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Abstract
Under the presupposition that human time perception is distorted in intertemporal choice,
this study constructs a time scale in the framework of axiomatic measurement. First, the
conditions (homogeneity of degree one or two) to identify the form of a time scale are
proposed so that one can determine whether the hyperbolic or exponential is a more
suitable function for modeling people’s discounting. Homogeneity of degree one implies
that subjective time delay ismeasured by a power scale and its discount function becomes a
power-exponential type, whereas homogeneity of degree two implies that subjective time
delay is measured by a log scale and its discount function becomes a hyperbolic type.
Second, a method is shown for constructing a model that can reflect subadditive and
superadditive discounting. A non-commutative and non-associative concatenation opera-
tion is provided to generate a time string consisting of subdivided durations that incorpo-
rates the effect of repeated delay with a subdivided duration. The discounting model is
yielded by substituting these strings in an exponential model equipped with a generalized
time scale, and thedeterminationof subadditivity or superadditivity dependsonwhether the
discount functionvalueof a product by thenon-commutative andnon-associativeoperation
is, respectively, smaller or greater than that of a product by an operation of the
usual extensive structure.
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1 Introduction

Many descriptive models of delay discounting have been developed in the field of
economics and psychology, and most of them have revised the previous models to
explain people’s behavior on trade offs between time and outcomes more faithfully.
The generalized hyperbolic discounting model (Loewenstein & Prelec, 1992) was
proposed to reflect decreasing impatience, addressing the problem that the
exponential discounting model (Samuelson, 1937) can deal only with constant
impatience.1 However, the detection of issues that the generalized hyperbolic
discounting model cannot address has encouraged construction of a new discounting
model by introducing the distortion of human time perception. Ebert and Prelec
(2007), noting the relationship between time-insensitivity and non-constant impa-
tience, proposed the constant-sensitivity model, which is an exponential model in
which subjective time measured by a log scale is introduced. Furthermore, Bleichrodt
et al. (2009) extended the constant-sensitivity model so that it can accommodate
increasing impatience (Attema et al., 2010) and strong degrees of decreasing
impatience. Meanwhile, Read (2001) advocated the importance of subadditivity
(which means that the total discounting is greater when an interval is divided into
subintervals) and demonstrated strong evidence of subadditive discounting, but no
evidence of decreasing impatience, through intertemporal choice experiments.
Furthermore, Scholten and Read (2006) presented the concept of “subadditive
discounting model2” (a discount function dependent on the interval between two
adjacent outcomes, not between the present and when an outcome occurs), and
proposed two parameterized discounting models (one of which is similar to the
constant-sensitivity model, and the other is the generalized hyperbolic model in
which a subjective time interval measured by a power scale is substituted) so that
they could explain subadditive and superadditive discounting properties.

In contrast, there is little work conducted on strictly axiomatizing the models. Let
us review some major, typical approaches to the axiomatization. Initially, an
exponential type of discounting model was axiomatized based on constant
impatience. Using the topological framework of Debreu (1960); Koopmans (1972)
constructed a utility model for an infinite outcome sequence. To overcome the
difficulty in testing topological conditions (except for money outcomes), Hübner and
Suck (1993) adapted Koopmans’s result to a general algebraic framework using an
infinite-dimensional additive conjoint structure. Subsequently, by generalizing
constant impatience to the Thomsen condition, and also using Debreu’s topological
results, Fishburn and Rubinstein (1982) constructed a multiplicative utility model
uðx; tÞ ¼ uðtÞuðxÞ for a dated outcome, where ðx; tÞ denotes the receipt of outcome x
at time t and u and u are a utility and a weight function, respectively. Furthermore,
Loewenstein and Prelec (1992), introducing the concept of distorted time perception

1 Constant impatience is also called stationarity (Koopmans, 1960), which for our domain of dated
outcomes means that the preference between two dated outcomes is invariant as long as the difference
between the receipt times of these outcomes are the same.
2 Ok and Masatlioglu (2007), utilizing a result of a functional equation, constructed a utility model for
which the discount is assessed by a function of any two points in time, which corresponds to the
subadditive discounting model.
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(a person might feel time passage at different speeds in accordance with the time
distance from the present to the occurrence of delay) into this multiplicative utility
model, derived the generalized hyperbolic discounting model. However, a condition
has not yet been proposed that is written in such an explicit form that one can
examine how a person’s time passage is distorted through experiments.

It is worthwhile to pay attention to the work that investigated the relationship
between a discount function and “subjective time perception.” Zauberman et al.
(2009) and Bradford et al. (2019) assessed subjective duration by asking the subjects
directly how long they felt each calendar time frame (e.g., 1 day, 1 week, 4 weeks)
was, and showed that perception of subjective time closely follows a log-shaped
curve and that the estimated discount rates were indistinguishable between most of
the subjective time intervals.3 This result suggests that an exponential function is
suitable to explain discounting if the delay time is allowed to assess subjectively,
which can be expressed by the formula:

expð�mwðtÞÞ � expð�mwðsÞÞ ¼ expð�mðwðsÞ þ wðtÞÞÞ; ð1Þ
where m is a discount rate and w is a function that transforms objective time into
subjective time. As stated by Read (2001), (1) might represent the preferences of a
“rational” decision maker because the discounting is assessed with a constant dis-
count rate and the time perception adjusted to being inherent in a decision maker. It
should be noted (Takahashi et al., 2012) that setting w as a logarithmic function (i.e.,
logarithmic time perception) yields the generalized hyperbolic discounting model.
However, it seems strange to acknowledge the existence of a log or power scale over
the time horizon a priori. An explicit reason for the existence of a nonlinear scale on
the set of time has not been given, although the Weber-Fechner and Stevens’ power
laws are often cited for its validity. From a practical viewpoint, estimation of the form
of w based on questionnaires, which is performed independently of experiments
regarding time preference (Zauberman et al., 2009; Bradford et al., 2019), might
deprive us of a chance to grasp a dynamic relation between subjective time per-
ception and discounting. Indeed, their approach might evaluate time perception
separately from the context of time preference. In contrast, the condition of “temporal
scale invariance” (Ebert & Prelec, 2007; Bleichrodt et al., 2009) is suitable because
its validity can be verified by an experiment regarding time preference and one can
know distorted time perception implicitly through a person’s preferences. Therefore
it is desirable to derive a scale from an empirical relational structure according to the
approach of axiomatic measurement (Krantz et al., 1971, p.1).

