abstract
Afacan (Games and Economic Behavior 110: 71-89, 2018) introduces an object allo-
cation with random priorities problem. He proposes the constrained probabilistic serial
(CPS) mechanism. This study, for the first time in the literature, provides axiomatic
characterizations of CPS. The first result characterizes it via non-wastefulness, claimwise
stability, constrained ordinal fairness, and surplus invariance to truncations. The other
axiomatizes CPS via constrained stochastic efficiency, claimwise stability, and con-
strained ordinal fairness. The independence of the axioms is provided.

Keywords Matching · Constrained probabilistic serial · Characterization · Axiom ·
Claimwise stability · Constrained ordinal fairness

1 Introduction

Afacan (2018) considers an object allocation problem where the objects’ priorities
are random. Besides its richer theoretical scope, it has practical appeal. In many real-
life object allocation problems, priorities come with large indifference classes.1 Ties
are first randomly broken, and then the outcome is calculated based on the obtained
strict priorities. This, in turn, means that priorities are random ex-ante, thereby falling
into Afacan (2018)’s setting.2
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1 For instance, the Boston and the New York City school districts—the two largest school placement
organizations in the U.S.—are two examples of such problems (see Abdulkadiroǧlu et al. (2009)).
2 In practice, uniform tie-breaking rules are commonly used. However, non-uniform tie-breaking has
useful applications, as discussed in detail in Afacan (2018).
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Afacan (2018) proposes a fairness notion, so-called “claimwise stability“. He then
introduces the constrained probabilistic serial (CPS) mechanism. It is mainly built
on the well-known “probabilistic serial” (PS) mechanism of Bogomolnaia and
Moulin (2001). Informally speaking, CPS lets agents consume objects in decreasing
order of their preferences until either relevant claimwise stability constraints start
binding or objects are exhausted (whichever occurs first). Afacan (2018) shows that
CPS is claimwise stable and constrained stochastically efficient (henceforth,
constrained sd-efficient) in the sense that its outcome is never stochastically
dominated by another claimwise stable matching.34 No claimwise stable and
constrained sd-efficient mechanism is strategy proof; hence, in particular, CPS is not
strategy-proof.5 Afacan (2018) also shows that CPS satisfies a weaker version of
equal treatment of equals.

In this study, we provide two characterizations of CPS: (i) A mechanism is non-
wasteful, claimwise stable, constrained ordinally fair, and surplus-invariant to
truncations if and only if it is CPS, and (ii) A mechanism is constrained sd-efficient,
claimwise stable, and constrained ordinally fair if and only if it is CPS. We also
obtain the independence of the axioms.

Non-wastefulness is a standard property that requires all preferred objects to be
exhausted. Claimwise stability is a fairness property, motivated by both the usual
fairness notion in object allocations and the proportional allocation principle in claim
problems. In terms of the latter, claimwise stability advocates that objects’ shares
should be distributed in proportion to the probabilistic priorities. On the other hand, if
we think of objects as perfectly divisible and interpret the assigned probabilities as
the time-shares for which agents consume them, then claimwise stability rules out
any time-share in which a pair of agents compete for the same object, but the lower
priority one consumes it. In other words, it requires the usual fairness6 over the whole
consumption process ( Bogomolnaia and Heo (2012)), where agents acquire objects’
shares over the unit-time interval at the speed of one.

Constrained ordinal fairness is an adaptation of the ordinal fairness property of
Kesten et al. (2011) and Hashimoto et al. (2014), which is used in their PS
characterization, to our framework. Given a matching, let us call the agent i’s total
share of the objects that are at least as good as object a “surplus of agent i at object
a.“ If agent i’s surplus at object a is less than that of agent j while the latter obtains a
positive share of object a, then constrained ordinal fairness guarantees that some
claimwise stability constraint that is imposed on agent i for object a is binding at the
matching. Hence, giving more of object a to agent i would violate claimwise

3 A matching stochastically dominates (sd-dominates) another matching if each agent either unambigu-
ously prefers the former to the latter or receives the same assignment under both, with the former holding
for some agent.
4 CPS’s outcome can be sd-dominated by a matching that is not claimwise stable. In other words, CPS is
not sd-efficient. However, this is not a problem specific to CPS as there is a general incompatibility
between claimwise stability and stochastic efficiency (see Afacan (2018)).
5 A mechanism is strategy-proof if no agent ever benefits from misreporting his preferences.
6 In standard object allocation problems, fairness eliminates matchings where an agent envies someone
else while the former has a higher priority than the latter at the latter’s assigned object ( Gale and Shapley
(1962)).
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stability.7 Therefore, constrained ordinal fairness can be deemed a fairness property
in terms of surpluses but subject to claimwise stability. The last axiom—surplus
invariance to truncations—is a mild invariance axiom. It imposes that after an agent
truncates his preferences below an object a, his total share from the objects that are at
least as good as object a remains the same. More formal motivations of the axioms
are provided in the model.

This study is the first to offer an axiomatization of CPS. The most relevant works
are the existing PS characterizations. Bogomolnaia and Moulin (2001) axiomatize PS
for three-agent economies.8 Then PS has been characterized for any number of
agents by Kesten et al. (2011), Hashimoto and Hirata (2011), Bogomolnaia and Heo
(2012), and Hashimoto et al. (2014). Besides, a recent related study is Balbuzanov
(2022) where the author proposes a “generalized constrained probabilistic serial
mechanism” (GCPS) to accommodate constraints over deterministic assignments into
(random) matchings. In a priority-free setting, Balbuzanov (2022) characterizes
constraints as upper-bound inequalities. GCPS works as PS except agents stop
consuming an object whenever the relevant upper-bound constraints start binding.
While our mechanisms CPS and GCPS have similar logic, the former addresses the
claimwise stability constraints, which are not captured in Balbuzanov (2022).

2 The model

There are finite sets of agents N and objects Ô. There is also a null-object, denoted by
;. It represents receiving no object. Each agent i 2 N has a preference relation Ri,

which is a complete, transitive, and antisymmetric binary relation over Ô [ f;g. For
its asymmetric part, we write Pi, which is defined as a Pi b whenever a Ri b and

a 6¼ b. Let R be the set of all preference relations. Object a 2 Ô is acceptable to
agent i if a Pi ;, and otherwise, it is unacceptable. We write qa for the number object
a copies in the problem. In the rest of the paper, for ease of exposition, we assume

that qa ¼ 1 for each a 2 Ô. However, as we discuss in Remark 7, the whole analysis
carries over to the multi-copy case. The null-object is not scarce, that is, q; ¼ jN j.

For object a 2 Ô, we write �a for its strict priority ordering over N. Let � ¼
ð�aÞa2Ô and f be the priority profile and the set of all such profiles, respectively. By
going beyond these priorities, we let the objects have a random priority profile D,
which is a probability distribution over f. Let Dð�Þ be the probability of � ¼
ð�aÞa2Ô under D. We write Da for the (marginal) priority distribution of object a 2 Ô
under D.9 There is no restriction on D; hence, the objects’ priorities may be
independent as well as correlated. We write suppðDÞ ¼ f� 2 f : Dð�Þ[ 0g for the
support of D. We define PrDði.ajÞ ¼

P
�2f: i�aj

Dð�Þ. In words, it is the probability

7 Ordinal fairness eliminates cases where someone has a higher surplus than someone else at an object,
while the former also receives a positive share of the object.
8 Kesten et al. (2017) show that Bogomolnaia and Moulin (2001)’s axiomatization does not hold whenever
the number of agents is at least five.
9 That is, for any �0

a, Dað�0
aÞ ¼

P
�2f: �a¼�0

a
Dð�Þ.
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that agent i has a higher priority than agent j at object a. In the rest of the paper, we
fix the set of agents and objects and write ðR;DÞ for the problem.

