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Abstract
We propose a solution concept for games that are played among players with present-
biased preferences that are possibly naive about their own, or about their opponent’s
future time inconsistency. Our perception-perfect outcome essentially requires each
player to take an action consistent with the subgame perfect equilibrium, given her
perceptions concerning future types, and under the assumption that other present and
future players have the same perceptions. Applications include a common pool
problem and Rubinstein bargaining. When players are naive about their own time
inconsistency and sophisticated about their opponent’s, the common pool problem is
exacerbated, and Rubinstein bargaining breaks down completely.

Keywords Present-biased preferences · Naivety · Common pool · Bargaining

1 Introduction

Time-inconsistent present-biased preferences are among the most prominent and
persistent behavioral biases in economics. For example, most people would prefer to
do an unpleasant task on May 1 rather than on May 15 when faced with that choice
on April 1. But on May 1, almost everyone will be inclined to postpone it to May 15.
This type of time inconsistency (often also referred to as hyperbolic discounting or
present-biasedness) has been put forward as an explanation of, for example, why
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economic agents would choose to use commitment devices to restrict their future
selves.1

O’Donoghue and Rabin (1999) provide a model for behavior with such present-
biased preferences. In their model, an individual decision-maker either is time-
consistent or has present-biased preferences. When present-biased, she can either be
sophisticated about that, or she can be naive. A sophisticated individual knows that
she will have present-based preferences in the future, and hence may today want to
restrict the choices of her future self. If she is naive, then she believes that although
she currently has present-biased preferences, her future self will behave in a time-
consistent manner.

However, many situations of interest to economists concern the interaction
between economic agents. Suppose for example that two individuals A and B bargain
over the distribution of a future payoff. Again, player A’s behavior will depend on
whether she is present-biased and, if so, whether she is naive or sophisticated about
that. However, her behavior will also depend on whether she perceives player B to be
time-consistent, and whether she believes player B is naive or sophisticated. It may
even depend on her perceptions concerning player B’s perceptions about player A.
Where the one-player model implies a game played between a current and future self,
a two-player model effectively implies a game played between both A and B’s current
and future selves.

In this paper, we study such games. We introduce a new solution concept for
games played between possibly present-biased players. As a starting point, we take
(O’Donoghue & Rabin, 1999) who consider a one-player game played by a current
self against her future self. The authors introduce the concept of a perception-perfect
strategy: a course of action that maximizes the current player’s utility given her
perception about her future self’s type, and given the behavior that can rationally be
expected of such a type. Here, ‘type’ refers to the extent to which her future self is
present-biased.

We first extend their analysis to one-player games with a richer strategy space,
both in the two-period case as well as in a set-up with more periods. We introduce a
perception-perfect outcome,2 an extension of O’Donoghue and Rabin (1999)
perception perfect strategy that can also be extended to a multi-player set-up. We then
analyze games with two players. We apply our solution concept to a common pool
problem (the overconsumption that results when competitors seek to exploit an
exhaustible resource), and to a model of Rubinstein bargaining (where two players
take turns in either accepting their counterpart’s offer or making a counteroffer).

Players’ perceptions concerning types are going to play a crucial role. Also,
behavior will depend not only on A’s perception of B, but also A’s perception of B’s

1 For a survey on the literature on time (in)consistency, see e.g., (Frederick et al., 2002). Some recent
literature has suggested that some people may be future-biased rather than present-biased, see e.g., Ashraf
et al. (2006) and Takeuchi (2011). For the remainder of this paper, we assume present-biasedness, as that is
the common assumption in the literature. However, the framework that we develop can readily be applied
to future-biasedness as well.
2 In an earlier version of this paper, we referred to our solution concept as the perception-perfect
equilibrium. However, we now feel that perception-perfect outcome is more appropriate as our solution
concept is not an equilibrium in the traditional sense.
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perception of A, etcetera. To deal with this complication we impose, first, that players
assume that their future selves have the same perceptions as their current self
(intraplayer perception naivety). Second, we impose that players assume that other
players have the same perceptions as they themselves have (interplayer perception
naivety).

Our concept of a perception perfect outcome then entails the following. Consider
player A. She has certain perceptions about her own future type, and about the future
type of the other player. Given those, and under the assumption that all other present
and future players have the same perceptions, we can derive the subgame perfect
equilibrium that player A perceives to be played. We call this the ‘equilibrium as
perceived by A’. Similarly, we can derive the equilibrium as perceived by B. The
perception perfect outcome in period t ¼ 1 then consists of an action taken by A that
is consistent with an equilibrium as perceived by A, and an action taken by B that is
consistent with an equilibrium as perceived by B. In all later periods, the same is true,
but given the actions that were played in the past.

From our two main applications, the common pool problem and Rubinstein
bargaining, we derive the following insights. First, suppose that players are naive about
their own future selves, but are sophisticated about the future self of others. This is
consistent with psychological evidence, as e.g., Kahneman (2011) argues.3 In that case,
we find that the common pool problem becomes much worse than in a standard world
with rational actors. This can be seen as follows. Suppose A perceives B to have present-
biased preferences in future. That implies that B will then claim a large share of the
common pool. But that will give A an incentive to preempt B and to claim a large share
today. The same holds for B. As a result, both players claim a large share of the pool
today, completely exhausting it. We show that this effect is even stronger than in a case
where both players know their future selves to also be present-biased.

In the case of Rubinstein bargaining, we show that the assumption that players are
naive about themselves but sophisticated about others, implies a breakdown in
bargaining. Suppose it is A’s turn to make an offer. She will base that offer on the
assumption that B will have present-biased preferences in future. Yet B perceives
herself to be time-consistent in future, and hence turns down A’s offer. This process
will continue indefinitely.

The remainder of this paper is structured as follows. In Sect. 2, we discuss related
literature. Section 3.1 looks at the case of one player. We first look at the case of a three-
period model in which the player has to make two sequential decisions, and generalize
the solution concept introduced by O’Donoghue and Rabin (1999). Section 4.1 further
generalizes to a model with more than three periods, and Sect. 4.2 gives examples in the
context of intertemporal consumption decisions. We then extend the analysis to a two-
player game, and introduce the concept of a perception-perfect outcome. We do so for
the three-period case in Sect. 5.1, and apply our solution concept to a common pool
problem in Sect. 5.2. Section 6.1 looks at a multi-period model, and Sect. 6.2 applies our
analysis to Rubinstein bargaining. Section 7 concludes.

3 Fedyk (2021) also gives some (quasi)-experimental evidence for this hypothesis. For example, in a
classroom survey, she finds that students expect themselves to finish their work 22 days before the
deadline, but fellow students to do so 9 days before. In fact, the average student hands in her work 7 days
before the deadline.
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2 Related literature

We are neither the first to develop approaches to solve games with possibly naive
present-biased players, nor are we the first to solve Rubinstein bargaining with such
players. Most notably, in an unpublished working paper, (Sarafidis, 2006) proposes
“naive backward induction” with possibly naive present-biased players. Akin (2007)
applies this to Rubinstein bargaining and allows naive players to learn.

In Sarafidis (2006), naive players assume that other players are also naive while
sophisticated players are sophisticated not only about their own future time
inconsistency, but also about the type of the other player. He then applies backward
induction taking the perceptions of players into account, something he coins naive
backward induction (NBI). Akin (2007) applies this concept to Rubinstein
bargaining. In doing so, he imposes that players are always sophisticated about the
type of the other player.

Instead, we assume interplayer perception naivety which implies that each player
assumes others to have the same perceptions as she herself has. Thus, a player that is
sophisticated about her opponent perceives her opponent to also be sophisticated
about himself. A player that is naive about herself also perceives others to be naive
about herself. This assumption helps in providing a consistent and flexible
framework that can also be applied to simultaneous move games such as the
common-pool problem. Indeed, we are the first to provide an analysis of such games
with present-biased players. A second difference is that we also allow players to be
naive about the type of their opponent. In Appendix A, we give an example of a
simple game in which NBI and our perception perfect outcome yield different
predictions.

Other related literatures include the following. In Akin (2009), a naive player
plays against a sophisticated player but learns about her naivety in the course of play,
Chade et al. (2008) analyze repeated games between sophisticated present-biased
players. Akin (2012) studies the behavior of individuals with present-biased
preferences who are either naive, partially naive or sophisticated, and are involved in
costly, long-run projects. Gans and Landry (2019) focus on how initially naive
present-biased players may update their beliefs concerning time inconsistency in a
dynamic game. In Weinschenk (2021), present-biased players play a dynamic game
in which they can collectively win a prize, and the probability of doing so is
increasing in total effort exerted. In that context, present-biased preferences increase
the incentive to exert effort to try to secure the prize quickly, hence helping to
overcome the incentive to free ride. Naive players do better than sophisticated ones.
Weinschenk (2021) implicitly assumes that players are equally naive (or sophisti-
cated) concerning other’s present-bias as they are concerning their own. Turan (2019)
studies a common-pool problem where one player perceives the other to have time-
biased preferences with some probability, while the other player can manipulate those
preferences through its actions. Compared to earlier work, our framework is more
general.