In view of not a small gap between the normative and descriptive models, this
study aims at deriving conditions to decide the form of w so that one can identify
whether a hyperbolic or exponential function is more suitable for modeling people’s
discounting. Another aim is to formulate conditions to construct a discounting model
that reflects subadditive and superadditive discounting. This is also conducted
associated with the measurement of subjective time. The existence of an exponential
discount function with a generalized time scale w of (1) is essential for realizing these

3 However, Bradford et al. (2019) showed that the discount rates were much different between 1-day delay
and other time delays.
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aims. Hence the exponential function must be constructed assuming that a
generalized concatenation operation, not the usual addition, exists on the set of
time, and this will follow the result of Matsushita (2017). Precisely, the positive
closed extensive structure (Krantz et al., 1971) is introduced in the set of time for the
first aim, but a generalized extensive structure (Matsushita, 2014) for the second aim.
That is, a commutative and associative concatenation operation is used for the first
aim, whereas a non-commutative and non-associative operation for the second aim.
The latter operation involves the order of each duration of a time string in time
perception.

The rest of this paper is organized as follows. Section 2 shows the construction of
the exponential discount function of (1) using a delay operator and a generalized
concatenation operation and explains a basic approach to generating all discounting
models in this paper from this exponential function. Section 3 deals with the case of
additive discounting and proposes a standard to determine whether a log or power
scale is suitable for measuring the passage of time. The standard is expressed as two
types of homogeneity of time unit: one is close to a property of multiplication,
corresponding to a log scale, and the other is close to a property of addition,
corresponding to a power scale. In addition, a comment is made on a procedure for
testing the proposed standard experimentally. Section 4 considers the case of
nonadditive discounting but the additivity can be revived by introducing a non-
commutative and non-associative operation; eventually, a function that reflects
subadditive or superadditive discounting is obtained by incorporating the order effect
of delay with each duration in a time string. Section 5 provides some conclusions.
The proofs of the propositions are given in Sect. 6. The appendix shows the reason
that the multiplicative utility model induces a restrictive condition.

2 Basic concepts and axioms

2.1 Expression of additive and non-additive discounting

Throughout this paper, R and Rþ
0 denote the sets of all real numbers and all

nonnegative real numbers, respectively. Let X be a nonempty set of outcomes (which
at this stage may be general) and let % X be a binary relation on X, which is
interpreted as a preference relation. As usual, �X denotes the asymmetric part, sX

the symmetric part, and †X and �X reversed relations. The binary relation % X on X
is a weak order if and only if it is connected and transitive. An antisymmetric weak
order is called a simple order. The usual order > on R is a simple order. Let T ¼ Rþ

0 ,
denoting the set of all delay durations.

When expressing additive and non-additive discounting, this paper provides two
new devices: an operator to delay the receipt of outcomes and a generalized
concatenation operation on T. Repeated delay is described by multiplying outcomes
by this delay operator from the right multiple times (see below), without using any
time scale. The generalized operation reflects human time perception and hence
extends an expression frame for additive discounting. These devices make the
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exponential discount function of (1) work as a generating function that yields all
discount functions in this paper. In the following, the definition and efficiency of the
devices will be shown.

Right multiplication by elements of T is provided to define an operator expressing
the delayed receipt of outcomes. That is, xt denotes that the receipt of x is delayed by
duration t, but the quantity is itself defined as the present value of a delayed
outcome4, implying a value possessed in the present, equivalent to the outcome
received at time t. To be more precise, an element ðx; tÞ in X � T indicates the
receipt of x at time t. Here ðx; 0Þ implies the receipt of x at the present. Then xt is
defined as a solution5 to the following equivalence:

ðxt; 0Þs ðx; tÞ: ð2Þ

Note that xt is an element of X.
For simplicity, we will now restrict our concern to monetary amounts (X ¼ Rþ

0 )
and consider a situation where delay occurs repeatedly. It will be valid that additive
discounting: ðxsÞt� X xðsþ tÞ holds under time consistency. A multiplicative utility
model uðxtÞ ¼ uðtÞuðxÞ is applied to this equivalence to obtain
ðuðsÞuðtÞÞuðxÞ ¼ ðuðsþ tÞÞuðxÞ, so that uðsÞuðtÞ ¼ uðsþ tÞ because u(x) is
arbitrary. Hence it follows from Theorem 2.1.2.1 (Aczél, 1966) that uðtÞ ¼
expð�mtÞ if u is continuous and non-constant for t[ 0. Recall here that the violation
of additive discounting was found through experiments (Read, 2001; Scholten &
Read, 2006), which invalidates the premise to derive the exponential function.
However, the introduction of a generalized concatenation operation �T on T (from þ)
might solve this problem. Indeed, even if ðxsÞt 6� X xðsþ tÞ, it is likely that
ðxsÞt� X xðs �T tÞ. There are several methods to construct an additive scale w with
respect to �T , i.e., wðs �T tÞ ¼ wðsÞ þ wðtÞ. Thus substituting w(t) for t in the
expression uðtÞ ¼ expð�mtÞ yields the exponential discount function of (1).
Moreover, it is possible to clarify the form of w by finding an algebraic property
of �T in the context of axiomatic measurement. In Sect. 3, concrete forms of w will be
determined according to the property of “homogeneity.” (Using the property, one can
decide whether w is a log or a power scale.)

Let t1; . . .; tn 2 T be time durations and let tðnÞ ¼ ð� � � ðt1 �T t2Þ � � �Þ �T tn. Clearly, t
(n) is not necessarily equal to the usual sum

Pn
i¼1ti because subjectivity is reflected

in it. The use of right multiplication of time durations allows for the expression of a
step-by-step postponement of the receipt of x as ð� � � ðxt1Þ � � �Þtn. However,
ð� � � ðxt1Þ � � �Þtn is not always equivalent to the one-step delay of x by duration t(n).
Hence the following three cases arise according to the inequalities between
ð� � � ðxt1Þ � � �Þtn and xt(n).

Subadditive discounting: ð� � � ðxt1Þ � � �Þtn �X xtðnÞ. This implies that the n-step
delay reduces the value of x more than the one-step delay.

4 Conversely, the notation xt was used to imply the “advanced” receipt of x by duration t in Matsushita
(2017).
5 Restricted solvability (Matsushita, 2017) along with other axioms guarantees the existence of a solution
y ¼ xt to ðy; 0Þ� ðx; tÞ.
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Superadditive discounting: ð� � � ðxt1Þ � � �Þtn�X xtðnÞ. This implies that the n-step
delay does not reduce the value of x more than the one-step delay.
Additive discounting: ð� � � ðxt1Þ � � �ÞtnsX xtðnÞ. This implies that the step-by-step

delay has no effect.