For ease of writing, let O ¼ Ô [ f;g. A matching r ¼ ½ri;a�i2N ;a2O is a matrix

such that (i) for each i 2 N and a 2 O, 0� ri;a � 1, (ii)
P

a2O ri;a ¼ 1, and (iii) for

each c 2 Ô,
P

i2N ri;c � 1. Here, ri;a represents the probability that agent i is matched
with object a. Let ri ¼ ½ri;a�a2O denote the matching of agent i. A matching r is
deterministic if ri;a 2 f0; 1g for each i 2 N and a 2 O. Let X be the set of all
matchings. We write M for the proper subset of X that consists of the deterministic
matchings.

A probability distribution k over M is called a lottery. Formally, k ¼ ðklÞl2M is

such that for each l 2 M, 0� kl � 1 and
P

l2M kl ¼ 1. We write rk for the

matching induced by k, that is, for each agent–object pair (i, a),
rki;a ¼

P
l2M: li¼a kl.

Fact 1 (Birkoff-von Neumann and Kojima and Manea (2010)) Every matching is
induced by a lottery k over M.

Because of the above well-known fact, in the rest of the paper, we consider
matchings instead of lotteries. A mechanism w is a systematic procedure that
produces a matching for each problem ðR;DÞ. We write wðR;DÞ for the outcome of w
in problem ðR;DÞ.

2.1 The axioms

For an agent i and object a, let SUðRi; aÞ ¼ fc 2 O : c Pi ag (the strict upper
contour set of agent i at object a), and UðRi; aÞ ¼ SUðRi; aÞ [ fag (the upper contour
set of agent i at object a).

A matching r is non-wasteful if, for any objects a; b 2 O and agent i, a Pi b and
ri;b [ 0, then

P
j2N rj;a ¼ qa. Note that non-wastefulness implies individual

rationality.10 A matching r induces a justified claim if there are a pair of agents i

and j and object a 2 Ô such that rj;a [PrDðj.aiÞ þ
P

c2SUðRi;aÞ ri;c. A matching is

claimwise stable if it does not induce a justified claim.
To better understand the spirit of claimwise stability, by following Afacan (2018),

let us utilize the consumption process representation of matchings by Bogomolnaia
and Heo (2012). Each matching can be deemed as the outcome of a consumption
process where, over the unit-time interval, agents continuously acquire objects’
shares at the speed of one and in decreasing order of their preferences. Agents’
attained shares are interpreted as time-shares during which they consume them in the
consumption process.

Accompanied by Fig. 1, consider a pair of agents i, j, object a, and a matching r.
We can interpret PrDðj.aiÞ—orange region R.1—as the time-share in which agent j
has a higher priority than agent i for object a. Similarly,

P
c2SUðRi;aÞ ri;c—green

region R.2—is the time-share in which agent i consumes objects that are better than

10 A matching r is individually rational if there are no agent i and object a such that ; Pi a and ri;a [ 0.

123

M. O. Afacan468



object a. Therefore, it is unarguably fair to let agent j consume object a over these
regions, which amounts to PrDðj.aiÞ þ

P
c2SUðRi;aÞ ri;c. However, once agent j’s

share exceeds it (more than R.1?R.2), he consumes object a during some time-share
falling into the red region R.4. This is problematic on the fairness ground because
over R.4, both agents i and j compete for object a (note that agent i would prefer
consuming object a outside R.2), and agent i has a higher priority than agent j (R.3,
the time-share in which agent i has a higher priority than agent j, includes R.4). That
is, the standard fairness is violated for some time-share in R.4.

To make the motivation behind claimwise stability more concrete, let us consider a
problem with three agents i, j, k, and two objects a, b. Let PrDðk�aiÞ ¼ 3=4 and
PrDði�bjÞ ¼ 1. Let the preferences be such that Pi : a; b; ;; Pj : b; ;; and Pk : a; ;.
Let us consider a matching r given in the table below.

a b ;

i 1/
4

1/
2

1/
4

j 0 1/
2

1/
2

k 3/
4

0 1/
4

Here, rj;b ð¼ 1=2Þ[PrDðj�biÞð¼ 0Þ þP
c2SUðRi;bÞ ri;cð¼ 1=4Þ, constituting a

violation of claimwise stability (there is no other claimwise stability violation). Agent
i desires to consume object b after having done with acquiring object a’s share. As
ri;a ¼ 1=4, during a time-share of 3/4, agent i demands object b. On the other hand,
rj;b [ 1=4 means that in some positive time-share during which agent i demands
object b, agent j manages to consume object b (note that this time-share has the mass
of rj;b � 1=4[ 0). Moreover, in this time-share, agent i has a higher priority than
agent j at object b.11 This goes against the spirit of fairness that the higher priority
agents should be treated favorably in receiving objects.

Fig. 1 Consumption process motivation of claimwise stability

11 Indeed, agent i has a higher priority than agent j at object b over the whole consumption process as
PrDði�bjÞ ¼ 1.
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Remark 1 Claimwise stability considers agent i’s acquired shares of the objects that
are better than object a. This is because agent i demands object a once he finishes
consuming these better objects. That is, his object a demand is in the amount of
1�P

c2SUðRi;aÞ ri;c. On the other hand, if we considered the agent i’s object a share

as well in calculating his demand, we would have underestimated the agent i’s
demand for object a (that is, 1�P

c2UðRi;aÞ ri;c might be less than the actual agent i’s

object a demand, which is 1�P
c2SUðRi;aÞ ri;cÞ. Thus, agent j would have been

allowed to consume more than what is needed to ensure fairness over the whole
consumption process.

Remark 2 Our model features randomness both in priorities and assignments. That
is, it exhibits double uncertainty. This makes it hard to relate ex-post and ex-ante
properties. Neither ex-post fairness nor claimwise stability does not easily imply the
other. To see this, let us consider two agents i, j and one object a. Suppose each agent
has a higher priority with the probability of 1/2. The only claimwise stable matching
assigns 1/2 of object a to each agent. This matching is not ex-post fair irrespective of
the priority realization (either of the agents has a higher priority ex-post, yet in the
matching’s lottery decomposition, it is always the case that the (ex-post) lower
priority agent receives object a with the probability of 1/2). Similarly, any ex-post
fair matching assigns the whole share to the (ex-post) higher priority agent. This
assignment cannot be claimwise stable as each agent must receive 1/2 of object a
under claimwise stability.

For a matching r, agent i, and object a, let FðRi; a; riÞ ¼
P

c2UðRi;aÞ ri;c. Matching

r stochastically (sd) dominates r0 if, for each agent i and object a,
FðRi; a; riÞ�FðRi; a; r0iÞ, where this strictly holds for some agent–object pair.
Matching r is sd-efficient if it is not sd-dominated. Afacan (2018) shows that there
does not always exist a claimwise stable and sd-efficient matching. Thus, matching r
is constrained sd-efficient if it is not sd-dominated by a claimwise stable matching.

