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Abstract
We introduce a new class of real-valued monotones in preordered spaces, injective

monotones. We show that the class of preorders for which they exist lies in between

the class of preorders with strict monotones and preorders with countable multi-

utilities, improving upon the known classification of preordered spaces through real-

valued monotones. We extend several well-known results for strict monotones

(Richter–Peleg functions) to injective monotones, we provide a construction of

injective monotones from countable multi-utilities, and relate injective monotones

to classic results concerning Debreu denseness and order separability. Along the

way, we connect our results to Shannon entropy and the uncertainty preorder,

obtaining new insights into how they are related. In particular, we show how

injective monotones can be used to generalize some appealing properties of Jaynes’

maximum entropy principle, which is considered a basis for statistical inference and

serves as a justification for many regularization techniques that appear throughout

machine learning and decision theory.

Keywords Multi-utility representation � Richter–Peleg function � Majorization �
Uncertainty preorder � Maximum entropy

1 Introduction

The set of all preordered spaces ðX;�Þ is structured according to how well their

preorder can be represented by real-valued monotones, that is, functions u : X ! R

such that x � y implies f ðxÞ� f ðyÞ 8x; y 2 X (Evren & Ok, 2011; Ok, 2002). Two
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major classification methods can be distinguished depending on whether one

considers a single monotone (Alcantud et al., 2016) or a whole family U of

monotones encapsulating all the information in �, called a multi-utility (Evren &

Ok, 2011). More precisely, if U is a multi-utility for ðX;�Þ then 8x; y 2 X we have

x � y if and only if uðxÞ� uðyÞ 8u 2 U. Without further constraints, monotones and

multi-utilities are, however, not very useful from a classification perspective as they

exist for any preordered space. They become more useful when adding constraints.

For example, there are preordered spaces without strict monotones, that is, without

monotones u such that, uðxÞ\uðyÞ whenever x � y.1 Strict monotones, also known

as Richter–Peleg functions, have been extensively studied (Alcantud et al.,

2013, 2016; Peleg, 1970; Richter, 1966) and are related to other features of the

preorder such as its maximal elements. In the case of multi-utilities, the cardinality

is an important property for the classification of preordered spaces, with countable
multi-utilities playing a central role (Bevilacqua et al., 2018c). Of particular

importance are utility functions (Debreu, 1954, 1964), that is, multi-utilities

consisting of a single function.2

Here, we introduce injective monotones, which are monotones u such that uðxÞ ¼
uðyÞ implies both x � y and y � x. Preorders for which they exist form a category

between preorders with strict monotones and preorders with countable multi-

utilities, as we show in Propositions 1, 5 and 8. Hence, we improve on the existing

classification of preorders by adding a new distinct class. More precisely, in Sect. 3,

we define injective monotones and prove some simple properties. After discussing

their relation to optimization in Sect. 4, we take a look at the role of multi-utilities

in Sect. 5, in particular, we construct injective monotones from countable multi-

utilities and show that the converse does not hold. Finally, in Sect. 6, we consider

separability properties of preorders that are sufficient for the existence of strict and

injective monotones, introducing a new notion of Debreu separability, that allows to

extend previous results on strict monotones to corresponding analogues for injective

monotones.

In the following section, we introduce our running example to which we come

back several times throughout the development of the general theory. In particular,

we discuss the relation between the uncertainty preorder from majorization theory

(Arnold, 2018), which has Shannon entropy as a strict monotone, and the maximum
entropy principle that appears in many different parts of science.

2 Example: the uncertainty preorder and Shannon entropy

The outcome of a random variable with a narrow probability distribution is easier to

predict than the outcome of a random variable with a less concentrated distribution.

For example, the result of throwing an unbalanced coin is easier to predict than the

one of a balanced coin. In other words, a wider distribution contains more

uncertainty than a narrower distribution. This idea is captured by a binary relation

1 Here, x � y means x � y and :ðy � xÞ.
2 Notice, having a utility function implies � is total, that is, any pair of points x; y 2 X can be related by

�.

123

664 P. Hack et al.



on the space PX of probability distributions on a set X: the uncertainty preorder �U ,

defined for finite X by

p �U q () uiðpÞ� uiðqÞ 8i 2 f1; ::; jXj � 1g ; ð1Þ

where uiðpÞ:¼�
Pi

n¼1 p#
n and p# denotes the decreasing rearrangement of p (same

components as p but ordered decreasingly). Notice, �U is known in mathematics,

economics, and quantum physics as majorization (Arnold, 2018; Brandao et al.,

2015; Hardy et al., 1952; Marshall et al., 1979), originally developed by Lorenz

(1905) and Dalton (1920) among others, to measure wealth and income inequality.

