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Abstract
This paper explores the concept of a social evaluation functional in the case of an
arbitrary set of alternatives. In the first part, a characterization of projective social
evaluations functionals is shown whenever the common restricted domain is the set
of all bounded utility functions equipped with the supremum norm topology. The
result makes a crucial use, among others, of a continuity axiom. In the second part, a
comparison meaningful property is introduced for a social evaluation functional
which allows us for obtaining a more general result with no continuity requirements.
Finally, an impossibility theorem, which is reminiscent of that is obtained by Chi-
chilnisky in (Q J Econ 97:337–352, 1982) but without using topological conditions,
is offered.

Keywords Social evaluation functionals · Continuity · Comparison
meaningfulness · Projective rules

1 Introduction

This paper deals with aggregation of utility functions. In particular, we examine what
is called a Social Evaluation Functional (SEF) which is, basically, a specification of a
Social Welfare Functional (SWF) in which the range is a subset of the set of all real-
valued functions defined on the alternative set, henceforth denoted by X. Thus, we
pay attention to the social choice problem consisting in the aggregation of individual
utility functions into social utility functions. In a series of classical works by Sen
(1970a, 1970b, 1977) and others (see, e.g., Roberts 1980a, b; d’Aspremont and
Gevers 2002; Bossert and Weymark 2004), the range includes ordinal preferences,
not real-valued functions (see Roberts 1983). Of course, one can get a real-valued
function from a preference as long as the preference is continuous. However, having
a numerical function from the beginning is giving us the possibility of formulating
axioms that cannot be treated without a numerical function in the range. As will be
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seen later, the ordinal-scale-preserving property, the continuity and the projectivity
are some of such axioms. Thus, for a SEF (social) numerical evaluations, associated
to profiles of individual utilities, of the alternatives do matter whereas for a SWF do
not. It should be also remarked that this approach is closely related to a line of works
started by Chichilnisky where, usually, the set of alternatives has certain (topological)
structure.

Many of the SWFs that appear in the literature are implicitly defined in terms of
corresponding SEFs. For example, the Borda rule and other scoring rules are defined
in terms of numerical evaluations of the candidates which yields the corresponding
social ordering among them. Note that, in elections, the number of votes obtained by
each party not only determines the (possible) winner but also the number of seats or
representatives got in the parliament. Thus, numerical evaluations have relevance in
this context. The same happens with social rules that allow for certain kind of inter/
intra-personal comparability such as the utilitarian rule, the Rawlsian one and other
rules that arise in consumer theory and welfare economics [for instance, those related
to inequality measurement as can be seen in Fleurbaey and Hammond (2004)].
Moreover, if one intends to reflect the intensity among distinct alternatives in both
individual and social preferences, a scenario built upon SEFs seems to be more
plausible than the one based on merely SWFs.

For a more concrete example, think of a situation where a finite number of
individuals have to express their utilities derived from establishing a facility or a
public service in their neighborhoods. Significant variables to determine such a utility
may include those of the distance to the facility, the kind of services offered, the
environmental impact and so on. Thus, we are facing with a spatial location problem.
In this context, it is natural to demand that the social ranking among the vectors of
the distinct characteristics be carried out as a certain average of the individual utilities
over these vectors. Therefore, numerical evaluations of the alternatives provide a
more appropriate framework to collect individuals’ assessments than merely ordinal
rankings among them.

Given a finite set X of alternatives (of size m) and a finite number n of individuals,
a SEF is a mapping F : Un �! U , where U ¼ RX is the set of all real-valued
functions from X into the reals R. A SEF can be interpreted as a function mapping
m� n real-valued matrices into column vectors with m components. This view
allows us for introducing the concept of continuity in a natural way in the social
aggregation problem and, in particular, enables us to study the trade-off betweeen
continuity and certain classical axioms of the social choice literature such as the
axiom of the Independence of the Irrelevant Alternatives (IIA). An account of all this
was done in Candeal (2015) for X finite. However, it is also natural to extend the
study for an arbitrary set X because in many economic models both the social
alternatives and the individual utilities exhibit considerable structure. For example,
alternatives could be vectors of public goods with individual utility functions
required to be continuous, monotonic and quasi-concave. For other significant
examples in economic environments see LeBreton and Weymark (2002) and
Campbell and Kelly (2002).
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Three main results are shown in the paper. The first one (Theorem 1) is a
characterization of the SEFs that are projective; i.e., functionals F for which there is
an individual, say i, such that Fðu1; . . .; uj; . . .; unÞ ¼ ui, for all uj in a certain

common subdomain of RX . Because individual i dictates over all profiles, this result
entails the existence of a (single) strong dictator. This conclusion strongly depends
upon the continuity axiom but it should be noted that IIA is not required as an
assumption. It is assumed that all individuals have a common domain restriction.
Indeed, the domain should include all real-valued bounded functions defined on X
and be equipped with the supremum norm topology.

The second main result (Theorem 2) introduces the concept of comparison
meaningfulness with respect to (henceforth, w.r.t.) certain scales as a key assumption
to deal with the aggregation problem. For this concept to be consistent, the codomain
of the social rule must be formed of real-valued functions. So, the framework of
SEFs really justifies its use. Theorem 2 characterizes those SEFs which have a very
particular functional form; to wit, for each alternative there is an individual so that,
for any profile of utility functions, the value that society assigns to that alternative
coincides with the value that the referred individual gives to that alternative. In
particular, this means that the individual may, or may not, vary with the alternative
but not with the profile. In addition to comparison meaningfulness, the result requires
two more axioms; namely, unanimity and monotonicity. An interpretation of such
rules in the context of social choice theory would tell about the existence of a
committee of experts taking all social evaluations. Although the result is, in a sense,
more flexible than the (negative) conclusion stated in the classical Arrow’s theorem,
it is somewhat reminiscent of both Gibbard’s oligarchy theorem (see Gibbard 2014;
Weymark 2014) and certain results about the existence of local dictators in the
context of social welfare functions. The domain is also restricted; in concrete, it has
to content all constant functions and has to be stable under the set of all strictly
increasing real-valued transformations of one real variable. It is well known that
comparison meaningfulness is a core concept in measurement theory (see, e.g.,
Krantz et al. 1971; Roberts 1979). Moreover, it also has great significance in social
choice theory because its interpretation in terms of utility measurability and inter/
intra-comparability of well-being among individuals (see Luce and Raiffa 1957; Sen
1970a, b, 1977; Roberts 1980a, b; d’Aspremont and Gevers 2002; Bossert and
Weymark 2004).