Schweighofer-Kodritsch (2018) studies Rubinstein bargaining allowing for any
time preference. However, he does assume both bargainers are sophisticated about
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their own time preference, and that of their counterpart. Consistent with our results in
Sect. 6.2, he finds no delay for any form of present bias; a future bias for at least one
of the bargainers is necessary for equilibrium delay. From our analysis, we have that
naivety and present bias can also cause delay, or even a bargaining breakdown. Lu
(2016) studies Rubinstein bargaining between two present-biased but sophisticated
players that may have a different degree of present-biasedness.

3 The one-player case: three periods

3.1 Equilibrium concept

Consider an agent that has to make decisions at t ¼ 1 and t ¼ 2: These determine the
outcome in the final period 3. The agent may have present-biased preferences.
Moreover, she may not be aware that her future self deciding at t ¼ 2 may also be
present-biased. The problem of the current self then is what action to take now given
her perceptions about her future self.

Throughout this paper, we consider the following preferences. Let ut be an agent’s
instantaneous utility or felicity in period t. In a model with T periods, we let
Ut ut; utþ1; . . .; uT ; b

i� �
represent her intertemporal preferences, where bi is a

parameter. We assume

Ut ut; utþ1; . . .; uT ; b
i� � � ut þ bi

XT
s¼tþ1

dsus ð1Þ

with 0\bi; d� 1: With bi ¼ 1; this collapses into the standard exponential dis-
counting function with discount factor d: With bi\1; we have the canonical model
of hyperbolic discounting introduced by Pollak and Phelps (1968). The agent then
has present-biased preferences, where bi represents her bias for the present.4 In other
words, she is time-inconsistent.

In this context, consider a one-player game with three periods, t ¼ 1; 2; 3; in
which player A makes two sequential decisions at t ¼ 1 and t ¼ 2. At t ¼ 1; she
chooses action a1 2 A1; with A1 her set of feasible actions. At t ¼ 2; she chooses
action a2 2 A2ða1Þ; with A2ða1Þ her set of feasible actions at t ¼ 2; which may
depend on a1: Her felicity in period 1 depends on a1; that in periods 2 and 3 will
depend on both a1 and a2. Thus uA1 ¼ uA1 ða1Þ; while uA2 ¼ uA2 a1; a2ð Þ and
uA3 ¼ uA3 ða1; a2Þ:

Her present bias at t ¼ 1 is denoted bA: Following O’Donoghue and Rabin (1999),
we allow for two possibilities: she either has present-biased preferences, so bA ¼ b;
where b\1 is exogenously given, or she is time-consistent and has bA ¼ 1: For ease
of discussion, we denote the true present-bias of the future self (i.e., that at t ¼ 2) as
cA; where we also assume cA 2 fb; 1g. Using (1) A’s lifetime utility at both dates is
thus given by

4 With future-biasedness, we would have b[ 1, see fn. 1. All the analyses in this paper would then still
apply, although the qualitative results would of course be different.
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UA
1 a1; a2; b

A� � ¼ uA1 ða1Þ þ bAduA2 a1; a2ð Þ þ bAd2uA3 a1; a2ð Þ ð2Þ

UA
2 a1; a2; c

A
� � ¼ uA2 ða1; a2Þ þ cAduA3 a1; a2ð Þ: ð3Þ

Following Strotz (1955) and Pollak (1968), we allow A either to be sophisticated
(knowing her future preferences exactly), or to be naive (believing her future biases
to be be identical to her current ones). We do not allow players to use probability
distributions over their future present-biasedness, believing for example that they will
be present-biased with a 50% probability. That would complicate the analysis even
further.5

First, suppose that bA ¼ 1: In that case, she must believe that cA ¼ 1 as well. It
makes no sense to believe one has present-biased preferences in future if that is not

the case today. Second, suppose that bA ¼ b; so she is present-biased. A naive player
knows that she has a present-bias today, but does not realize she also has one in
future: she assumes cA ¼ 1: Sophisticated players know they also have a present-bias
in future and assume cA ¼ b:

Denote by lA cð Þ the player’s belief that she has cA ¼ c in future. Thus, a naive
player has lAð1Þ ¼ 1; a sophisticated player lAðbÞ ¼ 1: In what follows, we use
“perception” rather than “belief” to stress that beliefs are not rationally formed using
Bayes’ rule. As noted, a time-consistent player will also have no present-bias in the

future. Thus, bA ¼ 1 must imply lAð1Þ ¼ 1:
Our model is a generalization of O’Donoghue and Rabin (1999).6 They define a

perception-perfect strategy as one in which a player always chooses the optimal
action given current preferences and perceptions. Define lA as the vector of
perceptions: lA � lA bð Þ; lAð1Þ� �

: In our set-up, we then have:

Definition 1 In the three-period one-player game, a perception-perfect strategy at
t ¼ 1 for a present-biased player, given her perceptions lA; is a strategy profile
ða�1; a�2Þ such that

a�2ða1; lAÞ � arg max
a22A2ða1Þ

X
c2 b;1f g

lA cð ÞUA
2 a1; a2; cð Þ; 8a1 2 A1; ð4Þ

a�1ðb; lAÞ ¼ arg max
a12A1

UA
1 a1; a

�
2 a1; l

A
� �

; b
� �

ð5Þ

Trivially, a perception-perfect strategy for a time-consistent player has

5 However, it would be no problem for our analysis if players would be partially naive, in the sense that
they are aware of a future present-bias, but underestimate its extent, i.e., they perceive to have a future b
that is larger than their true b, but smaller than 1.
6 In that paper, a possibly present-biased player has to perform an action once, and has to choose some
date in future when to perform that action. Yet, she has the possibility to renege on her plan in future.
Hence, if today she plans to do it tomorrow, when tomorrow comes she may decide to postpone the action
for another day. A sophisticated player will foresee this future tendency; a naive player will not.
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a�2 a1; 0; 1ð Þð Þ ¼ arg max
a22A2ða1Þ

UA
2 a1; a2; 1ð Þ

a�1 1; 0; 1ð Þð Þ ¼ arg max
a12A1

UA
1 a1; a

�
2 a1; 0; 1ð Þð Þ; 1� �

For the present-biased player, this can be understood as follows—First, given a1;
the current self assumes that the future self will take the action that maximizes the
future self’s utility. In the current self’s perception, with probability lAðbÞ, the future
self uses UA

2 a1; a2; bð Þ; while with probability lA 1ð Þ; she uses UA
2 a1; a2; 1ð Þ: The

maximizer is given by (4) and denoted a�2ða1; lAÞ: In period 1, given her perceptions,
the current self’s lifetime utility if she takes action a1 is given by
UA

1 a1; a�2 a1; lAð Þ; b� �
: The current self chooses a1 to maximize this expression,

hence (5). The perception-perfect strategy for the present-biased player follows
directly from backward induction.

Definition 2 In the three-period one-player game, a perception-perfect outcome is a
strategy profile ða�1; a�2Þ such that a�1 is part of a perception-perfect strategy at t ¼ 1
while a�2 maximizes the future self’s utility at t ¼ 2, given a�1.

Note that there is a crucial difference between the two concepts; a perception-
perfect strategy is a strategy profile that a player perceives to be played, while a
perception-perfect outcome is the strategy profile that will be played. There may be a
difference between the two if the player is present-biased and naive.

3.2 Application: intertemporal consumption, three periods

Consider a player that lives for 3 periods and has wealth 1 in period 1. Felicity in
each period is given by uAt atð Þ ¼ ffiffiffiffi

at
p

; with at consumption in period t. For
simplicity, we set d ¼ 1. A time-consistent player maximizes

UA
1 a1; a2ð Þ ¼ ffiffiffiffiffi

a1
p þ ffiffiffiffiffi

a2
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a1 � a2

p
:

which implies a�1 ¼ a�2 ¼ 1=3: This simple decision problem satisfies our set-up. Two
sequential decisions are made; a1 and a2; with A1 ¼ 0; 1½ � and A2 a1ð Þ ¼ 0; 1� a1½ �:
In period 3, she consumes whatever is left. Obviously, both the perception-perfect
strategy and the perception-perfect outcome of a time-consistent player have a�1 ¼
a�2 ¼ 1=3 as well.

