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Abstract
It is natural for humans to judge the outcome of a decision under uncertainty as a

percentage of an ex-post optimal performance. We propose a robust decision-

making framework based on a relative performance index. It is shown that if the

decision maker’s preferences satisfy quasisupermodularity, single-crossing, and a

nondecreasing log-differences property, the worst-case relative performance index

can be represented as the lower envelope of two extremal performance ratios. The

latter is used to characterize the agent’s optimal robust decision, which has impli-

cations both computationally and for obtaining closed-form solutions. We illustrate

our results in an application which compares the performance of relative robustness

to solutions that optimize worst-case payoffs, maximum absolute regret, and

expected payoffs under a Laplacian prior.

Keywords Decision making under uncertainty � Relative regret � Robustness

1 Introduction

Decisions under uncertainty aimed at providing absolute performance guarantees, so

the standard logic goes, must be preoccupied with the most unfavorable states,

however unlikely they might be. This focus on worst-case outcomes implies a

‘‘tunnel vision,’’ which not only leads to conservative strategies to mitigate negative

contingencies, but also to a lack of scanning for positive opportunities—as favorable

outcomes remain of (almost) no concern. The idea of relative robustness is to

evaluate a decision based on how well it would perform as a fraction of the best

payoff—viewed over all possible states. Its goal is to reach a relative performance

guarantee which places the consequences of the optimal robust decision within the
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Station 5, CH-1015 Lausanne, Switzerland

123

Theory and Decision (2023) 94:35–62
https://doi.org/10.1007/s11238-022-09866-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-2857-4754
http://crossmark.crossref.org/dialog/?doi=10.1007/s11238-022-09866-z&amp;domain=pdf
https://doi.org/10.1007/s11238-022-09866-z


tightest possible percentage range of an ex-post optimal outcome, where the latter

would have required perfect foresight and thus a complete absence of uncertainty.

The notion of measuring the success of an outcome against the possible rewards

of an ex-post optimal action is what defines ‘‘regret,’’ and our approach is thus

equivalent to using ‘‘relative regret’’ as a yardstick to evaluate all available actions.

And while this criterion has been used sporadically in the past to determine robust

actions by purely computational means, the contribution proposed here is to use

simple structural properties, some of which have their roots in the field of lattice

programming, to construct a general method for finding and analyzing ‘‘relatively

robust decisions.’’ The following simple example illustrates our ideas. Consider an

action space X ¼ f1; 2; 3g which describes the available strategies and a state space

S ¼ fs1; ŝ; s2g that contains all ‘‘states of nature.’’ The decision maker’s payoffs,

denoted by u(x, s) for all (x, s) in X � S, are given in Table 1 below, together with

evaluations in terms of the performance ratio uðx; sÞ ¼ uðx; sÞ=u�ðsÞ (where

u�ðsÞ ¼ maxx2X uðx; sÞ), and the performance index qðxÞ which is defined as the

minimal performance ratio uðx; sÞ over all states s 2 S.

We can see that maximizing the performance index qð�Þ leads to x ¼ x̂� ¼ 2 as

the (unique) optimal robust action, which is not ‘‘ex-post optimal’’ contingent on

any particular state.1 In addition, we highlight that in this example (which satisfies

certain properties) the overall performance index depends only on the performance

ratios uð�; s1Þ and uð�; s2Þ in the ‘‘extremal states’’ s1 and s2, which here feature the

lowest and the highest possible payoff, respectively. The optimal robust action

occurs where—as the action increases (from x ¼ 2 to x ¼ 3)—the ‘‘boundary

spread,’’ Dð�Þ ¼ uð�; s2Þ � uð�; s1Þ, changes sign (from Dð2Þ\0 to Dð3Þ[ 0).

Taking the optimal robust action x̂� ¼ 2, which achieves a performance index of

q� ¼ 1=3, guarantees that for any state s in S the payoff is never less than 1/3 of

what could have been achieved under perfect foresight. As alluded to in the

example, our main purpose here is to firmly establish relative robustness as a useful

decision criterion under full ambiguity (i.e., in the absence of any distributional

information). We further show that attractive representation results obtain under

fairly general and natural assumptions, which are compatible with the theory of

monotone comparative statics.

1.1 Literature

In the presence of complete ignorance about which state of nature might realize,

based on a ‘‘principle of insufficient reason’’ by Bernoulli (1738), Laplace (1825)

suggested to assign equal probabilities to all states. This does account for the

various possibilities on average, but not for the potentially large payoff differences

between different feasible decisions across contingencies, and it offers no

performance guarantee. The suggestion of dealing with uncertain decision problems

by assigning weights to decisions that might be suboptimal was introduced by

1 As shown in App. B (cf. Table 3), the minimax payoff is attained at x ¼ 1 and minimax regret at x ¼ 3,

with both of these actions leading to an equally poor relative performance of 1/12, compared to the

optimal robust action which guarantees a fourfold increase of the relative performance index.
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Neyman and Pearson (1933) who also floated the idea of a distribution-free

approach by minimizing the maximum loss (viewed as negative payoff). This

minimax-loss idea was formalized by Wald (1939, 1945, 1950) who also related it

to the theory of zero-sum games against nature (von Neumann and Morgenstern

1944; Milnor 1951). Instead of focusing attention directly on the objective function,

Savage (1951, 1954) applied the minimax approach to the difference of the ex-post

optimal payoff (under perfect state information) and the payoff achieved by a given

decision in a given state, which he referred to as ‘‘regret.’’ Both of these minimax

approaches provide absolute performance guarantees, which have been actively

employed in applications (see, e.g., Snyder 2006; Lim et al. 2012). Decision making

under uncertainty based on minimizing regret was introduced to the managerial

sciences by Bell (1982) who at the time may have well been unaware of Savage’s

earlier contribution. In economics, Wilson (1987, 1992) criticized the widespread

strong assumptions in models of strategic interaction under asymmetric information,

including the widespread premise of common knowledge about all agents’ beliefs.

Minimax-regret has since been deployed in monopoly pricing (among others) by

Bergemann and Schlag (2008, 2011) and Caldentey et al. (2017). Somewhat in

contrast to the aforementioned approaches centered on minimizing absolute regret,

Kahneman and Tversky (1984) noted that human decision makers tend to better

respond to relative gains than absolute gains. The corresponding idea of using

relative regret, or equivalently an achievement rate, goes back to the ‘‘competitive

ratio’’ to evaluate the relative performance of algorithms (Sleator and Tarjan 1985;

Ben-David and Borodin 1994). A relative achievement ratio has also been used in

robust linear programming by Inuiguchi and Sakawa (1997), as well as Mausser and

Laguna (1999). Kouvelis and Yu (1997) present a scenario-based approach using a

relative-regret objective. More recently, relative performance objectives have been

useful for fair allocations (Goel et al. 2009), dynamic trading (Park and Van Roy

2015), and inventory management (Levi et al. 2015). In the extant literature, the

consideration of relative-regret objectives has been largely scenario-based and

viewed almost entirely from a computational and algorithmic perspective.2 Here we

Table 1 Decision problem with relative robustness evaluation

Action (x) Payoff Evaluation

uðx; s1Þ uðx; ŝÞ uðx; s2Þ uðx; s1Þ uðx; ŝÞ uðx; s2Þ qðxÞ

1 12 10 8 1 1 1/12 1/12

2 7 6 32 7/12 3/5 1/3 1/3

3 1 2 96 1/12 1/5 1 1/12

2 A notable exception to this is Goel et al. (2009), where a relative fairness objective is represented in

terms of a finite set of so-called prefix functions Pk , for k 2 f1; . . .; ng, which measure the aggregate

payoff of the k poorest individuals in a population of n agents.
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seek structural insights, based on the theory of monotone comparative statics (see,

e.g., Topkis 1998), so as to obtain a parsimonious representation of the fairness

objective as a function of a few ‘‘extremal’’ states. This ultimately yields a simple

characterization of the set of ‘‘optimal robust actions’’ which maximize a relative

performance index.

