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Abstract
The study of complexity and optimization in decision theory involves both partial
and complete characterizations of preferences over decision spaces in terms of real-
valued monotones. With this motivation, and following the recent introduction of
new classes of monotones, like injective monotones or strict monotone multi-utilities,
we present the classification of preordered spaces in terms of both the existence and
cardinality of real-valued monotones and the cardinality of the quotient space. In
particular, we take advantage of a characterization of real-valued monotones in terms
of separating families of increasing sets to obtain a more complete classification
consisting of classes that are strictly different from each other. As a result, we gain
new insight into both complexity and optimization, and clarify their interplay in
preordered spaces.

Keywords Multi-utility representation · Richter–Peleg function · Injective
monotone · Majorization · Uncertainty preorder

1 Introduction

The question of how well a preorder relation can be captured through real-valued
functions is an ongoing research topic since the introduction of utility functions in the
early days of mathematical economics. The key observation is that sometimes
preferences can not only be measured locally to decide between two elements, but
there might be a global real-valued preference function that fully captures the
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corresponding order relation. That is, in certain situations, one can not only choose a
preferable item between any two items in a given set of options, but one can find a
single function, or a family of functions, defined on the decision space whose
function values quantify the preference relation, so that one can compare function
values to decide about the order relation of the corresponding arguments. Since the
existence of such functions only depends on the properties of the corresponding
preorder, this idea can naturally be applied in many domains of science. In particular,
instead of considering preference relations and utility functions on decision spaces,
many systems of interest can be thought of as sets of possible states endowed with an
order relation encapsulating the intrinsic tendency of the system to transition from
one state to another. The fields where these ideas are relevant include thermody-
namics (Lieb & Yngvason, 1999; Giles 2016), general relativity (Bombelli et al.,
1987; Minguzzi, 2010), quantum physics (Nielsen, 1999; Brandao et al., 2015) and
economics (Debreu, 1954; Ok, 2002), among others.

The basic property of these real-valued functions f is that they have to be
monotones with respect to the corresponding preorder �, that is, x � y implies
f ðxÞ� f ðyÞ. There are mainly three types of monotones that appear in this context:
strict monotones (Alcantud et al., 2016; Peleg, 1970; Richter, 1966), injective
monotones (Hack et al., 2022a, b), and utility functions (Debreu, 1954, 1964). In
particular, these different types of monotones are used to classify preordered spaces
mostly in two different ways: either by whether a given type of monotone exists, or,
by whether there exists a family of such monotones, known as a multi-utility, that
characterizes the preorder completely (Evren & Ok, 2011; Alcantud et al.,
2013, 2016; Hack et al., 2022a, b; Bosi & Herden, 2012, 2016). Equivalently,
these spaces can be classified according to either the existence of optimization
principles with certain characteristics or the complexity of the preorder, that is, the
amount and type of multi-utilities that exist for them. Even though the cardinality of
such representing families plays an important role, so far mostly the two cases of
countable multi-utilities and multi-utilies consisting of a single element, that is,
utilities, have been considered.

Moreover, several connections between both types of classifications have been
pointed out in the literature (Alcantud et al., 2016; Hack et al., 2022a, b; Alcantud
et al., 2013; Bosi et al., 2018), but certain gaps in these connections have prevented
the presentation of a general classification of preordered spaces through real-valued
monotones. One of the aims of this contribution is to reduce this gap, achieving, thus,
a more complete classification (see Fig. 1) and, hence, a better understanding of both
complexity and optimization, including how they are related, in preordered spaces.

In particular, we take advantage of a characterization of real-valued monotones in
terms of families of increasing sets (Alcantud et al., 2013; Hack et al., 2022a, b) that
allows to distinguish more classes of preordered spaces than before, both in terms of
the cardinality of the multi-utilities and the cardinality of the quotient space of the
preorder. Importantly, by providing the corresponding counter examples, we show
that certain classes of preorded spaces are, in fact, strictly contained in each other,
which, to our knowledge, was not known before.
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2 Real-valued monotones and their role in complexity
and optimization

In this section, we introduce the classes of real-valued monotones that are relevant
throughout this work and relate them to both optimization and complexity. Before
entering the general picture, we motivate them through an example with several
applications, namely, the uncertainty preorder �U (Hack et al. 2022a, b).

Consider a casino owner that intends to incorporate a new game to the casino,
where all games under consideration follow the same idea, namely, bets are placed on
the outcome of a random variable that is subsequently realized. Since the players win
whenever they predict the outcome correctly, it is in the owner’s interest to make the
prediction as difficult as possible, that is, to make the game’s outcome as uncertain as
possible. For example, the game of rolling a fair die is preferred compared to that of

Multi-utility

Strict monotone

Multi-utility with cardinality c

|X/∼| ≤ c

Strict monotone multi-utility with cardinality c

Injective monotone

Countable multi-utility

Countable |X/∼|

Finite multi-utility

Utility function

Fig. 1 Classification of preordered spaces according to the existence of various real-valued monotones. A
distinction between our contributions here and previously known results can be found in the discussion
(Sect. 4). Moreover, our contributions can be visualized in Fig. 2
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rolling a loaded one. When considering the games over some finite set X, the
preference of the casino owner among them can be modeled on PX, the space of
outcome probability distributions that are associated to the games, by the uncertainty
preorder

p �U q () uiðpÞ� uiðqÞ 8i 2 f1; ::; jXj � 1g; ð1Þ

where uiðpÞ :¼ �Pi
n¼1 p

#
n and p# denotes the decreasing rearrangement of p (same

components as p but ordered decreasingly). Notice, �U is known in mathematics,
economics, and quantum physics as majorization (Hardy et al., 1952; Marshall et al.,
1979; Arnold, 2018; Brandao et al., 2015).
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Fig. 2 Contributions of this work to the classification of preordered spaces. We reproduce here Fig. 1,
incorporating a point for each preorder we have introduced that has allowed us to distinguish between
classes. In particular, A stands for the preorder in Proposition 7, B for the one in Proposition 8, C for the
preorder in both Proposition 2 and Corollary 1, D for that of Proposition 4 (ii) taking I ¼ R, E for the one
in Corollary 2, F for the preorder in Corollary 5 taking I ¼ R, G for the space in Proposition 5 taking
I ¼ R and, lastly, H for the one in Proposition 6 taking I ¼ R
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When deciding between a certain game and another one, according to Eq. (1), the
owner evaluates jXj � 1 functions. Hence, the larger the number of possible
outcomes, the harder it becomes to decide which game to choose. It is in this sense
that we can say the number of functions in Eq. (1) measures the complexity or
dimension of the decision space.

In general, because of the gambling regulation, the owner may be required to
choose games from some subset B � PX to diminish the gamblers’ probability of
loosing. To automatize the decision, the owner uses the maximum entropy principle
(Jaynes, 1957, 2003), picking, hence, a distribution that maximizes Shannon entropy
HðpÞ :¼ �Ep½log p� over B. Although H is not guaranteed to have maxima over
every B, whenever it does, its maxima correspond to maximizing the preferences of
the owner over B, that is, to distributions p 2 B such that there is no q 2 B that
simultaneously fulfills p �U q and :ðq �U pÞ. Since the owner can make a decision
on B by simply optimizing H, we say H is an optimization principle. As we will see,
the optimization properties of H are closely related to how well H preserves the
properties of �U .

We introduce now the general picture in terms of both preorders and real-valued
monotones, and return to optimization and complexity at the end of this section. A
preorder � on a set X is a reflexive (x � x 8x 2 X ) and transitive (x � y and y � z
implies x � z 8x; y; z 2 X ) binary relation. A tuple ðX ;�Þ is called a preordered
space or preference space and X the ground set or decision space. For example,
ðPX;�U Þ is a preordered space. An antisymmetric (x � y and y � x imply x ¼ y
8x; y 2 X ) preorder � is called a partial order. The relation x� y, defined by x � y
and y � x, forms an equivalence relation on X, that is, it fulfills the reflexive,
transitive and symmetric (x� y if and only if y� x 8x; y 2 X ) properties. Notice, a
preorder � is a partial order on the quotient set X=� ¼ f½x�jx 2 Xg, consisting of all
equivalence classes ½x� ¼ fy 2 X jy� xg. In case x � y and :ðx� yÞ for some x; y 2
X we say y is strictly preferred to x, denoted by x � y. If :ðx � yÞ and :ðy � xÞ, we
say x and y are incomparable, denoted by x ffl y. Whenever there are no
incomparable elements a preordered space is called total. By the Szpilrajn extension
theorem (Szpilrajn, 1930; Harzheim, 2006), every partial order can be extended to a
total order, that is, to a partial order that is total. Notice Szpilrajn extension theorem
is a consequence of the axiom of choice, which we assume throughout this work.
Equivalently, we assume I 
 I and I are equinumerous for any infinite set I and, thus,
both I 
N and I [ I are also equinumerous to I.