We now solve for the perception-perfect strategy of the present-biased player.
Using (4), at t ¼ 2, given first-period consumption a1 and future present-biasedness
c; she chooses a2 as to maximize

UA
2 a1; a2; c

A
� � ¼ ffiffiffiffiffi

a2
p þ cA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a1 � a2

p
:

This yields
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a�2 a1; l
A

� � ¼ 1� a1

1þ blA bð Þ þ lA 1ð Þ½ �2 ¼
1� a1

1þ ~b
2 ;

where, for ease of exposition, we write

~b � blA bð Þ þ lA 1ð Þ: ð6Þ
Perceived consumption in the last period is then given by

a�3 a1; l
A

� � ¼ ~b
2
1� a1ð Þ

1þ ~b
2 :

Plugging this back into the lifetime utility of the current self yields

UA
1 a1; a

�
2 a1; l

A
� �

; b
� � ¼ ffiffiffiffiffi

a1
p þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a1

1þ ~b
2

s
þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b
2
1� a1ð Þ

1þ ~b
2

vuut

¼ ffiffiffiffiffi
a1

p þ b
1þ ~bffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~b

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a1
p

The current self thus sets

a�1 b; lA
� � ¼ 1þ ~b

2

b2 1þ ~b
� �2

þ1þ ~b
2
:

A sophisticated present-biased player has lA bð Þ ¼ 1 and lA 1ð Þ ¼ 0; so ~b ¼ b. She
would thus choose

a�1 b; 1; 0ð Þð Þ ¼ 1þ b2

b2 1þ bð Þ2þ1þ b2
:

and plan to have

a�2 a1; 1; 0ð Þð Þ ¼ 1� a�1
1þ b2

¼ b2 1þ bð Þ2
1þ b2
� �

2b2 þ 2b3 þ b4 þ 1
� � :

As the future self indeed has cA ¼ b; the profile ða�1 b; 1; 0ð Þð Þ; a�2 a1; 1; 0ð Þð ÞÞ is the
perception-perfect strategy as well as the perception-perfect outcome.

It is easy to see7 that a�1 1; 1; 0ð Þð Þ\a�1 b; 1; 0ð Þð Þ; a time-consistent player
consumes less in the first period than a sophisticated present-biased player. As a
present-biased player effectively has a higher short-run discount rate, she will choose
to consume more today.

7 We can write the inverse of a�1 b; 1; 0ð Þð Þ as 1þ b2 1þ 2b
1þb2

� �
, which is increasing in b on [0, 1], hence

a�1 b; 1; 0ð Þð Þ is decreasing in b, which implies the result.
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Now consider a naive present-biased player. She has lA bð Þ ¼ 0 and lA 1ð Þ ¼ 1; so
~b ¼ b. Hence

a�1 b; 0; 1ð Þð Þ ¼ 1

1þ 2b2

and she plans to have

a�2 a1; 0; 1ð Þð Þ ¼ 1� a�1
2

¼ b2

1þ 2b2
:

In period 2, however, she will find herself with cA ¼ b rather than cA ¼ 1 as she
expected. Hence, true second-period consumption will be

a�2 a1; bð Þ ¼ 1� a1
1þ b2

¼ 1

1þ 2b2
:

Thus, in this case, a perception-perfect strategy in period 1 is to choose a�1; a
�
2

� � ¼
1

1þ2b2
; b2

1þ2b2

� �
; while the perception-perfect outcome turns out to be a�1; a

�
2

� � ¼
1

1þ2b2
; 1
1þ2b2

� �
: It is interesting to note that a�1 b; 0; 1ð Þð Þ\a�1 b; 1; 0ð Þð Þ: Hence, a

naive player will choose a lower first-period consumption than a sophisticated one.
This “sophistication effect” can be understood as follows. Different from naive
players, sophisticated players are pessimistic about their future selves; they know
them to be present-biased and squander most of their wealth quickly. As a conse-
quence, sophisticated players restrict the tendency of the future self to over-consume
by increasing immediate consumption, which restricts the availability of future
resources. Rather than allowing future selves to squander the wealth, current selves
prefer to do so themselves. Hence, first period consumption is higher.

4 The one-player case: more periods

4.1 Equilibrium concept

We now generalize the problem in Sect. 3.1 to one with T þ 1[ 3 periods, so T is
the number of decisions to be made. This complicates matters. With T ¼ 3 for
example, the decision made at t ¼ 1 will first of all be influenced by her perceptions
concerning her type at t ¼ 2: We denote these as lA12: the first subscript reflects the
current time period, the second the time period to which these perceptions apply. But
the decision at t ¼ 1 will also be influenced by her perceptions concerning her type at
t ¼ 3; denoted lA13: Moreover, it will be influenced by her perception concerning the
future self’s action at t ¼ 2; which will in turn be affected by the perceptions of the
self at t ¼ 2 concerning her future self. Or rather, the perceptions the current self has
concerning these perceptions. Denote the latter as lA1 lA23

� �
; these are the perceptions
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that, at t ¼ 1; player A perceives her future self at t ¼ 2 to have concerning her type
at t ¼ 3: To simplify matters, we make the following assumptions8

Assumption 1 Perception consistency: Perceptions concerning the type of a future
self are identical for all future selves: lAij ¼ lAik for all i\T ; j; k 2 fiþ 1; . . .; Tg:
Assumption 2 Intraplayer perception naivety: Perceptions of a future self are
perceived to be identical to perceptions of the current self: lAi ðlAjkÞ ¼ lAik for all

T � k[ j[ i:

Note that there is a subtle difference between these two assumptions. Perception
consistency implies that a player rules out that her type will change at some point in
future. This seems a natural assumption to make; it is hard to justify a case in which,
say, a player is naive concerning her future self in even periods but sophisticated
concerning herself in odd periods.9 Intraplayer perception naivety implies that a
player rules out that her future self will change her opinion about selves that are in
the more distant future. Thus, we rule out that a player perceives today that her future
self in two weeks is sophisticated, but maintains the possibility that one week from
now she perceives that same future self to be naive.

This implies that we assume a naive player to never learn to become more
sophisticated. This greatly simplifies the analysis and seems consistent with casual
observation. Still, it is feasible to enrich our framework to allow for such learning,
but we leave that for future research.

At time t, define history Ht � a1; . . .; at�1ð Þ: Similar to (2) and (3), lifetime utility
at time t� T can then be written

UA
1 a; bA
� � ¼ u1ða1Þ þ bA

XT
k¼2

dk�1uAk ðHk ; akÞ þ bAdTþ1uATþ1ðHTþ1Þ;

UA
t a; cA
� � ¼ ut Ht; atð Þ þ cA

XT
k¼tþ1

dk�tuAk ðHk ; akÞ þ cAdTþ1uATþ1ðHTþ1Þ 81\t� T ;

with a the vector of all decisions: a � a1; a2; . . .; aTð Þ; and felicity in period T þ 1
also plays a role, just as we assumed in the case T ¼ 2: Given the assumptions
above, lA now reflects the perceptions at any time t concerning the type of the future

self at any time k[ t: More precisely lAðcÞ ¼ Pr cA ¼ cjbA ¼ b
� �

with cA the
present-biasedness at any future period.10

8 Note that these assumptions also implicitly made by O’Donoghue and Rabin (1999). They assume that a
naive player not only believes that she will be time-consistent in the next period, but also in any future
period. Effectively, this is our perception consistency. Also, they implicitly rule out complications that may
be caused by, say, a sophisticated player that maintains the possibility that he may be naive in future. This
is explicitly ruled out by our intraplayer perception naivety.
9 It is conceivable though that a player is sophisticated concerning the near future (say, up to some t� t�Þ;
but naive concerning the more distant future (t[ t�). It is straightforward to extend the analysis to allow
for such a possibility. That, however, is beyond the scope of this paper.
10 Hence, we do not need a subscript t on either c or cA:
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Definition 3 In the T þ 1-period one-player game, a perception-perfect strategy at
time s for a present-biased player, given her perceptions lA and history Ht is a
strategy profile ða�s ; a�sþ1; . . .a

�
T Þ such that

a�T ðHT ; l
AÞ ¼ arg max

aT2AT HTð Þ

X
c2 b;1f g

lA cð ÞUA
T HT ; aT ; cð Þ;

a�t ðHt; l
AÞ ¼ arg max

at2At Htð Þ

X
c2 b;1f g

lA cð ÞUA
t Ht; at; a

�
tþ1 Htþ1; l

A
� �

;
�

. . .; a�T ðHT ; l
AÞ; c�8s\t\T ;

a�sðb; lAÞ ¼ arg max
as2As Hsð Þ

UA
s Hs; as; a

�
sþ1 Hsþ1; l

A
� �

; . . .; a�T ðHT ; l
AÞ; b� �

:

ð7Þ

Trivially, a perception-perfect strategy for a time-consistent player has

a�T HT ; 0; 1ð Þð Þ ¼ arg max
aT2AT HTð Þ

UA
T HT ; 1ð Þ

a�t Ht; 0; 1ð Þð Þ ¼ arg max
at2At Htð Þ

UA
t Ht; a

�
tþ1 Htþ1; 0; 1ð Þð Þ; . . .; a�T ðHT ; 0; 1ð ÞÞ; 1� �

8s� t\T :

For the present-biased player, this can be understood as follows. In the current
self’s perception, the future self at t ¼ T has utility UA

T Ht; at; bð Þ with probability
lAðbÞ, and UA

T Ht; at; 1ð Þ with probability lA 1ð Þ. This yields (7). The maximizer is
denoted a�T ðHT ; lAÞ: In the current self’s perception, the future self at t ¼ T � 1 has
utility UA

T�1 HT�1; aT�1; a�T HT ; lAð Þ; b� �
with probability lAðbÞ, and

UA
T�1 HT�1; aT�1; a�T HT ; lAð Þ; 1� �

with probability lA 1ð Þ.11 This yields

a�T�1ðHT�1; lAÞ: This process unravels until period 1, where the current self chooses

the a1 that maximizes her utility given her perceptions and given her true bA.