1.2 Outline

The paper proceeds as follows. Sec. 2 introduces the model primitives and the

agent’s robust decision problem. Sec. 3 provides a simple representation of the

performance index as lower envelope of extremal performance ratios. It also

characterizes the agent’s optimal robust actions as a function of extremal

performance ratios at the boundary. Sec. 4 illustrates our findings using a simple

example, and Sec. 5 concludes.3

2 Robust decision model

An agent is faced with a decision of selecting a most preferred element (an

‘‘action’’) from a given choice set. The agent’s preferences over his available

actions are contingent on the (ex-ante unknown) realization of a state. We introduce

a robust decision model which has three elements: first, a suitable state-dependent

utility representation of the agent’s preferences; second, a set of ‘‘complete-

information decision problems’’ that can be solved in the presence of complete state

information; and finally, a ‘‘robust decision problem’’ that the agent can solve in the

absence of any state information.

2.1 State-dependent utility

Let S � Rm be a state space and let X � Rn be a choice set, which are both

nonempty and compact, where m, n are positive integers. Each state s 2 S describes

an ex-ante unknown contingency. Any choice x 2 X specifies a decision option, one

of which must be selected before the realization of the contingency s is observed.

We assume that the agent’s state-dependent preferences �s (which define a

complete preordering of X , for any s 2 S) are represented by a continuous state-

dependent utility function u : X � S ! R.4 Thus, by the maximum theorem (Berge

1963, p. 116) the agent’s ex-post optimal utility,

u�ðsÞ ¼ max
x2X

uðx; sÞ; s 2 S;

3 All proofs are given in App. A; some additional discussion is provided in App. B.
4 Given any s 2 S, uð�; sÞ represents �s if and only if: x �s x̂ , uðx; sÞ� uðx̂; sÞ, for all x; x̂ 2 X .
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is a continuous function with values in the compact set ½u�; �u�	, where u� ¼
min u�ðSÞ and �u� ¼ max u�ðSÞ correspond to the agent’s ‘‘minimax utility’’ and

‘‘maximax utility,’’ respectively. To achieve sign-definiteness of the agent’s utility

for the relevant decision options, we assume that there exists a ‘‘default decision’’ x0

which produces a nonnegative utility for all possible states. That is,

9 x0 2 X : uðx0; sÞ
 0; 8 s 2 S: ðP0Þ

Let Xþ be the set of decisions satisfying (P0), which we refer to as the set of

individually rational choices,

Xþ ¼ x 2 X : min uðx;SÞ
 0f g:

All elements of Xþ attain a zero-utility threshold which can be viewed as the

(normalized) utility of the agent’s ‘‘outside option.’’ Framed in this manner, prop-

erty (P0) simply requires that the set Xþ of individually rational choices is none-

mpty. It is always possible to make the agent’s utility function nonnegative by

replacing u with û ¼ u� u
 0, where u ¼ min uðX ;SÞ, so property (P0) can in fact

be satisfied completely, that is, in such a way that Xþ ¼ X ; see also Remark 4 for a

discussion of why this may not be always desirable. In addition,5 it is possible to

normalize the worst-case utility of the default decision (which is achieved for some

s0 2 S) to zero, so

uðx0; s0Þ ¼ min
s2S

uðx0; sÞ ¼ 0: ð1Þ

The agent considers this utility function as his ‘‘money metric’’ which is determined

up to a positive linear transformation.6

Remark 1 (Continuity) For any given s 2 S, the preference relation �s is

continuous if and only if the upper contour set fx̂ 2 X : x �s x̂g and the lower

contour set fx̂ 2 X : x̂ �s xg are closed, for all x 2 X . In that case, a continuous

utility representation uð�; sÞ for �s (cf. footnote 4) exists (Debreu 1959, pp. 56–59).

Here we require that u(x, s) be also continuous in s, so that for any sequence

ðskÞ1k¼0 � S with limk!1 sk ¼ s we have that 9N
 0 such that 8 k
N:

x �s x̂ ) x �sk x̂, for all x; x̂ 2 X and all s 2 S (see, e.g., Kreps 1988, p. 27). It

is important to note that the utility function u(x, s) is automatically continuous in x
(resp., in s) if X (resp., S) is finite. Thus, in virtually all practical settings (supported

by a finite amount of data) the continuity requirement becomes vacuous when

considering a finite choice set together with a finite state space.

5 While always possible, the normalization is optional; e.g., in Table 1, for x0 ¼ 1 it is uðx0; s0Þ ¼ 8[ 0.
6 That is, for any given a[ 0, the agent would consider û ¼ au an equivalent utility function.
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2.2 Complete-information decision problem

The set of ex-post optimal actions XðsÞ in state s constitutes the solution to the

agent’s complete-information decision problem:7

XðsÞ ¼ arg max
x2X

uðx; sÞ: ð2Þ

Since uð�; sÞ is by assumption continuous, the compact set uðX ; sÞ takes on its

maximum, so that the complete-information solution is nonempty; by the maximum

theorem the set-valued solution X : S�X is also compact-valued and upper-

semicontinuous (Berge 1963, p. 116). Therefore the set of all ex-post optimal
actions,

X̂ ¼ XðSÞ ¼
[

s2S
XðsÞ; ð3Þ

is compact.8 Any selector (or policy) x : S ! XðsÞ, describing which ex-post

optimal action x(s) is implemented across the states s, is generically discontinuous if

the solution set is not always a singleton.9 However, as noted before, the ex-post
optimal payoff, u�ðsÞ ¼ uðxðsÞ; sÞ, is continuous for all s 2 S, also as a consequence

of the maximum theorem.

2.3 Robust decision problem

By property (P0) there exists a feasible default decision x0 which achieves a

nonnegative utility across all possible states. Actions that would never achieve a

higher payoff but sometimes a worse payoff are said to be dominated by the default

action. Hence, the agent can restrict attention to (individually rational) decision

options x̂ (in Xþ) that are not dominated by the default action, and which must

therefore lie in the set of (ex-ante) acceptable actions,

Aðx0Þ ¼ cl Xþ n fx 2 X : min
s2S

fuðx; sÞ � uðx0; sÞg\0; max
s2S

fuðx; sÞ � uðx0; sÞg� 0g
� �

:

ð4Þ

The (compact) set of acceptable actions (with respect to x0) is obtained by removing

from the initial choice set X all actions that are dominated by the default action x0.

Remark 2 (Minimal Set of Acceptable Actions) Naturally, the set of accept-

able actions Aðx0Þ depends on the default action x0. By considering û ¼ u� u
 0

instead of the agent’s original utility function u any action in the choice set X could

be considered an admissible default action (which satisfies (P0) for û instead of u).

7 A ‘‘most preferred’’ decision option x̂ 2 XðsÞ is characterized by the fact that uðx; sÞ� uðx̂; sÞ for all

x 2 X .
8 Compact-valued upper-semicontinuous functions preserve compactness (Whyburn 1965, Cor. A2,

p. 1497).
9 For more details on the regularity properties of selectors, see, e.g., Jayne and Rogers (2002).
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The minimal set of acceptable actions, denoted by Â, can then be obtained as the

(nonempty and compact) intersection,10

Â ¼
\

x02X
Aðx0Þ:

It is clear that pruning the choice set by eliminating dominated actions can have no

impact on the rational choice of a most preferred decision; this ‘‘preprocessing’’

(once done) merely simplifies the search for such an action, and allows the agent to

possibly ignore negative utility values (that are never relevant for acceptable ac-

tions). Henceforth, we can therefore restrict attention to the minimal set of

acceptable actions Â, which could always be replaced by a larger set of accept-

able actions Aðx0Þ with respect to a specific default decision x0. Note that whenever

an ex-post optimal action x̂ 2 X̂ is not in Â, then that action must be dominated by

another action in X̂. More precisely, an ex-post optimal action can be found

unacceptable only relative to another action in X̂ which is ex-post optimal for more

states.11

Given any acceptable action x̂ 2 Â, the performance ratio,

uðx̂; sÞ ¼
uðx̂; sÞ=u�ðsÞ; if u�ðsÞ[ 0

1; if u�ðsÞ ¼ 0

� �
2 ½0; 1	; s 2 S; ð5Þ

makes a relative comparison of the payoffs attained by taking the decision x̂ for the

state s 2 S instead of an ex-post optimal (and therefore perfectly adapted) decision

in X̂ðsÞ. For example, a performance ratio of 80% means that at the current state s
the action x̂ attains 4/5 of the ex-post optimal payoff u�ðsÞ. As a consequence of the

continuity of u in its second argument, the worst-case performance ratio over all

states s in the compact state space S exists (by the extreme value theorem; see, e.g.,

Rudin 1976, Thm. 4.16). It is referred to as the performance index:

qðx̂Þ ¼ min
s2S

uðx̂; sÞ; x̂ 2 Â: ð6Þ

A performance index of qðx̂Þ ¼ 80% means that by taking the ex-post optimal

action x̂ the agent never gets less than 4/5 of the ex-post optimal payoff, no matter
what state realizes. The agent’s robust decision problem,

X̂� ¼ arg max
x̂2Â

qðx̂Þ; ð�Þ

10 The intersection of any number of compact sets is compact.
11 The minimal set of acceptable actions may well be equal to the initial choice set. For instance, in

Table 1 no action is dominated by any other, so Â ¼ X ¼ f1; 2; 3g.
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consists in selecting an optimal robust action x̂� 2 X̂� that maximizes the perfor-

mance index.12 The robust decision problem (*) is well-defined, as long as the

agent’s state-dependent preferences are represented by a continuous utility function

(cf. Remark 1), which—in any nontrivial setup—can be chosen so that all accept-

able actions produce nonnegative payoffs (meaning that (P0) is satisfied for all of

them). We also recall at this point that the agent’s preferences are automatically

continuous in situations where the choice set X and the state space S are finite.