The third result shown (Theorem 4) is linked to Chichilnisky’s topological model
of preference aggregation. Specifically, it is reminiscent of Chichilnisky’s theorem
about the nonexistence of social aggregation rules that are continuous, anonymous
and respect unanimity in certain preference domains. After presenting the main
features of Chichilnisky’s model, an alternative framework, which makes no use of
topological assumptions, is proposed. The result obtained turns out to be an
impossibility theorem provided that the common domain is a superset of the set of all
affine real-valued functions defined on a bounded set of Rm. Because Theorem 4
requires a strong form of interpersonal noncomparability, based on cardinal utilities,
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it can also be related to certain variants of Arrow’s impossibility theorem in this
context (see, e.g., Sen 1970a, b; d’Aspremont and Gevers 2002).1

All proofs of the results stated in the paper are relegated to an “Appendix”.

2 Preliminaries

In this section some basic background is presented in connection with SEFs.
Let N :¼ f1; . . .; ng and M :¼ f1; . . .;mg, where n;m 2 N. Throughout the paper

N refers to the set of individuals and M to the set of alternatives provided that it is
finite. As usual Rn is the n-dimensional Euclidean space, i.e.,
Rn ¼ fa ¼ ðajÞj2N : aj 2 Rg.

Let X be a nonempty set. A typical utility function from X to R will be denoted by
v. The notation V refers to the set of all utility functions (also denoted by RX ).

A profile (or an n-tuple) of utility functions will be denoted by V ¼ ðvjÞj2N, and Vn

will be the set of all possible profiles. A profile V ¼ ðvjÞj2N 2 Vn can also be viewed

as a real-valued map defined on X � N in the following manner:
ðx; jÞ 2 X � N �! V ðx; jÞ ¼ vjðxÞ 2 R. Note that V(i, j) can be interpreted as the
value that individual j assigns to alternative i. When X ¼ M a profile V ¼ ðvjÞj2N can

be identified with an m� n matrix whose entries are the real numbers ðvjðiÞÞi2M ;j2N .
We now present some basic notations that will be useful later. For a given x 2 X

and V ¼ ðvjÞj2N 2 Vn, V(x) will denote the following vector

V ðxÞ :¼ ðvjðxÞÞj2N 2 Rn. Let X :¼ RR ¼ f/ : R ! Rg and a ¼ ðajÞj2N 2 Rn. If

/ 2 X, then /ðaÞ is the vector /ðaÞ :¼ ð/ðajÞÞj2N 2 Rn. In a similar way, if

U ¼ ð/jÞj2N 2 Xn, then UðaÞ :¼ ð/jðajÞÞj2N 2 Rn. For now on, and if no confusion

is possible, subscripts will be usually omitted.
Let there be given U ¼ ð/jÞ 2 Xn and V ¼ ðvjÞ 2 Vn. Then

U � V :¼ ð/j � vjÞ 2 Vn, where “�“ stands for the usual composition operation, i.
e., /j � vjðxÞ ¼ /jðvjðxÞÞ, 8 x 2 X , 8 j 2 N . Also, and to make the notation as easy
as possible, sometimes it will be used UðV Þ instead of U � V . Note that, with the
notation introduced, it holds that UðV ÞðxÞ ¼ UðV ðxÞÞ, 8 x 2 X . Moreover, if U ¼
ð/jÞ 2 Xn is such that /j ¼ /, for some / 2 X, 8 j 2 N , then we will write /ðV Þ
instead of U � V .

For a given v 2 V, Vv will stand for the following profile Vv :¼ ðv; . . .; vÞ 2 Vn. A
constant utility function, with value c 2 R, will be denoted by cX (i.e., cX ðyÞ ¼ c,
8y 2 X ).

The subdomain of X which consists of all strictly increasing real-valued functions
defined on R will be denoted by D. An important subdomain of D is Dia, the set of all
increasing affine real-valued functions. That is, Dia ¼ f/ 2 D : /ðtÞ ¼
at þ b; a[ 0; b 2 Rg. In economics and social sciences a function / 2 Dia is

1 The relationship of our work with Gibbard’s oligarchy theorem, with the existence of local dictators and
with the contributions of Sen and d’Aspremont and Gevers mentioned above, when individuals’ utilities
are cardinally measurable and interpersonal noncomparable, were suggested us by two anonymous
referees.
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usually referred to as a cardinal scale while the term interval scale is more frequently
used in measurement theory.

Let there be given H � X and U � V. Then U is said to be H-stable provided that
h � u 2 U , 8 u 2 U , 8 h 2 H.

Given a permutation r of N and a profile V ¼ ðvjÞ 2 Vn, we will denote by
V r 2 Vn the following profile: V r :¼ ðvrðjÞÞ. The set of all permutations from N onto
N will be denoted by S(N).

Let U be a subset of V. A Partial Social Evaluation Functional or, for brevity, a
Social Evaluation Functional (SEF) is a rule F : Un ! V that assigns a real-valued
function FðUÞ 2 V, viewed as a social evaluation, to any profile of individual
utilities U in the domain Un.

Let there be given a SEF F and x 2 X . Then the pair (F, x) induces a real-valued
function defined on Un, which will be denoted by Fx, in the following way:
U 2 Un ! FxðUÞ ¼ FðUÞðxÞ 2 R.

The following definition presents some of the main concepts that will appear later.