To numerically characterize the relations established in a preordered space, one or
several real-valued functions may be used. This results in a classification of preorders
according to how well their information can be captured using these functions. We
introduce now several classes that have been previously considered. A real-valued
function f : X ! R is called a monotone or an increasing function if x � y implies
f ðxÞ� f ðyÞ (Evren & Ok, 2011). If the converse is also true, then f is called a utility
function (Debreu, 1954). Furthermore, if f is a monotone and x � y implies
f ðxÞ\f ðyÞ, then f is called a strict monotone, a Richter–Peleg function or an order-
preserving function (Alcantud et al., 2016). Similarly, a monotone f is called an
injective monotone if f ðxÞ ¼ f ðyÞ implies x� y, that is, if f is injective considered as
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a function on the quotient set X=� (Hack et al., 2022a, b). For example, H is a strict
monotone but not an injective one on ðPX;�U Þ. Whenever a single function is
insufficient to capture all the information in a preorder, for example when it is non-
total (see (Bridges & Mehta, 2013) Theorem 1.4.8) for the total case), a family of
functions may be used instead. A family V of real-valued functions v : X ! R is
called a multi-utility (representation) of � (Evren & Ok, 2011) if

x � y () vðxÞ� vðyÞ 8v 2 V :

Whenever a multi-utility consists of strict monotones it is called a strict monotone (or
Richter–PelegAlcantud et al., 2016) multi-utility (representation) of �. For example,

ðuiÞjXj�1
i¼1 is a multi-utility that is not strict on ðPX;�U Þ. Analogously, if the multi-

utility consists of injective monotones, we call it an injective monotone multi-utility
(representation) of �. Notice the cardinality plays a key role in the classification
when we consider multi-utilities.

The role of the different characterizations via a single function can be clarified
alluding to optimization (see Hack et al., 2022a, b, Sect. 4). In this regard, monotones
are not interesting in general, since they may carry no information about � (as in the
case of constant functions). Strict monotones, however, are interesting from the
perspective of optimization. In fact, strict monotones exist if and only if optimization
principles do (Hack et al., 2022a, b, Proposition 3), where a function f : X ! R is an
optimization principle or represents maximal elements of � if, for any B � X , we
have argmaxB f � B�

M , where argmaxB f :¼ fx 2 Bj 6 9y 2 B such that f ðxÞ\f ðyÞg
and B�

M :¼ fx 2 Bj 6 9y 2 B such that x � yg.1 Hence, optimizing f implies optimiz-
ing �, like optimizing H implies optimizing �U . Following this parallelism, the
existence of injective monotones is equivalent to that of injective optimization
principles (Hack et al., 2022a, b, Proposition 3), where a function f : X ! R is an
injective optimization principle or injectively represents maximal elements of � if,
for any B � X such that argmaxB f 6¼ ; , we have argmaxB f ¼ ½x0�jB, where ½x0�jB is
the equivalence class of x0 restricted to B. In particular, if � is a partial order, then
optimizing f yields a unique element, which is, ultimately, the goal of any
optimization principle. Note that this is not the case in general for H, since it is not an
injective monotone whenever jXj � 3 (Hack et al., 2022a, b, Lemma 4). However,
the maximum entropy principle does output a single distribution in the cases where it
is usually applied, namely, when B � PX is given by a linear constraint (Jaynes,
1957, 2003). As a final remark, notice strict monotones allow the existence of local
injective optimization principles, that is, those where injectivity is fulfilled for some
subset B � X (White, 1980), which contrasts with the global approach from injective
monotones, which works for all subsets B � X . In summary, the existence of both
strict and injective monotones can be characterized in terms of optimization
principles.

The purpose of the different classes of characterizations via a family of functions
or multi-utility can be clarified in terms of complexity, where we consider the sort of

1 Notice that the equivalence between the existence of optimization principles and that of strict monotones
is not exactly what is stated in Hack et al. (2022a, b) (Proposition 3), although it can be easily derived from
it. The same holds true for injective monotones and injective optimization principles.
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characterizations and the number of functions needed for each characterization as
measures of complexity. Multi-utilities form the first class, where the aim is to find
the minimal family of monotones V such that any false preference, :ðx � yÞ, is
contradicted, at least, by one monotone, vðxÞ[ vðyÞ for some v 2 V . Strict monotone
multi-utilities form the second class, which can be characterized by those multi-
utilities V which fulfill x � y () vðxÞ\vðyÞ for all v 2 V . The third class, injective
monotone multi-utilities, possesses the properties of the previous two plus the fact
x� y () vðxÞ ¼ vðyÞ for any v 2 V. Note, on the contrary, the previous two classes
require that vðxÞ ¼ vðyÞ for all v 2 V to determine that x� y.

Inside each class, we can distinguish preorders in terms of the minimal amount of
monotones that are required to form a multi-utility. We will refer to this minimal
amount, in the specific case of multi-utilities, as the dimension of the preorder, since
it characterizes the minimal number of copies of the real line that are needed, using
their natural order, to fully represent a preorder. Note that this definition differs from
the usual one by Dushnik and Miller (1941), since we restrict ourselves to products
of the real line with its usual ordering instead of the general approach in Dushnik and
Miller (1941) (see Hack et al., 2022a, b for a discussion reagarding the notion of
dimension for partial orders). In fact, since their definition is restricted to partial
orders, the distinction between strict and injective monotone multi-utilities can be
improved. Their definition considers a family of realizers ð�iÞi2I , i.e. partial orders
�i that are total, fulfill that x � y implies x �i y for all i 2 I , and such that any false
preference, :ðx � yÞ, is contradicted, at least, by one linear extension, y �i x for
some i 2 I . Such partial orders, however, cannot be defined using a strict monotone
that is not injective v, since there exist x; y 2 X such that x ffl y and vðxÞ ¼ vðyÞ. As a
result, we obtain both x� vy, given that we define x �v y () vðxÞ� vðyÞ, and x 6¼ y,
contradicting, thus, antisymmetry.

Although several connections between the existence of these real-valued
monotones are known (Evren & Ok, 2011; Alcantud et al., 2016; Hack et al.,
2022a, b), we further clarify the relation between them throughout the following
section. Mainly, using a characterization of these classes in terms of families of
increasing sets which separate the elements in a preordered space (Herden, 1989;
Alcantud et al., 2013; Bosi & Zuanon, 2013; Hack et al., 2022a, b), we introduce
several counterexamples which allow us to distinguish the scope of the different
classes and, hence, to improve on the study of both complexity and optimization, and
their relation in preordered spaces.

3 Classification of preorders through real-valued monotones

3.1 Characterization of real-valued monotones by families of increasing sets

A subset A � X is called increasing if, for all x 2 A, x � y implies that y 2 A (Mehta,
1986). We say a family ðAiÞi2I of subsets Ai � X separates x from y, if there exists
i 2 I with x 62 Ai and y 2 Ai. Families of increasing sets have been used to
characterize the existence of several classes of preorders in terms of real-valued
representations in the literature. We state these results in Lemma 1 without proof.
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Lemma 1 Let ðX ;�Þ be a preordered space.

(i) For any infinite set I, there exists a multi-utility with the cardinality of I if
and only if there exists a family of increasing subsets ðAiÞi2I that 8x; y 2 X
with x � y separates x from y, and 8x; y 2 X with x ffl y separates both x
from y and y from x.

(ii) There exists a strict monotone if and only if there exists a countable family of
increasing subsets that 8x; y 2 X with x � y separates x from y.

(iii) There exists an injective monotone if and only if there exists a
countable family of increasing subsets that 8x; y 2 X with x � y separates
x from y and 8x; y 2 X with x ffl y separates either x from y or y from x.