Remark 3 (Minimax Relative Regret) Any solution to the robust decision problem

(*) also minimizes the agent’s maximum relative regret, rðx̂Þ ¼
maxs2S ðu�ðsÞ � uðx̂; sÞÞ=u�ðsÞf g over all x̂ 2 Â.

Remark 4 (Individual Rationality and Additional Actions) Why restrict attention

to individually rational decisions in Xþ � X , when—as pointed out in Sec. 2.1—it

is possible to achieve Xþ ¼ X by considering the nonnegative utility û ¼ u� u
instead of u ? There are two main reasons. First, by normalizing the worst-case

utility of the default decision in Eq. (1) to zero (or some other value; cf. footnote 6),

the agent sets a reference which is important for his evaluation of relative robustness

in Eq. (6). Requiring individual rationality ensures that the performance ratio in

Eq. (5) remains nonnegative. The second reason is more subtle and relates to the

potential dependence of an optimal robust decision on the introduction of sub-par

actions. To see this, assume that initially Xþ ¼ X , so our agent does not have to

worry about individual rationality and selects an optimal robust action by solving

(*). Then a friend presents a new action (not yet in X ) to the agent, which is not

dominated by any default decision, but which yields a negative utility in at least one

state.13 The new action would then trigger a need to re-normalize the agent’s utility

function (to retain nonnegativity of the performance ratio) and then re-solve his

robust decision problem. However, if all choice-relevant actions must be individ-

ually rational, there can never be a need to recalibrate the agent’s utility after a

choice-set augmentation, since adding ‘‘irrelevant’’ actions (with some low state-

contingent payoffs) can then have no bearing on the agent’s optimal robust decision.

2.4 Example

Consider an agent’s state-dependent preferences, represented by the continuous

utility function uðx; sÞ ¼ 1 � ðx� sÞ2
, defined for all ðx; sÞ 2 X � S, with X ¼

½0; 4	 and S ¼ ½1; 2	. The complete-information decision problem (2) yields XðsÞ ¼
fxðsÞg with xðsÞ � s, resulting in the optimal ex-post utility of u�ðsÞ � 1 2 ½u�; �u�	
with u� ¼ �u� ¼ 1. Consider now the default decision x0 ¼ 1 2 Xþ ¼ ½1; 2	, which

yields the utility

12 By the continuity of qð�Þ on the compact set Â, the solution set is nonempty and compact (as a

consequence of the extreme value theorem and the maximum theorem).
13 Assume there exist well-defined utility payoffs (in the agent’s money metric) for the suggested new

action.
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uðx0; sÞ ¼ 1 � ð1 � sÞ2 
 uðx0; s0Þ ¼ 0; s 2 S;

where s0 2 f2g ¼ arg mins2S uðx0; sÞ, so that property (P0) is satisfied. By Eq. (3)

the set of all ex-post optimal actions is X̂ ¼ S, and by Eq. (4) the set of all ex-ante

acceptable actions is

Aðx0Þ ¼ ½1; 2	 n
�
x 2 ½0; 4	 : 1 � ðx� sÞ2\0; s 2 ½1; 2	

�
¼ ½1; 2	;

with a minimal set of acceptable actions (cf. Remark 2) of Â ¼ X̂ ¼ ½1; 2	. The

agent can restrict attention to acceptable actions to evaluate the performance ratio in

Eq. (5),

uðx̂; sÞ ¼ uðx̂; sÞ
u�ðsÞ ¼ 1 � ðx̂� sÞ2 2 ½0; 1	;

for all ðx̂; sÞ 2 Â� S. By Eq. (6) the resulting performance index is

qðx̂Þ ¼ min
s2½1;2	

uðx̂; sÞ ¼ min 1 � ðx̂� 1Þ2; 1 � ðx̂� 2Þ2
n o

; x̂ 2 Â:

Finally, by solving the robust decision problem (*) the agent obtains a unique

optimal robust action,

x̂� 2 X̂� ¼ 3=2f g ¼ arg max
x̂2Â

qðx̂Þ;

which yields an optimal robust performance index of q� ¼ qðx̂�Þ ¼ 3=4. Hence,

when choosing x̂� ¼ 3=2 the agent is guaranteed to achieve a utility payoff that is at

least within 75% of the ex-post optimal utility payoff (i.e., u�ðsÞ � 1) that could

have been achieved with complete information about the state realization. See Fig. 1

for an illustration.

Fig. 1 Solution of the robust decision problem (*) in Sec. 2.4
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3 Representation of relatively robust decisions

To solve the robust decision problem (*) it is necessary to maximize the

performance index qðx̂Þ over all elements x̂ in the (minimal) set of acceptable actions

Â. For each acceptable action the performance index is obtained as the minimal

performance ratio over the entire state space. Using principles from monotone

comparative statics, we now show that it may be possible to represent the

performance index as the minimum of just two ‘‘extremal’’ performance ratios, q1

and q2, which in turn may allow for a simple characterization of the agent’s optimal

robust actions as those for which q1 ¼ q2.

3.1 Preliminary definitions

Given a positive integer n, consider a nonempty compact choice set X � Rn. For

each pair of choices x; x̂ 2 X , with x ¼ ðx1; . . .; xnÞ and x̂ ¼ ðx̂1; . . .; x̂nÞ, let the

componentwise minimum,

x ^ x̂ ¼ ðminfx1; x̂1g; . . .;minfxn; x̂ngÞ;

denote the minimal compromise, and let the componentwise maximum,

x _ x̂ ¼ ðmaxfx1; x̂1g; . . .;maxfxn; x̂ngÞ;

designate the maximal compromise (between x and x̂). We assume that X is a lattice,

so that (by definition) both compromises are again elements of the choice set, that is,

x ^ x̂ 2 X and x _ x̂ 2 X . For any two nonempty subsets B and B̂ of X , we say that

‘‘B̂ is higher than B’’ (in the strong set order), denoted by B� B̂, if and only if 14

ðb; b̂Þ 2 B � B̂ ) ðb ^ b̂; b _ b̂Þ 2 B � B̂:

Let Y be a nonempty subset of a Euclidean space (e.g., Rn). A binary relation � is

called a (complete) preordering of Y if for any y; ŷ 2 Y either y � ŷ or ŷ � y (or

both),15 and in addition the following two properties hold (for all y; ŷ; z 2 Y):

y � y and
�
y � ŷ; ŷ � z ) y � z

	
;

with the former being referred to as ‘‘reflexivity’’ and the latter as ‘‘transitivity.’’ As

in Sec. 2.1, let S � Rm be a nonempty compact state space, for a given positive

integer m. We assume that � denotes a preordering of the state space S, and that for

each s 2 S the binary relation �s denotes a preordering of the choice set X , with a

continuous utility representation u : X � S ! R. Throughout our developments, we

say that the preordering � of the state space is consistent (with the agent’s utility
representation u) or simply ‘‘u-consistent’’ if for all s; ŝ : S:

14 This property will be used to order solutions of an agent’s various decision problems; cf. Sec. 3.3.
15 The output of the binary relation � for the inputs y and ŷ in Y is either ‘‘true’’ or ‘‘false.’’ If it is ‘‘true,’’

we write y � ŷ; otherwise, we write ŷ � y. If both y � ŷ and ŷ � y, then we write y
 ŷ to denote

‘‘indifference.’’
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�
uðx; sÞ� uðx; ŝÞ for all x 2 X

	
) s � ŝ:

Thus, a u-consistent preorder � of S must be such that a state ŝ is (weakly) preferred

over the state s if for all actions x in X the utility uðx; �Þ does not decrease when

going from s to ŝ. The preceding consistency criterion (after switching the roles of

s; ŝ) is equivalent to the requirement that for all s; ŝ 2 S:

s � ŝ )
�
uðx; sÞ\uðx; ŝÞ for some x 2 X

	
:

Therefore, if a state ŝ is to be strictly preferred to the state s, then for at least one

action x 2 X the utility uðx; �Þ must strictly increase when going from s to ŝ.