While constrained sd-efficiency is weaker than sd-efficiency, it still implies non-
wastefulness, as formally stated below. All the proofs are relegated to Appendices.

Proposition 1 In any problem ðR;DÞ, a constrained sd-efficient matching is non-
wasteful.

Remark 3 To see how constrained sd-efficiency implies non-wastefulness, suppose
that object a is wasted at a constrained sd-efficient matching r. This means that some
agent, say j, would rather consume more of object a; yet this would violate claimwise
stability (as, otherwise, r could not have been constrained sd-efficient). That is, for
some agent i 6¼ j, rj;a ¼ PrDðj�aiÞ þ

P
c2SUðRi;aÞ ri;c. This implies that

ri;a\1�P
c2SUðRi;aÞ ri;c.

12 Therefore, agent i also prefers to consume more of

object a. However, for the same reason above, it would go against claimwise
stability. This means that ri;a ¼ PrDði�akÞ þ

P
c2SUðRk ;aÞ rk;c for some agent k 6¼ i.

12 To see this inequality, assume for a contradiction that ri;a � 1�P
c2SUðRi ;aÞ ri;c. Then,

rj;a þ ri;a �PrDðj�aiÞ þ
P

c2SUðRi ;aÞ ri;c þ ð1�P
c2SUðRi ;aÞ ri;cÞ, implying that rj;a þ ri;a � 1. This, how-

ever, contradicts our supposition that object a is wasted at r.
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Note that as PrDði�ajÞ þ PrDðj�aiÞ ¼ 1, agent k have to be different from agent j
(as, otherwise, ri;a þ rj;a ¼ 1, contradicting our supposition that object a is wasted).
Thus, no pair of agents simultaneously prevent each other from consuming more of
object a. In the proof of Proposition 1, we also observe that it holds for any collection
of agents of size more than two. Thus, whenever an object is wasted at a constrained
sd-efficient matching, we must have a chain of agents of the size of infinity, where
each agent prevents the previous one from consuming more of a wasted object. This,
however, is not possible, as there are finitely many agents.

By following Kesten et al. (2011) and Hashimoto et al. (2014), we refer to
FðRi; a; riÞ as “agent i’s surplus at object a under r.“ We adapt the ordinal fairness
property of Kesten et al. (2011) and Hashimoto et al. (2014) to our setting as
follows.13

Definition 1 In problem ðR;DÞ, matching r is constrained ordinally fair if, for any
pair of agents i,j, and object a, FðRi; a; riÞ\FðRj; a; rjÞ and rj;a [ 0, then there
exists an agent k such that ri;a ¼ PrDði.akÞ þ

P
c2SUðRk ;aÞ rk;c.

In words, constrained ordinal fairness says that if agent i’s surplus at object a is
less than that of agent j while, at the same time, agent j receives a positive amount of
object a—an ordinal fairness violation instance—then some claimwise stability
constraint has to bind for agent–object pair (i, a). Therefore, giving more of object a
to agent i would go against claimwise stability. In the presence of constrained ordinal
fairness violation at the expense of agent i, we can increase agent i’s surplus at object
a (by a trade with agent j for an arbitrarily small amount of object a) while preserving
claimwise stability. Hence, constrained ordinal fairness advocates equality in terms of
surpluses to the extent that claimwise stability permits.

Remark 4 Ordinal fairness violation is not solely based on the object a’s allotment,
but on the total share of the objects that are at least weakly better than object a. Thus,
it does not necessarily imply that agent i, at the expense of whom ordinal fairness is
violated, receives a lesser amount of object a than agent j. However, the condition
that agent j receives a positive amount of object a ensures that agent i’s surplus can
be increased by taking away some positive amount of object a from agent j.14

However, under a constrained ordinally fair matching, doing that would go against
claimwise stability.

Remark 5 Constrained ordinal fairness partly justifies ordinal fairness violations on
the basis of allocation. That is, the condition of ri;a ¼ PrDði.akÞ þ

P
c2SUðRk ;aÞ rk;c

depends on the agent k’s share from SUðRk ; aÞ at r (the other term of PrDði.akÞ
purely comes from the primitives). While perhaps sounds contriving at first glance, it
could be supported via a myopic view. Suppose agent i objects the allocation because
of the ordinal fairness violation against himself at object a. That is, FðRi

; a; riÞ\FðRj; a; rjÞ and rj;a [ 0 for some agent j. From a myopic perspective, it

13 A matching r is ordinally fair if there are no pair of agents i, j, and object a such that FðRi

; a; riÞ\FðRj; a; rjÞ and rj;a [ 0.
14 Note that while agent i’s surplus can be increased by giving more of the objects that are better than
object a, agent j may not have a share from these objects.
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is plausible to fix the other objects’ assignments and look for a possible increase in
the agent i’s object a allotment, especially given the fact that agent j, for the sake of
whom violation occurs, receives a positive amount of object a. Put another way, one
can imagine that the assignments of all the objects except object a are taken as
granted and search for a room to increase agent i’s object a allotment. Constrained
ordinal fairness ensures that any such increase is impossible under claimwise
stability. Our approach to justifying a violation based on the allocation is common in
the field.15

A mechanism w is <non-wasteful, claimwise stable, constrained ordinally fair,
constrained sd-efficient> if, for each problem ðR;DÞ, wðR;DÞ is <non-wasteful,
claimwise stable, constrained ordinally fair, constrained sd-efficient>

A preference relation R0
i is the truncation of Ri from some object a 2 Ô if (i)

a Pi ;, (ii) for each pair of objects c; c0 2 Ô, c R0
i c

0 if and only if c Ri c0; and (iii)
c P0

i ; if and only if c 2 UðRi; aÞ.
Definition 2 A mechanism w is surplus-invariant to truncations if, for any problem
ðR;DÞ and any agent i, FðRi; a;wiðR0

i;R�i;DÞÞ ¼ FðRi; a;wiðR;DÞÞ where R0
i is the

truncation of Ri from object a.1617

The invariance axiom above requires no change in agent i’s surplus at object a
after he truncates his preferences from object a.18 It is easy to see that surplus
invariance to truncations is necessary for a mechanism to be strategy-proof; hence, it
is desirable for the strategic concerns,19 It is also of practical interest. In many real-
life problems, there is a cap on the number of objects that can be ranked in preference
lists.20 Under such caps, it is natural for agents to truncate their preferences and
submit a ranking only over their best objects. Our invariance property ensures that
agents’ surpluses at their last object under the truncated preferences would remain the
same even in the absence of caps; thus, caps do not hurt agents in this sense.