In Sect. 4, the operation �T will be further generalized so that sub- and
superadditive discounting above can be transformed into additive discounting. This
study basically takes the approach to yielding discounting models by defining a
generalized time concatenation operation, reviving additive discounting, and
enabling the use of the exponential function of (1).

2.2 The base structure

This subsection presents the definition of an extensive structure because it is given to
X and T as a base structure. However, if the reader is to focus on monetary amounts
and market pricing, then it is unnecessary to assume X to be the extensive structure;
instead, it may be regarded as the algebraic structure of nonnegative real numbers,
hRþ

0 ; >; þi.
Let � be a “partial” binary operation on X, meaning a function from a subset B of

X � X into X. The expression x � y is said to be defined (in X) if and only if
ðx; yÞ 2 B. Henceforth, the system hX ; % X ; �i is an extensive structure if and only if
the following conditions hold for all x; y; z 2 X for which the products are defined:

A1. Weak order: % X is a weak order.
A2. Local definability: if x � y is defined, x% X x

0;and y% X y
0; then x0 � y0 is defined.

A3. Monotonicity: x% X y , x � z% X y � z , z � x% X z � y:
A4. Weak associativity: ðx � yÞ � zsX x � ðy � zÞ:
A5. Solvability: whenever x�X y; there exists z 2 X such that x% X z � y.
A6. Positivity: x � y�X x:
A7. Archimedeanness: every bounded sequence fnxg, which means y�X nx for

some y 2 X , is finite. Here the sequence fnxg is defined inductively by 1x ¼ x;
2x ¼ x � x; and nx ¼ x � ðn� 1Þx if the right-hand side is defined.

Assume that hT ; >; �T ; 0i is a positive closed extensive structure (Krantz et al.,
1971) with an identity element 0; that is, Tn½0g is a positive closed extensive
structure in which > is a simple order. This can be regarded as an extensive structure
possessing a binary operation.6 Attention should be paid to the fact (Krantz et al.
1971, Lemma 3.5) that T is uniquely extended to an Archimedean simply ordered
group hR; >; �Ri. The symbols t and �t are used when it is necessary to distinguish
positive from negative elements. The symbol t�1 is used to denote the inverse of t.

6 In the formal definition of a “closed extensive structure” by Krantz et al. (1971), a complicated
Archimedean axiom is used instead of A7 with the elimination of A5. However, it is well-known (Roberts
& Luce, 1968, p. 321) that Axioms A1–A7 imply the complicated Archimedean axiom in the positive
system.
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Note here that neither t �R ð�tÞ ¼ 0 nor ð�tÞ �R t ¼ 0 is always satisfied, while
t �R t�1 ¼ t�1 �R t ¼ 0.

2.3 Extensive structure with right action

In a similar manner, xt�1 denotes that the receipt of x is advanced by duration t. This
is defined as a solution to ðxt�1; tÞs ðx; 0Þ. Here xt�1 is an outcome received at time
t that is equivalent to the outcome x received at the present, which means a markup
value of x that is assessed “at time t” when the receipt of x proceeds from t to the
present.

Some possible properties of right multiplication by elements of R on the extensive
structure X are listed as follows.

A8. x% X y , xt% X yt , xt�1 % X yt
�1.

A9. s 6 t , xs% X xt , xs�1†X xt
�1.

A10. ðxtÞt�1
sX ðxt�1ÞtsX x.

A11. For any x 2 X and any t 2 T, there exists y; z 2 X such that ytsX x and

zt�1
sX x.

A12. Whenever x � y is defined in X, then ðx � yÞt� X ðxtÞ � ðytÞ and
ðx � yÞt�1 � X ðxt�1Þ � ðyt�1Þ.

A13. x0� X x.

The above properties can be obtained by introducing several conditions
(Matsushita, 2017) into a weak order % on the product set X � R. Axiom A12
implies right-homogeneity of the right multiplication, and it is trivial because x � y
can be interpreted as the simultaneous receipt of x and y (the reader may regard x � y
as xþ y in the case of monetary amounts). Indeed, A12 only claims that the delayed
(or advanced) receipt of a joint outcome x � y by duration t is equivalent to the
simultaneous receipt of outcomes xt and yt (or xt�1 and yt�1), the receipt of which are
delayed (or advanced) by duration t.

Definition 1 Let hR; >; �Ri be an Archimedean simply ordered group. An extensive
structure equipped with a right action of R is an extensive structure hX ; �X ; �i
equipped with the action of right multiplication for which A8–A13 are satisfied.

From Theorem 1 (Matsushita, 2017) a weighted additive model is obtained for the
delay and advance operators.

Proposition 1 Let hX ; �X ; �i be an extensive structure equipped with a right action
of R, and let u be an additive representation of X. Then there exists a function
u : T ! ð0; 1� with uð0Þ ¼ 1 such that
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(i) uðxtÞ ¼ uðtÞuðxÞ;
(ii) uðxt�1Þ ¼ 1

uðtÞ uðxÞ;
(iii) s > t , uðsÞ 6 uðtÞ:

Here u is an absolute scale.

Remark 1 Since uððxsÞtÞ ¼ uððxtÞsÞ by Proposition 1, it follows that ðxsÞt� X ðxtÞs,
implying that the delay operator is commutative. The delay action is also written for
dated outcomes in the right-multiplication form ðx; tÞs and it is defined that ðx; tÞs ¼
ðx; t �T sÞ (where 0 �T s ¼ s). Assume further that monotonicity holds, i.e.,
ðx; tÞ� ðxt; 0Þ , ðx; tÞs�ðxt; 0Þs. Then the commutativity, along with (2), induces

ðx; 0Þs�ðxs; 0Þ , ðx; tÞs�ðxs; tÞ:
This is called time invariance (Halevy, 2015) and a very restrictive condition because
it says that the present value of each period t (offset against delay) is invariant
regardless of when delay occurs. The commutativity of the delay operator is a
constraint arising from a multiplicative utility accompanied by the assumption xt 2 X
(by (2)).7 Although time invariance is in itself not assumed in the original formu-
lation (Matsushita 2017, Eq. (11)), it is given rise to by A4 (regarding �), A12, and
the assumption xt 2 X (see the appendix for the detail). This problem will be
resolved by introducing a non-associative operation in Sect. 4.

Henceforth, the focus is on additive discounting to obtain a discount function of
the exponential form.

A14. ðxsÞtsX xðs �T tÞ.
Inductive use of A14 along with A8 guarantees the additive discounting:

ð� � � ðxt1Þ � � �ÞtnsX xtðnÞ. Mathematically, the introduction of A14 makes the right

multiplication by t a representation of T on X (i.e., a homomorphism of T into the set
of homomorphisms on X) in the sense of monoids (i.e., semigroups with identity).
Therefore it is appropriate to refer to the right multiplication by t as a right action.
The following is a key principle in this study.