3.2 Utility properties

To arrive at parsimonious representations of the performance index and the set of

optimal robust actions, we now introduce three properties of the utility function u,

under the standing assumption that u has been chosen so as to satisfy (P0) and that

the preorder � on S is u-consistent. First, for each state s 2 S, assume that uð�; sÞ is

supermodular in the sense that

uðx; sÞ þ uðx̂; sÞ� uðx ^ x̂; sÞ þ uðx _ x̂; sÞ; x; x̂ 2 X : ðP1Þ

This property implies (in any given state s) that for all actions x; x̂, if x is preferred to

the minimal compromise x ^ x̂ (i.e., if uðx ^ x̂; sÞ� uðx; sÞ), then the maximal

compromise x _ x̂ must be preferred to x̂ (i.e., uðx̂; sÞ� uðx _ x̂; sÞ). Second, we

suppose that the agent’s utility exhibits (weakly) increasing differences in (x, s),
so 16

x\x̂; s � ŝ : uðx; sÞ � uðx̂; sÞ� uðx; ŝÞ � uðx̂; ŝÞ; ðP2Þ

for all x; x̂ 2 X and s; ŝ 2 S. This property implies that the preference between two

choices x; x̂ in state s cannot be (strictly) reversed in any state ŝ that is preferred to s.
Finally, we assume that for acceptable actions the agent’s utility also exhibits

(weakly) log-increasing differences:

x\x̂; s � ŝ : uðx̂; sÞ uðx; ŝÞ� uðx̂; ŝÞ uðx; sÞ; ðP3Þ

for all x; x̂ 2 Â and s; ŝ 2 S. As long as the values u(x, s) and uðx; ŝÞ are positive,

property (P3) requires that for any two acceptable actions x; x̂ with x\x̂ the ratio of

the utility payoffs uðx̂; sÞ=uðx; sÞ cannot decrease when evaluated at a preferred state

ŝ (instead of at s).

16 The three standard inequalities between two vectors x; x̂ in the Euclidean space Rn (with x ¼
ðx1; . . .; xnÞ and x̂ ¼ ðx̂1; . . .; x̂nÞ) are defined as follows: (i) x� x̂ , xi � x̂i;8 i 2 f1; . . .; ng; (ii)

x\x̂ , x� x̂ and 9j 2 f1; . . .; ng such that xj\x̂j
� 	

; (iii) x � x̂ , xi\x̂i;8 i 2 f1; . . .; ng.
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Remark 5 (Behavioral Foundations) The supermodularity property (P1) is a

cardinal property of the utility representation which is often associated with

complementarity (Pareto 1909; Edgeworth 1897; Samuelson 1976).17 For example,

if x ¼ ð1; 0Þ indicates the availability of a left shoe and x̂ ¼ ð0; 1Þ the presence of a

right shoe, then the minimal compromise x ^ x̂ ¼ ð0; 0Þ means that no shoes are

available, whereas the maximal compromise x _ x̂ ¼ ð1; 1Þ corresponds to a

situation where a complete pair of shoes allows for a mutually beneficial use of

both shoes together. In such a setting, property (P1) is naturally satisfied. While

complementarities frequently arise in practice (see, e.g., Milgrom and Roberts

1990), supermodularity as a cardinal property is a rather weak requirement; indeed,

Chambers and Echenique (2009) show that if an agent’s preferences are weakly

monotonic on a finite lattice, then a supermodular utility representation always

exists, which somewhat limits the restrictiveness of (P1). For the purposes of our

results instead of (P1) the following ordinal property of quasisupermodularity,

introduced by Milgrom and Shannon (1994), is (necessary and) sufficient,

x ^ x̂ �s x ) x̂ �s x _ x̂

x ^ x̂ �s x ) x̂ �s x _ x̂

� �
; ðP1’Þ

for all x; x̂ 2 Â and s; ŝ 2 S. Similarly, instead of the cardinal increasing-differences

property (P2) we merely require the ordinal single-crossing property

x\x̂; s � ŝ :
x �s x̂ ) x �ŝ x̂

x �s x̂ ) x �ŝ x̂

� �
; ðP2’Þ

for all x; x̂ 2 X and all s; ŝ 2 S. Single-crossing requires that elevating a state to a

higher state can only amplify an agent’s preferences (at least weakly). Provided

positive u-values, the log-increasing-differences property (P3) is in fact the same as

(P2) applied to log u instead of u, which is an equivalent representation of the

agent’s state-dependent preferences. Properties (P1’) and (P2’) are ‘‘ordinal,’’ in the

sense that they are invariant with respect to which utility representation is used.18

Yet, in practical applications an absolute valuation (usually in monetary terms) is

important, and the agent needs to be able to quantify his ‘‘ex-post preferences’’

(given state realizations) with a utility function u. This utility function u(x, s) is

compatible with (P1’) if it is supermodular in x; it is compatible with (P2’) if it has

increasing differences in (x, s). Finally, the cardinal property (P3) is equivalent to

asking that log uðx; sÞ has increasing differences in (x, s). Since ûðx; sÞ ¼ log uðx; sÞ
can be thought of as an equivalent utility representation (cf. footnote 19), one finds

17 Conditions for the behavior of solutions to optimization problems, in particular monotone comparative

statics, have their roots in lattice programming (Topkis 1968, 1998).
18 The representation of the agent’s preferences is invariant with respect to an increasing transformation

of the utility function. That is, given any increasing function /ð�; sÞ : R ! R with /ð0; sÞ
 0 (to preserve

the required sign-definiteness of the utility), the mapping ðx; sÞ7!ûðx; sÞ ¼ /ðuðx; sÞ; sÞ also represents �s,

in the sense that x �s x̂ , ûðx; sÞ� ûðx̂; sÞ, for all x; x̂ 2 X and s 2 S. The functions u and û are

different utility representations of the same state-dependent preference relation. As noted in Sec. 2.1,

recall that for a fixed money metric (modulo the choice of a specific currency) only positive linear

transformations û ¼ au, with a[ 0, can be used.
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that (P1’) holds if it is supermodular in x; (P2’) obtains if it has nondecreasing log-

differences in (x, s) (analogous to condition (P3), only for û); and finally, (P3) holds

if it has increasing differences in (x, s). Thus, the set of practical requirements (in

terms of standard verification techniques) remains essentially unaffected by changes

in the utility representation.

For the remainder of this section, we assume that the agent’s preferences are

represented by a continuous utility function as in Sec. 2 and that properties (P1)–

(P3) are satisfied. Any additional assumption is stated explicitly.

3.3 Monotonicity

The cardinal properties (P1) and (P2), or (if u[ 0) alternatively (P1) and (P3),

imply the ordinal properties (P1’) and (P2’), respectively.19 The latter yield that ex-

post optimal actions are nondecreasing in the state realizations. The following result

was obtained by Milgrom and Shannon (1994).

Lemma 1 By (P1’) and (P2’) the solution of the agent’s complete-information
decision problem (2) is nondecreasing, in the sense that

s � ŝ ) XðsÞ�XðŝÞ; ð7Þ

for all states s; ŝ 2 S.

By La. 1 the agent can choose a nondecreasing policy x : S ! XðsÞ such that

ŝ � s implies xðsÞ� xðŝÞ, for all s; ŝ 2 S. Thus, the agent can obtain ex-post optimal

payoffs by implementing actions which are nondecreasing as the states increase.

3.4 Representation of performance index

A nondecreasing policy, together with the cardinal property (P3), guarantees that the

performance ratio is single-peaked in the state realization.

Lemma 2 Let x : S ! Â be a nondecreasing policy. For any given ŝ 2 S, the
function uðxðŝÞ; �Þ : S ! R is nondecreasing for s � ŝ and nonincreasing for ŝ � s,
for all s 2 S.