Definition 4 In the T þ 1-period one-player game, a perception-perfect outcome is a
strategy profile ða�1; a�2; . . .; a�T Þ such that a�s is part of a perception-perfect strategy at
time s for all s ¼ 1; . . .; T :

Note again the crucial difference between the two concepts: a perception-perfect
strategy is a strategy profile that a player perceives to be played, while a perception-
perfect outcome is the strategy profile that will be played.

It is relatively straightforward to extend the analysis to infinitely many periods.
Solving such a model is similar to solving an infinite-horizon maximization problem
with time-consistent preferences, but under the assumption that all future selves have
the type the current self perceives them to have.

11 In both cases, HT ¼ ðHT�1; aT�1Þ: For ease of exposition, this dependence of future history on current
action is not explicitly taken into account in the notation in the definition.
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4.2 Application: intertemporal consumption, T + 1 periods

Consider the same example as in Sect. 3.2, but now with T þ 1 periods;

UA
1 að Þ ¼ ffiffiffiffiffi

a1
p þ ffiffiffiffiffi

a2
p þ . . .

ffiffiffiffiffi
aT

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

XT
t¼1

at

vuut :

In this case, a time-consistent player would set a�1 ¼ � � � ¼ a�T ¼ 1
Tþ1 :

Now solve for the perception-perfect strategy of a present-biased player. Define

total past consumption at time s as hs ¼
Ps�1

t¼1 at: At t ¼ T ; the player is perceived
by the self at t ¼ 1 to maximize

UA
T HT ; aT ; c

A
� � ¼ ffiffiffiffiffi

aT
p þ cA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hT � aT

p
:

This yields

a�T Ht; l
A

� � ¼ 1� hT

1þ blA bð Þ þ lA 1ð Þ½ �2 ¼
1� hT

1þ ~b
2 ;

where again ~b is given by (6). Now move back to T � 1:

UA
T�1 HT�1; aT�1; a

�
T Ht;l

A
� �

; cA
� � ¼ ffiffiffiffiffiffiffiffiffiffi

aT�1
p þ cA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hT�1 � aT�1

1þ ~b
2

s

þ cA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hT�1 � aT�1 � 1� hT�1 � aT�1

1þ ~b2

s

Perception consistency implies that the self at T � 2 is perceived to maximize

UA
T�1 ¼

ffiffiffiffiffiffiffiffiffiffi
aT�1

p þ ~b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hT�1 � aT�1

1þ ~b
2

s
þ ~b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hT�1 � aT�1 � 1� hT�1 � aT�1

1þ ~b
2

s

This yields

a�T�1 ¼
1þ ~b

2

~b
2
1þ ~b

� �2
þ1þ ~b

2
1� ht�1ð Þ:

Solving further is conceptually straightforward but analytically tedious.

5 The two-player case: three periods

5.1 Equilibrium concept

We now extend the analysis to multiple players. Now, the current decisions of a
player not only depend on her perceptions concerning her own future type, but also
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on those concerning the other player’s future type, and possibly even about those
concerning the other player’s perceptions, plus how those will affect future actions.

Consider two players, A and B. For ease of exposition, we refer to A as being
female, and to B as being male. Player i’s present-bias is denoted bi 2 1; bf g: The
true present-bias of player i’s future self is ci 2 1; bf g: There are 3 periods, t ¼
1; 2; 3: In the first two periods both A and B make a simultaneous decision. In t ¼ 1;
player A chooses a1 2 A1; while B chooses b1 2 B1 . At t ¼ 2; players learn the
actions taken at t ¼ 1; and player A chooses a2 2 A2ða1; b1Þ; while B chooses b2 2
B2ða1; b1Þ: We now have

Ui
1 a1; b1; a2; b2; b

i� � ¼ ui1ða1; b1Þ þ bidui2 a1; b1; a2; b2ð Þ þ bid2ui3 a1; b1; a2; b2ð Þ
Ui

2 a1; b1; a2; b2; c
i

� � ¼ ui2 a1; b1; a2; b2ð Þ þ cidui3 a1; b1; a2; b2ð Þ; i 2 fA;Bg:
In period 1, what A expects to happen in period 2 depends on her perceptions
concerning her own, and those concerning B’s future type. For simplicity, players can

observe each other’s current type, so both A and B observe bA and bB: This simplifies
the exposition, but it is straightforward to also allow players to have perceptions
concerning their competitor’s current type.

A straightforward extension of the one-player case is as follows. In the perception

of player A, we have lAAðcÞ ¼ PrA cA ¼ cjbA ¼ b
� �

. The first superscript on l
denotes that perceptions are held by A, the second that perceptions concern A. The
superscript on Pr denotes that this is the probability perceived by player A. Similarly,

lABðcÞ ¼ PrA cB ¼ cjbB ¼ b
� �

. Naturally, lBAðcÞ ¼ PrB cA ¼ cjbA ¼ b
� �

and

lBBðcÞ ¼ PrB cB ¼ cjbB ¼ b
� �

:

It is also of concern what, for example, A perceives B to perceive about A, that is
lAB lBAð Þ: We also assume naivety in this respect, in the sense that this equals what
A perceives about herself:

Assumption 3 Current interplayer perception naivety: Perceptions that the other
player has are identical to one’s own perceptions: lijðljkÞ ¼ lik for all
i; j; k 2 A;Bf g:

This is a natural extension of the intraplayer perception naivety we assumed in the
one-player case. Rather than ruling out that a future self has perceptions different
from the current self, we now assume that a player rules out that the other player has
perceptions different from herself.

For ease of exposition, restrict attention to present-biased players. Suppose for
example that A perceives both players to be time-consistent in future. If ða1; b1Þ is
played in period 1, she then expects a Nash equilibrium ðaA2 ; bA2 Þ to be played in
period 2 such that aA2 maximizes her future self’s utility given bA2 and given that she is
time-consistent, and such that bA2 maximizes B’s utility, given aA2 and given that he is
time-consistent. Thus,
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aA2 ¼ argmax
a2

UA
2 a1; b1; a2; b

A
2 ; 1

� �
bA2 ¼ argmax

b2
UA

2 a1; b1; a
A
2 ; b2; 1

� �
where superscripts denote the perceptions of player A. More generally,

Definition 5 Consider the three-period two-player game played by present-biased
players. In period 2, given ða1; b1Þ an equilibrium as perceived by player i 2 A;Bf g
is an outcome ai2ða1; b1; liAÞ; bi2ða1; b1; liBÞ

� �
that forms a Nash equilibrium of the

second-period game, given the perceptions of player i. Hence

ai2 ¼ arg max
a22A2ða1;b1Þ

X
c2 b;1f g

liA cð ÞUA
2 a1; b1; a2; b

A
2 ; c

� �
bi2 ¼ arg max

b22B2ða1;b1Þ

X
c2 b;1f g

liB cð ÞUB
2 a1; b1; a

A
2 ; b2; c

� �

Moving back to period 1, given that player A has a perception of the play that will
ensue in period 2 for any a1; b1ð Þ in period 1, it is straightforward to write down the
conditions for a subgame perfect Nash equilibrium as perceived by A. We refer to this
simply as an equilibrium as perceived by A.

Definition 6 In period 1, an equilibrium as perceived by i is an outcome

ai1 b; liA; liB
� �

; bi1 b; liA; liB
� �� �

that is part of a subgame perfect Nash equilibrium of the entire game, given the
perceptions of player i. Thus,

ai1 ¼ arg max
a12A1

UA
1 a1; b

i
1; a

i
2ða1; bi1; liAÞ; bi2ða1; b1; liBÞ; b

� �
bi1 ¼ arg max

b12B1

UB
1 ai1; b1; a

i
2ða1; b1; liAÞ; bi2ða1; b1; liBÞ; b

� �
:

ð8Þ

Using these definitions, and considering play in period 1, we thus expect player A
to take an action that she perceives to be part of a subgame perfect equilibrium for the
entire game, while we expect player B to take an action that he perceives to be part of
a subgame perfect equilibrium for the entire game.