Proposition 2 Let hT ; >; �T ; 0i be a positive closed extensive structure with an
identity element 0, and let w be an additive representation of T. Let hX ; % X ; �i be an
extensive structure equipped with a right action of R. Let u : T ! ð0; 1� be the
weight function of Proposition 1. If A14 is satisfied, then u is of the multiplicative
form uðs �T tÞ ¼ uðsÞuðtÞ, where

uðtÞ ¼ expð�mwðtÞÞ for some real constant m[ 0:

7 This can be verified by Theorems 5 and 6 in Bleichrodt et al. (2015). Indeed, the present value is equal to
tomorrow’s present value in a constant discount utility (Theorem 5), but not in the usual additive utility
(Theorem 6).
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If A14 is assumed, then the repeated use of A8 yields

y� X xt1 , ytðn� 1Þ� X xtðnÞ for any n > 2:

This is a generalized stationarity axiom in the sense that an indifference between two
(delayed) outcomes is invariant under the assumption that the duration is summed
based on the operation �T of the extensive structure.

3 Two types of discount functions derived from time perception

Introducing a binary operation on T, we have so far derived an exponential discount
function equipped with a generalized time scale. However, the binary operation is
merely a generalization of the addition and is not shown to have a close connection
with human time perception. This section connects the operation to time perception
and expresses the additive representation w of Proposition 2 in an explicit form. For
this purpose, a continuous binary operation 	T on Tnf0g is provided; regarding 	T as
a function of two variables, it is continuous in each variable. Then conditions for 	T
are extracted in the context of time perception such that w can be a log scale or
exponential scale. We shall now imagine a situation where a person is faced with a
discount evaluation when a short-term delay occurs repeatedly. In this case, he/she
might recognize each term either as the difference between the added and the
cumulative duration or as the ratio of the added to the cumulative duration. Let a
denote a unit of time (e.g., a month, 6 months, or a year) for delay. Let s; t be
arbitrary time durations. Two types of standards regarding time perception are
provided.

B1. Left-homogeneity: aðs 	T tÞ ¼ ðasÞ 	T t:
B2. Homogeneity (of degree 1): aðs 	T tÞ ¼ ðasÞ 	T ðatÞ:

Axiom B1 means that the concatenation of increments, whose unit is turned into a
multiple of a, is identical to the concatenation of increments, any one of which is a
multiple of a, indicating that 	T is close to multiplication. Meanwhile, B2 means that
the concatenation of increments, whose unit is turned into a multiple of a, is identical
to the concatenation of the increments that are multiples of a, indicating that 	T is
close to addition.

In addition, if 	T is assumed to be commutative (i.e., s 	T t ¼ t 	T s), then B1
induces also right-homogeneity, and hence homogeneity of degree 2 is obtained as

a2ðs 	T tÞ ¼ ðasÞ 	T ðatÞ:

The next proposition is a restricted version of Theorem 1 of Marchant and Luce
(2003).

Proposition 3 Assume that 	T is a continuous binary operation on Tnf0g for which
associativity, commutativity, and monotonicity are satisfied. Then the operation 	T
and an additive representation v of Tnf0g are of one of the following forms,
depending on whether either B1 or B2 is satisfied.
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(i) If B1 is satisfied, then

s 	T t ¼ g st with g[ 0; ð3Þ

vðtÞ ¼ c lnðgtÞ with c[ 0: ð4Þ

(ii) If B2 is satisfied, then

s 	T t ¼ ðsb þ tbÞ1b with b[ 0; ð5Þ

vðtÞ ¼ qtb with q[ 0: ð6Þ

Proposition 3 states that human subjective perception of time follows the “Weber-
Fechner law” (Bradford et al., 2019) if B1 holds, and follows “Stevens’ power law”
(Stevens, 1957) if B2 holds. Bradford et al. (2019) showed that the predicted
subjective time was close to a log-shaped curve. Hence it is suitable to determine that
0\b\1 in the case of B2.

We will consider the possibility of substituting the two types of additive functions
v for w in Proposition 2. For this purpose, we may verify whether 	T can be identified
with �T . In the case of Proposition 3(ii), it can be seen from (5) that hTnf0g; >; 	T i
satisfies all the conditions of a positive closed extensive structure. Moreover, 0 is
added to Tnf0g to supply an identity element for 	T. Therefore it is permissible to
assume that v ¼ w. On the contrary, in the case of Proposition 3(i), it is impossible to
assume that v ¼ w because 0 cannot be an identity with respect to 	T by (3).
Therefore an alternative identity element e[ 0 is prepared for 	T of (3).

B3. Identity: t 	T e ¼ e 	T t ¼ t:

It is clear from (3) that this condition causes g ¼ 1=e in (3). Furthermore, an
equation is provided to transfer the roles of the identity elements of 	T and �T :

ðeþ esÞ 	T ðeþ etÞ ¼ eþ eðs �T tÞ: ð7Þ
Substitution of s ¼ 0 (or t ¼ 0) into both sides of (7) activates the respective identity
elements e and 0 for 	T and �T ; that is, e 	T ðeþ etÞ ¼ eþ et; 0 �T t ¼ t. It must be
verified here that (7) does not invalidate the assumption of hT ; >; �T ; 0i being a
positive closed extensive structure. From (3) with g ¼ 1=e and (7) it follows that
s �T t ¼ sþ t þ st. Therefore hT ; >; �T ; 0i satisfies all the conditions of a closed
extensive structure (see Luce et al. (1990, pp. 28–29) for an analogous case). Fur-
thermore, it is worthwhile to note that (7) gives the formal consistency between the
product and its variables. Indeed, after restricting 	T to the set
eþ eT ¼ feþ et j t 2 Tg, we will interpret the meaning of this multiplication. The
left-hand side of (7) implies the multiplication of deviations es; et from the identity
element e, and the right-hand side means that their product is also a deviation from e,
in which the deviation is expressed as eðs �T tÞ. Hence it seems proper to regard the
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identity e and a deviation as the present and an increment of duration, respectively
(Fig. 1).

Example 1 In the case of (3), since s �T t ¼ sþ t þ st as shown above, t(n) (which is
defined in Sect. 2.1) varies in accordance with the value of tn, which is shown in
Table 1. In contrast, in the case of (5) with b ¼ 1, the constant tn ¼ 1=2 gives the
same variation of t(n) as in Table 1.