15 For instance, Ehlers et al. (2014) find the impossibility of obtaining the usual non-wastefulness in their
setting and define constrained non-wastefulness that partly justifies the waste based on the allocation.
Similarly, Troyan et al. (2020) weaken the standard fairness notion based on the whole allocation. The
same approach is used by Ehlers and Morrill (2019) and Sönmez and Yenmez (2022).
16 R�i is the preference profile of all the agents except agent i.
17 As R0

i is the truncation of Ri from object a, FðRi; a;wiðR0
i;R�i;DÞÞ ¼ FðRi; a;wiðR;DÞÞ if and only if

FðR0
i; a;wiðR0

i;R�i;DÞÞ ¼ FðRi; a;wiðR;DÞÞ.
18 This axiom is weak in that it allows changes in agent i’s shares from the objects in UðRi; aÞ as long as
his surplus at object a does not change. Similar axioms have been used for the characterization of PS or its
variants in some studies, including Hashimoto and Hirata (2011), Bogomolnaia and Heo (2012), Heo
(2014), Hashimoto et al. (2014), and Heo and Yılmaz (2015). The invariance properties in Hashimoto and
Hirata (2011), Bogomolnaia and Heo (2012), Heo (2014), Hashimoto et al. (2014), and Heo and Yılmaz
(2015) imply our invariance axiom, yet the converse is not true.
19 A mechanism w is strategy-proof if, for each problem ðR;DÞ, agent i, and R0

i 2 R, either wiðR;DÞ sd-
dominates (with respect to Ri) wiðR0

i;R�i;DÞ or wiðR;DÞ ¼ wiðR0
i;R�iDÞ.

20 For instance, students can rank at most 12, 4, and 3 schools in NYC, Rhode Island, and Cambridge,
respectively (see Sönmez and Pathak (2013)).
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2.2 Constrained probabilistic serial (CPS)

We relegate the formal description of CPS to Appendix A. Here, instead, we
informally outline how it works and run it on a simple example. Let us consider the
objects as perfectly divisible. In the course of CPS, over the unit-time interval and in
decreasing order of their preferences, agents continuously acquire object shares at the
speed of one. An agent stops consuming an object whenever the relevant claimwise
stability constraints start binding, or the object is exhausted (whichever occurs first).
The algorithm moves to the next step whenever an agent stops consuming an object,
and it terminates when each agent has consumed a total share of one.

Below, we run CPS on a simple example. Let N ¼ fi; j; kg and Ô ¼ fa; b; cg. The
preferences are given below.

Ri: a; b; c; ;; Rj: b; c; a; ;; Rk : a; c; b; ;.
Let suppðDÞ contain the following deterministic priorities.

Let Dð�Þ ¼ 3=4 and Dð�0Þ ¼ 1=4. Below demonstrates the working of CPS on
the example.

Step 1. Each agent first attempts to consume his favorite object. The best object of
both agents i and k is object a and PrDði.akÞ ¼ 3=4. Hence, because of the claimwise
stability constraints that each of these agents imposes on the other one for object a,
agents i and k can consume at most 3/4 and 1/4 of object a, respectively. As agent j
attempts to consume object b, no constraint is imposed on him in this round. Hence,
the agents start consuming their respective objects, and this round terminates at the
time of t1 ¼ 1=4 when agent k stops consuming object a. By the end of this step,
each agent has consumed 1/4 of his top object.

Step 2. Agent k now attempts to consume his second-best object, which is object
c. The others continue attempting to consume their previous objects. As the agents’
respective objects are all different, no claimwise stability constraint is imposed on the
agents in this step. Hence, they start consuming their objects and keep consuming
until time t2 ¼ 3=4 when object a has become exhausted. By the end of this step,
each agent has consumed 1/2 of his object.

Step 3. Agent i now attempts to consume his second-best object, which is object
b. Hence, both him and agent j desire to consume the same object in this round. We
have PrDði.bjÞ ¼ 1. However, agent i has already acquired 3/4 of his more preferred
object a. Therefore, agent j can consume at most 3/4 of object b. However, as he has
already consumed that much, he is not allowed to consume more of object b.

� �0

a b c a b c

j i j j i j

i j k k j i

k k i i k k
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Therefore, he stops consuming object b, implying that the step terminates at the time
of t3 ¼ 3=4, and no agent acquires a positive amount of any object.

Step 4. Agent j now attempts to consume his second-best object c. Therefore, both
agents j and k attempt to consume object c in this round. We have PrDðj.ckÞ ¼ 1.
However, as agent j has already consumed 3/4 of his more preferred object b, agent k
is allowed to consume at most 3/4 of object c. Note that agent k has already
consumed 1/2 of object c up to this step. Hence, the agents start consuming their
respective objects, and this step terminates at the time of t4 ¼ 1. In the course of this
step, each agent has acquired 1/4 of his object. By the end of this step, all the agents
have acquired a total share of one; hence, CPS terminates. Below is the CPS
outcome:

a b c ;

i 3/
4

1/
4

0 0

j 0 3/
4

1/
4

0

k 1/
4

0 3/
4

0

2.3 The results

We are now ready to state our results, whose proofs are relegated to Appendix B.

Theorem 1 A mechanism w is CPS if and only if it is non-wasteful, claimwise stable,
constrained ordinally fair, and surplus-invariant to truncations.

Theorem 2 A mechanism w is CPS if and only if it is constrained sd-efficient,
claimwise stable, and constrained ordinally fair.

The independence of the axioms is shown in Appendix C.

Remark 6 Constrained ordinal fairness can be seen as very tailored to CPS.
However, as we see in the independence analyses (in Appendix C), each property is
independent of others. Moreover, for constrained ordinally fair mechanisms different
from CPS, we can think of PS; and a mechanism that applies the agent-proposing
deferred acceptance ( Gale and Shapley (1962)) whenever the priorities are
deterministic, and otherwise CPS. As PS is ordinally fair ( Kesten et al. (2011) and
Hashimoto et al. (2014)), it is constrained ordinally fair. One can easily verify that
any (deterministic) stable matching is constrained ordinally fair in the deterministic
priority domain.21 This, as well as the constrained ordinal fairness of CPS, implies
that the second mechanism is also constrained ordinally fair.

21 A (deterministic) matching r is stable at ðR;DÞ, where D is deterministic, if it is non-wasteful, and for
any agent pair i, j and object c, whenever c ¼ ri Pj rj, PrDði�cjÞ ¼ 1.
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Remark 7 We present the whole analysis for the case of unit-copy objects. In the
case of multi-copy objects, claimwise stability is problematic, as extensively
discussed in Afacan (2018). Its caveat is that even though an agent may already
satisfy all of his demand with some object a, he may continue preventing someone
else from consuming the object through claimwise stability. For instance, consider a
problem with two agents i, j and one object a with the capacity of 2. Let
PrDði�ajÞ ¼ 1, and both agents prefer consuming object a. Here, agent j cannot
consume object a even if agent i receives 1 unit of object a (this is because
SUðRi; aÞ ¼ ;, hence

P
c2SUðRi;aÞ ri;c ¼ 0 at any matching r). Afacan (2018)

overcomes this caveat by transforming multi-quota problems into those with unit-
quota. The transformation is such that each copy of the same object is treated as a
different object with the same priority as the original. Agents’ preferences over this
extended set of objects are such that the ranking over the original objects is preserved
while the same object’s copies can be ranked in any matter. We can find a solution in
the artificial problem and straightforwardly transform it to the original problem (each
agent’s share from an object is the sum of the acquired shares from its copies in the
artificial problem). Similarly, any matching in the multi-copy problem can be written
as a matching in the unit-copy problem in the same manner. Thus, we can only
consider unit-copy problems without losing generality; thereby, our results can be
invoked in a multi-copy object problem through its corresponding unit-copy object
market.