An intuitive way to think of p �U q is that q is the result of finitely many transfers of

pieces of probability from a more likely to a less likely option in p (Gottwald &

Braun, 2019). In other words, q is more spread out or less biased, and thus, contains

more uncertainty than p. For instance, a Dirac distribution is the smallest, and the

uniform distribution is the largest, with respect to �U , among all distributions on X.
There is, however, a downside to this intuitive notion of uncertainty: what if p

and q do not have this relationship? For example, if p ¼ ð0:6; 0:2; 0:2; 0; ::; 0Þ and
q ¼ ð0:5; 0:4; 0:1; 0; ::; 0Þ, then p and q cannot be related by �U . Instead, the most

common way to measure uncertainty is to use an entropy functional, such as the

Shannon entropy, HðpÞ:¼� Ep½log p�, or one of various alternative entropy

proposals, including Renyi entropy (Rényi et al., 1961), Tsallis entropy (Tsallis,

1988), and many more (Csiszár, 2008). Even though, in general, �U cannot be fully

represented by any of these so-called generalized entropies F, it is noteworthy that

all of them are monotones with respect to �U .
3 While the converse is not true for

any single F, there are collections F which constitute a multi-utility, e.g., in the case

of finite X, F ¼ f
PjXj

n¼1 f ðpnÞ j f concaveg (Schur, 1923), or even F ¼ fuigjXj�1
i¼1 by

the definition of �U (1).

The preference towards unbiased distributions, that is represented by any

monotone of �U , is of particular relevance in the maximum entropy principle, where
(Shannon) entropy serves as a counter-acting force against the bias towards the

maximal elements of a given ‘‘energy’’ function E. Going back to the principle of
insufficient reason (Bernoulli, 1713), today the maximum entropy principle appears

in virtually all branches of science. For example, it is often used as a general

principle to explain the raison d’etre behind all kinds of ‘‘soft’’ versions of known

machine learning methods, especially in reinforcement learning (Fox et al., 2016;

Williams & Peng, 1991), but also in models of robust and resource-aware decision

making (Maccheroni et al., 2006; Ortega & Braun, 2013; Still, 2009; Tishby &

Polani, 2011). Basically, whenever there appears a trade-off between precision and

uncertainty, there is a good chance that the maximum entropy principle is applied

(Gottwald & Braun, 2020).

The underlying goal of the maximum entropy principle is to select a typical
distribution among a set of candidate distributions satisfying a given constraint,

usually of the form hEip ¼ c, where hEip denotes the expectation of a random

variable E with respect to the probability measure p. In Wallis’ derivation of the

3 Since �U is not total for any jXj[ 2, it has no utility function
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maximum entropy principle, typicality is measured by the number of possibilities of

assigning n elements among N groups, under the limit of infinitely many elements

(n ! 1) such that the statistical probabilities pi ¼ ni

N of belonging to a specific

group i remain finite (ni denotes the number of elements in group i) Jaynes (2003).
However, we can also think of typicality as containing the least amount of bias, or in

other words, the maximal amount of uncertainty. Thus, when considering the

uncertainty preorder �U as the most basic way to decide about the difference in

uncertainty between two distributions, then the ultimate goal of the maximum

entropy principle becomes to obtain the maximal elements of �U , inside the given

constraint set.

Even though, generally, we are not guaranteed to find all maximal elements of

�U when maximizing entropy, maximum entropy solutions are in fact maximal

elements of �U , as entropy is a strict monotone. Furthermore, since the maximum

entropy principle maximizes a strictly concave functional H over a convex subset, it

yields a unique maximal element of �U . In contrast, injective monotones, which

exist for �U (see Proposition 5), preserve this uniqueness property up to

equivalence (see Proposition 3), without asking for the additional structural

requirements of concavity.