Example 1 shows that in the case of B1, the increment becomes shorter to
guarantee an equal interval between adjacent delays as the cumulative delay gets
longer. Since the discount factor is assessed as a ratio of the present value to the value
of an outcome, it is likely that a person assesses each increment of delay as the ratio
as above. Thus, although preceding work (Zauberman et al., 2009; Bradford et al.,
2019) reported that people overestimate short delays and underestimate long delays,
this might be explained just by assuming that human subjective perception of time is
assessed based on the ratio, without daring to bring up the Weber-Fechner or
Stevens’ power law.

Proposition 4 Let hT ; >; �T ; 0i be a positive closed extensive structure with an
identity element 0, and assume that �T is continuous. Let w be an additive
representation of T. Assume that 	T is a binary operation on eþ eT satisfying all the
conditions of Proposition 3(i) and B3. Let v be an additive representation of the form
(4). Then (7) holds if and only if wðtÞ ¼ vðeþ etÞ for all t 2 T. Hence w is expressed
as

wðtÞ ¼ c lnð1þ tÞ with c[ 0:

Fig. 1 Relation between 	T and �T

Table 1 Cumulative duration in
accordance with increments

n 1 2 3 4 5 � � �

tn 1/2 1/3 1/4 1/5 1/6 � � �
t(n) 1/2 1 3/2 2 5/2 � � �
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Given v of (4), Proposition 4 says that w can be identified with v as long as a
variable of v is written in the form eþ et and that w is expressed as a log scale having
a variable of the form 1þ t. Since w is a function that puts 0 at the present, the log
scale is considered to be a function that puts 1 at the present by analogy with the
discussion on Fig. 1.

When the unit is multiplied by a in the case of B1, we consider how an increment
in time duration from the present is expressed. By B1 and (7),

ðaðeþ esÞÞ 	T ðeþ etÞ ¼ aeþ aeðs �T tÞ:
The right-hand side indicates that ae is regarded as a starting point of delay and hence
aeðs �T tÞ as an increment in duration from the present. In view of the variable of w
being an increment from the present, it follows from Proposition 4 that
wðaðs �T tÞÞ ¼ c lnð1þ aðs �T tÞÞ. The following is a corollary to Proposition 2; the
first and the second case correspond to Propositions 3(i) and (ii), respectively:

Proposition 5 Assume that the hypotheses of Propositions 2 and 3 hold and that �T
is continuous. Let at; t[ 0 denote a delay duration from the present.

(i) If B1, B3, and (7) are satisfied, then

uðatÞ ¼ 1

ð1þ atÞb=a
; b ¼ mca: ð8Þ

(ii) If B2 is satisfied, then

uðatÞ ¼ exp½�mqðatÞb�: ð9Þ

Remark 2 The right-hand side of (8) is the (generalized) hyperbolic discount
function by Loewenstein and Prelec (1992). The right-hand side of (9) is similar to a
discount function by Ebert and Prelec (2007)8, which was derived by applying the
condition of temporal scale invariance (i.e., a preference invariance condition under
the conversion of a time unit) to the multiplicative utility model (Fishburn &
Rubinstein, 1982). Since Ebert and Prelec (2007) set the exponential function as an
underlying function, their discount function was derived in a form similar to the
model of (9).

The condition of temporal scale invariance (Ebert & Prelec, 2007; Bleichrodt
et al., 2009) is simple to check experimentally because it is written based on
preferences between dated outcomes. It is desirable that the empirical test on the
validity of B2 or B1 be also run in the framework of time preference. The following
procedure might be one of the candidates. Subjects are asked to assess a present
value each time the receipt of an outcome x is delayed by duration ti ði ¼ 1; . . .; nÞ
with the use of a time unit a. This gives a present value, denoted xðaÞn , of the n-step

8 Furthermore, Bleichrodt et al. (2009) showed that the discount function with 0\b\1 can only address
moderately decreasing impatience.
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delay of x; formally, xðaÞn � X ð� � � ððxðat1ÞÞt2Þ � � �Þtn. Furthermore, it is possible to

determine a duration s such that xðaÞn � X xs by asking the one-step preference

questions with a varied delay duration. The duration s is written as sðaÞn , which can be

regarded as equivalent to aðð� � � ðt1 �T t2Þ � � �Þ �T tnÞ. Similarly, such a duration sða
0Þ

n

can be obtained with another unit a0. If B1 is satisfied, then sðaÞn =sða
0Þ

n ought to equal
a=a0 for each n > 1. Thus it will be proper to establish this equality as a validity
condition of B1. The validity of B2 can be verified in the same manner by replacing

the first equivalence with xðaÞn � X ð� � � ððxðat1ÞÞðat2ÞÞ � � �ÞðatnÞ.
In addition, define a function i to give correspondence between a duration t and its

inverse t�1 by iðtÞ ¼ �t�1. The form of i is determined according to whether B1 or
B2 is being satisfied.

Proposition 6 Assume that the hypotheses of Propositions 2 and 3 hold and that �T
is continuous. Then i is written as follows.

(i) If B1, B3, and (7) are satisfied, then iðtÞ ¼ t
1þt.

(ii) If B2 is satisfied, then iðtÞ ¼ c1=bt for some c[ 0.

Testing the form of i might allow us to examine whether the hyperbolic or the
exponential function is more suitable, in the context of time perception of
advancement.

4 A discount function reflecting subadditivity or superadditivity

This section shows a way to construct a function that reflects subadditive or
superadditive discounting. For this purpose, a “generalized” extensive structure
(Matsushita, 2014) is provided. Let 
 be a concatenation operation of elements of
T ¼ Rþ

0 , and assume that 
 is not associative. Let T ð0Þ ¼ Rþ
0 , let T ð1Þ ¼

s 
 tjs; t 2 T ð0Þ� �
and proceeding recursively, let T ðnþ1Þ ¼ s 
 tjs; t 2 T ðnÞ� �

. Note

here that T ðnþ1Þ � T ðnÞ for n > 0 because a left identity element is included in T ðnÞ

(C1 below). Hence T
 ¼ [1
n¼0T

ðnÞ is closed with respect to 
. Let % 
 be a binary
relation on T 
.