Appendix A: the formal description of CPS

The description is taken from Afacan (2018). Let jN j ¼ n and jOj ¼ m. For agent i
and O0 � O, let topði;O0Þ denote the favorite object of agent i in O0. Given a n� m
matrix r, A ¼ ðAiÞi2N where Ai � O, a priority order profile D, below we define Ha

i

for each agent i 2 N and each object a 2 O:
Ha

i ðr;D;AÞ ¼ minfPrDði.ajÞþP
c2SUðRj;aÞ rj;c � ri;a : j 2 N n fig such that a ¼ topðj;AjÞg.
(Ha

i ðr;D;AÞ ¼ 1 if the above set is empty or a is the null-object).
Ha

i will keep track of how much more agent i can consume object a within each
step of the algorithm without violating claimwise stability constraints.

We define Mða;A;NÞ ¼ fi 2 N : a ¼ topði;AiÞg. Let A0 ¼ ðA0
i Þi2N where A0

i ¼
O for each i 2 N and r0 ¼ ½0� (matrix of zeros). Suppose that As�1 and rs�1 are
already defined. Then, for each a 2 S

i2N As�1
i :

ysðaÞ ¼
1�P

i2N rs�1
i;a

jMða;As�1;NÞj if Mða;As�1;NÞ 6¼ ; and a 6¼ ;
1 otherwise

8<
:

Let us define the followings,
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ys ¼minfysðaÞ : a 2 [i2NAs�1
i g

hs ¼minfHtopði;As�1
i Þ

i ðrs�1;D;As�1Þ : i 2 Ng
cs ¼minfys; hsg

For each i 2 N and object a 2 O:

rsi;a ¼
rs�1
i;a þ cs ifa ¼ topði;As�1

i Þ
rs�1
i;a otherwise

�
E ¼ fa 2 S

i2N As�1
i : a 6¼ ; and

P
i2N rsi;a ¼ 1g

As
i ¼ As�1

i n ðE [ topði;As�1
i ÞÞ if cs ¼ H

topði;As�1
i Þ

i ðrs�1;D;As�1Þ
As�1
i n E otherwise

(

Note that As
i keeps track of the set of objects from which agent i can keep

consuming in the next step. Here, E consists of the already exhausted objects. We
also exclude the top object of agent i, topði;As�1

i Þ, whenever the relevant claimwise
stability constraint starts binding.

The algorithm terminates whenever each agent has received a total object share of
one. As the algorithm moves to the next step when an agent stops consuming an
object and everything (i.e., both agents and objects) is finite, the algorithm terminates
in a finite step. If the algorithm finishes by the end of step s, then rs, becomes the
CPS outcome.

Appendix B: the proofs of proposition 1, Theorem 1, and Theorem 2

Proof of Proposition 1 Let r be a constrained sd-efficient matching at problem ðR;DÞ.
Assume for a contradiction that there exist an agent i and objects a, b such that
a Pi b, ri;b [ 0, a 6¼ ; (we will consider the null-object case later in the proof), andP

k2N rk;a\1. Then, by constrained sd-efficiency, we have ri;a ¼ PrDði.ajÞ þP
c2SUðRj;aÞ rj;c for some agent j. This is because, otherwise, we can give an

arbitrarily small amount of object a to agent i in return of the same amount of object
b. While this trade would benefit agent i, it would not violate claimwise stability,
contradicting the constrained sd-efficiency of r. Note that if a ¼ ;, then as no
claimwise stability constraint is imposed for the allocation of null-object, the same
kind of trade would directly go against the constrained sd-efficiency of r. Hence, in
the rest of the proof, we assume that a 6¼ ;.

As PrDði.ajÞ� 0, we have ri;a �
P

c2SUðRj;aÞ rj;c. This, along with our initial

supposition
P

k2N rk;a\1, shows that rj;a\1�P
c2SUðRj;aÞ rj;c. This, in turn, implies

that there exists an object d such that a Pj d and rj;d [ 0. By the same argument as
above, it implies that there exists an agent ‘ such that
rj;a ¼ PrDðj.a‘Þ þ

P
c2SUðR‘;aÞ r‘;c. We now claim that ‘ 6¼ i. Assume for a contradic-

tion that ‘ ¼ i. Then we have ri;a � 1� PrDðj.aiÞ and rj;a � 1� PrDði.ajÞ. These
inequalities imply that ri;a þ rj;a � 2� PrDði.ajÞ � PrDðj.aiÞ. From here, since
PrDði.ajÞ ¼ 1� PrDðj.aiÞ, we obtain ri;a þ rj;a � 1, which contradicts our initial
supposition (

P
k2N rk;a\1); hence, ‘ 6¼ i.
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Next, by the same reasoning as before, there exists an object z such that a P‘ z and
r‘;z [ 0. This in turn implies that there exists an agent h such that
r‘;a ¼ PrDð‘.ahÞ þ

P
c2SUðRh;aÞ rh;c. Then, by following the same steps in the

previous paragraph, we can easily show that h 6¼ j. Furthermore, in what follows, we
show that h 6¼ i as well.

Assume for a contradiction that h ¼ i. We already have ri;a � 1� PrDðj.aiÞ and
rj;a � 1� PrDð‘.ajÞ. The last finding also implies that r‘;a � 1� PrDði.a‘Þ. Now, we
can decompose PrDði.a‘Þ as follows: PrDði.a‘Þ ¼

P
�2suppðDÞ: j�ai�a‘

Dð�ÞþP
�2suppðDÞ: i�a‘�aj

Dð�Þ þP
�2suppðDÞ: i�aj�a‘

Dð�Þ. The sum of the last two terms

is less than or equal to PrDði.ajÞ. On the other hand, we have ri;a �PrDaði.ajÞ. The
first term, moreover, is less than or equal to PrDðj.a‘Þ. Similar to above, we also have
rj;a �PrDðj.a‘Þ. These findings, therefore, show that PrDði.a‘Þ� ri;a þ rj;a. This,
together with r‘;a � 1� PrDði.a‘Þ, implies that r‘;a � 1� ri;a � rj;a. This, in turn,
means that ri;a þ rj;a þ r‘;a � 1, which contradicts our initial supposition. Hence,
h 2 Nnfi; j; ‘g.

If we continue in the same manner as above, we obtain an object u such that
a Ph u and rh;u [ 0. This implies that there exists an agent l such that
rh;a ¼ PrDðh.alÞ þ

P
c2SUðRl ;aÞ rl;c. Then by following the same steps as above,

we can easily show that l 2 Nnfi; j; ‘; hg.
If we continue applying the same argument to agent l, then we find an agent who

is different from all the previously considered agents. Each iteration gives us a
different agent. This, however, is impossible because there are finitely many agents,
yielding a contradiction. Hence, r is non-wasteful. □

Proof of Theorem 1 ”If” Part: From Afacan (2018), CPS is claimwise stable and
constrained sd-efficient. Hence, by Proposition 1, it is non-wasteful as well. For
constrained ordinal fairness, let us assume that at some problem ðR;DÞ, for a pair of
agents i, k and object a, FðRi; a;CPSiðR;DÞÞ\FðRk ; a;CPSkðR;DÞÞ and
CPSðR;DÞk;a [ 0. As, in the course of CPS, agents consume objects in decreasing

order of their preferences, it implies that agent i stops consuming object a before it is
totally exhausted. By the definition of CPS, it happens only if some claimwise
stability constraint imposed on agent i for object a starts binding. That is, for some
agent j, CPSðR;DÞi;a ¼ PrDði.ajÞ þ

P
c2SUðRj;aÞ CPSðR;DÞj;c. Hence, CPS is con-

strained ordinally fair.
For surplus invariance to truncations, for some agent i, let R0

i be the truncation of
Ri from some object a. By its definition, CPS works the same at the truncated
preference profile until the time of t ¼ FðRi; a;CPSiðR;DÞÞ. Therefore,
FðRi; a;CPSiðR;DÞÞ ¼ FðRi; a;CPSiðR0

i;R�i;DÞÞ, showing that CPS is surplus-in-
variant to truncations.