The quasiconcavity of uðx̂; �Þ in La. 2 implies that the worst-case performance

ratios must occur either at the lower boundary S1 or the upper boundary S2 of the

state space, where

S1 ¼ s 2 S : s � ŝ; for all ŝ 2 Sf g and S2 ¼ ŝ 2 S : s � ŝ; for all s 2 Sf g:
ð8Þ

19 Let x; x̂ 2 X and s; ŝ 2 S with x\x̂ and s � ŝ. Consider first (P1) ) (P1’). If uðx ^ x̂; sÞ� ð\Þ uðx; sÞ,
then by (P1) it is uðx _ ŝÞ
 uðx; sÞ þ uðx̂; sÞ � uðx ^ x̂; sÞ
 ð[ Þ uðx̂; sÞ, which establishes (P1’), since

uð�; sÞ represents �s on X . To show (P2) ) (P2’), note that if uðx̂; sÞ � uðx; sÞ
 ð[ Þ 0, then by (P2) also

uðx̂; ŝÞ � uðx; ŝÞ
 ð[ Þ 0, which yields (P2’), as uð�; sÞ and uð�; ŝÞ represent �s and �ŝ, respectively, on

X . Finally, as long as uðX ;SÞ � Rþþ, log uð�; sÞ represents �s on X (just as uð�; sÞ does), and (P3) means

that log uðx; sÞ exhibits increasing differences (in the sense of (P2)), so (P3) ) (P2’).
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Consequently, the agent can restrict attention to the extremal performance ratios,

q1ðx̂Þ ¼ min
s2S1

uðx̂; sÞ and q2ðx̂Þ ¼ min
s2S2

uðx̂; sÞ: ð9Þ

This leads to a simple representation of the performance index.

Proposition 1 The agent’s performance index is the lower envelope of the extremal
performance ratios, at the lower and upper boundaries of the state space. That is,

qðx̂Þ ¼ minfq1ðx̂Þ; q2ðx̂Þg; ð10Þ

for all x̂ 2 Â.

The intuition for the preceding result is that the relative evaluation of two actions

decreases towards the boundary of the state space, as a consequence of (P3). This

means that q1 and q2 must produce the smallest performance ratios. No other

performance ratio, evaluated for any ‘‘interior’’ state s 2 S n ðS1 [ S2Þ, can be

worse than both of these extremal performance ratios.

3.5 Representation of optimal robust decisions

To characterize the agent’s optimal robust decisions, the easiest situation occurs

when the agent’s preferences are ‘‘monotonic at the boundary,’’ in the sense that

ðs1; s2Þ 2 S1 � S2 : x� x̂ ) x̂ �s1
x �s2

x̂; ðP4Þ

for all x; x̂ 2 Â. The following result provides a characterization of the set of

optimal robust actions, as the roots of the boundary spread D ¼ q2 � q1 on a path-

connected set of acceptable actions.20

Proposition 2 If (P4) holds and Â is path-connected, then X̂� ¼ fx̂ 2 Â : Dðx̂Þ ¼
0g solves the robust decision problem (*).

In case (P4) is not satisfied, the boundary spread D is still nondecreasing on Â (as

established in the proof of Prop. 2). However, the maximum of q in Eq. (10) may be

attained outside the contour set D ¼ fx̂ 2 Â : Dðx̂Þ ¼ 0g, and the agent’s perfor-

mance index needs to be maximized using global optimization techniques.

Remark 6 (Path-Connectedness) If a randomization over different elements in Â
is always feasible, then path-connectedness holds automatically. However, if the

assumption of path-connectedness is not satisfied, as in Table 1, then the set of

optimal robust actions is such that X̂� � D� [Dþ, where D� ¼ fx̂ 2 Â :

Dðx̂Þ� 0 and ðx 2 Â; x[ x̂ ) DðxÞ[ 0Þg and Dþ ¼ fx̂ 2 Â : Dðx̂Þ
 0 and

ðx 2 Â; x\x̂ ) DðxÞ\0Þg, respectively. That is, for optimal robust actions, the

boundary spread D is always about to change sign (from negative to positive in the

20 The set Â is path-connected if for any two points x; x̂ 2 Â there exists a continuous function (i.e., a

continuous ‘‘path’’) n : ½0; 1	 ! Â, with nð0Þ ¼ x and nð1Þ ¼ x̂, which links the two points.
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direction of increasing actions, and from positive to negative in the direction of

decreasing actions). Indeed, in Table 1, where Â ¼ f1; 2; 3g (as pointed out in

footnote 11), we have Dð1Þ ¼ �11=12, Dð2Þ ¼ �3=12, and Dð3Þ ¼ 11=12. Thus,

X̂� ¼ fx̂�g ¼ f2g � D� [Dþ, where D� ¼ f2g and Dþ ¼ f3g. In general, with

path-connectedness the boundaries of the upper and lower contour set of D (relative

to the contour D ¼ 0) coincide: D� ¼ Dþ ¼ D.

4 Application

Consider an agent whose utility u(x, s) depends on the state of the world s ¼
ðc; dÞ 2 S and the nonnegative amount x of a service consumed, at a fixed unit price

p[ 0. The state space is of the form S ¼ ½c0 � e; c0 þ e	 � ½d0 � d; d0 þ d	 � R2
þ,

where s0 ¼ ðc0; d0Þ � 0 is a ‘‘nominal’’ state. The ‘‘perturbation’’ vector ðe; dÞ 2
ð0; c0Þ � ð0; d0Þ captures the dispersion in the agent’s information about the

prevailing state of the world. The agent is unsure about his value for the service. For

any x in the compact choice set X ¼ ½0; �x	 � Rþ with �x ¼ ðc0 þ eÞ=ðd0 � dÞ, the

agent’s willingness-to-pay is vðx; sÞ ¼ cx� dx2=2, leaving him with a (net) utility

objective of

uðx; sÞ ¼ vðx; sÞ � px ¼ ðc� pÞx� dx2=2;

for all ðx; sÞ 2 X � S, to represent his state-dependent preferences �s (as in foot-

note 4). Such quadratic utility functions have been used in numerous practical

applications, including the Capital Asset Pricing Model (Sharpe 1964), the pricing

of a service as an information good (Sundararajan 2004), or the use of electric

vehicles (Avci et al. 2015). Relative to the default action of not consuming any

service (i.e., x0 ¼ 0), the agent’s utility representation satisfies (P0). Assuming that

the service price would never preclude the agent from consuming a positive amount,

which means p 2 ð0; c0 � eÞ, the agent’s ex-post optimal decision is the only ele-

ment in the solution to his utility maximization problem (2),

XðsÞ ¼ xðsÞf g ¼ c� p

d

n o
; s 2 S:

This leads to an optimal utility,

u�ðsÞ ¼ uðxðsÞ; sÞ ¼ d

2

c� p

d


 �2

[ 0; s 2 S:

Given a binary relation �, defined for any states s ¼ ðc; dÞ and ŝ ¼ ðĉ; d̂Þ in S by

s � ŝ ,
�
c� ĉ or d̂� d

	
;

we obtain a complete preordering of the state space. The latter is equivalent to

s � ŝ , ðc;�dÞ\ðĉ;�d̂Þ;
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and s
 ŝ if and only if the last inequality is not satisfied; see Fig. 2. With this, we

are now ready to verify the three choice properties (P1)–(P3) introduced in Sec. 3.2.

Note first that for any x; x̂ 2 X with x� x̂ it is x ^ x̂ ¼ x and x _ x̂ ¼ x̂, so that (P1)

(resp., (P1’)) is trivially satisfied by the reflexivity of the agent’s state-dependent

preference relation �s. Since u(x, s) is twice continuously differentiable,21 with

uxc ¼ 1[ 0 and uxd ¼ �x� 0, the agent’s utility function features increasing dif-

ferences in ðx; ðc;�dÞÞ (for x[ 0), so that

x\x̂; s � ŝ ) uðx̂; sÞ � uðx; sÞ\uðx̂; ŝÞ � uðx; ŝÞ;

for all x; x̂ 2 X n f0g and all s; ŝ 2 S, which implies that (P2) (resp., (P2’)) must

hold. Finally, we note that

o2
xd log uðx; sÞ ¼ � c� p

2

x

uðx; sÞ

� �2

\0\
d

2

x

uðx; sÞ

� �2

¼ o2
xc log uðx; sÞ;

which yields that log uðx; sÞ has increasing differences in ðx; ðc;�dÞÞ, so

x\x̂; s � ŝ ) uðx̂; sÞ uðx; ŝÞ\uðx̂; ŝÞ uðx; sÞ;

for all x; x̂ 2 X n f0g and all s; ŝ 2 S, which in turn yields that (P3) is satisfied.