C1. Left identity: o is a left identity element; that is, o 
 ss 
s for all s 2 T
.
C2. R-positivity: s 
 t�
s unless t� 
o.
C3. Left solvability: whenever s�
t, there exists r 2 T 
 such that ss 
r 
 t:

The system hT 
; % 
; 
; oi is a left nonnegative concatenation structure with left
identity if and only if A1–A3, A7, and C1–C3 are satisfied with % 
 and 
. Note here
that A7 is satisfied only in relation to concatenation from the left side. It will be seen
(the proof of Proposition 8 below) that o� 
0. In view of non-associativity of 
, the
well-definedness of a product demands a specification of the order of multiplication.
Let t
ðnÞ denote a product of the form ð� � � ðt1 
 t2Þ 
 � � �Þ 
 tn. Each t
ðnÞ can be
regarded as a string of elements t1; . . .; tn of R

þ
0 ; that is, t


ðnÞ is identified with an n-
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tuple ðt1; . . .; tnÞ. The arrangement order of elements indicates the order in which the
delay with duration ti occurs. A period in which the most recent delay has occurred is
called a “reference period.” It is important to note the following distinguishing
feature of the product (not n-tuple) expression: the right multiplication and division
by left identity o serves as operators moving the occurrence of each delay away from
and closer to the reference period, respectively. For example, for s 
 t, a reference lies
in the period where a delay with duration t occurred. Then s 
 o means that a delay
with duration s occurred earlier than the reference period by one period, and s/o
implies that the occurrence of a delay with duration s is pulled back into the reference
period. Hence ðs=oÞ 
 t denotes a delay in the reference period whose duration is
expressed by the concatenation of s and t, say s �T t. Thus it is satisfied that
ðs 
 oÞ=o� 
ðs=oÞ 
 o� 
s. The functions of the operators by o are shown as follows.

Example 2 The next correspondences hold:

ðððt1=oÞ=oÞ 
 ðt2=oÞÞ 
 t3 $ ðo; o; ðt1 �T t2Þ �T t3Þ:
ðt1 
 ðt2 
 oÞÞ 
 ððt3 
 oÞ 
 oÞ $ ððt1 �T t2Þ �T t3; o; oÞ:

Since the products on the left-hand side have the terms ðt1=oÞ=o and ðt3 
 oÞ 
 o in
the former and latter cases, respectively, it is seen that the reference period lies in the
third period, implying that the reference period is located in the third component on
the right-hand side in both the cases. The former case indicates that a delay with
duration t(3) occurs after a two-period passage, while the latter demonstrates that the
delay occurs in the present.

The following knowledge is basic to the subsequent consideration.

● Assume that the next conditions hold for r; s; t 2 T
.

C4. s 
 ðt 
 rÞ� 
t 
 ðs 
 rÞ:
C5. ðs 
 tÞ 
 o� 
ðs 
 oÞ 
 ðt 
 oÞ:

Define a binary operation on T 
 by

s~t ¼ ðs=oÞ 
 t:
If C4 and C5 hold9, then EðT
Þ ¼ hT
; % 
; ~; oi is a positive closed extensive
structure with identity (Matsushita, 2014, Lemma 2). Let w
 be an additive
representation of EðT
Þ.10 Then

w
ðs 
 oÞ ¼ kw
ðsÞ; k[ 0: ð10Þ
Since s 
 t� 
ððs 
 oÞ=oÞ 
 t� 
ðs 
 oÞ~t by A3 regarding 
, it follows that

9 Condition C4 says that if the latest delay with duration r occurs, then looking back from the reference
period, the perceived time length is indifferent to the occurrence order of the previous two delays with
durations s and t.
10 In Matsushita (2014), w
ðs 
 oÞ ¼ kwðsÞ; k > 1 because it was assumed that s 
 o% 
s for s�
o. This
paper invalidates the assumption to consider the case of s 
 o �
 s.
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w
ðs 
 tÞ ¼ kw
ðsÞ þ w
ðtÞ ð11Þ

For simplicity, the notation oðnÞ is provided to express the product:

s 
 oðnÞ ¼ ð� � � ðs 
 oÞ 
 � � � 
 oÞ 
 o|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n times

ðn > 1Þ:

Here s 
 oðnÞ means that after the delay with duration s, the n-times delay continues
without specifying each duration. Each product t
ðnÞ is expressed as the standard
form ðt1 
 oðn�1ÞÞ~ðt2 
 oðn�2ÞÞ~ � � �~tn.

Since s~t ðs; t 2 TÞ means the concatenation of durations whose delays occurred
simultaneously, it is rational to assume that the restriction of ~ to T, denoted ~jT , is a
closed operation, i.e., s~t 2 T whenever s; t 2 T. It is also clear that the restriction
of % 
 to T, denoted % 
jT , is the simple order > because of T ¼ Rþ

0 . In this regard,
it would be appropriate to assume the following.

Restriction assumption ~jT¼ �T and % 
jT¼>.

Let s; t 2 T 
 and it is presupposed that xs 2 X for all s 2 T
. Analogously to
Definition 1, it is possible to define an extensive structure with the action of the right
multiplication of elements of EðT
Þ. Since this section deals only with the delayed
case, the parts written by the right multiplication by inverse elements should be
removed in A8–A12, so that A10 can be eliminated. Since T
 is a weakly ordered
set, A9 is rewritten as

A9
. s†
t , xs% X xt:

The next axiom is necessary to make the additivity of the delay operator (the right
multiplication by elements of T
) revival.

A14
. ðxsÞt� X xððs 
 oÞ~tÞ.
The following propositions are an adapted version of Propositions 1 and 2 for the

generalized right action, respectively.

Proposition 7 Let EðT
Þ be a positive closed extensive structure with an identity
that is derived from the left nonnegative concatenation structure with left identity for
which C4 and C5 are satisfied. Let hX ; �X ; �i be an extensive structure equipped
with a right action of EðT
Þ and let u be an additive representation of X. Then there
exists a function u : T
 ! ð0; 1� with uðoÞ ¼ 1 such that for s; t 2 T
,

(i) uðxtÞ ¼ uðtÞuðxÞ;
(ii) s% 
t , uðsÞ 6 uðtÞ:

Proposition 8 Assume that the hypotheses of Proposition 7 hold, and let w be an
additive representation of T. If A14
 is satisfied, then u is of the multiplicative form
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uððs 
 oÞ~tÞ ¼ uðs 
 oÞuðtÞ for any s; t 2 T
. Furthermore, if the restriction
assumption is satisfied, then for s 2 T,

uðs 
 oðnÞÞ ¼ expð�mknwðsÞÞ for some m; k[ 0.