3 Injective monotones

A preorder � on a set X is a reflexive (x � x 8x 2 X) and transitive (x � y and y � z
implies x � z 8x; y; z 2 X) binary relation. A tuple ðX;�Þ is called a preordered
space. An antisymmetric (x � y and y � x imply x ¼ y 8x; y 2 X) preorder � is

called a partial order. The relation x� y, defined by x � y and y � x, forms an

equivalence relation on X, that is, it fulfills the reflexive, transitive and symmetric

(x� y if and only if y� x 8x; y 2 X) properties. Notice, a preorder � is a partial

order on the quotient set X=� ¼ f½x�jx 2 Xg, consisting of all equivalence classes

½x� ¼ fy 2 Xjy� xg. In case x � y and :ðx� yÞ for some x; y 2 X we say y is strictly
preferred to x, denoted by x � y. If :ðx � yÞ and :ðy � xÞ, we say x and y are

incomparable, denoted by x ffl y. Whenever there are no incomparable elements, a

preordered space is called total. By the Szpilrajn extension theorem (Szpilrajn,

1930), every partial order can be extended to a total order, that is, to a partial order

that is total. Notice, the set PX of probability distributions on X equipped with the

uncertainty preorder �U forms a non-antisymmetric preordered space, because

equivalent elements are only equal up to permutations (Arnold, 2018).

A real-valued function f : X ! R is called a monotone if x � y implies

f ðxÞ� f ðyÞ. If also the converse is true, then f is called a utility function.
Furthermore, if f is a monotone and x � y implies f ðxÞ\f ðyÞ, then f is called a strict
monotone (or a Richter–Peleg function Alcantud et al., 2016).

Definition 1 (Injective monotones) A monotone f : X ! R on a preordered space

ðX;�Þ is called an injective monotone if f ðxÞ ¼ f ðyÞ implies x� y, that is, if f is
injective considered as a function on the quotient set X=� .
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Clearly, an injective monotone is also a strict monotone, since x � y and f ðxÞ ¼
f ðyÞ contradicts injectivity. The converse is not true, for example, Shannon entropy

is a strict monotone for the uncertainty preorder �U (Appendix A.1) but not an

injective monotone, nor a utility. In fact, preorders that have an injective monotone

form a class in between preorders that have a strict monotone and preorders that

have a utility function.

Proposition 1

(i) There are preorders with strict monotones but without injective monotones.

(ii) There are preorders with injective monotones and without utility functions.

Proof

(i) Consider ðPðRÞ;�Þ, the power set PðRÞ of the reals equipped with the

preorder � defined by U � V if and only if U ¼ V , or U ¼ f0g and V ¼ f1g.
Then v : PðRÞ ! R, given by vðf1gÞ ¼ 1 and vðUÞ ¼ 0 8U 6¼ f1g, is a strict
monotone. However, there cannot be injective monotones, because here

jPðRÞ=� j ¼ jPðRÞj and by Cantor’s theorem the cardinality of R is strictly

smaller than the cardinality of PðRÞ.
(ii) Consider ðR;�Þ, where x � y if and only if x� y and x; y 6¼ 0 or x ¼ y ¼ 0.

The identity I : R ! R is an injective monotone. However, ðR;�Þ is non-

total since 0 ffl x 8x 2 R=f0g and, thus, has no utility function. h

Since every preorder has a monotone (constant functions) and there are preorders

without strict monotones (see Appendix A.2.1 for an example), we arrive at the

picture shown in Fig. 1. Notice, the closer we are to the center, the better a

monotone represents the underlying preorder. In particular, injective monotones

contain more information about the preorder than strict monotones.

Nevertheless, in well-behaved cases, it is possible to construct an injective

monotone out of a strict monotone. A negative example is the strict monotone that

appears in the proof of (i) in Proposition 1, which maps uncountably many

incomparable elements to a single number (zero). If a strict monotone fails to be an

injective monotone because of only countably many points, however, then it can

easily be turned into an injective monotone by consecutive elimination.

Proposition 2 A preordered space ðX;�Þ has an injective monotone if and only if it
has a strict monotone f whose non-injective set

If :¼ fx 2 Xj 9y 2 X s:t: f ðxÞ ¼ f ðyÞ and x ffl yg

is countable.

Proof By definition, for an injective monotone f, we have If ¼ ;. Conversely,
consider a strict monotone f with a countable non-injective set. Given a numeration

fxngn
 0 of If , define f0 : X ! R by
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f0ðxÞ :¼
f ðxÞ þ 1 if f ðxÞ
 f ðx0Þ and :ðx� x0Þ
f ðxÞ else.