Definition 1 Assume U � V is a D-stable domain. A SEF F : Un ! V is said to be,
or satisfies:

(i) Ordinal-Scale-Preserving (OSP) if Fð/ðUÞÞ ¼ /ðFðUÞÞ, 8 / 2 D,
8 U 2 Un,

(ii) Ordinal-Measurability-Interpersonal-Noncomparability (OMIN) if
8 U 2 Un, 8 U 2 Dn, there is u 2 D, which depends on U and U, such
that FðUðUÞÞ ¼ uðFðUÞÞ,

(iii) Unanimous (Una) if FðUuÞ ¼ u, 8 u 2 U ,
(iv) Anonymous (A) if FðUrÞ ¼ FðUÞ, 8 U 2 Un, 8 r 2 SðNÞ,
(v) Projective (Pro) if it is a projection, i.e., if there is an individual i 2 N such

that FðUÞ ¼ ui, 8 U ¼ ðujÞ 2 Un.

Remark 1

(i) If cardinality of X is one (i.e., if #X ¼ 1), then a SEF reduces to a real-valued
function of n real variables. In this case, the terms unanimity and anonymity
are often referred to as idempotency and symmetry, respectively.

(ii) If in the definition of OMIN above U 2 Dn
ia, then F is said to satisfy

Cardinal-Measurability-Interpersonal-Noncomparability (CMIN).

In our context, Pro axiom turns out to be the functional form of a strong dictatorial
social rule because it requires the social utility function to be exactly the utility
function of one individual (the dictator). Now, whereas Una and A conditions are
clear for a normative point of view, both OSP and OMIN need a more detailed
justification. Indeed, OSP means that if all individuals use the same scale to measure
the corresponding utilities, then so does the social utility associated with each profile.
Thus, it can be viewed as a unanimity principle over the type of scale used to
measure both individual and collective utilities. Note that OSP allows for
interpersonal comparability of utilities across individuals. OMIN conveys that a
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SEF is consistent in terms of preferences. Recall that two profiles U1;U2 2 Un are
said to be informationally equivalent provided that U2 ¼ U � U1, for some U 2 Dn.
A similar concept applies to utility functions. Then, OMIN tells us that informa-
tionally equivalent profiles are mapped into informationally equivalent social
utilities. In the social choice theory setting, and from an ordinal point of view, this is
often an appealing property.

3 Projective SEFs

In this section there is a common domain restriction for both individuals and society.
Indeed, the set of utility functions considered is the set of all bounded real-valued
functions defined on X, henceforth, denoted by B. Thus, and according to the
previous notations, in this section U ¼ V ¼ B. It should be noted that, a priori, this is
not a severe restriction because, viewed as preference relations defined on X, both
individual and collective utility functions can be assumed to have the range on the
open unit interval (0, 1). The main reason for doing this is due to the fact of
introducing a topology on the corresponding set of functions. We will consider that B
is equipped with the supremum norm topology which is given by the metric induced
by the supremum norm. That is, dðu; vÞ ¼ jju� vjj1 ¼ supx2X juðxÞ � vðxÞj,
ðu; v 2 BÞ. With this norm, actually, B becomes a Banach space with the usual
binary operations of addition and multiplication by scalars defined pointwise. Note
that if X ¼ M , then B can be identified with Rm. On the Cartesian Bn we will
consider the product topology.

Let m 2 N. A partition of X is a finite collection of pairwise disjoint subsets of X
whose union is X. A typical partition of X will be denoted by E ¼ ðEiÞi2M. Let there
be given E ¼ ðEiÞi2M , F ¼ ðFjÞj2N two partitions of X. Then F is said to be finer than

E, denoted by E†F, whenever for every Fj there is Ei such that Fj � Ei.
Equivalently, for each i 2 M , Ei ¼

S
j2K�N Fj. It is easy to see that † is a reflexive

and transitive binary relation defined on the set of all the partitions of X.
The indicator function of a subset E � X will be denoted by 1E. That is,

1EðxÞ ¼ 1, whenever x 2 E, and 1EðxÞ ¼ 0, otherwise. Let m 2 N. A simple function
s 2 B is one of the form s ¼ P

i2M ai1Ei , where, for each i 2 M , ai 2 R, Ei � X , and
E ¼ ðEiÞi2M is a partition of X. So, a simple function is identified by means of a
natural number m, a vector a ¼ ðaiÞ 2 Rm, and a partition E ¼ ðEiÞi2M of X. The
subsets of the partition are said to be the support of the corresponding simple
function. The subset of B which consists of all simple functions will be denoted by S.
Given a partition E ¼ ðEiÞi2M of X the subset of S consisting of all simple functions
supported on E will be denoted by SE. In formula,
SE ¼ fsa ¼

P
i2M ai1Ei : a ¼ ðaiÞ 2 Rmg. Note that S ¼ S

E SE, where E runs over
the set of all partitions of X. Thus, for every partition E of X, it holds that
SE � S � B.

The natural concept of continuity in this framework is now in order.

Definition 2 A SEF F : Bn ! B is Continuous (C) if, for all open set B of B,
F�1ðBÞ :¼ fU 2 Bn : FðUÞ 2 Bg is an open set of Bn.
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The continuity axiom is a very technical requirement. Roughly speaking, if the
values of two profiles of individual utility functions are close to each other and
continuity is satisfied, then the corresponding social utilities are also close to one
another. Moreover, and because B is endowed with the supremum norm topology,
this occurs uniformly on all alternatives. Although certain preference spaces can also
be topologized, hence the continuity axiom could also be introduced in the context of
SWFs, is in the framework of SEFs where is defined in a more natural way. As far as
I know, Chichilnisky (1982) pioneered the introduction of certain topologies in
spaces of utility functions (see also Sect. 5).

Now the main result of this section is shown.

Theorem 1 Assume #X [ 1 and n[ 1. Then a SEF F : Bn ! B fulfils OMIN, OSP,
C and Una iff it is Pro.

Remark 2

(i) It can be shown that all the conditions given in the statement of Theorem 1
are, in fact, independent.