Definition 7 A perception-perfect outcome is an outcome ða�1; b�1; a�2; b�2Þ such that
a�1 is part of an equilibrium as perceived by A; b�1 is part of an equilibrium as
perceived by B; a�2 is an equilibrium as perceived by A given ða�1; b�1Þ; and b�2 is an
equilibrium as perceived by B given ða�1; b�1Þ:

Note that a�1 and b�1 may not be part of the same equilibrium. Also, we assume that
players do not learn about the perceptions or type of the other player. But we do
allow them to base second-period play on actual play in period 1, rather than on what
they expected play to be in period 1.
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5.2 Application: the common pool problem

Consider the following common pool problem. Players A and B live for 3 periods
with a joint wealth of 1. Felicity is given by uit cð Þ ¼ cq; with q\1. For simplicity,
d ¼ 1. In each of 2 periods, each player takes an amount out of the common pool.
What is left in the last period is equally shared.12 We first derive the equilibrium for
our four player types and then compare these.

5.2.1 Time-consistent players

Respective utility functions in period 1 are

UA
1 a1; b1; a2; b2ð Þ ¼ aq1 þ aq2 þ

1� a1 � a2 � b1 � b2
2

� �q

:

UB
1 a1; b1; a2; b2ð Þ ¼ bq1 þ bq2 þ

1� a1 � a2 � b1 � b2
2

� �q ð9Þ

In period 1 player A correctly perceives the equilibrium in period 2 to satisfy

aA2 ¼ argmax aq2 þ
W2 � a2 � b2

2

� �q

ð10Þ

bA2 ¼ argmax bq2 þ
W2 � a2 � b2

2

� �q

: ð11Þ

with W2 � 1� a1 � b1 the amount of wealth left at the start of period 2. Taking the
first-order condition

qaq�1
2 � 1

2
q

1� a1 � a2 � b1 � b2
2

� �q�1

¼ 0;

yields the reaction function

a2 ¼ Ctc W2 � b2ð Þ with Ctc � 2
1

1�q

2þ 2
1

1�q

:

Imposing symmetry, this yields the Nash equilibrium

a�2 ¼ b�2 ¼ htcW2 with htc � Ctc

1þ Ctc
: ð12Þ

Now move back to period 1. Plugging (12) back into (9),

12 For simplicity, we assume parameters are such that the common pool is not depleted after period 2:
otherwise we would get corner solutions which complicate the analysis.
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UA
1 a1; b1; a2; b2ð Þ ¼ aq1 þ htcW2ð Þqþ 1

2
1� 2htcð ÞW2

� �q

Maximizing with respect to a1 :

qaq�1
1 � qhtc htcW2ð Þq�1� 1

2
1� 2htcð Þq 1

2
1� 2htcð ÞW2

� �q�1

¼ 0

hence

a1 ¼ Xtc 1� a1 � b1ð Þ with Xtc � hqtc þ
1

2
1� 2htcð Þ

� �q	 
 1
q�1

:

This implies that first period consumption choices equal

atc1 ¼ btc1 ¼ Xtc

1þ 2Xtc
; ð13Þ

where superscripts tc denote equilibrium values for the time-consistent case.

5.2.2 Sophisticated present-biased players

In this case, at t ¼ 1; the current self of player A perceives an equilibrium in period 2
to satisfy

aA2 ¼ argmax aq2 þ b
1

2
W2 � a2 � b2ð Þ

� �q

bA2 ¼ argmax bq2 þ b
1

2
W2 � a2 � b2ð Þ

� �q

:

ð14Þ

Taking the first-order condition of her own problem:

qaq�1
2 � 1

2
bq

1

2
W2 � a2 � b2ð Þ

� �q�1

¼ 0;

which implies the reaction function

a2 ¼ Cs � W2 � b2ð Þ with Cs �
1
2 b
� � 1

q�1

2þ 1
2 b
� � 1

q�1

: ð15Þ

Hence, along the same lines as above, this yields

a�2 ¼ b�2 ¼ hsW2 withhs � Cs

1þ Cs
:

Moving back to period 1, note the following. After period 1, W2 is left. Player A
perceives both players to consume hsW2 in period 2, hence in period 3, there is
1� 2hsð ÞW2 left, which is equally shared among both players. Hence, using (9), the
equilibrium in period 1 as perceived by A satisfies
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aA1 ¼ argmax
a1

aq1 þ b hsW2ð Þqþb
1

2
1� 2hsð ÞW2

� �q

:

bA1 ¼ argmax
b1

bq1 þ b hsW2ð Þqþb
1

2
1� 2hsð ÞW2

� �q

:

ð16Þ

The first-order condition for player A equals

qaq�1
1 � bqhs hsW2ð Þq�1� 1

2
bq 1� 2hsð Þ 1

2
1� 2hsð ÞW2

� �q�1

¼ 0

or

a1 ¼ Xs 1� a1 � b1ð Þ withXs � b
1

q�1 hqs þ
1

2
1� 2hsð Þ

� �q	 
 1
q�1

:

Imposing symmetry:

as1 ¼ bs1 ¼
Xs

1þ 2Xs
; ð17Þ

where superscript s denotes equilibrium values in the sophisticated case. As B faces
the same problem and has the same perceptions, she has the same perceived equi-
librium in periods 1 and 2 as A does. As players’ perceptions are correct, their
perceived play in period 2 equals actual play.

5.2.3 Naive present-biased players

If players are naive concerning all future selves, then A perceives the equilibrium in
period 2 to satisfy (10) and (11) so aA2 ¼ bA2 ¼ htcW2: The equilibrium perceived by A
at t ¼ 1 thus satisfies

aA1 ¼ argmax
a1

aq1 þ b htcW2ð Þqþb
1

2
1� 2htcð ÞW2

� �q

bA1 ¼ argmax
b1

bq1 þ b htcW2ð Þqþb
1

2
1� 2htcð ÞW2

� �q

:

This problem is essentially the same as in (16)—but with htc rather than hs: Maxi-
mizing thus yields

a1 ¼ Xn 1� a1 � b1ð Þ with Xn ¼ b
1

q�1 hqtc þ
1

2
1� 2htcð Þ

� �q	 
 1
q�1

:

Imposing symmetry:

an1 ¼ bn1 ¼
Xn

1þ 2Xn
: ð18Þ

As player B faces the same problem and the same perceptions, she has the same
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perceived equilibrium in periods 1 and 2 as player A does. However, perceptions turn
out to be incorrect: the equilibrium in the second period has them both consuming
hsW2 (as we saw in the previous analysis) rather than htcW2: Hence, actual con-
sumption in period 2 will turn out to be

an2 ¼ bn2 ¼ hs 1� 2Xn

1þ 2Xn

� �
:

5.2.4 Naive about yourself, sophisticated about the other

The most interesting case has both players perceive themselves to be time-consistent,
but their competitor to be present-biased in the future. In other words, each player is
naive concerning herself, but sophisticated concerning the other. As noted in the
introduction, Kahneman (2011) argues that this is the typical situation. In period 1,
Player A then perceives a second-period equilibrium

aA2 ¼ argmax aq2 þ
W2 � a2 � b2

2

� �q

bA2 ¼ argmax bq2 þ b
W2 � a2 � b2

2

� �q

:

From the analysis above, reaction functions perceived by A are

aA2 ¼Ctc W2 � bA2
� �

bA2 ¼Cs W2 � aA2
� �

;

hence

aA2 ¼ hnsW2 with hns ¼ Ctc 1� Csð Þ
1� CtcCs

;

bA2 ¼ hsnW2 with hsn ¼ Cs 1� Ctcð Þ
1� CtcCs

:

Below, we show that hns\hsn. Thus, A perceives to consume much less in period 2
than B. Note that reaction functions are strategic substitutes in the sense of Bulow
et al. (1985) the higher the consumption of B, the lower the share that A will claim.
Thus, as A perceives B to be very aggressive in period 2, she also perceives to make a
much lower claim herself.

In period 1, A perceives the following game to be played:

aA1 ¼ argmax
a1

aq1 þ b hnsW2ð Þqþb
1

2
1� hns � hsnð ÞW2

� �q

bA1 ¼ argmax
b1

bq1 þ b hsnW2ð Þqþb
1

2
1� hns � hsnð ÞW2

� �q

Taking first-order conditions:
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qaq�1
1 � bhnsq hnsW2ð Þq�1� 1

2
bq 1� hns � hsnð Þ 1

2
1� hns � hsnð ÞW2

� �q�1

¼ 0

qbq�1
1 � bhsnq hsnW2ð Þq�1� 1

2
bq 1� hns � hsnð Þ 1

2
1� hns � hsnð ÞW2

� �q�1

¼ 0

so

aq�1
1 ¼b hqns þ

1

2
1� hns � hsnð Þ

� �q� �
1� a1 � b1ð Þq�1

bq�1
1 ¼b hqsn þ

1

2
1� hns � hsnð Þ

� �q� �
1� a1 � b1ð Þq�1

This implies

a1 ¼ Xns 1� a1 � b1ð Þ with Xns ¼ b
1

q�1 hqns þ
1

2
1� hns � hsnð Þ

� �q	 
 1
q�1

;

b1 ¼ Xsn 1� a1 � b1ð Þ with Xsn ¼ b
1

q�1 hqsn þ
1

2
1� hns � hsnð Þ

� �q	 
 1
q�1

:

This implies

ans1 ¼ Xns

1þ Xns þ Xsn

bns1 ¼ Xsn

1þ Xns þ Xsn

In period 1, A expects these shares to be played, but B expects the opposite shares.
Both will thus consume Xns= 1þ Xns þ Xsnð Þ; so after period 1, W2 ¼ 1�
2Xns= 1þ Xns þ Xsnð Þ will be left. In period 2, both consume a share hns of that
wealth, and expect their opponent to consume hsn: We now have

Theorem 1 In the common pool problem, present-biased players always claim a
larger first-period share than time-consistent players. Those naive about themselves
but sophisticated about others claim the largest first-period share, while those that
are completely naive claim the lowest: ans1 [ as1 [ an1 [ atc1 :

Proof In Appendix B. h

This can be understood as follows. It is immediate that naifs consume more than
time-consistent players. Sophisticated players consume more than naifs for two
reasons. First, they know that their future selves will squander resources, which
induces them to consume more today—an effect we also saw in Sect. 3.2. Second,
they also know that their competitor will squander future resources, inducing them to
consume even more today.