The proof of (i) can be found in Bosi and Zuanon (2013) and Alcantud et al.
(2013) and that of (ii) and (iii) in Hack et al. (2022a, b). The characterizations in
Lemma 1 can be useful to distinguish certain classes of preorders in terms of real-
valued monotones, as we showed in Hack et al. (2022a, b) (Proposition 8), where we
used them to build a preorder where injective monotones exist and countable multi-
utilities do not. Note that (i) is not true for finite sets I, because there are preordered
spaces that have a finite multi-utility but do not have a finite separating family of
increasing subsets, for example majorization.

The statements in Lemma 1 can be complemented with a characterization of the
existence of strict monotone multi-utilities with the cardinality of an infinite set I,
which we include in the following proposition.

Proposition 1 If ðX ;�Þ is a preordered space and I is a set of infinite cardinality,
then the following are equivalent.

(i) There exists a strict monotone multi-utility with the cardinality of I.
(ii) There exists a strict monotone and a multi-utility with the cardinality of I.
(iii) There exists a family of increasing sets ðAiÞi2I which separates x from y if

x ffl y and a countable set I 0 � I such that ðAiÞi2I 0 separates x from y if
x � y.

Proof Clearly, (i) implies (ii) by definition. To show (ii) implies (iii), notice, given
there is a multi-utility with the cardinality of I, we can follow the proof of Lemma 1
(i) in Alcantud et al. (2013) to show there exists a family of increasing sets with the
cardinality of I 
N, which is equinumerous to I, which separates x from y whenever
x ffl y. We can similarly follow the proof of Lemma 1 (ii) in Hack et al. (2022a, b) to
get, given there exists a strict monotone, there exists a countable family of increasing
sets which separates y from x whenever x � y. Since I [N is equinumerous to I, we
get the desired result. In order to show (iii) implies (i), we can again follow both
Alcantud et al. (2013) and Alcantud et al. (2016) (Proposition 7). From the first one,
we can construct a multi-utility ðuiÞi2I and, from the second one, we can construct a
strict monotone v. Finally, we consider, as in Hack et al. (2022a, b) (Theorem 3.1),
the family of monotones ðvi;nÞi2I ;n2N where vi;n :¼ ui þ anv, where ðanÞn2N is a

numeration of the rational numbers which are greater than zero. This family can be
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shown to be a strict monotone multi-utility and has the cardinality of I 
N, which is
the same as that of I. h

Notice, in case the set I is finite, the relation between (i) and (ii) is addressed in
Proposition 10.

3.2 Improving the classification of preorders

In this section, we present several results that improve on the classification of
preorderes spaces in terms of real-valued monotones. When applicable, we include,
right after the proof of the result, an interpretation in terms of either complexity,
optimization or the interplay between them.

Let us begin with the relation between preorders which have strict monotones and
those which have injective monotones. Clearly, an injective monotone is also a strict
monotone, since x � y and f ðxÞ ¼ f ðyÞ contradicts injectivity. There are, however,
preordered spaces with strict monotones and without injective monotones, as was
shown in Hack et al. (2022a, b) (Proposition 1). The argument there is purely in
terms of cardinality, since, whenever injective monotones exist, we have jX=� j� c
with c the cardinality of the continuum, but there are preordered spaces with strict
monotones and jX=� j ¼ jPðRÞj. We can, however, improve upon this by showing
there are preordered spaces where X=� has the cardinality of the continuum and
strict monotones exist while injective monotones do not. We include such a
preordered space in Proposition 2.

B

A

x+ 2 y + 2 z + 2

x y z

Fig. 3 Graphical representation of a preordered space, defined in Proposition 2, with the cardinality of the
continuum and where strict monotones exist while injective monotone do not. In particular, we show
A :¼ ½0; 1�, B :¼ ½2; 3� and how x; y; z 2 A, x\y\z, are related to xþ 2; yþ 2; zþ 2 2 B. Notice, an arrow
from an element w to an element t represents w � t
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Proposition 2 There are preordered spaces ðX ;�Þ where X=� has the cardinality
of the continuum c and strict monotones exist while injective monotones do not.

Proof Consider X :¼ ½0; 1� [ ½2; 3� equipped with � where

x � y ()

x; y 2 ½0; 1� and x� y;

x; y 2 ½2; 3� and x� y;

x 2 ½0; 1�; y 2 ½2; 3� and xþ 2\y;

x 2 ½2; 3�; y 2 ½0; 1� and x� 2\y

8>>><
>>>:

ð2Þ

8x; y 2 X (see Fig. 3 for a representation of �). Notice ðX ;�Þ is a preordered space
and v : X ! R where x 7!x if x 2 ½0; 1� and x 7!x� 2 if x 2 ½2; 3� is a strict monotone.
We will show that any family ðAiÞi2I, where Ai � X is increasing 8i 2 I and 8x; y 2
X such that x ffl y there exists some i 2 I such that either x 62 Ai and y 2 Ai or y 62 Ai

and x 2 Ai, is uncountable. Since the existence of some ðAiÞi2I with these properties
and countable I is implied by the existence of an injective monotone by Lemma 1
(iii), we obtain that there is no injective monotone for X.

Let ðAiÞi2I be a family with the properties in the last paragraph and, for each
x 2 ½0; 1�, define yx :¼ xþ 2. Since x ffl yx by definition, there exists some Ax 2
ðAiÞi2I such that either x 2 Ax and yx 62 Ax or yx 2 Ax and x 62 Ax. We fix such an Ax

for each x 2 ½0; 1� and consider the map f : ½0; 1� ! ðAiÞi2I , x 7!Ax. Consider some
x; z 2 ½0; 1� such that Ax ¼ Az and assume x 6¼ z. We show first the case where z\x
leads to contradiction. Assume first x 2 Ax and yx 62 Ax. Then, since Ax ¼ Az, we
either have z 2 Ax or yz 2 Ax. Both cases lead to contradiction, since we get yx 2 Ax

because Ax is increasing and we either have z � yx with z 2 Ax or yz � yx with
yz 2 Ax. We can proceed analogously if we assume yx 2 Ax, relying on the fact both
z � x and yz � x hold. In case we assume x\z, we also achieve a contradiction
following the same argument but interchanging the role of x and z.

Thus, x 6¼ z leads to a contradiction and by injectivity of f we get
j½0; 1�j � jðAiÞi2I j. As a consequence, X has no injective monotone. h

Proposition 2 shows there are preference spaces for which optimization principles
exist while injective ones do not. In particular, it shows it is sufficient to consider
preference spaces with a continuum decision space to find such cases (notice, as
shown in Hack et al. (2022a, b) (Proposition 5), preference spaces with a
countable ground set always have injective optinization principles). Furthermore, it
shows that, unlike when the decision space is countable, the existence of local
injective optimization principles and that of global ones are not equivalent. Hence,
provided the decision space is sufficiently large, differences between local and global
optimization arise. Notice, the proof of Proposition 2 relies on the existence of
connections between several elements, which allow us to assure the sets from Lemma
1 that separate the preorder differ when different elements inside certain sets are
considered. This is the reason why a related preorder was used in Hack et al.
(2022a, b) (Proposition 8) to show countable multi-utilities and injective monotones
are not equivalent. One may think the trivial preorder on the real line ðR;¼Þ would
have an injective monotone, the identity, and no countable multi-utility.2 However,
due to it being completely disconnected, ðv� q; v� qÞq2Q is a countable multi-utility,
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where v� qðxÞ :¼ 1 if x� q and v� qðxÞ :¼ 0 otherwise, and v� qðxÞ :¼ 1 if x� q and
v� qðxÞ :¼ 0 otherwise.

While the existence of injective monotones implies the existence of multi-utilities
with the cardinality of the continuum (in particular, composed of injective
monotones), as we showed in Hack et al. (2022a, b) (Proposition 4), the converse
was unknown up to now. The preordered space in Proposition 2 shows the converse
in false. Actually, it shows the stronger statement that the existence of strict
monotone multi-utilities with cardinality c is still not sufficient for the existance of an
injective monotone, as we state in Corollary 1.

Corollary 1 There are preordered spaces which have strict monotone multi-utilities
with cardinality c and no injective monotone.