“Only If” Part: Let w be a mechanism that is non-wasteful, claimwise stable,
constrained ordinally fair, and surplus-invariant to truncations. Let ðR;DÞ be any
problem. For ease of notation, let r ¼ CPSðR;DÞ and r0 ¼ wðR;DÞ. We now claim
that r ¼ r0. We prove it through obtaining that FðRi; a; riÞ ¼ FðRi; a; r0iÞ for every
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agent–object (i, a) pair. Assume for a contradiction that for some agent–object pair
(i, a), FðRi; a; riÞ 6¼ FðRi; a; r0iÞ. □

Claim 1 There exists an agent–object pair (i,a) such that a 6¼ ;, FðRi; a; r0iÞ\
FðRi; a; riÞ, and ri;a [ r0i;a.

First, it cannot be that for any agent–object pair (j, c), FðRj; c; r0jÞ�FðRj; c; rjÞ,
with strictly holding for some agent–object pair. This is because otherwise r0 would
sd-dominate r. This, along with the claimwise stability of r0, would contradict the
constrained sd-efficiency of CPS ( Afacan (2018)). Hence, for some agent–object
pair (i, a), FðRi; a; r0iÞ\FðRi; a; riÞ and ri;a [ r0i;a (the latter is true because

whenever FðRi; a; r0iÞ\FðRi; a; riÞ, there always exists an object b 2 UðRi; aÞ such
that FðRi; b; r0iÞ\FðRi; b; riÞ and ri;b [ r0i;b). Moreover, a 6¼ ; because FðRi

; ;; riÞ ¼ FðRi; ;; r0iÞ ¼ 1 (due to the non-wastefulness of w and CPS), finishing
the proof of Claim 1.

Let Z ¼ fFðRi; a; r0iÞ : ði; aÞ 2 N � Ô such that FðRi; a; r0iÞ\FðRi; a; riÞ and
r0i;a\ri;ag. Moreover, define Z 0 ¼ fFðRi; a; r0iÞ 2 Z : for any FðRk ; c; r0kÞ 2 Z,

FðRi; a; r0iÞ�FðRk ; c; r0kÞg. From Claim 1, Z 6¼ ;, thereby Z 0 6¼ ;. Let
FðRi; a; r0iÞ 2 Z 0.

Claim 2 For every agent-object pair (k,c) where c 6¼ ; and FðRk ; c; r0kÞ\
FðRi; a; r0iÞ, FðRk ; c; r0kÞ ¼ FðRk ; c; rkÞ.

For each agent–object pair (k, c) with FðRk ; c; r0kÞ\FðRi; a; r0iÞ, we have
FðRk ; c; r0kÞ�FðRk ; c; rkÞ. This is because, otherwise, FðRk ; c; r0kÞ\FðRk ; c; rkÞ.
This implies that for some object d 2 UðRk ; cÞ, we have FðRk ; d; r0kÞ\FðRk ; d; rkÞ
and r0k;d\rk;d (as r0 is non-wasteful, d is not the null-object, that is, d 2 Ô). Hence,

FðRk ; d; r0kÞ 2 Z. As d 2 UðRk ; cÞ, FðRk ; d; r0kÞ�FðRk ; c; r0kÞ; hence,
FðRk ; d; r0kÞ\FðRi; a; r0iÞ. This, as well as FðRk ; d; r0kÞ 2 Z, contradicts the fact
that FðRi; a; r0iÞ 2 Z 0.

Let D ¼ fðk; cÞ 2 N � Ô : FðRk ; c; r0kÞ\FðRi; a; r0iÞg. Note that if D is empty,
then there is nothing to prove. Hence, suppose that D 6¼ ;. Let t ¼
maxfFðRk ; c; r0kÞ : ðk; cÞ 2 Dg (as both the sets of agents and objects are finite,
this maximal selection–t– is well-defined).

In the course of CPS, agents consume objects in decreasing order of their
preferences until claimwise stability constraints start binding or objects are totally
exhausted. Hence, in particular, they do so until the time of t. This, as well as
FðRk ; c; r0kÞ�FðRk ; c; rkÞ for each ðk; cÞ 2 D, implies that FðRk ; c; r0kÞ ¼
FðRk ; c; rkÞ for each ðk; cÞ 2 D (because, otherwise, it would imply that for some
ðk; cÞ 2 D, agent k stops consuming object c in CPS before it gets exhausted or the
relevant claimwise stability constraints start binding (the latter is due to fact that r0 is
claimwise stable)). Therefore, for each ðk; cÞ 2 D, we have
FðRk ; c; r0kÞ ¼ FðRk ; c; rkÞ, proving Claim 2.

Claim 3 There exists an agent j such that FðRi; a; r0iÞ\FðRj; a; r0jÞ and r0j;a [ 0.
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Assume for a contradiction that for each agent j with r0j;a [ 0, we have

FðRj; a; r0jÞ�FðRi; a; r0iÞ. If we define NðaÞ ¼ fj 2 N : r0j;a [ 0g, then due to the

non-wastefulness of w (note that FðRi; a; r0iÞ\1 implies that agent i consumes some
positive amount of a less preferred object to object a at matching r0),P

j2NðaÞ r
0
j;a ¼ 1. On the other hand, ri;a [ r0i;a implies that for some agent

k 2 NðaÞ, we have rk;a\r0k;a. From here, if SUðRk ; aÞ 6¼ ;, then for any

b 2 SUðRk ; aÞ, we have FðRk ; b; r0kÞ\FðRi; a; r0iÞ, therefore FðRk ; b; rkÞ ¼
FðRk ; b; r0kÞ (by Claim 2). This, along with rk;a\r0k;a, implies that

FðRk ; a; rkÞ\FðRk ; a; r0kÞ�FðRi; a; r0iÞ\FðRi; a; riÞ. Note that if SUðRk ; aÞ ¼ ;,
then as rk;a\r0k;a, we directly obtain the above inequality. Hence,

FðRk ; a; rkÞ\FðRi; a; riÞ, and moreover, ri;a [ 0. Then, by constrained ordinal
fairness of CPS, rk;a ¼ PrDðk.asÞ þ

P
c2SUðRs;aÞ rs;c for some agent s. This implies

that
P

c2SUðRs;aÞ rs;c �FðRk ; a; rkÞ\FðRi; a; r0iÞ, hence
P

c2SUðRs;aÞ rs;c ¼P
c2SUðRs;aÞ r

0
s;c (by Claim 2). As rk;a\r0k;a, we have

r0k;a [PrDðk.asÞ þ
P

c2SUðRs;aÞ r
0
s;c, contradicting the claimwise stability of w.