Now consider players that are naive about themselves, but sophisticated about
their competitor. Each then perceives that in the future, her competitor will be very
aggressive to the detriment of herself. The unfounded fear of getting an unequal share
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in the future gives both players an incentive to make a large claim today. This
seriously exacerbates the common pool problem.

5.2.5 A numerical example

For b ¼ 1=2 and q ¼ 1=3, Table 1 gives consumption levels and total utility for all
scenarios.13 From the Table, time-consistent players indeed take much less from the
common pool in period 1 than any present-biased player. The difference between
sophisticated and naive is relatively small. First-period consumption is much higher
if one is sophisticated about the other, but naive about oneself.

Interestingly, players end up better off when they are naive rather than
sophisticated. That was not the case in the one-person games described earlier.
There, sophisticated players realize they are time-inconsistent tomorrow and hence
take measures today to minimize the impact of that. But now, sophisticated players
are also sophisticated about their opponent’s future behavior, which induces them to
behave more aggressively today, in an attempt to secure at least some of the
resources. Sophistication thus triggers a prisoners’ dilemma in which both players
claim more to avoid being short-changed tomorrow.

Perception perfect outcomes with time-consistent players, sophisticated present-
biased players, naive present-biased players, and present-biased players that are naive
about their own present-biasedness but sophisticated about that of the other player
(soph other). Columns give the consumption per player in the first (a1), second (a2)
and third period (a3) as well as total discounted lifetime utility in period 1.

5.2.6 Partial naivety

The analysis above can be easily extended to a case of partial naivety, in which

players perceive their future self to have some present-bias b̂ 2 ðb; 1Þ, see fn. 5. In

that case, the expression for aA2 in (14) has a b rather than a b̂, which in turn implies

that the expression for Cs in (15) becomes a Ĉs and has b̂s rather than bs.
Qualitatively, the equilibrium then converges from the sophisticated to the naive

equilibrium as b̂ # b.
In the analysis where players are partially naive about themselves but sophisti-

cated about the other, Ctc is replaced by Ĉs and the remainder of the analysis goes

Table 1 Numerical example
common pool problem; b ¼ 1=2,
q ¼ 1=3

a1 a2 a3 U

Time-consistent 0.2981 0.1492 0.0528

Sophisticated 0.4110 0.0791 0.0099 1.0654

Naive 0.4033 0.0859 0.0107 1.0698

Soph other 0.4780 0.0196 0.0024 0.9840

13 Total utility is from the perspective of period 1. Total utility in the time-consistent case is not reported,
as players then use a different utility function than in the other scenarios.
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through as above. Again, the equilibrium converges from the sophisticated

equilibrium to the one derived above as b̂ # b.

6 Two-player case: more periods

6.1 Equilibrium concept

We now extend the two-player two-period model to a setting with T þ 1 periods,
T [ 2: This is conceptually straightforward, but notationally tedious. In t ¼ 1, A
perceives that in period T a game is played between herself and B with both players
having the type she perceives them to have. Moving back to T � 1, she can then
derive perceived equilibrium play in that period. Continuing in this manner yields a
perceived equilibrium in period 1, and hence a course of action for A in period 1,
with a similar analysis for B.

To analyze this problem, we again need to make simplifying assumptions
concerning the perceptions of players. Not only do we need that A has to believe that
she has the same perceptions as B concerning future types, we also need that higher-
order perceptions are perceived to be equal. In other words, we also need that the
perceptions that A has in period l concerning the perceptions of B in period m
concerning the perceptions of A in period n, equal the perceptions that A thinks she
herself has in period l concerning herself in period n. Thus,

Assumption 4 Future interplayer perception naivety: Perceptions that the other
player has concerning future perceptions, are assumed identical to one’s own:
lilmjðljmnkÞ ¼ lilmiðljmnkÞ for all i; j; k 2 A;Bf g:

Without this, we have to allow for the possibility that in some future period A
maintains the possibility that B has different perceptions concerning future types than
she herself has. This would require higher order beliefs for A concerning perceptions,
which would highly complicate matters. Together with the previous assumptions,
future interplayer perception naivety implies that all perceptions are always constant
—and are always assumed to be constant.

History at time t is now defined as Ht � a1; b1; . . .; at�1; bt�1ð Þ: Lifetime utility at
time t� T for player i can be written

Ui
1 a; b; bi
� � ¼ ui1ða1; b1Þ þ bi

XT
k¼tþ1

dk�tuikðHk ; ak ; bkÞ þ bidTþ1uiTþ1ðHTþ1Þ

Ui
t a; b; ci
� � ¼ uitðHt; at; btÞ þ ci

XT
k¼tþ1

dk�tuikðHk ; ak ; bkÞ þ cAdTþ1uATþ1ðHTþ1Þ

81\t� T for i 2 fA;Bg; a ¼ða1; . . .; aT Þ and b ¼ðb1; . . .; bT Þ:
The analysis for T ¼ 2 naturally extends to more periods. Consider period T. In an

equilibrium as perceived by i, actions taken then will be mutual best responses given
the perceptions i has, and given the history of play. Again, we can write player i’s
perceptions about j’s future type as lij. Given perceived play in period T, i can then
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move to T � 1 and derive a perceived equilibrium for that period. This process
unravels until period 1.

Definition 8 In the T þ 1-period, 2-player game with present-biased players, an
equilibrium at time s as perceived by i, given her perceptions li and history Ht is a
sequence ðais; bis; aisþ1; b

i
sþ1; . . .; a

i
T ; b

i
T Þ such that

1. For period T

aiT ¼ arg max
aT2AT ðHT Þ

X
c2 b;1f g

liA cð ÞUA
T HT ; aT ; b

A
T ; c

� �
biT ¼ arg max

bT2BT ðHT Þ

X
c2 b;1f g

liB cð ÞUB
T HT ; a

A
T ; bT ; c

� �

2. For periods t with s\t\T

ait Hsþ1; l
A

� � ¼ arg max
at2At Htð Þ

X
c2 b;1f g

liA cð ÞUA
t Ht; at; b

i
t; a

i
tþ1 Htþ1; l

A
� �

;
�

bitþ1 Htþ1; l
A

� �
; . . .; aiT ðHT ; l

AÞ; biT HT ; l
A

� �
; c
�

bit Hsþ1; l
A

� � ¼ arg max
bt2Bt Htð Þ

X
c2 b;1f g

liB cð ÞUB
t Ht; a

i
t; bt; a

i
tþ1 Htþ1; l

A
� �

;
�

bitþ1 Htþ1; l
A

� �
; . . .; aiT ðHT ; l

AÞ; biT HT ; l
A

� �
; c
�

3. For t ¼ s

ais ¼ arg max
as2As Hsð Þ

UA
s Hs; as; b

i
s; a

i
sþ1 Hsþ1; l

A
� �

; bisþ1 Hsþ1; l
A

� �
;

�
. . .; aiT ðHT ; l

AÞ; biT HT ; l
A

� �
; b
�

bis ¼ arg max
bs2Bs Hsð Þ

UB
s Hs; a

i
s; bs; a

i
sþ1 Hsþ1; l

A
� �

; bisþ1 Hsþ1; l
A

� �
;

�
. . .; aiT ðHT ; l

AÞ; biT HT ; l
A

� �
; b
�

Using these definitions, and considering play in period 1, we thus expect A to take
an action that she perceives to be part of a subgame perfect equilibrium for the entire
game, while we expect B to take an action that he perceives to be part of a subgame
perfect equilibrium for the entire game.

Definition 9 A perception-perfect outcome is an outcome a�1; b
�
1; a

�
2; b

�
2; . . .; a

�
T ; b

�
T

� �
such that 8s 2 f1; . . .; Tg a�s is part of an equilibrium at time s as perceived by A; b�s
is part of an equilibrium at time s as perceived by B.