Proof We can use the counterexample from Proposition 2 which has no injective
monotone. Moreover, it is straightforward to see that ðviðxÞÞx2X is a multi-utility with

cardinality c (Evren & Ok, 2011), where vA is the indicator function of a set A and
iðxÞ :¼ fy 2 X jx � yg 8x 2 X . Since there exist strict monotones, as we showed in
the proof of Proposition 2, we can follow Proposition 1 and get that there exist strict
monotone multi-utilities with cardinality c. h

Corollary 1 states, by Proposition 1, that the existence of optimization principles
for preference spaces with continuum dimension is not enough for injective
optimization principles to exist. This differs from the case of countable complexity,
where injective optimization principles always exist (Hack et al., 2022a, b). Thus,
whenever the preference space is sufficiently involved, local and global injective
optimization principles do not coincide in general. Notice, Corollary 1 implies the
class of preorders with injective monotones is strictly contained inside the class
where multi-utilities with cardinality c exist. In fact, we can improve upon this
modifying the preorder in Proposition 2 to show there are preordered spaces where
multi-utilities with cardinality c exist while strict monotones do not. We present such
a preorder in Proposition 3, which is the same as the one in Proposition 2 with the
exception that we have x � yx instead of x ffl yx 8x 2 ½0; 1�.
Proposition 3 There are prerordered spaces which have multi-utilities with
cardinality c and no strict monotone.

Proof Consider X :¼ ½0; 1� [ ½2; 3� equipped with � where

x � y ()

x; y 2 ½0; 1� and x� y;

x; y 2 ½2; 3� and x� y;

x 2 ½0; 1�; y 2 ½2; 3� and xþ 2� y

x 2 ½2; 3�; y 2 ½0; 1� and x� 2\y

8>>><
>>>:

ð3Þ

8x; y 2 X (see Fig. 4 for a representation of �), which differs from Eq. (2) only in
xþ 2� y instead of xþ 2\y for x 2 ½0; 1� and y 2 ½2; 3�. Notice ðX ;�Þ is a pre-
ordered space and there is a multi-utility with cardinality c as in the proof of

2 We say a binary relation � on a set X is a trivial ordering if x � y () x ¼ y 8x; y 2 X .
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Corollary 1. We will show that any family ðAiÞi2I, where Ai � X is increasing 8i 2 I
and 8x; y 2 X such that x � y there exists some i 2 I such that y 2 Ai and x 62 Ai, is
uncountable. Since the existence of some ðAiÞi2I with these properties and count-
able I is implied by the existence of a strict monotone by Lemma 1 (ii), we conclude
that there is no strict monotone for X.

Let ðAiÞi2I be a family with the properties in the last paragraph and, for each
x 2 ½0; 1�, define yx :¼ xþ 2. Since x � yx by definition, there exists some Ax 2
ðAiÞi2I such that both yx 2 Ax and x 62 Ax hold. We fix such an Ax for each x 2 ½0; 1�
and consider the map f : ½0; 1� ! ðAiÞi2I , x 7!Ax. Consider some x; z 2 ½0; 1� such
that Ax ¼ Az and assume x 6¼ z. We show first the case where z\x leads to contra-
diction. Since Ax ¼ Az, we have yz 2 Ax. Given the fact Ax is increasing and yz � x
by definition, we get x 2 Ax, a contradiction. In case we assume x\z, we also
achieve a contradiction following the same argument but interchanging the role of x
and z. Thus, x 6¼ z leads to contradiction and we get, by injectivity of f,
j½0; 1�j � jðAiÞi2I j. As a consequence, X has no strict monotone. h

The relation between optimization and complexity is improved in Proposition 3,
where we show that having a continuum dimension is not sufficient for
optimization principles to exist, which contrasts with the case where the dimension
is countable (Alcantud et al., 2016). In summary, no optimization principle may
exist provided the complexity of the preference space is large enough (see, also,
Corollary 4). Notice, essentially, we recover in Proposition 3 the lexicographic
plane, the classical counterexample used by Debreu (1954, 1959) to show the

B

A

x+ 2 y + 2 z + 2

x y z

Fig. 4 Graphical representation of a preordered space, defined in Proposition 3, which has multi-utilities
with cardinality c and no strict monotone. In particular, we show A :¼ ½0; 1�, B :¼ ½2; 3� and how x; y; z 2 A,
x\y\z, are related to xþ 2; yþ 2; zþ 2 2 B. Notice, an arrow from an element w to an element t
represents w � t
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existence of total preordered spaces without utility functions. Another counterex-
ample, which relies on Szpilrajn extension theorem, can be found in Hack et al.
(2022a, b) (A.2.1). Notice, in particular, Proposition 3 implies that the class of
preordered spaces with strict monotone multi-utilities with cardinality c is strictly
contained inside the class with multi-utilities of the same cardinality. This contrasts
with the fact that countable multi-utilites and countable strict monotone multi-
utilities coincide for any preordered space (Alcantud et al., 2016, Proposition 4.1).
In fact, they also coincide with countable injective monotone multi-utilities (Hack
et al., 2022a, b, Proposition 6). Notice, also, the preordered space in Proposition 3
shows the stronger fact that strict monotones do not always exist when X=� has
cardinality c, as we state in Corollary 2.

Corollary 2 There are preordered spaces ðX ;�Þ where X=� has cardinality c and
strict monotone multi-utilities with cardinality c do not exist.

Proof Consider the preordered space in Proposition 3. Notice, since ðviðxÞÞx2X=� is a

multi-utility of cardinality c, strict monotone multi-utilities of cardinality c and strict
monotones are equivalent, by Proposition 1. Thus, they do not exist. h

Corollary 2 states that we can strengthen the bound in Proposition 3 from the
dimension to the decision space and, nonetheless, optimization principles do not
exist. That is, optimization principles may not exist provided the amount of
alternatives in the decision space is sufficiently large. Notice, if X=� is countable,
then it has countable multi-utilities (we can follow the proof in Corollary 1) and, by
Alcantud et al. (2016) (Theorem 3.1), countable strict monotone multi-utilities.
Furthermore, we can follow Corollary 1 and Proposition 1 to conclude that every
preorder with strict monotones has strict monotone multi-utilities with the cardinality
of some infinite set I if X=� has the cardinality of I. As we show in Proposition 4,
the converse is not true, that is, whenever multi-utilities with the cardinality of an
inifinite set I exist, we have jX=� j� jPðIÞj with some preorders achieving equality.
Furthermore, the bound cannot be improved even when strict monotone multi-
utilities with the cardinality of I exist. Equivalently, we show whenever an infinite
Debreu upper dense subset I � X exists, then we have wðX ;�Þ� jPðIÞj where
wðX ;�Þ is the width of ðX ;�Þ, that is, the maximal cardinality of the antichains3 in
X. Recall we say a subset Z � X is upper dense in the sense of Debreu (or Debreu
upper dense for short) if x ffl y implies that there exists a z 2 Z such that x ffl z � y
(Hack et al., 2022a, b).4

Proposition 4 Let ðX ;�Þ be a preordered space and I be an infinite set.

(i) If there exist multi-utilities with the cardinality of I, then jX=� j� jPðIÞj,
where PðIÞ denotes the power set of I. Furthermore, the bound is sharp, i.e.
it cannot be improved.

3 Any two elements in an antichain are incomparable.
4 Notice, for a fixed pair x; y 2 X where x ffl y holds, there exist z1; z2 2 Z such that x ffl z1 � y and
y ffl z2 � x.
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(ii) Even if there exist strict monotone multi-utilities with the cardinality of I, the
bound in (i) is sharp.

(iii) If I � X is a Debreu upper dense subset, then wðX ;�Þ� jPðIÞj, where
wðX ;�Þ is the width of ðX ;�Þ. Furthermore, the bound is sharp.

Proof (i) For the first statement, notice, by Lemma 1 (i), there exists a family of
increasing sets ðAiÞi2I that 8x; y 2 X with x � y separates x from y and 8x; y 2 X
with x ffl y separates both x from y and y from x. Consider the map
f : X=� ! PðIÞ, ½x�7!Bx where Bx :¼ fi 2 I j½x� � Aig. If ½x� 6¼ ½y�, then we either
have x ffl y, x � y or y � x 8x 2 ½x�, y 2 ½y�. In any case, there exists some i 2 I such
that x � Ai and y 6� Ai and vice versa. Thus, Bx 6¼ By and f is injective. We get
jX=� j� jPðIÞj.

For the second statement, consider the set X :¼ PðIÞ equipped with the preorder
�, where � denotes set inclusion. One can see ðfiÞi2I is a multi-utility for X, where
fi : PðIÞ ! R, U 7!1 if i 2 U and U 7!0 otherwise. Notice we have
jPðIÞ=� j ¼ jPðIÞj. Thus, the bound in the first statement cannot be improved.