Hence, there exists an agent j such that FðRi; a; r0iÞ\FðRj; a; r0jÞ and r0j;a [ 0,

finishing the proof of Claim 3.
As FðRi; a; r0iÞ\FðRj; a; r0jÞ and r0j;a [ 0, by the constrained ordinal fairness of w,

we have r0i;a ¼ PrDði.ahÞ þ
P

c2SUðRh;aÞ r
0
h;c for some agent h. As ri;a [ r0i;a, due to

the claimwise stability of r, we have
P

c2SUðRh;aÞ rh;c [
P

c2SUðRh;aÞ r
0
h;c. This also

implies that a is not the top object of agent h (note that a Ph ;, as otherwise due to the
non-wastefulness of w and CPS, we would haveP

c2SUðRh;aÞ rh;c ¼
P

c2SUðRh;aÞ r
0
h;c ¼ 1). Let object b be the least preferred object

in SUðRh; aÞ. Then we have FðRh; b; rhÞ[FðRh; b; r0hÞ.
To summarize our findings so far, we start with different matchings r and r0

produced by CPS and w at ðR;DÞ, respectively. We then obtain that for some agent–
object pair (i, a), ri;a [ r0i;a, and moreover, with another agent h, we find the triplet

ði; h; aÞ 2 N � N � O such that r0i;a ¼ PrDði.ahÞ þ
P

c2SUðRh;aÞ r
0
h;c. Moreover,

FðRh; b; rhÞ[FðRh; b; r0hÞ where b is the least preferred object by agent h among
the objects in SUðRh; aÞ.

Let us now consider the truncation R0
h of Rh from object b. Let R0 ¼ ðR0

h;R�hÞ,
CPSðR0;DÞ ¼ m, and wðR0;DÞ ¼ m0. As both CPS and w are surplus-invariant to
truncations, we have FðRh; b; mhÞ ¼ FðRh; b; rhÞ[FðRh; b; m0hÞ ¼ FðRh; b; r0hÞ.
Therefore, in particular, m 6¼ m0.

If we apply the same whole analysis above to the matchings m and m0, we find
another agent–object pair (j, d) such that mj;d [ m0j;d , and moreover, with another agent

k, we find a triplet ðj; k; dÞ 2 N � N � O such that
m0j;d ¼ PrDðj.dkÞ þ

P
c2SUðRk ;dÞ m

0
k;c. In this case, however, as

P
c2SUðR0

h;aÞ m
0
h;c ¼ 1

(due to the non-wastefulness of w and ; 2 SUðR0
h; aÞ), ðj; k; dÞ 6¼ ði; h; aÞ.
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Then, as the same as above, if we let agent k truncate his preferences from the least
preferred object in SUðRk ; dÞ and write R0

k for this truncated preferences, we obtain

different CPS and w outcomes at ~R ¼ ðR0
h;R

0
k ;RNnfh;kgÞ.22,23

If we keep applying the same steps above to the obtained different outcomes of
CPS and w at the generated truncated preferences, then each iteration gives us a
different triplet for which associated claimwise stability constraint binds. But then, as
both agents and objects are finite, we eventually reach the preference profile R00

where for each agent i, the only acceptable object is his top choice at the original
preference Ri. Moreover, if we let CPSðR00;DÞ ¼ s and wðR00;DÞ ¼ s0, then we have
s 6¼ s0.

As the same as above, at s and s0, there exists an agent–object pair (s, e) such that
ss;e [ s0s;e (where object e 6¼ ;), and moreover, with another agent s0, there exists a

triplet ðs; s0; eÞ such that s0s;e ¼ PrDðs.es0Þ þ
P

c2SUðR00
s0 ;eÞ

s0s0;c. Due to the definition of

R00 and the non-wastefulness of w and CPS, we haveP
c2SUðR00

s0 ;eÞ
s0s0;c ¼

P
c2SUðR00

s0 ;eÞ
ss0;c. This, along with the fact that ss;e [ s0s;e, implies

ss;e [PrDðs.es0Þ þ
P

c2SUðR00
s0 ;eÞ

ss0;c, contradicting the claimwise stability of CPS.

Hence, for any agent–object pair (i, a), FðRi; a; riÞ ¼ FðRi; a; r0iÞ, implying that
r ¼ r0, which finishes the proof.

Proof of Theorem 2 ”If“ Part. Afacan (2018) shows that CPS is constrained sd-
efficient. This, as well as Theorem 1, shows this part.

”Only If“ Part. Let w be a constrained sd-efficient, claimwise stable, and
constrained ordinally fair mechanism. Assume for a contradiction that w 6¼ CPS.
This means that for some problem ðR;DÞ, CPSðR;DÞ ¼ r, wðR;DÞ ¼ r0, and r 6¼ r0.

For the proof, we invoke the consumption process representation of matchings by
Bogomolnaia and Heo (2012): Any matching can be obtained as the outcome of a
consumption process where, over the unit-time interval, agents continuously acquire
probability shares of objects in decreasing order of their preferences at the speed of
one.

We now claim that for some agent–object pair (i, a), FðRi; a; riÞ[FðRi; a; r0iÞ.
This holds, as otherwise, r0 sd-dominates r, implying that r cannot be constrained
sd-efficient. This, however, contradicts the fact that CPS is constrained sd-efficient (
Afacan (2018)).

Let Z ¼ fFðRi; a; riÞ : ði; aÞ 2 N � O and FðRi; a; riÞ[FðRi; a; r0iÞg. From
above, Z 6¼ ;. Let (i, a) be such that FðRi; a; riÞ 2 Z and FðRi; a; riÞ�FðRj; b; rjÞ
for each FðRj; b; rjÞ 2 Z. For each ðk; cÞ 2 N � O with FðRk ; c; rkÞ\FðRi; a; riÞ,
we have FðRk ; c; r0kÞ�FðRk ; c;rkÞ. (1)

In CPS, each agent continues acquiring probability shares of objects until
claimwise stability constraints start binding or the objects are exhausted (whichever
occurs first). This, as well as the claimwise stability of w and (1), implies that for
each (k, c) with FðRk ; c; rkÞ\FðRi; a; riÞ, we have FðRk ; c; rkÞ ¼ FðRk ; c; r0kÞ. (2)

As FðRi; a; riÞ[FðRi; a; r0iÞ, for some object c 2 UðRi; aÞ, we have ri;c [ r0i;c

22 By the same previous arguments, object d is not the top object of agent k, and d Pk ;.
23 RNnfh;kg is the preference profile of the agents except agents h and k.
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and FðRi; c; riÞ[FðRi; c; r0iÞ. Without loss of generality, let ri;a [ r0i;a. By (2),

under both r and r0, the consumption process works the same until time
t ¼ FðRi; a; r0iÞ. This, as well as ri;a [ r0i;a, implies that under r0, agent i stops

consuming object a before it gets exhausted. Moreover, as r0 is constrained sd-
efficient (hence, by Proposition 1, it is non-wasteful), for some agent j, r0j;a [ 0 and

FðRi; a; r0iÞ\FðRj; a; r0jÞ. Then by (2) and the constrained ordinal fairness of w,
some agent, say k, starts consuming object a in the consumption process by time
t ¼ FðRi; a; r0iÞ, and the claimwise stability constraint on agent i (for object a) due to
agent k starts binding. Therefore, without loss of generality, we can take agent k as
agent j, and we have r0i;a ¼ PrDði.ajÞ þ