(ii) The assumptions #X [ 1 and n[ 1 are essential in the statement of
Theorem 1. Indeed, if #X ¼ 1, then B ¼ R. If, in addition, n ¼ 1, then a SEF
F is Pro if and only if it satisfies OSP. In the case that #X ¼ 1 and n[ 1
OMIN axiom is obviously satisfied and the fulfilment of the other axioms
does not guarantee the rule to be Pro. This is the case for the SEF F : R2 !
R defined by Fða; bÞ ¼ max fa; bg, a; b 2 R. If #X [ 1 and n ¼ 1, then B
can be identified with the space of column vectors of one component. In
addition, note that Una turns out to be a superfluous assumption. Moreover,
OMIN follows from OSP. In this case there are SEFs satisfying OSP and C
which are not Pro. For example, let X ¼ fx; yg, n ¼ 1, and F : B ! B
defined by FðUÞðxÞ ¼ max fUðxÞ;UðyÞg, and FðUÞðyÞ ¼ min fUðxÞ;
UðyÞg, 8 U 2 B. Anyway, the cases #X ¼ 1 or n ¼ 1 lack of interest in
the social choice setting [for more details, see De Miguel et al. (2017)].

4 Comparison meaningful SEFs

We begin this section by introducing the axioms of monotonicity and comparison
meaningfulness for SEFs. It should be noted that axioms similar to these ones had
already been formulated for real-valued functions of several real variables and
aggregation operators in the context of measurement theory (see, e.g., Marichal 2002;
Marichal and Mesiar 2009; Ovchinnikov and Dukhovny 2002; Candeal and Induráin
2015). Further, and in contrast to what was stated in Theorem 2 of the previous
section, here the assumptions #X [ 1 and n[ 1 can be dispensed with.

Definition 3 Assume U � V is a D-stable domain. A SEF F : Un ! V is said to be:

123

Social evaluation functionals with an arbitrary... 261



(i) Monotonic (M) if 8 U ;V 2 Un, Uðz; jÞ�V ðz; jÞ, 8 z; j
) FðUÞðxÞ�FðV ÞðxÞ, 8 x,

(ii) Comparison Meaningful w.r.t. independent ordinal scales or, for brevity,
(CM), if 8 U ;V 2 Un, 8 x, FðUÞðxÞ�FðV ÞðxÞ ) FðUðUÞÞðxÞ�FðUðV ÞÞ
ðxÞ, 8 U 2 Dn.

Remark 3

(i) Note that the two conditions above can be equivalently stated by saying that,
for all x 2 X , each component Fx is monotonic or comparison meaningful w.
r.t. independent ordinal scales, respectively.

(ii) If, in Definition 3(ii) above, U 2 Dn
ia, then F is said to be comparison

meaningful w.r.t. independent interval scales.

Monotonicity is a very natural condition which is often encountered in the social
choice literature. It tells us that the dominance, according to the large-small relation
of the numbers assigned, between profiles entails the same kind of dominance
between the corresponding social utilities. That is, for all pair of profiles U ;V 2 Un

such that for any individual j 2 N and any alternative z 2 X , the individual j, by
choosing the alternative z, is better in V than she is in U, then the social value that F
(V) assigns to any alternative is greater than the corresponding assigned by F(U).

CM states that the large-small relation of the values assigned to any two social
utilities at each alternative is preserved for informationally equivalent profiles. From
the point of view of utility comparisons, CM entails that utilities are measured into
(independent) ordinal scales and, therefore, only intrapersonal comparisons of utility
are allowed.

The main result of this section is now presented. Note that the statement below has
a direct application into group decision-making. Indeed, it provides a characterization
of those SEFs having a very particular functional form; namely, there is a set of
individuals, say wðX Þ � N, who take all social evaluations. That is, attached to each
alternative x 2 X there is a member of this set, say wðxÞ, so that, for any profile of
individual utilities, the value that the society assigns to the alternative x coincides
with the value that this member wðxÞ gives to x. The subset wðX Þ could be interpreted
as a certain expert committee being each one of its members the corresponding expert
attached to each alternative. The result could be somehow reminiscent of Gibbard’s
oligarchy theorem and certain results in the social choice literature related to the
existence of local dictators. However, our framework largely differs from these two.
Indeed, Gibbard’s oligarchy theorem is obtained by weakening the collective
rationality assumption which is implicitly assumed in our setting. Local dictators for
social welfare functions appear whenever the corresponding social rule is Arrow-
consistent over some restricted preference domains. In our context, the members of
the expert committee do not dictate over alternatives simply provide numerical
evaluations of the alternatives.

Theorem 2 Assume U � V is a D-stable set which includes all constant functions.
Then, for a SEF F : Un ! V the following statements are equivalent:
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(i) F satisfies CM, M and Una,
(ii) There is a function w : X ! N such that FðUÞðxÞ ¼ Uðx;wðxÞÞ, 8 U 2 Un,

8 x 2 X .

Remark 4

(i) The conclusion of Theorem 2 remains true if comparison meaningfulness
refers only to interval scales and U is a subset of B. This assertion follows
from the proof of Theorem 2 given in the “Appendix”. Moreover, if #X ¼ 1,
then the monotonicity assumption can be ruled out and F is, in fact, Pro.

(ii) As a direct consequence of Theorem 2 and Remark 4(i) the following
impossibility result holds true: Assume U � B. Then, no SEF F can exist
that satisfies M, Una, A and CM w.r.t. independent interval scales.

(iii) No topological conditions are required in the statement of Theorem 2. As
was already argued in the Introduction, if X is finite, say X ¼ M, then a SEF
can be viewed as a vector-valued function defined on the space of all m� n
real matrices having, as codomain, the space of all real column matrices of
size m� 1. In this context, a natural topology to consider is the Euclidean
one. Note that, in this case, the SEFs provided in Theorem 2 are
continuous.2

We finish this section by including some examples which show that Una, M and
CM are independent assumptions. Note that, in none of the three cases presented
below, F fits the functional form established in Theorem 2. For simplicity, the
examples are given for #X ¼ 3 and n ¼ 2.

Examples Let X ¼ fx; y; zg, F : U2 ! V, and U ¼ ðu1; u2Þ 2 U2.

1. Define the SEF as follows: FðUÞ ¼ cX ¼ c1X , 8 U 2 U2, where c 2 R.
Obviously, F satisfies M and CM but it is not Una.