(ii) Consider X :¼ PðIÞ equipped with the trivial ordering �. Notice ðfiÞi2I [
ðgiÞi2I is a strict monotone multi-utility with the cardinality of I [ I , which is
equinumerous to I, where fi : X ! R, U 7!1 if i 2 U and U 7!0 otherwise and
gi :¼ �fi, and we also have jPðIÞ=� j ¼ jPðIÞj. Thus, the bound in (i) cannot be
improved.

(iii) Consider A an antichain of X and, for each x 2 A, Ix :¼ fi 2 I ji � xg. We will
show the map f : A ! PðIÞ, x 7!Ix is injective, proving, thus, any antichain A fulfills
jAj � jPðIÞj which leads to wðX ;�Þ� jPðIÞj. Given x; y 2 A, x 6¼ y, we have x ffl y
and, by Debreu upper density of I, there exists some i 2 I such that x ffl i � y. As a
consequence, i 2 Iy and i 62 Ix. Resulting in f ðxÞ ¼ Ix 6¼ Iy ¼ f ðyÞ and, hence, in f
being injective.

For the second statement, consider the preorder ðR� [ Rx;�Þ where R :¼ f0; 1g,
R� is the set of finite sequences over R, Rx is the set of infinite sequences over R, if
x 2 R� and y 2 Rx then x �C y if x is a prefix of y and � is defined 8x; y 2 R� [ Rx

like

x � y () x ¼ y

x �C y:

�

Notice R� is a countable Debreu upper dense subset and we have
wðX ;�Þ ¼ jRwj ¼ jPðR�Þj. Thus, the bound in the first statement cannot be
improved. h

Primarily, Proposition 4 shows how, whenever they are infinite, bounds on the
dimension of a preference space result in bounds on the number of commodities in
the decision space and, moreover, it shows that these bounds are optimal, since they
are achieved by some preference spaces. Notice, while the analog of (iii) remains a
question whenever I is a finite set, the bounds in both (i) and (ii) do not hold.
Although a trivial example supporting this assertion would be the real line with its
usual order ðR; �Þ, since the identity is a strict monotone finite multi-utility, we
conclude this paragraph including two, perhaps, more interesting counterexamples.
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Majorization also proves (i) is false when I is finite, since, although it is defined
through Eq. (1), it fulfills jPX=� U j ¼ c. We adapt from Bosi et al. (2020) (Example
2) a preorder which also illustrates that (ii) is false when I is finite. In particular, we
take X :¼ A [ B, where A and B are two copies of R n f0g, and equip them with �
where

x � y ()

x; y 2 A and x� y;

x; y 2 B and x� y;

x 2 A; x\0; y 2 B and 0\y;

x 2 B; x\0; y 2 A and 0\y

8>>><
>>>:

ð4Þ

8x; y 2 X (see Fig. 5 for a representation of �). Note jX=� j ¼ c and V :¼ fv1; v2g
is a finite strict monotone multi-utility, where v1ðxÞ :¼ x� 1 if x 2 A and x\0,
v1ðxÞ :¼ ex � 1 if x 2 B and x\0, v1ðxÞ :¼ 1� e�x if x 2 B and x[ 0 and v1ðxÞ :
¼ xþ 1 if x 2 A x[ 0, and v2ðxÞ :¼ x� 1 if x 2 B and x\0, v2ðxÞ :¼ ex � 1 if
x 2 A and x\0, v2ðxÞ :¼ 1� e�x if x 2 A and x[ 0 and v2ðxÞ :¼ xþ 1 if x 2 B and
x[ 0.

Proposition 4 improves the relation between the existence of multi-utilities and the
cardinality of X=� . In particular, whenever we have jX=� j� c, then there exist
multi-utilities with cardinality c (Evren & Ok, 2011) (see Corollary 1) and, whenever
injective monotones exist, we have jX=� j� c. However, there are preorders where,
although jX=� j� c holds, injective monotones do not exist, like the one in
Proposition 2. Furthermore, there are preorders with jX=� j� c where strict

B

A

id(x) id(y) id(z)

x y z

Fig. 5 Representation of a preordered space, defined by Eq. (4), where finite strict monotone multi-utilities
exist and jX=� j ¼ c. In particular, we relate three different points x; y; z 2 A with idðxÞ; idðyÞ; idðzÞ 2 C,
where A;B :¼ R=f0g, x\0\y\z and id : A ! B is the identity on R n f0g. Notice an arrow from an
element w to an element t represents w � t
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monotones do not exist, like the example in Corollary 2. Finally, there exist preorders
with strict monotone multi-utilities with cardinality c and where jX=� j[ c, like the
one in Proposition 4 (ii).

Returning to Proposition 3, notice its converse also holds, that is, there are
preordered spaces where strict monotones exist and multi-utilities with cardinality c
do not. In general, for any uncountable set I, there exist preordered spaces where
strict monotones exist and multi-utilities with the cardinality of I do not, as we show
in Proposition 5. Notice the counterexample we present is, essentially, the one we
introduced in Hack et al. (2022a, b) (Proposition 8), but for a larger ground set.
Despite the large ground set, however, the proof is constructive.

Proposition 5 If I is an uncountable set, then there exist preordered spaces with
strict monotones and without multi-utilities with the cardinality of I.

Proof Consider X :¼ B [ C, where B and C are two copies of PðIÞ, equipped with
� where

x � y () x ¼ y

x 2 B; y 2 C and y 6¼ idðxÞ

�
ð5Þ

8x; y 2 X with id : B ! C the identity on PðIÞ (see Fig. 6 for a representation of �).
Notice ðX ;�Þ is a preordered space and v : X ! R x 7!0 if x 2 B and x 7!1 if x 2 C
is a strict monotone. By Lemma 1 (i) there exists a family ðAjÞj2J of increasing

C

B

id(x) id(y) id(z)

x y z

Fig. 6 Representation of a preordered space, defined in Proposition 5, where strict monotones exist and
multi-utilities with the cardinality of I, an uncountable set, do not. In particular, we relate three different
points x; y; z 2 B with idðxÞ; idðyÞ; idðzÞ 2 C, where B;C :¼ PðIÞ and and id : B ! C is the identity on
PðIÞ. Notice an arrow from an element w to an element t represents w � t. Notice, also, this preorder is,
essentially, the one we introduced in Hack et al. (2022a, b) (Proposition 8) with a larger ground set
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subsets of X such that whenever x ffl y there exists some j 2 J such that x 2 Aj and
y 62 Aj. It is enough to show that such a family has a larger cardinality than I to see
that there is no multi-utility for X with the cardinality of I.

Notice, x ffl idðxÞ 8x 2 B. There exists, thus, some Ax 2 ðAjÞj2J such that x 2 Ax

and idðxÞ 62 Ax. We fix such an Ax for each x 2 B and consider the map
f : B ! ðAjÞj2J , x 7!Ax. Consider a pair x; z 2 B such that Ax ¼ Az and assume x 6¼ z.

Since Ax is increasing, z � idðxÞ and z 2 Ax, we get idðxÞ 2 Ax, a contradiction. Thus,
Ax ¼ Az implies x ¼ z and we have, by injectivity of f, jPðIÞj ¼ jBj � jðAjÞj2J j. As a
consequence, X has no multi-utility with the cardinality of I. h

Proposition 5 shows that the existence of optimization principles does not imply
any bound on the dimension of the preference space in question. This does vary with
respect to the case where injective optimization principles exist since, there, the
dimension cannot surpass the continuum. Hence, although injective optimziation is
not, optimization is possible in spaces of arbitrarily large complexity.

Notice, in particular, Proposition 5 shows there are preordered spaces with strict
monotones and without strict monotone multi-utilities with cardinality c, which is not
true for injective monotones (see (Hack et al., 2022a, b, Proposition 4). It also shows
that the class of preordered spaces where multi-utilities with cardinality c exist is
strictly contained inside the class of preordered spaces with multi-utilities, which
consists of all preordered spaces (Evren & Ok, 2011, Proposition 1). In fact, as we

C

B

id(x) id(y) id(z)

x y z

Fig. 7 Representation of a preordered space, defined in Proposition 6, which has no multi-utility with the
cardinality of an uncountable set I and no strict monotone. In particular, we show how x; y; z 2 B,
x � y � z, are related to idðxÞ � idðyÞ � idðzÞ 2 C where B;C :¼ PðIÞ and id : B ! C is the identity on
PðIÞ. Notice an arrow from an element w to an element t represents w � t. Notice, also, this preorder is,
essentially, the same as the one in the proof of Proposition 3 (see Fig. 4) with a larger ground set. As a
result, we used a non-constructive argument relying on Szpilrajn extension theorem to define it
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show in Proposition 6 through a variation of the preorder in Proposition 3, given an
uncountable set I, there exist preordered spaces where neither strict monotones nor
multi-utilities with the cardinality of I exist. Notice the proof of Proposition 6 relies
on Szpilrajn extension theorem and, thus, is non-constructive.