Again players do not learn about the perceptions or type of the other player. But
we do allow them to base second-period play on actual play in earlier periods, rather
than on what they expected play to be.
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6.2 Application: sequential bargaining

We apply our framework to a dynamic bargaining game as proposed by Stahl (1972)
and Rubinstein (1982). Two players bargain over the division of a pie of size 1. There
are T periods.14 In odd-numbered periods ðt ¼ 1; 3; 5; . . .Þ A proposes a sharing rule
ðxt; 1� xtÞ that B can accept or reject. The first argument of the sharing rule always
represents the share obtained by A, the second the share obtained by B. If B accepts,
the game ends and the sharing rule is implemented. If B rejects, he makes a
counteroffer in the next period that A can accept or reject. In the standard
specification, both players have time-consistent preferences. If ðx; 1� xÞ is accepted
at time t, payoffs are ðdtAx; dtB 1� xð ÞÞ; with dA the discount factor of A and dB that of
B.

6.2.1 Time-consistent players

To fix ideas, we first consider the solution to the standard model. Suppose T is even.
We look for a subgame perfect equilibrium. In period T, A will accept any proposal.
Player B will thus offer xT ; 1� xTð Þ ¼ ð0; 1Þ: Knowing this, in period T � 1, player
A claims the highest share that B would be willing to accept, and hence offers
ð1� dB; dBÞ: With the same logic, in period T � 2; B makes sure A would be just
willing to accept, offering dA 1� dBð Þ; 1� dA 1� dBð Þð Þ; etc. The equilibrium has A
making an offer in period 1 that is immediately accepted.

6.2.2 Present-biased players

Now consider present-biased players. Our solution concept requires that in each
period each player chooses the action that is part of a subgame-perfect equilibrium,
given her perceptions.

Suppose that both players use discount factor d: Player A perceives her future self
to have type cAA 2 b; 1f g and the future B to have type cAB 2 b; 1f g: She also
perceives all present and future players to have the same perceptions. Hence, A
perceives future selves to act as if A’s true discount factor is cAAd; while B’s true
discount factor is cABd: In her perception, the game will thus unfold as follows. In
period T, player B will again offer (0, 1). Knowing this, in T � 1, player A makes
sure B is just willing to accept, offering ð1� cABd; cABdÞ: In period T � 2 the current
A perceives B to offer her the lowest share she is willing to accept, which is
cAAd 1� cABdB

� �
; 1� cAAd 1� cABd

� �� �
; etcetera. The equilibrium as perceived by B

can be derived in a similar manner.15

14 Note that in this model that again implies T periods in which decisions are made.
15 Note that we also need that player A prefers her current offer above what she will get from B in future,
properly discounted. It is easy to show that that is always satisfied.
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6.2.3 Infinite horizon

To derive qualitative predictions, we consider an infinite horizon. Suppose players
are time-consistent and have discount factors dA and dB: In a period where it is player
A’s turn to make an offer, we know that the unique equilibrium has a payoff to A that
equals

pAðA moves firstÞ ¼ 1� dB
1� dAdB

:

If it is B’s turn to make an offer, we have

pAðB moves first) ¼ dA 1� dBð Þ
1� dAdB

:

Expressions for pB are similar. A straightforward proof can be found in Shaked and
Sutton (1984) or Fudenberg and Tirole (1991) chapter 4.

Now consider the equilibrium as perceived by A in our model. With a finite
horizon, that equilibrium is equivalent to one with time-consistent players where
dA ¼ cAAd and dB ¼ cABd: It is straightforward to see that that also applies to the
infinite horizon case.16 Thus, for any future period where A moves first, i 2 A;Bf g
perceives A’s continuation payoffs to be

piAðA moves firstÞ ¼ 1� ciAd

1� ciAciBd2
:

and those of B:

piBðA moves firstÞ ¼ ciA 1� ciBð Þ
1� ciAciB

More generally, for any future period where j moves first, i perceives the continuation
payoffs of player k to be

pikðj moves firstÞ ¼
1� cimd

1� ciAciBd2
j ¼ k;m 6¼ j

cikd 1� cijdð Þ
1� ciAciBd2

j 6¼ k

8>>><
>>>:

for i; j; k;m 2 A;Bf g:
Note that these expressions apply to any future period. By assumption, A can

observe B’s current type bB. When making an offer in period 1, Awill thus offer the
lowest amount B is willing to accept, given that if he makes a counteroffer, his

continuation payoff will be 1� cAAd
� �

= 1� cAAcABd2
� �

: Thus, A offers

16 The proof is identical to that in Shaked and Sutton (1984) or Fudenberg and Tirole (1991) but using
discount factors cAAd and cABd rather than dA and dB: Hence, we do not repeat it here.
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1� xt c
AA; cAB

� � ¼ bBd 1� cAAd
� �

1� cAAcABd2
: ð19Þ

A similar analysis holds if it is player B’s turn to move.
In period 1, B perceives his continuation payoff to be

pBBðB moves firstÞ ¼ 1� cBAd

1� cBAcBBd2
:

He will reject A’s offer (19) if he perceives it to give him a lower net present value
than holding out and making a counteroffer in the next period, thus if

bBd 1� cAAd
� �

1� cAAcABd2
\

bBd 1� cBAd
� �

1� cBAcBBd2
:

Hence

Theorem 2 In the perception-perfect outcome of the Rubinstein bargaining game, in
period t, player i will offer

b jd 1� ciidð Þ
1� ciAciBd2

to player j, i 2 A;Bf g; j 6¼ i . Player j will accept if and only if

1� ciid

1� ciAciBd2
� 1� cjid

1� cjAcjBd2
: ð20Þ

Note that this expression does not depend on b: Thus, if we have present-biased
preferences but no naivety, there is no delay in reaching an agreement. More
generally, if A and B share the same perceptions (thus cAA ¼ cBA and cBA ¼ cBB) both
sides of (20) are equal and there is no delay. Any player offers what she perceives the
other is willing to accept. If these perceptions are common, we get the same
qualitative outcome as in the standard Rubinstein model, and the first offer is
immediately accepted.

6.2.4 Bargaining breakdown

From (20), we immediately have

Corollary 3 In the Rubinstein bargaining model with present-biased players, an
agreement is never reached when the following conditions hold:

1� cAAd

1� cAAcABd2
\

1� cBAd

1� cBAcBBd2
ð21Þ
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1� cBBd

1� cBAcBBd2
\

1� cABd

1� cAAcABd2
: ð22Þ

Suppose that both players are sophisticated about the other, but naive about
themselves, so cAB ¼ cBA ¼ b and cAA ¼ cBB ¼ 1: In that case, the denominators of
both (21) and (22) are equal, and both conditions simplify to 1� d\1� bd, which
is always satisfied. Hence, bargaining breaks down and the two parties never reach an
agreement.17

The intuition is as follows. If A makes an offer, she perceives the future B to be
present-biased. Hence, her offer will be relatively low, as she perceives B to be
impatient. However, B perceives his future self to be patient. Therefore, he will not
accept A’s offer, as he perceives to be able to do better. The opposite is true when B
makes an offer. Hence, players keep rejecting each others’ offers and an agreement is
never reached.

For the sake of argument, now suppose that each player is sophisticated about
herself, but naive about the other so cAB ¼ cBA ¼ 1 and cAA ¼ cBB ¼ b: Then, (21)
and (22) simplify to 1� bd\1� d, which is never satisfied. Players immediately
reach an agreement. Player A now perceives a future B to be more patient that B
himself perceives his future self to be. Hence, the offer of A is better than B was
expecting, and he will gladly accept.

When players differ in their naivety, the outcome depends on who moves first.
Suppose A is naive about both players, while B is sophisticated about both. Hence,
cAA ¼ cAB ¼ 1 and cBA ¼ cBB ¼ b: Conditions (21) and (22) then simplify to

1� d

1� d2
\

1� bd

1� bd2

1� bd

1� b2d2
\

1� d

1� d2

The first condition is always satisfied; the second never is. We thus have delay in
bargaining: B rejects A’s offer, but A accepts the counteroffer. When B moves first, A
accepts immediately, perceiving B’s offer as very generous.

6.2.5 Partial naivety

It is easy to apply the analysis above to the case of partial naivety, where players

perceive their future self to have some present-bias b̂ 2 ðb; 1Þ. All the analyses above
then simply go through with b̂ rather than b. Hence, when players are sophisticated
about others, then even the slightest naivety already leads to a complete bargaining
breakdown.