2. Consider the SEF given by FðUÞ ¼ u1, provided that the vectors Uð�; 1Þ :¼
ðu1ðxÞ; u1ðyÞ; u1ðzÞÞ and Uð�; 2Þ :¼ ðu2ðxÞ; u2ðyÞ; u2ðzÞÞ are comonotonic,3 and
FðUÞðxÞ ¼ u1ðyÞ, FðUÞðyÞ ¼ u1ðxÞ, FðUÞðzÞ ¼ u1ðzÞ, otherwise. F satisfies
Una and CM. However, it is not M.

3. Define the following SEF: FðUÞðxÞ ¼ max fu1ðxÞ; u2ðxÞg, and
FðUÞðyÞ ¼ min fu1ðyÞ; u2ðyÞg, and FðUÞðzÞ ¼ u1ðzÞ. It is clear that F satisfies
M and Una but fails to be CM.

2 The assumption X finite is essential for this claim. To this respect, it can be proved that if X � Rn is a
compact and convex subset with at least two points (hence an infinite set), and U is the space of all
continuous functions defined on X equipped with the supremum norm topology, then the only continuous
SEFs that satisfy Una, M and CM are the projections.
3 That is, u1ðrÞ� u1ðkÞ , u2ðrÞ� u2ðkÞ, 8 r; k 2 X . Alternatively, it is also said that Uð�; 1Þ and Uð�; 2Þ
belong to the same rank-ordered set.
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5 Chichilnisky’s topological social choice model revisited

In the late seventies, Chichilnisky initiated the topological approach to social choice
theory. In order to present her model some basic definitions and concepts are needed.
Suppose that there are a finite number of individuals, say n, in the society. The first
important issue to consider is the description of the space of individual preferences in
Chichilnisky’s model. To that end, let X be a cube in Rm

þþ which is called in this
context the choice space. There is a common restricted domain in Chichilnisky’s
setting. Indeed, the space of individual and collective preferences, henceforth
denoted by P, is the set of all C1 (continuously differentiable) integrable unit vector
fields defined on the choice space X (see Chichilnisky 1982, 1983). A social
aggregation rule is then a map F : Pn ! P assigning to each profile of individual
preferences ðp1; . . .; pnÞ 2 Pn another preference Fðp1; . . .; pnÞ 2 P which is inter-
preted as a social preference. A social aggregation rule F : Pn ! P is said to be
anonymous if Fðp1; . . .; pnÞ ¼ Fðprð1Þ; . . .; prðnÞÞ, 8ðp1; . . .; pnÞ 2 Pn, r 2 SðNÞ. It
respects unanimity if Fðp; . . .; pÞ ¼ p, 8 p 2 P.

Under this framework Chichilnisky established the following result.

Theorem 3 (Chichilnisky 1982) There is no social aggregation rule F : Pn ! P
that is continuous,4 anonymous, and respects unanimity.

We now comment on the argument supporting the proof of this result as appears in
Chichilnisky (1982). A key fact used in Chichilnisky (1982) is the following
identification. A preference p 2 P can be viewed as a map assigning to each
alternative x 2 X , a vector p(x), which is the gradient of a (differentiable) utility
function defined on the choice space X, i.e., it is a vector field on X. The direction of
the vector p(x) is interpreted as the “most desirable” direction because it is the
direction of the largest increase in utility. Thus, it is required that each vector be
normalized with unit length, which implies that the gradient vector field before
normalization should not be vanished in the interior of X because, otherwise, the
normalized gradient would be left undefined.5 Therefore, each preference p 2 P must
be a unit vector field on X. Under these considerations, the proof runs, by
contradiction, as follows. Suppose that there is a continuous social aggregation rule
F : Pn ! P that is anonymous and respects unanimity. Let x 2 X be fixed. Then, the
existence of such a rule would induce a continuous, symmetric and idempotent
function w : ðSm�1Þn ! Sm�1, where Sm�1 denotes the m� 1-dimensional sphere of
Rm. Continuity refers to the (relative) Euclidean topology on the sphere and the
product topology on the Cartesian. Symmetry and idempotency have the usual
meanings. However, by using certain arguments of algebraic topology (specifically,
of degree theory) such a function w cannot exist. Therefore, a contradiction is
reached and the result follows.

4 Continuity refers to the uniform convergence in P and the corresponding product topology in Pn [for
details, see Chichilnisky (1982)].
5 This technical condition can be somehow relaxed (see Section IV in Chichilnisky 1982). See also Jones
et al. (2003) for a detailed discussion of some difficulties that appear in Theorem 2 of Chichilnisky (1982).
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The fact of using normalized gradient vectors of unit length is essential in
Chichilnisky’s proof. However, this entails that the model does not allow for
considering intensity of preferences. Recall that a preference model is responsive to
intensity of preferences provided that the utilities are measured in an interval scale.

We now present a variation of Chichilnisky’s model which is inspired by the ideas
of the previous section and does allow for introducing preference intensities. Quite
surprisingly, no topological conditions are required in its formulation. It is just based
on the approach followed in Sect. 4. In Remark 5 below both similarities as well as
differences between the two approaches are briefly discussed.

Let X � Rm be a bounded subset. Denote by A the set of all affine real-valued
functions defined on X; i.e., A ¼ fu : X ! R : uðxÞ ¼ axþ b ¼ P

j2M ajxj þ b;

8 x ¼ ðxjÞ 2 X ; where a ¼ ðajÞ 2 Rm; b 2 Rg. Note that A contains all constant
functions defined on X and is Dia-stable. Moreover, A is responsive to intensities.

Before presenting the next theorem a new concept, which strengthens that of
CMIN, is introduced. Indeed, this strong form of CMIN entails that CMIN should be
satisfied uniformly on all profiles of individual affine utilities.