The lower and upper boundaries of the state space, S1 ¼ fs1g and S2 ¼ fs2g, are

both singletons with s1 ¼ ðc0 � e; d0 þ dÞ and s2 ¼ ðc0 þ e; d0 � eÞ; see Fig. 3. By

La. 1 the set of ex-post optimal actions is an interval: X̂ ¼ ½x1; x2	, where x1 ¼ xðs1Þ
and x2 ¼ xðs2Þ. This set is also equal to the minimal set of acceptable actions:

Â ¼ X̂. To evaluate how any action x̂ 2 Â is doing relative to any potential state

realization s 2 S, we now consider the performance ratio in Eq. (5),

uðx̂; sÞ ¼ 2 � x̂

xðsÞ

� �
x̂

xðsÞ ;

which by La. 2 is quasiconcave in s 2 S, attaining its maximum of 1 at any state s
where xðsÞ ¼ x̂. By Prop. 1 the agent’s performance index can be written in the form

qðx̂Þ ¼ min q1ðx̂Þ; q2ðx̂Þf g ¼ min 2 � x̂

x1

� �
x̂

x1

; 2 � x̂

x2

� �
x̂

x2

� �
:

Fig. 2 Complete preordering � on S; comparing ŝ ¼ ðĉ; d̂Þ with a given s ¼ ðc; dÞ

21 Partial derivatives are denoted by indices, e.g., uxc ¼ o2
xcu.

123

50 T. A. Weber



It is straightforward to verify (e.g., by equivalently testing monotonicity of q1ð�Þ and

q2ð�Þ) that uð�; s1Þ is decreasing and uð�; s2Þ is increasing. This means that the

agent’s preferences are monotonic at the boundary, so property (P4) has been

established. Thus, by Prop. 2 the solution to the agent’s robust decision problem (*)

is characterized by the condition

Dðx̂�Þ ¼ 0;

which in this context implies a unique optimal robust action:

x̂� ¼ x1x2

ðx1 þ x2Þ=2
¼ ðc0 � pÞ2 � e2

ðc0 � pÞd0 þ ed
:

The latter determines the optimal performance index,

q� ¼ qðx̂�Þ ¼
ffiffiffiffiffiffiffiffiffi
x1x2

p

ðx1 þ x2Þ=2

� �2

¼ 4 ðx1=x2Þ
ð1 þ ðx1=x2ÞÞ2

¼
ðc0 � pÞ2 � e2


 �
d2

0 � d2
� 	

ðc0 � pÞd0 þ edð Þ2
:

Remark 7 (Comparison with Other Criteria) Fig. 4 compares the optimal robust

decision x̂� in its relative performance (of q� ¼ 70:73%; measured in the sample at

71.43%) to other solutions of the agent’s decision problem under uncertainty, for the

nominal state ðc0; d0Þ ¼ ð100; 2Þ, with dispersion vector ðe; dÞ ¼ ð20; 0:75Þ, price

p ¼ 4, and N ¼ 4000 samples drawn uniformly from the state space S.

(i) Worst-case optimization (WC). The minimax payoff approach amounts to

solving

x�WC 2 arg max
x2X

min
s2S

uðx; sÞ;

which leads to fairly low relative performance in optimistic states with

qWC ¼ qðx�WCÞ ¼ 51:29%.

Fig. 3 State space S with extremal elements s1 and s2
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(ii) Certainty equivalence (CE). In the absence of uncertainty, the agent would

take the nominal state s0 ¼ ðc0; d0Þ to determine the ex-ante optimal decision,

x�CE ¼ ðc0 � pÞ=d0 2 Xðs0Þ, resulting in the performance index

qCE ¼ qðx�CEÞ ¼ 48:15%. Given a Laplacian (uniform) prior on the state space S,

this action would maximize the agent’s expected utility. By contrast, the optimal

robust decision is smaller:

x̂� ¼ x�CE � dx�CE þ e
d2

0x
�
CE þ ed

� �
e\x�CE:

(iii) Minimax regret (MR). The maximal absolute regret is minimal for

x�MR 2 arg min
x2X

�RðxÞ;

where the maximum regret is �RðxÞ ¼ maxs2S u�ðsÞ � uðx; sÞf g. This minimax-regret

decision produces poor relative performance on both sides of the state spectrum,

attaining a relative performance index qMR ¼ qðx�MRÞ ¼ 13:39%.

Table 2 provides numerical values for the optimal decisions and the attained

objective values, for relative robustness and the three alternative robustness criteria.

We note that the performance of our optimal robust decision (obtained by maxi-

mizing the relative performance index q) is least second-best across all four

robustness criteria, which is an indication for the inherently very balanced nature of

relative robustness as a decision criterion.

Fig. 4 Performance comparison for solutions optimizing relative robustness (RR), minimax regret (MR),
worst case (WC), and certainty equivalence (CE) [Sample Size: N ¼ 4000]
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5 Conclusion

A ‘‘relatively robust’’ decision, concerned with maximizing the performance index,

is taken ex ante—before any information about the prevailing state of nature has

transpired. It provides a relative performance guarantee with respect to all possible

states before any one of them has realized. The characteristics of a robust decision

depend on the properties of the actions that are optimal ex post—under complete

state information. Our analysis thus proceeded by first examining the structure of

the agent’s complete-information decision problem and the corresponding perfor-

mance ratio, so as to find a ‘‘minimal’’ representation of the performance index,

which can then be used to characterize the agent’s optimal robust decisions.

Relatively robust decisions can be determined based on a utility representation of

an agent’s state-dependent preferences over his actions in a compact domain X (on

a compact state space S), by solving the robust decision problem in Eq. (*). Nothing

else is needed, except for sign-definiteness of the (individually rational) utility-

payoffs relative to some default action, as formulated in property (P0) which comes

without any loss of generality. Thus, while the preference properties that carry our

results are not really necessary to uncover optimal robust decisions, they do lend a

powerful helping hand—by providing substantial structural insight and computa-

tional simplification. In this vein, properties (P1)–(P3), which are naturally satisfied

in many decision problems, imply a representation of the performance index as

lower envelope of the performance ratios in two ‘‘extremal states,’’ at the upper and

lower boundary of S (cf. Prop. 1). The additional property (P4) then allows for a

simple characterization of optimal robust decisions as a function of the difference of

these extremal performance ratios (cf. Prop. 2).

An optimal performance index provides a relative guarantee that solutions will

always perform within a given percentage of the level to which perfect information

or infinite flexibility would have led.22 The presented framework promises broad

applicability to economic and managerial decision problems in situations where no

Table 2 Comparison of relative robustness (RR), worst-case/maximin (WC), certainty-equivalence (CE),

and minimax regret (MR) as robustness criteria; cf. Remark 7

Criterion Optimal Decision Value of Robustness Objective y

ðx̂ 2 ÂÞ qð�Þ min uð�;SÞ ES½uð�; SÞ	 �Rð�Þ

– RR 42.6 71.43% 765.6 2276.3 1534.8

– WC 27.6 51.29% 1062.3 1891.8 2604.6

– CE 48.0 48.15% 507.4 2304.9 1217.0

– MR 53.9 13.39% 136.2 2269.3 926.2

y CE-objective based on Laplacian prior for random variable S with realizations in S

22 Conrad (1980) notes the equivalence between the two.
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probability distribution is available. It is also useful in settings that do not repeat

(e.g., the introduction of an innovative new product), as well as in environments

where performance guarantees are desirable or even required (e.g., when decisions

are highly irreversible or their effects are delayed significantly as in social policy or

climate-related emissions regulation).