�

Notice, by definition, 8x; y 2 X, f ðxÞ� f ðyÞ implies f0ðxÞ� f0ðyÞ, If0 � If , and f0 is

injective up to equivalence at x0, in particular x0 62 If0 . Therefore, we can consec-

utively eliminate the elements in If by defining for all n 2 N, fnðxÞ:¼fn�1ðxÞ þ 2�n

if fn�1ðxÞ
 fn�1ðxnÞ and :ðx� xnÞ, and fnðxÞ:¼fn�1ðxÞ otherwise, analogously to f0.
It is then straightforward to see that the pointwise limit cðxÞ:¼ limn!1 fnðxÞ exists
for all x 2 X and that c is an injective monotone. h

Notice, the technique in the proof of Proposition 2 does not work if If is

uncountable. In particular, it cannot be used to construct an injective monotone from

Shannon entropy f ¼ H for the uncertainty preorder �U , because if N:¼jXj 
 3 then

for all c 2 ð0; logNÞ there are p; q 2 PX with c ¼ HðpÞ ¼ HðqÞ but p ffl q (see

Fig. 1 Classification of preordered spaces according to the existence of various classes of monotones.
The newly introduced class of preorders with injective monotones is strictly contained within the class of
preorders with strict monotones, is strictly larger than the class of preorders with utility functions, and
contains commonly used examples such as the uncertainty preorder and vector optimization. See Sect. 7
and Appendix A.2.1 for a short description of the other examples in the figure. Notice we have classified
both trumping and general relativity according to current knowledge, they may have injective monotones
(see Sect. 7)
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Appendix A.1). In other words, we can construct an injective map g : ð0; logNÞ !
IH and thus IH has the same cardinality as R, in particular IH is not countable.

4 Relating monotones to optimization

An element x 2 X is called a maximal element of � if there exists no y 2 X such that

x � y. For any B � X, an element x 2 B is called a maximal element of � in B if

there exists no y 2 B such that x � y.

Definition 2 (Representing maximal elements) We say, a function f : X ! R is

effective for B � X if argmaxB f 6¼ ;, where argmaxB f :¼fx 2 Bj 6 9y 2
B such that f ðxÞ\f ðyÞg. We say, a function f : X ! R represents maximal
elements of �, if for any B � X

argmaxBf � B�
M ;

where B�
M denotes the set of maximal elements of � in B. Similarly, we say, a

function f injectively represents maximal elements of �, if for any B � X for which f

is effective, there exists x0 2 B�
M such that

argmaxBf ¼ ½x0�jB
where ½x0�jB is the equivalence class of x0 restricted to B. Moreover, we say, ðX;�Þ
has an (injective) optimization principle if there exists a function f : X ! R which

(injectively) represents maximal elements of �.

Even though Shannon entropy does not represent �U as a utility, its property as a

strict monotone guarantees that its maxima are in fact maximal elements of �U , i.e.,

H represents maximal elements of the uncertainty preorder according to

Definition 2. Indeed, any p 2 argmaxBH is a maximal element of �U for any B �
PX on which H is effective, as p � q for some q 2 B would lead to the contradiction

HðqÞ[HðpÞ. In fact, representing maximal elements is closely related to being a

monotone for preorders in general.

Proposition 3 Given a preordered space ðX;�Þ and a monotone u : X ! R, then

(i) u is a strict monotone if and only if u represents maximal elements of �.

(ii) u is an injective monotone if and only if u injectively represents maximal

elements of �.

Proof

(i) If u is a strict monotone, then argmaxBu � B�
M (by the same argument as for

entropy). Conversely, consider x; y 2 X with x � y. For B:¼fx; yg, we have

B�
M ¼ fyg and thus fyg ¼ argmaxBu, i.e., uðxÞ\uðyÞ.
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(ii) For any B � X on which u is effective, if x, y 2 argmaxBu, we have uðxÞ ¼
uðyÞ and, since u is an injective monotone, x� y. Conversely, consider x; y 2
X and B :¼ fx; yg. If uðxÞ ¼ uðyÞ then by hypothesis fx; yg ¼
argmaxx2BfuðxÞg ¼ ½x0�jB for some x0 2 B. In particular, x� y. h

Notice, for the ‘‘if’’ part in (ii), we do not have to assume that u is a monotone,

that is, if the maxima of some real-valued function u form an equivalence class in

the set of maximal elements, then it already follows that u is a monotone.