Definition 4 Assume A � D. A SEF F : Dn ! V satisfies Strong Cardinal-
Measurability-Interpersonal-Noncomparability (SCMIN) provided that there is a
map R : Dn

ia ! D such that the following functional equation is met:
FðUðAÞÞ ¼ RðUÞðFðAÞÞ, 8 A 2 An, 8 U 2 Dn

ia.
6

Because Arrow’s impossibility theorem extends to the setting where individuals’
utilities are cardinally measurable and interpersonally noncomparable (see, e.g., Sen
1970a, b, Theorem 8*2); d’Aspremont and Gevers (2002, Theorem 3.16)) our next
result not only is reminiscent of Chichilnisky’s but also of variants of Arrow’s
impossibility theorem established based on cardinal utilities.

Theorem 4 AssumeA � D. Then there is no SEF F : Dn ! V that satisfies SCMIN,
M, Una and A.

Remark 5 It is instructive to compare Theorem 4 to both Theorem 3 above and
Theorem 2 of Chichilnisky (1982) where the assumption of nonvanishing gradients is
slightly relaxed. First of all, the model presented here is established in terms of SEFs
instead of social aggregation rules like Chichilnisky is. Specifically, the common
individual domain in our result is restricted and includes the set of all affine funtions.
Thus, preferences are exactly utility functions and both linear preferences as well as
the trivial one take part of the model.7 In contrast, in Chichilnisky’s setting
preferences are unit vector fields and this requires that they are normalized gradients
at each point of the choice space X. As a consequence, the model shown here is more
general than Chichilnisky’s. Moreover, unlike Chichilnisky’s framework, it allows
for considering preference intensities. Further, Theorem 4 is stated without assuming

6 Note that if a SEF F : Dn ! V satisfies SCMIN, then, when restricted to An, it satisfies CMIN and the
function / 2 D that appears in Definition1(ii) only depends on U.
7 A preference defined on X is said to be linear if it can be represented by a (non-null) linear utility
function. In terms of gradients they agree with those preferences having non-null constant gradients. The
trivial preference is the one for which all alternatives have the same utility.
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any topological condition. In what concerns the assumptions imposed, note that
unanimity and anonymity are present in both statements. The key difference can be
found in the continuity condition (together with the Pareto condition given in
Chichilnisky (1982, Theorem 2) to cover certain cases where the gradients could
vanish) given in Chichilnisky’s result in contrast to the assumptions of monotonicity
and SCMIN appearing in our Theorem 4.

Appendix

This section includes the proofs of the results stated in the paper. We begin with two
technical lemmata which will be useful for the proof of Theorem 1. Let n;m; k 2 N.
Recall that N ¼: f1; . . .; ng, M ¼: f1; . . .;mg, and K ¼: f1; . . .; kg.
Lemma 1 Let there be given E ¼ ðEiÞi2M , F ¼ ðFjÞj2N two partitions of X. Then

there is a partition G ¼ ðGkÞk2K such that E;F†G.

Proof Let K � N be an enumeration of fði; jÞ : i 2 M ; j 2 Ng. Then, for each k 2 K,
it is sufficient to consider Gk ¼ Ei \ Fj. h

The second lemma is folklore and is included here for the sake of completeness.
Recall that S � U denotes the set of all simple functions, i.e., S ¼ fs ¼ P

i2M ai1Ei :

ðaiÞ 2 Rm; ðEiÞ is a partition of X ; m 2 Ng.
Lemma 2 S is dense in U .

Proof Let u 2 U and �[ 0 be fixed. Then there are reals a, b such that a� uðxÞ\b,
for all x 2 X . Take a positive integer n such that b�a

n \�. Define, for each

j ¼ 0; . . .; n� 1, the numbers aj ¼ aþ j b�a
n , and consider the subsets of X defined as

follows: Ej ¼ fx 2 X : aj � uðxÞ\ajþ1g, for every j. Note that ðEjÞ is a partition of
X. Finally, define the simple function s ¼ P

j aj1Ej . Then,

dðu; sÞ ¼ jju� sjj1 ¼supx2X juðxÞ � sðxÞj � b�a
n \�, which proves Lemma 2. h

Proof of Theorem 1 The “if“ part is easy to prove. So, we will only show the “only if”
part which will be carried out in several steps.

Step (1). Let E ¼ ðEiÞi2M be a partition of X. Consider the subset of U consisting
of all simple functions supported on ðEiÞ, i.e.,
SE ¼ fsa ¼

P
i2M ai1Ei : a ¼ ðaiÞ 2 Rmg. Note that SE can be identified, both

algebraically and topologically, with Rm. The first step consists in proving that,
when restricted to Sn

E, F turns out to be a projection. To that end, let C ¼ ðxiÞ � X
be a collection of points such that xi 2 Ei, for every i 2 M. Define the function
FC
E : Sn

E �! SE as follows: FC
E ðsa1 ; . . .; sanÞ ¼

P
i2M Fðsa1 ; . . .; sanÞðxiÞ1Ei , where

a1; . . .; an 2 Rm. Let us see that this definition is consistent in the sense that,
actually, it does not depend on the collection C chosen. Indeed, note that since F
satisfies OMIN, Una, C and OSP, so does FC

E . So, by Theorem 2 in Candeal
(2015), there is j 2 N such that FC

E ðsa1 ; . . .; sanÞ ¼ saj , 8 ðsa1 ; . . .; sanÞ 2 Sn
E. In

particular, it holds that Fðsa1 ; . . .; sanÞðxiÞ ¼ sajðxiÞ, for all i 2 M . Let D ¼ ðyiÞ �

123

266 J. C. Candeal



X be a collection of points such that yi 2 Ei, for every i 2 M. Define D1 ¼
ðziÞi2M � X as follows: z1 ¼ y1, and zi ¼ xi, 8 i[ 1. Then, by the same argument

as above, FD1
E turns out to be a projection. Thus, there is k 2 N such that

FD1
E ðsa1 ; . . .; sanÞ ¼ sak , 8 ðsa1 ; . . .; sanÞ 2 Sn

E. In particular, it holds that
Fðsa1 ; . . .; sanÞðy1Þ ¼ sak ðy1Þ and Fðsa1 ; . . .; sanÞðxiÞ ¼ sak ðxiÞ, for i[ 1. The latter
equality clearly entails that k ¼ j. So, Fðsa1 ; . . .; sanÞðy1Þ ¼ sajðy1Þ ¼ sajðx1Þ, the
latter equality being true because y1 2 E1 and saj is constant on E1. Thus,