P
c2SUðRj;aÞ r

0
j;c. Thus, so far we have a group

of agents fi; jg and object a, where r0j;a [ 0, and for some object d, r0i;d [ 0 and

a Pi d (the latter is because FðRi; a; r0iÞ\FðRi; a; riÞ� 1).
We have r0i;a �

P
c2SUðRj;aÞ r

0
j;c. Therefore, for agent j, if object b is the least

preferred object to object a, then FðRj; b; r0jÞ�FðRi; a; r0iÞ\FðRi; a; riÞ (note that if
object a is the best alternative of agent j, then we take a ¼ b). If
FðRj; b; rjÞ\FðRi; a; riÞ, then by (2), FðRj; b; rjÞ ¼ FðRj; b; r0jÞ. This, as well as

r0i;a\ri;a, implies that ri;a [PrDði.ajÞ þ
P

c2SUðRj;aÞ rj;c, contradicting the claim-

wise stability of r. Therefore, we have FðRj; b; rjÞ�FðRi; a; riÞ, implying that
FðRj; b; r0jÞ\FðRj; b; rjÞ.

Let t0 ¼ FðRj; b; r0jÞ\FðRi; a; riÞ. As FðRj; b; r0jÞ\FðRj; b; rjÞ, for some object

d 2 UðRj; bÞ, r0j;d\rj;d . Without loss of generality, let r0j;b\rj;b. From (2), under

both r and r0, the consumption process works the same until time t0. This, as well as
r0j;b\rj;b, implies that under r0, agent j stops consuming object b before it gets

exhausted. Moreover, as r0 is constrained sd-efficient, for some agent k, r0k;b [ 0 and

FðRj; b; r0jÞ\FðRk ; b; r0kÞ. Then as the same as above, by (2) and the constrained

ordinal fairness of w, some agent, say h, starts consuming object b in the
consumption process by time t0, and the claimwise stability constraint on agent j (for
object b) due to agent h starts binding. Therefore, without loss of generality, let
k ¼ h, and r0j;b ¼ PrDðj.bkÞ þ

P
c2SUðRk ;bÞ r

0
k;c. Hence, we now have a group of

agents fi; j; kg and objects a, b, d such that r0j;a [ 0, r0k;b [ 0, r0i;d [ 0, a Pi d, and

b Pj a.
For agent k, let object e be the least preferred object to object b (if object b is the

top object, then we take e ¼ b). From above, FðRk ; e; r0kÞ\FðRj; b; r0jÞ\FðRi; a; riÞ.
If FðRk ; e; rkÞ\FðRi; a; riÞ, then by (2), we have FðRk ; e; r0kÞ ¼ FðRk ; e; rkÞ. This,
as well as r0j;b\rj;b, implies that rj;b [PrDðj.bkÞ þ

P
c2SUðRk ;bÞ rk;c, contradicting

the claimwise stability of r. Therefore, we have FðRk ; e; rkÞ�FðRi; a; riÞ. This
implies that FðRk ; e; r0kÞ\FðRk ; e; rkÞ. We then apply the same arguments above for
the agent–object pair (k, e). As both agents and objects are finite, continuing in the
same manner gives us a set of agents fi1; ::; img and set of objects fc1; ::; cmg such
that for each k ¼ 1; ::;m, r0ik ;ck [ 0 and ckþ1 Pik ck , where cmþ1 ¼ c1. For an

arbitrarily small amount, each agent ik can receive ckþ1 in return of giving the same
amount ck to agent ik�1. We keep everything else the same as under r0. By this way,
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we can obtain a matching that sd-dominates r0. Moreover, as these agents receive
better objects, the claimwise stability constraints imposed on others (because of
themselves) relax. This means that for an arbitrarily small amount of cyclic trade, we
can preserve claimwise stability. This, however, contradicts constrained sd-efficiency
of r0. Hence, r0 ¼ r, finishing the proof. □

Appendix C: the independence of the axioms for Theorem 1,
and Theorem 2

We provide four examples below to show the independence of the axioms. The
table below summarizes the properties that are simultaneously obtained and those
that are not in each example.

Claim. St NW Const. Sd-Eff Const. OF Surp. In

Ex 1. � U U U U

Ex 2. U � � U U

Ex 3. U U � U �
Ex 4. U U U � U

Example 1 FromHashimoto et al. (2014), we know thatPS is non-wasteful, ordinally fair,
hence constrained ordinally fair. It is easy to verify that PS is also surplus-invariant to
truncations. PS is sd-efficient, hence constrained sd-efficient. Yet, it is not claimwise
stablewhenever jN j � 2 (PS is defined for problemswithout priorities, hence it ignoresD).

Example 2 The mechanism that always leaves each agent unassigned is claimwise
stable, constrained ordinally fair, surplus-invariant to truncations, yet it is not non-
wasteful. By Proposition 1, it is not constrained sd-efficient either.

Example 3 Let N ¼ fi; jg and O ¼ fa; bg [ f;g. Consider the following preference
and deterministic priority profile:

Ri: a; b; ; and Rj : b; a; ;.
�a : j; i and �b : i; j.
Consider a mechanism w that gives the deterministic matching l where li ¼ b and

lj ¼ a at the above problem and coincides with CPS at all other problems. Note that
the CPS outcome at the above problem is such that both agents receive their top
choices. Hence, w 6¼ CPS. Notice that CPS sd-dominates w; hence, w is not con-
strained sd-efficient. As l is claimwise stable and non-wasteful, w is claimwise
stable and non-wasteful. Moreover, it is easy to verify that constrained ordinal
fairness is satisfied at l. This, along with the constrained ordinal fairness of CPS,
shows that w is constrained ordinally fair as well. However, w is not surplus-invariant
to truncations. To see this, let R0

j : b; ;; and let r be the outcome of w at the truncated

profile ðRi;R0
jÞ. Note that r is deterministic such that rj ¼ b. Hence, FðRj; b; ljÞ ¼ 0

and FðRj; b; rjÞ ¼ 1, showing that w fails to be surplus-invariant to truncations.
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Example 4 Let us consider a problem where N ¼ fi; j; kg and O ¼ fa; bg [ f;g.
Consider the following problem ðR;DÞ;

Ri¼ Rj ¼ Rk : a; b; ;:

Let Dð�Þ ¼ 1=2, Dð�0Þ ¼ 1=10, and Dð�00Þ ¼ 2=5. Let w be the mechanism that
gives the following matching r at the above instance and coincides with CPS at
every other instance.

a b ;

i 1/
2

1/6 1/3

j 1/
2

7/
30

4/
15

k 0 3/5 2/5

Note that the CPS outcome at the above problem is different from r as, for at least
(j, b) pair, CPSðP;DÞj;b ¼ 1=6. Hence, CPS 6¼ w. It is easy to verify that w is

constrained sd-efficient (hence, non-wasteful), claimwise stable, and surplus-
invariant to truncations. However, FðRi; b; riÞ\FðRj; b; rjÞ and rj;b [ 0, and for
every agent k 6¼ i, ri;b\PrDði.bkÞ þ

P
c2SUðRk ;bÞ rk;c. Hence, w fails to be

constrained ordinally fair.
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