Proposition 6 If I is an uncountable set, then there exist preordered spaces where
neither multi-utilities with the cardinality of I nor strict monotones exist.

Proof Consider X :¼ B [ C, where B and C are two copies of PðIÞ and consider on
both C and B the total order �S that results from applying Szpilrajn extension
theorem (Szpilrajn, 1930) to the partial order defined by set inclusion on PðIÞ.
Furthermore, equip X with � where

x � y ()

x �S y and x; y 2 B

x �S y and x; y 2 C

idðxÞ �S y; x 2 B and y 2 C

x �S idðyÞ; x 2 C and y 2 B

8>>><
>>>:

ð6Þ

8x; y 2 X with id : B ! C the identity on PðIÞ (see Fig. 7 for a representation of �).
Notice ðX ;�Þ is a preordered space. In analogy to Propositions 3 and 5, one can
show that any family ðAjÞj2J of increasing subsets Aj � X that separates x and y

wehenver x � y has larger cardinality than I. Since the existence of some ðAjÞj2J with
those properties and jJ j � jI j is implied by both the existence of a multi-utility with
the cardinality of I by Lemma 1 (i) and the existence of a strict monotone by Lemma
1 (ii), we obtain that there is no multi-utility with the cardinality of I nor a strict
monotone for X. h

Proposition 6 shows that, for any cardinal, there are preorders where both
optimization principles do not exist and the dimension is larger than the cardinal. On
the contrary, whenever the complexity is countable, (injective) optimization
principles always exist Hack et al. (2022a, b). Note that the preorder we introduced
in Proposition 6 actually supports a stronger statement, which we include in
Corollary 3. To prove it, we simply follow Proposition 6 and add the fact that, as in
Corollary 1, ðviðxÞÞx2X is a multi-utility with the cardinality of PðIÞ.
Corollary 3 If I is an uncountable set, then there exist preordered spaces where
multi-utilities with the cardinality of PðIÞ exist, although neither strict monotones
nor multi-utilities with the cardinality of I do.

Regarding optimization and complexity, Corollary 3 can be interpreted as
Proposition 6. To complement Propositions 5 and 6, we show, in Corollary 4, for any
uncountable set I there exist preorders which have multi-utilities with the cardinality
of I and no strict monotones. Notice, again, we follow the basic construction in
Proposition 3, although we use the same non-constructive approach in Proposition 6.

Corollary 4 If I is an uncountable set, then there exist preordered spaces which have
multi-utilities with the cardinality of I and no strict monotone.
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Proof Consider X :¼ C [ B, where C and B are two copies of I, and equip it with a
preorder analogous to the one in Proposition 6. Notice ðviðxÞÞx2X is a multi-utility for

X. By slightly modifying the argument in Proposition 6, we conclude there are no
strict monotones. h

Corollary 4 shows that, unlike the countability ones (Alcantud et al. 2016; Hack
et al. 2022a, b), uncountability restrictions on the dimension of a preorder have no
effect in general on the existence of optimization principles. Moreover, as we show in
Corollary 5, we can put together the preorders from Proposition 4 (i) and Corollary 4
to improve the relation between multi-utilities and the cardinality of X=� even
more.

Corollary 5 If I is an uncountable set, then there exist preordered spaces where
jX=� j[ jI j and multi-utilities with the cardinality of I exist, while strict monotones
do not.

Proof Take X :¼ A [ B where A and is the ground sets of the preorder in Corollary
4 and B is the ground set of the preorder in Proposition 4 (i) without the empty set.
We equip X with the preorder in Corollary 4 on A and that of Proposition 4 (i) on B,
leaving x ffl y 8x; y 2 X such that x 2 A and y 2 B or vice versa. Since any strict
monotone on X would also be a strict monotone on A, they do not exist by Corollary
4. Notice we have jX=� j[ jI j, since jB=� j[ jI j. Notice, also, ðgiÞi2I [ ðhyÞy2A is

a multi-utility with the cardinality of I for X, where 8i 2 I giðxÞ :¼ fiðxÞ if x 2 B and
giðxÞ :¼ 0 if x 2 A, with ðfiÞi2I defined as in Proposition 4 (i), and 8y 2 A hyðxÞ :¼
viðyÞ if x 2 A and hyðxÞ :¼ 0 if x 2 B. h

Corollary 5 also deals with the connections between optimization and complexity,
showing that, even if the uncountability restrictions on the dimension do not apply to
the decision space, there still exist preference spaces with no optimization principle.

To finish this section, since we have been mainly concerned with preordered
spaces with infinite multi-utilities and uncountable X=� , we address both finite
multi-utilities and countable X=� . The first thing to notice is the existence of finite
multi-utilities does not imply X=� is countable. This is exemplified by majorization
(Marshall et al., 1979; Arnold, 2018), since it is defined through a finite multi-utility
Eq. (1) but the corresponding quotient space PX=� U has the cardinality of the
continuum. It is straightforward to see that, whenever X=� is finite, there exists a
finite multi-utility (see Corollary 1). However, as we show in Proposition 7, there
exist preorders where X=� is countably infinite and finite multi-utilities do not exist.
Notice the preorder that supports this claim is, essentially, the same as the one in
Proposition 5. However, in Proposition 7, we follow a simpler proof.

Proposition 7 There are preordered spaces ðX ;�Þ where X=� is countably infinite
and no finite multi-utilities exist.

Proof Consider X :¼ Z n f0g equipped with � where
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n � m () n ¼ m

n[ 0;m\0 and n 6¼ �m:

�

Notice ðZ n f0gÞ=� is countable. Assume there exists a finite multi-utility ðuiÞki¼1.
Notice for any pair n;�n we have n ffl �n and there must be some in such that
uinð�nÞ\uinðnÞ by definition of multi-utility. If we consider, however, some m 6¼ n,
then we have uinðmÞ� uinð�nÞ\uinðnÞ� uinð�mÞ. Thus, im 6¼ in. Considering w.l.o.
g. in ¼ n, we get uiðk þ 1Þ\uið�ðk þ 1ÞÞ for i ¼ 1; ::; k. Thus, there is no multi-
utility of cardinality k for any k\1. h

Proposition 7 shows that countability restrictions on the decision space do not
necessarily imply finite bounds on the dimension of the preference space and, thus,
on its complexity. As a result of Proposition 7, there are preorders where countably
infinite multi-utilities exist while finite ones do not. The preorder we used had,
however, a countable X=� . We, therefore, complement this statement by showing in
Proposition 8 that there are preorders with the same characteristics but
uncountable X=� .

Proposition 8 There are preordered spaces ðX ;�Þ where X=� is uncountable and,
although countable multi-utilities exist, finite multi-utilities do not.

Proof Let Pinf ðNÞ be the set of infinite subsets of N. Consider X :¼ ðN [
Pinf ðNÞ;�Þ equipped with the preorder �

x � y () x ¼ y

x 2 N; y 2 Pinf ðNÞ and x 2 y

�

8x; y 2 X . Clearly, jX=� j ¼ c, thus uncountable.
One can see U :¼ ðun; vnÞn� 0 is a countable multi-utility, where unðxÞ :¼ 1 if

x ¼ n or n 2 x 2 Pinf ðNÞ and unðxÞ :¼ 0 otherwise, and vnðxÞ :¼ 1 if n 62 x and
x 2 Pinf ðNÞ and unðxÞ :¼ 0 otherwise. Notice if x � y and x 6¼ y then x 2 N and
x 2 y. Thus, uðxÞ� uðyÞ 8u 2 U . Assume now we have :ðx � yÞ. If y � x, then
y 2 N and x 2 Pinf ðNÞ. Thus, there exists m 2 x such that m 6¼ y and umðyÞ\umðxÞ.
If x ffl y, then we consider four cases. If x; y 2 N, then uxðxÞ[ uxðyÞ. If
x; y 2 Pinf ðNÞ, then, if there exists n 2 x=y, we have unðxÞ[ unðyÞ. Otherwise, there
exists n 2 y=x and we have vnðxÞ[ vnðyÞ. If x 2 N and y 2 Pinf ðNÞ, then x 62 y and
we have uxðxÞ[UxðyÞ. If y 2 N and x 2 Pinf ðNÞ, then y 62 x and we have
vyðxÞ[ vyðyÞ.