FD1
E ¼ FC

E . Now, by letting D2 ¼ ðtiÞi2M � X be defined as: t1 ¼ y1, t2 ¼ y2, and

ti ¼ xi, 8 i[ 2 and arguing as above, it follows that FD2
E ¼ FC

E . By repeating the
process ðm� 2Þ-times it holds that FD

E ¼ FC
E and so Fðsa1 ; . . .; sanÞ 2 SE,

8 ðsa1 ; . . .; sanÞ 2 Sn
E. Moveover, we have proved that the restriction of F to Sn

E,
FjSn

E
, turns out to be a projection. From now on we will denote such a restriction

by FE.
Step (2). Let E;E0 be two partitions of X such that E†E0. Then FE0 jSn

E
¼ FE. To

see this, note that each profile ðsa1 ; . . .; sanÞ 2 Sn
E can be viewed as a profile in Sn

E0 .
Now, by Step (1), both FE0 , and FE are projections. Since, by Step (1) again,
FE0 ðSn

EÞ � SE, it follows that FE0 jSn
E
¼ FE.

Step (3). Let E;E0 be two arbitrary partitions of X. Then, for the j 2 N existing
from Step (1), it holds that Fðsa1 ; . . .; sanÞ ¼ saj , 8 ðsa1 ; . . .; sanÞ 2 Sn

E, and
Fðsb1 ; . . .; sbnÞ ¼ sbj , 8 ðsb1 ; . . .; sbnÞ 2 Sn

E0 . Indeed, consider a partition E00 such
that E†E00, and E0†E00. Lemma 1 above ensures the existence of such a partition.
Then, by Step (1), FE00 , is a projection. In addition, by Step (2), it holds that
FE00 jSn

E
¼ FE, and FE00 jSn

E0
¼ FE0 . Therefore, the conclusion clearly follows.

Step (4). Let S be the set of all simple functions. Then, for the j 2 N of Step (1), it
holds that Fðsa1 ; . . .; sanÞ ¼ saj , 8 ðsa1 ; . . .; sanÞ 2 Sn. Indeed, by Step (3), the latter
equality holds true provided that all the entries of the profile are supported over the
same partition. Suppose now that the simple functions sa1 ; . . .; san are supported
over partitions E1; . . .;En, respectively. Then, by considering a partition J such that
E1; . . .;En†J it follows that Fðsa1 ; . . .; sanÞ ¼ FJ ðsa1 ; . . .; sanÞ ¼ saj , where the
latter equality holds true by Step (1).
Step (5) For the j 2 N of Step (1), it holds that Fðu1; . . .; unÞ ¼ uj,
8 ðu1; . . .; unÞ 2 Un. Indeed, let ðu1; . . .; unÞ 2 Un an arbitrary profile. Consider
corresponding sequences ðsa1l Þl2N; . . .; ðsanl Þl2N � S such that

ðsa1l Þ ! u1; . . .; ðsanl Þ ! un. The existence of such sequences is guaranteed by

Lemma 2 above. Then, clearly, ðsa1l ; . . .; sanl Þ ! ðu1; . . .; unÞ. Hence, since F

satisfies C, Fðsa1l ; . . .; sanl Þ ! Fðu1; . . .; unÞ. Now, by Step (4), Fðsa1l ; . . .; sanl Þ ¼ sajl
,

8 l 2 N, and, by hypothesis, ðsajlÞ ! uj. Therefore, Fðu1; . . .; unÞ ¼ uj, as desired,

and the proof is over. h
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Proof of Theorem 2 8 (ii) entails (i) is easy to check. So, we will focus on (i) implies
(ii) which is developed in five steps. Denote by Q :¼ U \ B and note that Q is a
nonempty D-stable subset of U . We first show that the implication holds whenever F
is restricted to Qn. Thus, we have to prove that, for each x 2 X , the function U 2
Qn ! FxðUÞ ¼ FðUÞðxÞ 2 R is a projection. So, and in order to simplify the
notation, let us denote such a function by W; i.e., W ðUÞ ¼ FxðUÞ, where x 2 X is
fixed.

Step (1). We first compute the value of W in the following subset of Qn,
T :¼ fU 2 Qn : there is a ¼ ðajÞ 2 Rn such that Uðz; jÞ ¼ aj, 8 z 2 X ,
8 j 2 N}. For that purpose, consider the real-valued function of n variables,
hx : R

n ! R, defined by letting, for each a ¼ ðajÞ 2 Rn,
hxðaÞ ¼ W ðUaÞ ¼ FxðUaÞ, where Ua 2 T is such that Uaðz; jÞ ¼ aj, 8 z 2 X ,
8 j 2 N . Note that the domain of hx is Rn because Q contains the constant
functions. Now, since F satisfies Una and CM so does hx. Hence, by Corollary 6.1
in Marichal and Mesiar (2009) (see also Proposition 8.55 in Grabisch et al.
(2009)), there is wðxÞ 2 N such that hxðaÞ ¼ awðxÞ, 8 a ¼ ðajÞ 2 Rn. So,
W ðUaÞ ¼ awðxÞ, 8 a ¼ ðajÞ 2 Rn.
Step (2). Consider the set T wðxÞ � Qn defined as follows T wðxÞ :¼ fU ¼ ðujÞ 2
Qn : there is r 2 R such that ujðtÞ ¼ r; 8 t 2 X ; 8 j 2 NnfwðxÞgg. We
show that W ðUÞ ¼ W ðV Þ, for all U ¼ ðujÞ, V ¼ ðvjÞ 2 T wðxÞ for which
uwðxÞ ¼ vwðxÞ. That is, when restricted to T wðxÞ, W only depends upon the values
of the function uwðxÞ. Let then U ¼ ðujÞ, V ¼ ðvjÞ 2 T wðxÞ such that uwðxÞ ¼ vwðxÞ,
and let r; s 2 R be such that uj ¼ rX ; vj ¼ sX , 8 j 2 NnfwðxÞg. First, note that, by
Una, W ðUÞ ¼ W ðUW ðUÞX Þ, (remember that W ðUÞX ðtÞ ¼ W ðUÞ, 8 t 2 X ). Let
now U ¼ ð/jÞ 2 Dn where /wðxÞ is the identity function (i.e., /wðxÞðcÞ ¼ c,