Remark 3 Since each product has a standard form, it follows from the equation
displayed in Proposition 8 that

uðt
ðnÞÞ ¼ exp½�mðkn�1wðt1Þ þ kn�2wðt2Þ þ � � � þ wðtnÞÞ�:

The standard form suggests that the product t
ðnÞ reflects not only the total delay
duration but also the effect of repeated delay with a subdivided duration on time
perception; that is, the duration ti 
 oðn�iÞ ð1 6 i 6 n� 1Þ is assessed as longer or
shorter than the pure duration ti, depending on whether the constant k of (10) is
greater or smaller than 1. Meanwhile, the product tðnÞ ¼ ð� � � ðt1 �T t2Þ � � �Þ �T tn
expresses only the total delay duration. Hence it seems proper to judge subadditivity
or superadditivity by comparing the values of the discount function of these two
products; that is, subadditivity or superadditivity depends on whether uðt
ðnÞÞ is
smaller or greater than uðtðnÞÞ. From Propositions 2 and 8 it is seen that the
discounting is subadditive if k[ 1 and is superadditive if k\1. However, it is
problematic to assess the value of k in (10) because s 
 o does not show an explicit
delay duration. If s 
 o can be interpreted as a delay with a duration of a time unit
subsequent to the delay with duration s (many decision makers may feel so)11, then it
will be possible to extract a duration equivalent to s 
 o. That is,
T-equivalence For any s 2 T
, there exists r 2 T such that r� 
s.

This is guaranteed by making C3 a bit stronger: whenever s�
t; there exists r 2 T
such that s� 
r~t. Repeated use of T-equivalence and A3 regarding 
 gives
ðt1 
 oðn�1ÞÞ~ðt2 
 oðn�2ÞÞ~ � � �~tn � 
r1 �T r2 �T � � � �T tn, where ti 
 oðn�iÞ � 
ri
ð1 6 i 6 n� 1Þ. Thus t
ðnÞ has been converted into a concatenation of real
numbers, so that k can be assessed by w(r)/w(s) when s 
 o� 
r. In fact, the
assessment will be based on v regarding 	T of Proposition 3. Moreover, by applying
the results of the homogeneity condition to Proposition 8, concrete forms of
nonadditive discount functions can be obtained.

Example 3 Define Ft!s
t ¼ uðs 
 tÞ=uðtÞ for s; t 2 T. Since uðs 
 tÞ ¼ uðs 
 oÞuðtÞ
by Proposition 8, it follows that Ft!s
t ¼ expð�mkwðsÞÞ. Hence

11 The decision makers assesses the delay length of s 
 o regarding it as a delay with duration s, which is
subsequently followed by a delay with a time unit.
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(i) If B1, B3, and (7) are satisfied with 	T , then

Ft!s
t ¼ 1

ð1þ asÞkb=a
:

(ii) If B2 is satisfied with 	T , then
Ft!s
t ¼ exp½�mkqðasÞb�:

To explain subadditive or superadditive discounting behavior, Scholten and Read
(2006) proposed a generalized discounting model and derived several descriptive
models by providing two types of parameters related to the effect of interval length
and nonadditivity. Unfortunately, the models in Example 3 are not identical with their
descriptive models. This is attributed to the difficulty in introducing a parameter in a
power form, as Scholten and Read (2006) did, because a function is constructed
based on the admissible transformation of an additive representation in this study.

5 Conclusion

Under the presupposition that human time perception is distorted, this study devised
the conditions (homogeneity of degree one or two) to identify the form of a time
scale so that one can determine whether the hyperbolic or exponential function is
more suitable for modeling people’s discounting. Homogeneity of degree one implies
that subjective time delay is measured by a power scale and its discount function is a
power-exponential type, whereas homogeneity of degree two implies that subjective
time delay is measured by a log scale and its discount function is a hyperbolic type.
Furthermore, the study showed a way of constructing a function that reflects
subadditive or superadditive discounting. The introduction of a non-commutative and
non-associative concatenation operation generated a time string consisting of
subdivided durations that incorporates the effect of repeated delay with each
duration. Eventually, subadditivity or superadditivity was determined depending on
whether the discount function value of a product by the non-commutative and non-
associative operation was smaller or greater than that of a product by an operation of
the usual extensive structure. An important research problem is to examine whether
the procedure for testing the homogeneity condition stated immediately after
Remark 2 can be applied to actual intertemporal choice problems.

6 Proofs

6.1 Proposition 1

Proof The proof is similar to that of Matsushita (2017). However, since the
underlying structure is reduced to an extensive structure, so that the first (key) part of
the proof can be much simplified, we will show the summarized proof. For any given
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t, let Xt ¼ fxt x 2 Xj g. From A1–A7, A8, A11, and A12 it is seen that Xt is an
extensive substructure of X. Hence the restriction of u is an additive representation of
Xt. Define utðxÞ ¼ uðxtÞ for all t 2 T . Since A8 and A12 guarantee that utðxÞ is an
order-preserving additive function, it follows from the admissible transformation that
uðxtÞ ¼ uðtÞuðxÞ with uðtÞ[ 0. Note in the paper that the role of right multiplication
by duration t[ 0 has been changed from an advance to a delay operator. Hence we
must prove that uðtÞ\1. By A9, uðxtÞ ¼ uðtÞuðxÞ\uðxÞ whenever t[ 0, implying
that uðtÞ\1. Since uððxt�1ÞtÞ ¼ uðtÞuðxt�1Þ ¼ uðxÞ by A10, uðxt�1Þ ¼ ð1=uðtÞÞ
uðxÞ. By A13, uðx0Þ ¼ uð0ÞuðxÞ ¼ uðxÞ, so that uð0Þ ¼ 1. Part (iii) is obtained
similarly to Matsushita (2017). h

6.2 Proposition 2

Proof We must adapt the proof of Proposition 8 in Matsushita (2017) because the
role of right multiplication was changed. In view of A14, it follows from (i) of
Proposition 1 and order preservation of u that ðuðsÞuðtÞÞuðxÞ ¼ ðuðs �T tÞÞuðxÞ.
Since u(x) is arbitrary, uðsÞuðtÞ ¼ uðs �T tÞ. Hence 1=½uðsÞuðtÞ� ¼ 1=uðs �T tÞ.
Furthermore, by (iii) of Proposition 1, s > t , 1=uðsÞ > 1=uðtÞ. Set
/ðtÞ ¼ lnð1=uðtÞÞ. These two properties of 1=u show that /ðtÞ is an additive
representation of T with /ð0Þ ¼ 0. Hence the admissible transformation implies that
/ðtÞ ¼ mwðtÞ for some m[ 0, or uðtÞ ¼ expð�mwðtÞÞ. h

6.3 Proposition 4

Proof Set hðetÞ ¼ eþ et for any t 2 T, and set a ¼ hðesÞ and b ¼ hðetÞ. Note that 	T
is strictly increasing because of monotonicity. In addition, since 	T is continuous and
associative, the theorem in Aczél (1966) guarantees the existence of a function v such
that a 	T b ¼ v�1½vðaÞ þ vðbÞ�, implying that v is an additive representation with
respect to 	T . Similarly, it holds that s �T t ¼ w�1½wð1e h�1ðaÞÞ þ wð1e h�1ðbÞÞ�. Hence

hðesÞ 	T hðetÞ ¼ hðeðs �T tÞÞ
, v�1½vðaÞ þ vðbÞ� ¼ hðeðw�1½wð1

e
h�1ðaÞÞ þ wð1

e
h�1ðbÞÞ�ÞÞ

, v ¼ w 	 L�1
e 	 h�1,

where Le is a map defined by the rule LeðtÞ ¼ et. Thus wðtÞ ¼ vðeþ etÞ. Since
g ¼ 1=e in (4) by B3, it follows that wðtÞ ¼ c lnð1þ tÞ. h

6.4 Proposition 5

Proof (i) By Proposition 4, wðatÞ ¼ c lnð1þ atÞ. Substituting this equality in the
equation of Proposition 2 gives the conclusion.