To conclude, we show there is no finite multi-utility. Let A0 � Pinf ðNÞ, fix some

k 2 N and consider ðbiÞkþ1
i¼1 � A0, where bi 6¼ bj if i 6¼ j, and ðAiÞkþ1

i¼1 , where Ai :¼
A0=bi for i ¼ 1; ::; k þ 1. Notice ðbi;AiÞkþ1

i¼1 is a finite portion of the preorder in
Proposition 7, since we have bi � Aj if and only if i 6¼ j, and we can argue analo-
gously as we did there that no multi-utility with cardinality k exists. Since k is
arbitrary, we obtain there is no finite multi-utility. h
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Proposition 8 proves we can relax the restriction on the decision space in
Proposition 7 from countable to uncountable and still find preference spaces with
countably infinite dimension.

The preorder we introduced in Proposition 8 can, in fact, be used to improve the
relation between real-valued monotones characterization of preorders and order
density properties. A subset Z � X , such that x � y implies that there exists z 2 Z
with x � z � y is called order dense in the sense of Debreu (or Debreu dense for
short) (Ok, 2002; Bridges & Mehta, 2013). Accordingly, we say that ðX ;�Þ is
Debreu separable (Mehta, 1986) if there exists a countable Debreu dense set in
ðX ;�Þ. Similarly, ðX ;�Þ is called Debreu upper separable if there exists a
countable subset which is both Debreu dense and Debreu upper dense (Hack et al.,
2022a, b) (we defined Debreu upper dense subsets right before Proposition 4). As
was shown in Hack et al. (2022a, b) (Proposition 9), Debreu upper separable
preorders have countable multi-utilities. However, there exist preorders which have
countable multi-utilities but are not Debreu separable, like majorization for jXj � 3
(see Hack et al., 2022a, b) (Lemma 5 (ii)). In Proposition 9, we complement these
results by showing a preorder where countable multi-utilities exist and count-
able Debreu upper dense subsets do not. In particular, we show the preorder we
introduced in Proposition 8 has no countable Debreu upper dense subsets although,
as we showed there, it has countable multi-utilities. Notice, a preorder where the
weaker fact that injective monotones exist and countable Debreu upper dense subsets
do not can be found in Hack et al. (2022a, b) (Proposition 8). There, an injective
monotone was introduced and, although it was shown no countable multi-utility
exists, it is easy to see any Debreu upper dense subset would be uncountable.

Proposition 9 There are preordered spaces where countable multi-utilities exist and
every Debreu upper dense subset is uncountable.

Proof Consider the preorder X :¼ ðN [ Pinf ðNÞ;�Þ from Proposition 8. As we
showed there, countable multi-utilities exist. Assume there exists a Debreu upper
dense subset D � X . Consider y 2 Pinf ðNÞ, y 6¼ N. Notice there exists some ny 2
N=y and y [ fnyg ffl y. Since D is Debreu upper dense, there exists some d 2 D such
that y [ fnyg ffl d � y. Since d � y implies either d 2 y or d ¼ y, and d 2 y implies
d 2 y [ fnyg, thus d � y [ fnyg contradicting the definition of d, we have d ¼ y. As
a result, Pinf ðNÞ=fNg � D and D is uncountable. h

Although usually expressed as an equivalence, for total preorders, between the
existence of utility functions and that of countable Debreu dense subsets, the classical
result by Debreu (see (Bridges & Mehta, 2013, Theorem 1.4.8) can, alternatively, be
stated as the equivalence between the existence of countable multi-utilities and that
of countable Debreu separable subsets. From this perspective, the interest in the
result lies in the fact that the existence of a countable family of increasing sets that
separate (in the sense of Lemma 1) the elements in a preorder results in a
countable subset of elements with this separation (in the sense of order density)
property. Since the natural extension of Debreu separability to non-total preorders is
Debreu upper separability, Proposition 9, together with Hack et al. (2022a, b)
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(Proposition 8), shows that the transition from separating sets to elements does not
hold in general for non-total preorders.

Notice, although they coincide when they are countable (see (Alcantud et al.,
2016, Proposition 4.1; Hack et al., 2022a, b, Proposition 6), it remains an open
question how the different sorts of multi-utilities relate to each other when they are
finite. As a first result in this direction, we finish with a characterization of preordered
spaces with finite injective monotone multi-utilities.

Proposition 10 If ðX ;�Þ is a preordered space, then the following are equivalent:

(i) There exists a finite multi-utility ðuiÞi�N such that the image of the non-
injective set

Iui :¼ fr 2 Rj9x; y 2 X such that x; y 2 u�1
i ðrÞ and :ðx� yÞg ð7Þ

is countable 8i�N .
(ii) There exists a finite injective monotone multi-utility ðviÞi�N.

Proof By definition, given an injective monotone multi-utility ðviÞi�N, we have

Ivi ¼ ; 8i�N . Conversely, consider u 2 ðuiÞi�N a monotone such that the image of
its non-injective set Iu is countable. Take ðrnÞn� 0 a numeration of Iu, ðynÞn� 0 � X a
set such that uðynÞ ¼ rn 8n� 0 and, w.l.o.g., an injective monotone c0 : X ! ð0; 1Þ.
Notice injective monotones exist under the hypotheses, as we showed in Hack et al.
(2022a, b) (Proposition 5). Define, then,

w0ðxÞ :¼
uðxÞ if uðxÞ\r0
uðxÞ þ c0ðxÞ if uðxÞ ¼ r0

uðxÞ þ 1 else.

8><
>:

8x 2 X . Notice Iw0 
 Iu, since x0 62 Iw0 , and we have both uðxÞ� uðyÞ implies
w0ðxÞ�w0ðyÞ and uðxÞ\uðyÞ implies w0ðxÞ\w0ðyÞ 8x; y 2 X . Similarly, consider a
family of injective monotones ðcnÞn� 1 such that cn : X ! ð0; 2�nÞ for n� 1 and
define, also for n� 1,

wnðxÞ :¼
wn�1ðxÞ if wn�1ðxÞ\wn�1ðynÞ
wn�1ðxÞ þ cnðxÞ if wn�1ðxÞ ¼ wn�1ðynÞ
wn�1ðxÞ þ 2�n else

8><
>:

8x 2 X . Notice Iwn�1 
 Iwn holds 8n� 1, since xn 62 Iwn , and we have both
wn�1ðxÞ�wn�1ðyÞ implies wnðxÞ�wnðyÞ and wn�1ðxÞ\wn�1ðyÞ implies
wnðxÞ\wnðyÞ 8x; y 2 X . Lastly, consider the pointwise limit vðxÞ :¼ limn!1 wnðxÞ.
Noitce v is well-defined and, also, an injective monotone, since Iv ¼ ; by con-
struction.

Following the same procedure for each monotone in ðuiÞi�N , we get a family of
injective monotones ðviÞi�N . To conclude it is a multi-utility, we need to show,
8x; y 2 X with :ðx � yÞ, there exists some i�N such that viðxÞ[ viðyÞ. If y � x,
then viðxÞ[ viðyÞ 8i�N by definition of injective monotone. Otherwise, if x ffl y,
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there exists some i�N such that uiðxÞ[ uiðyÞ. Thus, we also have viðxÞ[ viðyÞ.
Hence, ðviÞi�N is a multi-utility. h

Notice we can weaken the hypothesis, assuming, instead of (7), that

fr 2 Rj9x; y 2 X such that x; y 2 u�1
i ðrÞ and x � yg

is countable 8i�N , to conclude, analogously, that the existence of finite multi-
utilities and that of finite strict monotone multi-utilities are equivalent. Notice, as a
result, we obtain that the existence of finite multi-utilities coincides with that of finite
strict monotone multi-utilities and that of finite injective monotone multi-utilities
whenever X=� is countable. The general case where X=� is uncountable (in
particular, when jX=� j� c since, otherwise, there are no injective monotones),
remains open. This is due to the fact the technique in Proposition 10 cannot be used
and Iui is not necessarily countable 8i�N , as one can see in majorization, for
example. There, taking ui as in Eq. (1), we have ð i

jXj ; 1Þ � Iui 8i� jXj � 1 and, thus,

Iui is uncountable 8i� jXj � 1. Notice, also, the technique in Proposition 10 is
similar to the one we used in Hack et al. (2022a, b) (Proposition 2), where we
showed the existence of an injective monotone is equivalent to that of a strict
monotone f whose non-injective set

fx 2 X j9y 2 X such that f ðxÞ ¼ f ðyÞ and x ffl yg
is countable. Notice the hypothesis there is stronger, since the assumption that the
image of the non-injective set If is countable is insufficient, as one can see using the
preorder in Hack et al. (2022a, b) (Proposition 1 (i)).