8c 2 R) and, for each j 2 NnfwðxÞg, /jðcÞ ¼ cþ ðs� rÞ, 8 c 2 R. Then, since F
satisfies CM, it holds that W ðU � UÞ ¼ W ðU � UW ðUÞX Þ. But U � U ¼ ð/j � ujÞ,
hence /wðxÞ � uwðxÞ ¼ uwðxÞ, and, for each j 2 NnfwðxÞg,
ð/j � ujÞðtÞ ¼ /jðujðtÞÞ ¼ /jðrÞ ¼ s, 8 t 2 X . So, U � U ¼ V and
W ðV Þ ¼ W ðU � UÞ ¼ W ðU � UW ðUÞX Þ. Now, U � UW ðUÞX ¼ ð/j �W ðUÞX Þ. But
/wðxÞ �W ðUÞX ¼ W ðUÞX , and, for each j 2 NnfwðxÞg,
ð/j �W ðUÞX ÞðtÞ ¼ /jðW ðUÞX ðtÞÞ ¼ /jðW ðUÞÞ ¼ W ðUÞ þ s� r, 8 t 2 X .
Hence, U � UW ðUÞX 2 T . So, W ðU � UW ðUÞX Þ ¼ hxðaÞ, where a ¼ ðajÞ is such
that awðxÞ ¼ W ðUÞ and aj ¼ W ðUÞ þ s� r, 8 j 2 NnfwðxÞg. Hence, by Step (1),
W ðU � UW ðUÞX Þ ¼ hxðaÞ ¼ awðxÞ ¼ W ðUÞ. Therefore, W ðV Þ ¼ W ðUÞ.
Step (3). The conclusion of Step (2) is now extended to all U 2 Qn by using a
proof by contradiction. If W does not only depend on the values of the function
uwðxÞ, there must exist profiles U1 ¼ ðu1j Þ, U2 ¼ ðu2j Þ 2 Qn such that

u1wðxÞ ¼ u2wðxÞ ¼ u, for some u 2 B, and W ðU2Þ\W ðU1Þ. Define now two profiles

8 This proof closely follows that appearing in Candeal (2016, Theorem 4.12) [see, also Khmelnitskaya and
Weymark (2000)]. However, it is more general because the common individual and collective domain
consists not only of bounded utilities.
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~U1, ~U2 2 T wðxÞ by letting ~u1wðxÞ ¼ ~u2wðxÞ ¼ u, and, for each j 2 NnfwðxÞg and

t 2 X , ~u1j ðtÞ ¼ sup fu1j ðzÞ : z 2 X ; j 2 NnfwðxÞgg, and ~u2j ðtÞ ¼ inf fu2j ðzÞ :
z 2 X ; j 2 NnfwðxÞgg. Note that, so-defined, ~U 1, ~U 2 2 T wðxÞ. Moreover, clearly,

U1 � ~U1 and ~U 2 �U2. Now, since F satisfies M, so does W, hence W ð ~U2Þ ¼
Fð ~U 2ÞðxÞ�FðU2ÞðxÞ ¼ W ðU2Þ\W ðU1Þ ¼ FðU1ÞðxÞ�Fð ~U1ÞðxÞ ¼ W ð ~U 1Þ.
Therefore, W ð ~U2Þ\W ð ~U 1Þ, which contradicts the conclusion of Step (2).
Step (4). Let now U 2 Qn. Then, by Step (3), W ðUÞ ¼ W ðUuwðxÞ Þ. But, by Una

again, W ðUuwðxÞ Þ ¼ uwðxÞðxÞ ¼ Uðx;wðxÞÞ. So, W ðUÞ ¼ FxðUÞ ¼ FðUÞðxÞ
¼ Uðx;wðxÞÞ, 8 U 2 Qn. Therefore, FðUÞðxÞ ¼ Uðx;wðxÞÞ, 8 U 2 Qn.
Step (5). It remains to show that the conclusion also holds true for every U 2 Un.
To that end, let U 2 Un be fixed and note that, by Una, FðUÞ ¼ FðUFðUÞÞ. Thus,
by CM, it follows that FðU � UÞ ¼ FðU � UFðUÞÞ, 8 U ¼ ð/jÞ 2 Dn. Take a
profile U ¼ ð/jÞ 2 Dn of bounded functions. Then U � U , U � UFðUÞ 2 Qn. So, by
Step (4), /wðxÞðUðx;wðxÞÞÞ ¼ /wðxÞðFðUÞðxÞÞ, for every x 2 X . Now, since

/wðxÞ 2 D, it follows that Uðx;wðxÞÞ ¼ FðUÞðxÞ, for every x 2 X . Therefore,

Uðx;wðxÞÞ ¼ FðUÞðxÞ, holds true 8 U 2 Un, 8 x 2 X which concludes the
proof. h

Proof of Theorem 4 Suppose, by contradiction, that such a SEF F does exist. Con-
sider the restriction of F to An, which is denoted by G. Clearly, G satisfies M, Una
and A. We now prove that G is CM w.r.t. independent interval scales. Indeed, let
there be given x 2 X , A;B 2 An such that GðAÞðxÞ�GðBÞðxÞ, and U 2 Dn

ia. Then,
because F satisfies SCMIN, it holds that GðUðAÞÞðxÞ ¼ FðUðAÞÞðxÞ ¼
RðUÞðFðAÞÞðxÞ�RðUÞðFðBÞÞðxÞ ¼ FðUðBÞÞðxÞ ¼ GðUðBÞÞðxÞ, the inequality
being true because RðUÞ is increasing. Thus, G is CM w.r.t. independent interval
scales. Now, by Remark 4(iii), such a function cannot exist. Therefore, a contra-
diction is reached and the proof is ended. h
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