(ii) Since v ¼ w (by the statement after Proposition 3), it follows from (6) that

wðatÞ ¼ qðatÞb. A similar substitution to (i) gives the conclusion. h
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6.5 Proposition 6

Proof (i) Let s > 0 be arbitrary and let t be such that s �T t ¼ 0. Since s �T t ¼
sþ t þ st (mentioned before Example 1), it follows that t ¼ �s=ð1þ sÞ. Hence
iðsÞ ¼ s=ð1þ sÞ.

(ii) The domain of �T is extended to the domain in which s > 0 > t with s �T t > 0.
According to Marchant and Luce (2003), �T is extended as follows:

s �T t ¼ ðsb � 1

c
ð�tÞbÞ1=b; c[ 0:

Let t be a solution to s �T t ¼ 0. The above equation gives t ¼ �c1=bs, and hence
iðsÞ ¼ c1=bs.

6.6 Proposition 7

Proof The proof is similar to that of Proposition 1. However, we must address the
problem that T 
 is extended to a weakly ordered set. Let ½s� ¼ fs0 2 T 
js0s 
s:g
denote the equivalence class determined by s 2 T
 and let T
=� 
 be the set of
equivalence classes. Since T
=� 
 is a simply ordered set, a similar action to
Proposition 1 can be introduced by considering the right multiplication by elements
[s]. An ordering between elements x[s] and y[t] can be determined by setting
x½s�% X y½t� if there exist s0 2 ½s�; t0 2 ½t� such that xs0 % X yt

0. This is possible because
it is true that xs0 � X xs00 whenever s0; s00 2 ½s� by A9
 (i.e., a representative of x[s] is
uniquely determined up to � X ). Thus we will use the same symbol as the order on X
to express the order among elements x[s]. The following properties hold.

x% X y , x½s�% X y½s� ð12Þ

½s�% 
½t� , x½s�†X x½t� ð13Þ
Moreover, a concatenation operation between x[s] and y[t] can be defined to be the
equivalence class of ðxsÞ � ðytÞ. The uniqueness of the definition is verified by A3
(Krantz et al., 1971, p. 87). Hence

ðx � yÞ½s� � X ðx½s�Þ � ðy½s�Þ ð14Þ
where � in the right-hand side denotes the induced operation on the set of elements of
the form x[s].

For any t 2 T, let X½t� ¼ fx½t� x 2 Xj g. With the use of (12), (13), and (14), it can
be verified that X½t� is an extensive substructure of X. Hereafter, it is only proved that
A5 holds for X½t� because the remaining axioms can be proven similarly. By A5
regarding X, we may assume that x% X z � y for some z 2 X whenever x�X y. How-
ever, (12) guarantees that x½s��X y½s� and x½s�% X ðz � yÞ½s�. By using (14) and A1
regarding X, the latter inequality is rewritten as x½s�% X ðz½s�Þ � ðy½s�Þ, implying A5
regarding X½t�. The method of the proof of Proposition 1 gives uðx½t�Þ ¼ uð½t�ÞuðxÞ
where 0\uð½t�Þ 6 1; in particular uð½o�Þ ¼ 1. Moreover, by A9
,
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½s�% 
½t� , uð½s�Þ 6 uð½t�Þ. This shows that u takes the same value for any element
s0 belonging to the class [s]. Hence it is also valid to set uðx½t�Þ ¼ uðtÞuðxÞ. Con-
sequently, we have obtained the properties (i) and (ii) of the proposition. h

6.7 Proposition 8

Proof Let s; t 2 T
 be arbitrary and let w
 be an additive representation of EðT 
Þ.
Similarly to the proof of Proposition 2, it is shown that u is of the multiplicative form
uððs 
 oÞ~tÞ ¼ uðs 
 oÞuðtÞ, and

uðs 
 oÞ ¼ expð�m0w
ðs 
 oÞÞ; uðtÞ ¼ expð�m0w
ðtÞÞ where m0 [ 0: ð15Þ
The former equation along with (10) yields uðs 
 oðnÞÞ ¼ expð�m0knw
ðsÞÞ. It
remains to be shown that the restriction of w
 to T is equivalent to w. The restriction
assumption implies that EðT
ÞjT is equivalent to EðTÞ ¼ hT ; >; �T ; 0i as an
extensive structure (so that o is identified with 0). Hence, by the admissible trans-
formation, w
ðsÞjT¼ lwðsÞ for some l[ 0 whenever s 2 T. Thus we have uðs 

oðnÞÞ ¼ expð�mknwðsÞÞ where m ¼ m0l. h

Appendix

For a concise explanation, let X ¼ Rþ
0 and assume that �T is continuous. For any

given t let ft be the delay operator by t, i.e., ftðxÞ ¼ xt, and we denote Fðx; yÞ ¼ x � y,
where F is requested by A4 (regarding �) to satisfy the associativity equation
F½Fðx; yÞ; z� ¼ F½x; Fðy; zÞ�. Recall from the proof of Proposition 4 that F satisfying
the associativity equation has an additive representation v with respect to �. Here v is
a strictly monotonic function; furthermore, it is possible to let v be an increasing
function by multiplying it by �1 if necessary. Axiom A12 produces a functional
equation, ftðFðx; yÞÞ ¼ FðftðxÞ; ftðyÞÞ, whose only solution is written as
ftðxÞ ¼ v�1½ctvðxÞ�, or vðftðxÞÞ ¼ ctvðxÞ (Aczél, 1966, pp. 62–63), where ct is a
constant. Thus it has been shown that A12 and A4 bring a multiplicative form.
Hence, in view of the fact that ðxtÞs 2 X , use Proposition 1(i) to obtain
uððxtÞsÞ ¼ uðsÞuðxtÞ ¼ ðuðsÞuðtÞÞuðxÞ. This brings time invariance, as was shown
in Remark 1.
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