Appendix A: Proofs

Proof of Lemma 1 Fix s; ŝ 2 S, with s � ŝ. Let x 2 XðsÞ and x̂ 2 XðŝÞ. Hence, by

the optimality of a most preferred action in the agent’s decision problem (2) (cf. also

footnote 7) it is

uðx ^ x̂; sÞ� uðx; sÞ and uðx _ x̂; ŝÞ� uðx̂; ŝÞ: ð11Þ

Applying the quasisupermodularity property (P1’) to the first inequality in Eq. (11)

yields

uðx̂; sÞ� uðx _ x̂; sÞ;

so that the single-crossing property (P2’) implies

uðx̂; ŝÞ� uðx _ x̂; ŝÞ:

Together with the second inequality in Eq. (11) this implies that x _ x̂ 2 XðŝÞ.
Returning to the first inequality in Eq. (11) if uðx ^ x̂; sÞ\uðx; sÞ, then by (P1’) it

is uðx̂; sÞ\uðx _ x̂; sÞ. By (P2’) this further implies that uðx̂; ŝÞ\uðx _ x̂; ŝÞ, which

in turn contradicts the second inequality in Eq. (11). Hence,

uðx ^ x̂; sÞ ¼ uðx; sÞ;

so x ^ x̂ 2 XðsÞ. We have therefore shown that

ðx; x̂Þ 2 XðsÞ �XðŝÞ ) ðx ^ x̂; x _ x̂Þ 2 XðsÞ �XðŝÞ;

that is XðsÞ�XðŝÞ in the strong set order (cf. Sec. 3.1), which concludes the proof.

h

Proof of Lemma 2 Let ŝ 2 S, and consider the behavior of uðx̂; �Þ to the left of s ¼ ŝ.
If ŝ lies in the lower boundary of S (i.e., if ŝ 2 S1), then there is nothing to show.

Consider therefore the interesting case where ŝ 2 S n S1. In this situation, select two

states s0; s00 2 S with s0 � s00 � ŝ, and accordingly set x0 ¼ xðs0Þ, x00 ¼ xðs00Þ, as well

as x̂ ¼ xðŝÞ. By La. 1 it is x0 � x00 � x̂. Thus, property (P3) of the agent’s state-

dependent utility function yields:23

uðx̂; s00Þ ¼ uðx̂; s00Þ
uðx00; s00Þ 


uðx̂; s0Þ
uðx00; s0Þ

uðx0; s0Þ
uðx0; s0Þ ¼

uðx̂; s0Þ
uðx0; s0Þ

uðx0; s0Þ
uðx00; s0Þ 


uðx̂; s0Þ
uðx0; s0Þ ¼ uðx̂; s0Þ:

23 If x ¼ x̂, then the implication in (P3) is trivially satisfied, since both sides of the weak inequality are

the same.
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Here we have used the fact that by the optimality of x0 (i.e., because x0 2 Xðs0Þ),

uðx0; s0Þ
uðx00; s0Þ 
 1:

Thus, we have shown that

ŝ 2 S n S1 : s0 � s00 � ŝ ) uðx̂; s0Þ �uðx̂; s00Þ;

for all s0; s00 2 S, which means that uðx̂; �Þ is nondecreasing to the left of ŝ.
Consider now the case where ŝ 2 S n S2, ignoring the trivial situation where ŝ is

in the upper boundary of the state space. For any two states s0; s00 2 S with

ŝ � s0 � s00, property (P3) of the agent’s state-dependent utility implies that

uðx̂; s0Þ ¼ uðx̂; s0Þ
uðx0; s0Þ 


uðx̂; s00Þ
uðx0; s00Þ

uðx00; s00Þ
uðx00; s00Þ ¼

uðx̂; s00Þ
uðx00; s00Þ

uðx00; s00Þ
uðx0; s00Þ 
 uðx̂; s00Þ

uðx00; s00Þ ¼ uðx̂; s00Þ;

where we have used the fact that by the optimality of x00 (i.e., because x00 2 Xðs00Þ):

uðx00; s00Þ
uðx0; s00Þ 
 1:

It follows that

ŝ 2 S n S2 : ŝ � s0 � s00 ) uðx̂; s0Þ 
uðx̂; s00Þ;

for all s0; s00 2 S, which means that uðx̂; �Þ is nonincreasing to the right of ŝ. h

Proof of Proposition 1 Fix any state ŝ 2 S, and a monotonic policy x : S ! Â which

exists by La. 1. With this, we denote x̂ ¼ xðŝÞ a candidate decision for the agent’s

robust decision problem (*). The corresponding performance index uðx̂; sÞ in Eq. (5)

attains its maximum of 1 at the state s ¼ ŝ. By La. 2 we know that uðx̂; �Þ is

nondecreasing to the left of ŝ and nonincreasing to the right of ŝ, so that the

minimum of uðx̂; �Þ must occur at the boundary of the state space, defined by S1 and

S2 in Eq. (8). By Eq. (9) this implies that

qðx̂Þ ¼ min
s2S

uðx̂; sÞ ¼ min
s2S1[S2

uðx̂; sÞ ¼ minfq1ðx̂Þ; q2ðx̂Þg;

which completes our proof. h

Proof of Proposition 2 The proof of this result has two parts (I and II). Part I

establishes the monotonicity of the boundary spread (also referred to in the main

text), and part II the representation of the solution to the agent’s robust decision

problem (*).

Part I: Monotonicity of D. The cardinal property (P3) ensures that the perfor-

mance spread D ¼ q2 � q1 is nondecreasing:

x\x̂ ) DðxÞ�Dðx̂Þ; ð12Þ

for all x; x̂ 2 Â. To see this, let ðs1; s2Þ 2 S1 � S2 be a tuple of boundary states in
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accordance with Eq. (8), and let ðx1; x2Þ 2 Xðs1Þ �Xðs2Þ be a tuple of corre-

sponding ex-post optimal actions. In addition, let s; ŝ 2 S be two ordered states with

s � ŝ, such that x 2 XðsÞ and x̂ 2 XðŝÞ, with x\x̂, are ex-post optimal actions with

respect to those states. The difference of the performance ratios for those actions, at

the lower boundary (i.e., for the state s1), is

q1ðx̂Þ � q1ðxÞ ¼
uðx̂; s1Þ
uðx; s1Þ

uðx; s1Þ
uðx1; s1Þ

� uðx; s1Þ
uðx1; s1Þ

� uðx̂; s2Þ
uðx; s2Þ

� 1

� �
uðx; s1Þ
uðx1; s1Þ

;

where the inequality is implied by property (P3). On the other hand, the difference

of the performance ratios (for x̂ and x) at the upper boundary of the state space is

q2ðx̂Þ � q2ðxÞ ¼
uðx̂; s2Þ
uðx; s2Þ

uðx; s2Þ
uðx2; s2Þ

� uðx; s2Þ
uðx2; s2Þ

¼ uðx̂; s2Þ
uðx; s2Þ

� 1

� �
uðx; s2Þ
uðx2; s2Þ

:

Subtracting the first of the two boundary differences from the second yields:

Dðx̂Þ � DðxÞ
 uðx̂; s2Þ
uðx; s2Þ

� 1

� �
uðx; s2Þ
uðx2; s2Þ

� uðx; s1Þ
uðx1; s1Þ

� �
¼ uðx̂; s2Þ

uðx; s2Þ
� 1

� �
DðxÞ:

But this means that DðxÞ
 0 ) Dðx̂Þ
DðxÞ, since

uðx̂; s2Þ
uðx; s2Þ


 uðx̂; ŝÞ
uðx; ŝÞ 
 1;

by virtue of property (P3) and ex-post optimality of x̂ (so uðx̂; ŝÞ
 uðx; ŝÞ). To prove

the ‘‘second’’ implication (namely, DðxÞ� 0 ) Dðx̂Þ
DðxÞ), note that by

property (P3) it is

q2ðx̂Þ � q2ðxÞ ¼
uðx̂; s2Þ
uðx; s2Þ

� 1

� �
uðx; s2Þ
uðx2; s2Þ


 uðx̂; s1Þ
uðx; s1Þ

� 1

� �
uðx; s2Þ
uðx2; s2Þ

:

From this, one can conclude in a similar manner as before that

Dðx̂Þ � DðxÞ
 uðx̂; s1Þ
uðx; s1Þ

� 1

� �
DðxÞ
 � 1 � uðx̂; sÞ

uðx; sÞ

� �
DðxÞ;

where the last inequality follows from (P3). Thus, if DðxÞ� 0, then by the ex-post

optimality of x 2 XðsÞ (so uðx; sÞ
 uðx̂; sÞ), we also have that Dðx̂Þ � DðxÞ
 0. This

proves the implication DðxÞ� 0 ) Dðx̂Þ
DðxÞ. By combining both implica-

tions, one obtains Dðx̂Þ
DðxÞ irrespective of the sign of DðxÞ, which establishes the

claimed monotonicity of the boundary spread D in Eq. (12).