The technique in Proposition 10 can actually be used to prove that countable mul-
ti-utilities and countable injective monotone multi-utilities always coincide (see Hack
et al., 2022a, b, Proposition 6). The only detail of importance is, whenever a
countable multi-utility exists, there exists, by Lemma 1 (i), a countable family of
increasing sets ðAnÞn� 0 that 8x; y 2 X with x � y separates x from y and 8x; y 2 X
with x ffl y separates both x from y and y from x. In particular, ðvAn

Þn� 0 is a
countable multi-utility with the property that IvAn is finite 8n� 0. Since injective
monotones exist, we can follow Proposition 10 to construct a countable injective
monotone multi-utility.

4 Discussion

In this work, we have improved the classification of preordered spaces through real-
valued monotones in terms of the cardinality of multi-utilities and quotient spaces, c.
f. Fig. 1, and, as a result, we have contributed to the study of complexity,
optimization and their relation in preorderd spaces.

123

The classification of preorders: complexity and optimization 715



4.1 Classification of preorderd spaces through real-valued monotones

The state of the classification of preordered spaces in terms of real-valued monotones
can be found in Fig. 1, whereas our contributions are shown in Fig. 2. In this
paragraph, we summarize the relation between the different classes and distinguish
between our results and the ones in the literature. We will begin from the innermost
class, preorders with utility functions, and finish with the outermost class, which
contains all preorder (Evren & Ok, 2011), that is, peorders with multi-utilities.

The relation between utility functions and the subsequent classes, finite multi-
utilities and preorders with countable X=� is as follows. A utility function is a finite
multi-utility, although there are prerodered spaces where finite multi-utilities exist
and utilities do not, like majorization (Arnold, 2018; Marshall et al., 1979). We can
also use majorization to show there are preorders with a finite multi-utility where
X=� is uncountable. By Proposition 7, a countable X=� does not imply there
exists a finite multi-utility. Notice, also, preorders with utilities can have an
uncountable X=� , the easiest example being ðR; �Þ, and any non-total preorder
with countable X=� has no utility function.

The next class of interest are preorders with countable multi-utilities, which are
exactly those with countable strict monotone multi-utilities (Alcantud et al.,
2016, Proposition 4.1) and countable injective monotone multi-utilities (Hack et al.,
2022a, b, Proposition 6). By Proposition 8, there are preorders with countable multi-
utilities where X=� is uncountable such that no finite multi-utility exists, although
finite multi-utilities are, of course, countable. Also, whenever X=� is countable,
there exists a countable multi-utility, namely, ðviðxÞÞ½x�2X=� (Evren & Ok, 2011).

The following wider category are preorders with injective monotones, which are
equivalent to those with injective monotone multi-utilities with cardinality c by Hack
et al. (2022a, b) (Proposition 4). As we showed in Hack et al. (2022a, b) (Proposition
5), injective monotones can be constructed from countable multi-utilities. However,
again by Hack et al. (2022a, b) (Proposition 8), the converse is false.

Injective monotones are contained inside two classes: preorders with strict
monotone multi-utilities of cardinality c and preorders where jX=� j� c. It is
straightforward to see jX=� j� c whenever injective monotones exist. Because of
this, since it implies multi-utilities of cardinality c exist (Evren & Ok, 2011), and
Proposition 1, strict monotone multi-utilities of cardinality c exist whenever injective
monotones do. However, by Proposition 1 and Corollary 1, there are preordered
spaces with strict monotone multi-utilities of cardinality c and without injective
monotones. Similarly, as Proposition 2 shows, there are preorders where we have
jX=� j� c and no injective monotone. Moreover, by Proposition 4(ii), having strict
monotone multi-utilities of cardinality c does not imply jX=� j� c. Conversely, as
noticed in Corollary 2, we also get a negative result if we interchange the role of both
clauses, that is, there are preorders where jX=� j� c holds and no strict monotone
multi-utility of cardinality c exists. Notice the preorder in Corollary 2 was,
essentially, already introduced by Debreu (1954). As we stated in Proposition 1,
having a strict monotone and a multi-utility of cardinality c, the following class of
interest, is equivalent to having a strict monotone multi-utility of that cardinality.
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However, by Proposition 3, jX=� j� c does not imply that there exists a strict
monotone multi-utility of cardinality c. If we relax the implication of the statement to
multi-utility of cardinality c, then it is indeed true (see Evren & Ok, 2011 or Corollary
1). There are, actually, preorders with a multi-utility of cardinality c and no strict
monotone multi-utility of that cardinality such that jX=� j[ c, as Corollary 5
shows. Finally, by Proposition 5, there are preorders where strict monotones exist and
multi-utilities of cardinality c do not. In fact, by Proposition 6, there are preorders
without both strict monotones and multi-utilities of cardinality c. This completes the
results which are needed to construct Fig. 1. Notice, although we have focused on the
case I ¼ R, many of the results hold for a general uncountable set I, as we stated
them in Sect. 3.

Aside from those in the last paragraph, there are four more results in Sect. 3.
Proposition 10 shows the equivalence between finite multi-utilities and finite
injective monotone multi-utilities in well-behaved cases. Notice the only finite case
which appears in Fig. 1 is that of multi-utilities, as the relation with the other types
remains to be clarified. Proposition 9 improves upon (Hack et al., 2022a, b), where it
was shown that Debreu upper separable preorders have countable multi-utilities
(Hack et al., 2022a, b, Proposition 9) while there are preorders with countable multi-
utilities which are not Debreu separable (Hack et al., 2022a, b, Lemma 5), by
showing there exist preorders with countable multi-utilities where every Debreu
upper dense subset is uncountable. Lastly, Corollary 3 is slightly stronger than
Proposition 6 and uses the same preorder, while Corollary 4 is weaker than Corollary
5.

4.2 Complexity and optimization

Since the minimal cardinality of the existing multi-utilities can be used as a measure
of complexity and the existence of optimization principles can be reformulated in
terms of strict and injective monotones (Hack et al., 2022a, b), the classification of
preorders in terms of real-valued monotones improves our knowledge regading
complexity, optimization and the connections between them. Although we omit it
here for the sake of brevity, we can interpret the classification of preorders according
to monotones (cf. the paragraph above and Fig. 1) in terms of complexity and
optimization (as we did right after presenting each result in Sect. 3).

4.3 Debreu dimension

There is a notion of dimension for partial orders which goes back to Dushnik and
Miller (1941) and has remained somewhat disconnected from the more intuitive
geometrical notion, which corresponds to multi-utilities. In fact, there exist preorders
where the classical definition of dimension is finite while the geometrical one is
uncountable. In Hack et al. (2022a, b), we propose a variation of the classical notion,
called Debreu dimension, and, using results from this work, show that such a
disconnection between this definition and the geometrical one does not occur. That is,
we show that the geometrical dimension is countable if and only if the Debreu
dimension also is.
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4.4 Open questions

Several scientific disciplines rely on preordered spaces and their representation via
real-valued monotones. Thus, refining the classification via the introduction of new
classes and establishing more connections between separated classes in cases of
interest would, potentially, improve several areas, like utility theory (Debreu, 1954;
Rébillé, 2019) and the study of social welfare relation (Banerjee et al., 2010) in
economics, statistical estimation (Hennig & Kutlukaya, 2007) in statistics, equilib-
rium thermodynamics (Lieb & Yngvason, 1999; Candeal et al., 2001), entanglement
theory (Nielsen, 1999; Turgut, 2007) and general relativity (Bombelli et al., 1987;
Minguzzi, 2010) in physics and, lastly, multicriteria optimization (Jahn, 2009;
Ehrgott, 2005). Specific questions that remain to be solved include, for example, the
relation between the different sorts of finite multi-utilities we have introduced. In
particular, it is unclear whether Proposition 10 can be improved or preorders with
finite multi-utilities and no finite injective multi-utilities exist.
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