17 Note that Akin (2007) finds essentially the same result where he assumes that players are naive about
themselves and sophisticated about the other, although the solution concept used to reach that agreement is
slightly different – see the discussion in Sect. 2. For more reasons why there may be delay (rather than
breakdown) in Rubinstein bargaining, see e.g., Yildiz (2004) and the references therein.
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7 Conclusion

In this paper, we proposed a solution concept, perception-perfect outcome, for games
played between players with present-biased preferences that are possibly naive about
their own future time inconsistency, and/or the time inconsistency of their competitor.
A perception-perfect outcome essentially requires each player in each period to play
an action that is consistent with subgame perfection, given the perception of that
player concerning the time consistency of each player, and under the assumption that
all other present and future players have the same perceptions.

We applied our solution concept to the common pool problem and to Rubinstein
bargaining. In both cases, we showed that if we assume that players are sophisticated
about their competitor’s future present-biasedness but naive about their own, the
perfection-perfect equilibria of those games are disastrous. The common pool is
exhausted much more quickly than with standard rational players, and even more
quickly than present-biased players that are sophisticated, or naive about everyone.
Bargaining in the Rubinstein model breaks down completely (as in Akin (2007)), as
each offer is rejected.

Of course, our approach is just a first step in the analysis of such games. There is
much room for further analysis. For example, our perception-perfect outcome
requires that players are strategically naive, in the sense that they do not take into
account the possibility that other players may have different perceptions. Second,
naive players never learn about their own present-biasedness, and stubbornly persist
in believing that in the future, they will be different. If players do learn in this respect,
then our most extreme predictions may be softened. For example, bargaining may not
break down completely, but only finish after many periods. Third, players do not
learn from past behavior of other players. If offers in a bargaining game are rejected
repeatedly, for example, one may expect players to take that into account and choose
a somewhat different strategy when making further offers. Fourth, a highly
sophisticated player may take advantage of her knowledge concerning the naivety of
the other player to gain a strategic advantage.

Still, our framework is highly flexible and easily allows for extensions and
modifications. For example, as we showed in the examples, it is easy to allow for
cases in which players are partially naive and realize their future present-biased to
some limited extent. Also, it is straightforward to extend our perception-perfect
outcome to a case with more than two types, or with more than two players. Our
framework may even be applied to other (mis)perceptions and behavioral biases to
which players are possibly unaware.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to
the material. If material is not included in the article's Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.
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Appendix A: NBI and PPO

In this Appendix, we give a simple example where Naive Backward Induction, as
introduced by Sarafidis (2006) and applied by Akin (2007), yields a different
prediction than our perception perfect outcome.

Consider the simple game in Fig. 1. At t ¼ 1, A decides whether to end the game
by choosing R, or to delegate to B by choosing L. In the latter case, B can at t ¼ 2
secure some payoff at t ¼ 3 by choosing R, or delegate to his future self by choosing
L. In the latter case, B can decide at t ¼ 3 to get 8 immediately (by choosing L) or to
get 11 one period later (by choosing R). Assume that both players have present-
biased preferences, with d ¼ 1 and b ¼ 1=2:

If we end up at the decision node at t ¼ 3, then B will choose L: as b ¼ 1=2 he
prefers the lower payoff today. Now move back one period. If B is naive, he will
perceive his future self to choose R at t ¼ 3. Choosing L at t ¼ 2 then gives a higher
perceived payoff than choosing R. But if B is sophisticated, he knows he will choose
L at t ¼ 3 and hence prefers R at t ¼ 2.

Suppose that player A is sophisticated about herself and sophisticated about B.
Moreover, player B is naive about himself and sophisticated about A. With Naive
Backward Induction (NBI), this implies that A knows B to be naive. Hence, she
knows that if she delegates the decision to B, she will end up with a payoff of 2 in
future. It is then clearly preferable for her to choose R, leaving her with a payoff of
10 now.

In our perception perfect outcome, a player A that is sophisticated about B also
perceives B to be sophisticated about himself – as we impose interplayer perception
naivety. Hence, if she delegates to B, she perceives to end up with a payoff of 24
which, although in future, is still preferable over the 10 she gets from playing R.

Hence, in this simple game, NBI would predict A to play R, while the perception
perfect outcome would be for A to play L, and for B to respond by playing L and L.

Appendix B: Proofs of Sect. 5.2

Throughout, we make extensive use of the following straightforward result:

L R

L R

L

RA at t = 1

B at t = 2

B at t = 3

(2, 8) (5, 11)

(24, 9)

(10,10)
at t = 1

at t = 3 at t = 4

at t = 3

Fig. 1 Illustrating the difference
between NBI and PPO
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Lemma 1 The function f ðxÞ � x
aþbx is strictly increasing in x for a; b[ 0:

As b; q 2 0; 1ð Þ; we have that 1
2 b
� � 1

q�1 is decreasing in b; hence (from Lemma 1)
Cs is decreasing in b: With Cs ! Ctc as b ! 1; this implies from Lemma 1 that
Cs [Ctc; which in turn implies from Lemma 1 that hs [ htc: Also note that, with

q 2 0; 1ð Þ; we have 1
2

� � 1
q�1 [ 2; which implies Ctc [ 1=2; hence htc [ 1=3. Hence,

we have hs [ htc [ 1=3, a preliminary result we use below.
Define the function

x hð Þ � hq þ 1

2
1� 2hð Þ

� �q

As q\1; we have

oxðhÞ
oh

¼ q hq�1 � 1

2
� h

� �q�1
" #

\0 ð23Þ

for h[ 1=4.
We can write

Xn ¼b
1

q�1x htcð Þ 1
q�1;

Xs ¼b
1

q�1x hsð Þ 1
q�1:

From (23), x is decreasing in h for h[ 1=4: With 1=4\htc\hs and q\1; this

implies Xn\Xs; hence from Lemma 1, an1\as1: Also note that Xn ¼ b
1

q�1Xtc; so
Xn [Xtc; which implies an1 [ atc1 . We have thus established as1 [ an1 [ atc1 .

It is more involved to show that also ans1 [ as1. To do so, we first establish a
number of lemmas.

Lemma 2 We have the following:

1. hns\hs\hsn:
2. hns þ hsn\2hs:

Proof First note that Ctc\Cs as Cs is decreasing in b and Cs ! Ctc as b ! 1:
Consider

hns
hs

¼
Ctc 1�Csð Þ
1�CtcCs

Cs
1þCs

¼ Ctc � CtcC
2
s

Cs � CtcC2
s

This is smaller than 1 as Cs [Ctc: Next consider
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hsn
hs

¼
Cs 1�Ctcð Þ
1�CtcCs

Cs
1þCs

¼ Cs 1� Ctcð Þ 1þ Csð Þ
Cs � CtcC

2
s

This is larger than 1 if the numerator is larger than the denominator, hence if
Cs Cs � Ctcð Þ[ 0; which is true as Cs [Ctc: This establishes 1. Next consider

hns þ hsn
2hs

¼
Ctc 1�Csð ÞþCs 1�Ctcð Þ

1�CtcCs

2 Cs
1þCs

¼ Ctc þ Cs � 2CsCtc

1� CtcCs

1þ Cs

2Cs

This is smaller than 1 if Cs � Ctcð Þ 1� Csð Þ[ 0 which is true, establishing 2. h

Lemma 3 Xns [Xsn and Xns [Xs:

Proof For the first part, the fact that hns\hsn and q[ 0 imply that hqns þ
1
2 1� hns � hsnð Þ� �q\hqsn þ 1

2 1� hns � hsnð Þ� �q
: With q\1, this immediately

implies the result. For the second part, from their definitions, to have Xns [Xs;
we need

hqns þ
1

2
1� hns � hsnð Þ

� �q

\hqs þ
1

2
1� 2hsð Þ

� �q

:

To prove that this is indeed the case, we proceed as follows. First, define a � hns;
b � 1

2 1� hns � hsnð Þ; c � hs; d � 1
2 1� 2hsð Þ: Consider the function f ðxÞ ¼ xq: Note

that f is increasing and concave. We want to show

f ðaÞ þ f ðbÞ\f ðcÞ þ f ðdÞ:
From Lemma 2.1, a\c: Also b� d ¼ hs � hns [ 0 so b[ d: Moreover cþ d ¼ 1

2 ;

while aþ b ¼ 1
2 1þ hns � hsnð Þ\ 1

2 so cþ d[ aþ b: Define D � cþ dð Þ �
aþ bð Þ[ 0 and consider B � bþ D: By construction, aþ B ¼ cþ d: However,
with a\c and B[ d; the fact that f(x) is increasing and concave then implies
f ðaÞ þ f ðBÞ\f ðcÞ þ f ðdÞ: With b\B; this immediately implies that indeed f ðaÞ þ
f ðbÞ\f ðcÞ þ f ðdÞ; which establishes the result. h

Using these lemmas, we now have

ans1 ¼ Xns

1þ Xns þ Xsn
[

Xns

1þ 2Xns
[

Xs

1þ 2Xs
¼ as1;

where the first inequality follows from Xsn\Xns and Lemma 1, while the second
follows from Xns [Xs and Lemma 1. We thus have ans1 [ as1 which, together with
as1 [ an1 [ atc1 , establishes the theorem. h
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