Part II: Representation of X̂�. By Eq. (6), for any x 2 Â the performance index is

of the form

qðxÞ ¼ min q1ðxÞ; q2ðxÞf g ¼
q1ðxÞ; if DðxÞ
 0;

q2ðxÞ; if DðxÞ� 0:

�
ð13Þ

On the other hand, by the definition of the boundary performance ratios q1 and q2,
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we know that q1ðx1Þ ¼ q2ðx2Þ ¼ 1, which means that necessarily

Dðx1Þ� 0�Dðx2Þ. As a result,

qðx1Þ ¼ q2ðx1Þ� 1 and qðx2Þ ¼ q1ðx2Þ� 1:

By the boundary monotonicity in (P4) we have that uð�; s1Þ is nonincreasing while

uð�; s2Þ is nondecreasing. Thus, q2ð�Þ ¼ uð�; s2Þ=uðx2; s2Þ is nondecreasing, while

q1ð�Þ is nonincreasing. By the continuity of D, the path-connectedness of Â, and the

intermediate value theorem (see, e.g., Rudin 1976, Thm. 4.22) the set D ¼ fx̂ 2
Â : Dðx̂Þ ¼ 0g is nonempty and closed. Consider now any given continuous path

nðtÞ for t 2 ½0; 1	, with nð0Þ ¼ x1 and nð1Þ ¼ x2, which is nondecreasing (i.e., for

any t0; t00 2 ½0; 1	: t0\t00 ) nðt0Þ � nðt00Þ. Then nðtÞ must pass through D, in the

sense that there exist t0; t00 2 ½0; 1	, with t0 � t00, such that by virtue of Eq. (13) it is

qðnðtÞÞ ¼ 1ft2½0;t00 	g q2ðnðtÞÞ þ 1ft2ðt00;1	g q1ðnðtÞÞ ¼ 1ft2½0;t0Þg q2ðnðtÞÞ þ 1ft2½t0;1	g q1ðnðtÞÞ;

for all t 2 ½0; 1	. In particular, qðnð�ÞÞ is nondecreasing on ½0; t0	, constant on ½t0; t00	,
and nonincreasing on ½t00; 1	. As a result,

D ¼ arg max
x2Â

qðxÞ;

that is, any maximizer of q is characterized by the fact that the boundary spread D
vanishes. The latter must occur by the continuity of D on the (by assumption path-

connected) set Â, concluding our proof. h

Appendix B: Supplement

Alternative Robustness Criteria for the Example in Sec. 1. Table 3 provides an

evaluation of (absolute) regret Rðx; sÞ ¼ u�ðsÞ � uðx; sÞ, maximum regret
�RðxÞ ¼ maxRðx;SÞ, and worst-case payoff uWCðxÞ ¼ min uðx;SÞ, for all ðx; sÞ 2
X � S with X ¼ f1; 2; 3g and S ¼ fs1; ŝ; s2g. The minimax regret is achieved for

x ¼ 3, whereas worst-case optimality is obtained at x ¼ 1.

Variation of the Application in Sec. 4. Quadratic utility functions are sometimes

criticized for their lack of the fundamental ‘‘free disposal’’ property in choice

theory, which presumes that an agent’s willingness-to-pay should not decrease when

receiving too much of a product or service, as it may be always possible (so the

Table 3 Decision problem with (absolute) regret and worst-case payoff evaluation

Action (x) Payoff Evaluation

uðx; s1Þ uðx; ŝÞ uðx; s2Þ Rðx; s1Þ Rðx; ŝÞ Rðx; s2Þ maxRðx;SÞ min uðx;SÞ

1 12 10 8 0 0 88 88 8

2 7 6 32 5 4 64 64 6

3 1 2 96 11 8 0 11 1
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theory goes) to discard or not use any excess. The example in Sec. 4 featured an

agent with a willingness-to-pay that was decreasing past an ex-ante unknown

consumption maximum, which led to a somewhat conservative choice behavior

avoiding dissatisfaction from excess consumption, not only because of the price for

these ex-post unwanted services but also because of the agent’s active dislike of

excess consumption. To arrive at a more balanced assessment, allowing at least for

indifference over quantities past the bliss point, we now consider an agent with an

altogether nondecreasing willingness-to-pay, of the form

�vðx; sÞ ¼
vðx; sÞ; if x 2 ½0; c=d	;
v�ðsÞ; if x 2 ½c=d;1Þ;

�

where vðx; sÞ ¼ cx� dx2=2, with x in ½0; �x	 � Rþ and s ¼ ðc; dÞ in

S ¼ ½c0 � e; c0 þ e	 � ½d0 � d; d0 þ d	 � R2
þ, is as in Sec. 4, and all parameters are

defined in the same manner as before (including the given preordering of S). The

agent’s maximum willingness-to-pay in any given state s 2 S is v�ðsÞ ¼
vðc=d; sÞ ¼ c2=ð2dÞ[ 0. When faced with a per-unit service price p 2 ð0; c0 � eÞ,
the agent’s (net) utility is

�uðx; sÞ ¼ �vðx; sÞ � px; ðx; sÞ 2 X � S:

Because a positive price decreases the agent’s marginal utility for extra service (thus

precluding consumption up to the saturation point), the solution XðsÞ ¼ fxðsÞg to

the agent’s complete-information decision problem (2) is the same as before, with

xðsÞ ¼ c� p

d
; s 2 S;

leading also to the same ex-post optimal utility:

u�ðsÞ ¼ �uðxðsÞ; sÞ ¼ d

2

c� p

d


 �2

; s 2 S:

The boundary performance ratios, for any candidate action x̂ 2 X , are

�uiðx̂Þ ¼
uiðx̂Þ; if x̂� ci=di;

uiðci=diÞ � x̂� ðci=diÞð Þp=u�ðsiÞ; if x̂
 ci=di;

�

for i 2 f1; 2g, where ðc1; c2Þ ¼ ðc0 � e; c0 þ eÞ and ðd1; d2Þ ¼ ðd0 þ d; d0 � dÞ (so

c1\c2 and d1 [ d2). Clearly, since the agent’s willingness-to-pay weakly increased

over the example in the main text (i.e., �v
 v), including his marginal willingness to

pay beyond the bliss point, one can conclude that—all else equal—the new optimal

robust action �x� cannot be smaller than x̂�. Thus, at least for p ! 0þ it is �x� 
 c1=d1.

On the other hand, overshooting the bliss point for all states can never be robustly

optimal, so �x� � c2=d2. By Prop. 1 the performance index becomes
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�qðx̂Þ ¼ min 2 � c1=d1

x1

� �
c1=d1

x1

� 2 x̂� ðc1=d1Þð Þp
d1x

2
1

; 2 � x̂

x2

� �
x̂

x2

� �
;

x̂ 2 ½ðc1=d1Þ; ðc2=d2Þ	;

for x̂ 2 ½x1; ðc1=d1Þ	 it is �qðx̂Þ ¼ qðx̂Þ, just as in the main text. This yields the

optimal robust action

�x� ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1x
2
1ðx1 � ðc1=d1ÞÞ2 þ 2d1pðx2 � ðc1=d1ÞÞx2

1 þ p2x2
2

q
� px2

d1x
2
1

2
4

3
5 x2;

p 2 ð0; �p	;

for small prices, which implies that limp!0þ �x� ¼ c2=d2: at zero price, the agent

finds it best to consume as much as might possibly be needed to achieve satiation.

For larger prices, the bliss-point satiation becomes irrelevant, so

�x� ¼ x̂� ¼ 2 x1x2

x1 þ x2

; p 2 ½�p; c1Þ;

where the threshold price �p, defined by x̂�jp¼ �p¼ c1=d1, can easily be obtained in

closed form. Fig. 5 compares the performance index of the (adjusted) relatively

Fig. 5 Performance comparison for solutions optimizing relative robustness (RR), minimax regret (MR),
worst case (WC), and certainty equivalence (CE) [Sample Size: N ¼ 4000]
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robust decision (�q� ¼ 87:99%, observed in the sample) to that of other solutions,

again for the nominal state ðc0; d0Þ ¼ ð100; 2Þ, with dispersion vector

ðe; dÞ ¼ ð20; 0:75Þ, price p ¼ 4, and N ¼ 4000 samples drawn uniformly from the

state space S: qWC ¼ 50:95%, qCE ¼ 48:15%, qMR ¼ 82:70%.
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