For any preordered space ðX;�Þ, thus, the existence of a strict monotone

implies the existence of an optimization principle and the existence of an injective

monotone is equivalent to the existence of an injective optimization principle. One

can contrast the global injective representation of maximal elements which

characterizes injective monotones in Proposition 3 with local approaches, for

some specific B � X, present in the literature (Bevilacqua et al., 2018b; White,

1980).

Choosing a particular strict monotone u and optimizing it in a set B might,

however, not yield all the maximal elements in B�
M . For example, take p; q 2 PX

with p ffl q and HðpÞ\HðqÞ, then B ¼ fp; qg has the two maximal elements p and

q, but argmaxB H ¼ fpg. Notice, this is not only an issue for trivial examples like

this, but also happens for the maximum entropy principle with linear constraint sets.

In particular, if B ¼ fp j hEi ¼ cg, for a given random variable E and some c 2 R,

crosses two incomparable elements that turn out to be maximal (see Fig. 2), then

only part of the actual maximal elements of �U can be found by maximizing

entropy.

Similarly, while optimizing an injective monotone in a set B results in equivalent

elements, in general, we only find a slice of the set of all maximal elements in B. In

fact, for every maximal element x in B�
M , we can construct an injective monotone c

such that x 2 argmax c (e.g., in the proof of Proposition 4 below, take cx if x 2 Ac

and c otherwise). This means that the problem of selecting a maximal equivalence

class can be replaced by the problem of selecting an injective monotone.

In the following section, we show that injective monotones exist for a large class

of preorders, including the uncertainty preorder.

5 Relating monotones to multi-utilities

Although it is not possible to capture all information about a non-total preorder

using a single real-valued function, a family of functions may be used instead. A

family V of real-valued functions v : X ! R is called a multi-utility (representation)
of � if

x � y () vðxÞ� vðyÞ 8v 2 V :

Whenever a multi-utility consists of strict monotones, it is called a strict monotone
(or Richter–Peleg Alcantud et al., 2016) multi-utility (representation) of �.
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Analogously, if the multi-utility consists of injective monotones, we call it an

injective monotone multi-utility (representation) of �.

It is straightforward to see that every preordered space ðX;�Þ has the multi-

utility ðviðxÞÞx2X , where vA denotes the characteristic function of a set A and

iðxÞ:¼fy 2 Xjx � yg (Ok, 2002). Moreover, if there exists a strict monotone u, then
a multi-utility U only consisting of strict monotones can easily be constructed from

a given multi-utility V by U:¼fv þ augv2V;a[ 0 (Alcantud et al., 2013). Even

though this construction does not work directly in the case of injective monotones, a

simple modification does, where special care is given to incomparable elements.

Proposition 4 Let ðX;�Þ be a preordered space. There exists an injective
monotone if and only if there exists an injective monotone multi-utility.

Proof Consider w.l.o.g. an injective monotone c : X ! ð0; 1Þ and

Ac :¼ fx 2 Xj9y 2 X s.t. x ffl y; cðxÞ\cðyÞg; ð2Þ

i.e., the part of X that has incomparable elements y with strictly larger values of c.
For all x 2 Ac, let cx:¼c þ viðxÞ. Notice, by construction cxðyÞ ¼ cðyÞ\1� cxðxÞ for

Fig. 2 Example for when the maximum entropy principle does not yield all maximal elements of �U in
some B � PX. Here, we show the usual visualization of the 2-simplex, that is, the set of all probability
distributions in PX for jXj ¼ 3. Let the energy function E be given by Eðx1Þ:¼1, Eðx2Þ:¼� 1, and

Eðx3Þ:¼0, and let B be given by the constraint hEi ¼ 1
4
, represented by the vertical line. The distribution

p ¼ ð1=2; 1=4; 1=4Þ is a maximal element in B, because any other element of B is either smaller than p
(belongs to an outer blue region) or incomparable (belongs to the white region). However, q ¼
ð9=20; 4=20; 7=20Þ is in B and HðpÞ\HðqÞ. As a result, p is a maximal element of B which is not
obtained via the maximum entropy principle
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all y 2 X with x ffl y. Using cðXÞ � ð0; 1Þ and the fact that c is an injective

monotone, it is straightforward to see that C:¼fcg [ fcxgx2Ac
is an injective

monotone multi-utility. h

Note that the injective monotone multi-utility in the proof of Proposition 4 can be

chosen to have cardinality of at most c, the cardinality of the continuum, because it

is enough to have one cx per equivalence class ½x� 2 X=� , and, whenever an

injective monotone exists, jX=� j� c.

The cardinality of multi-utilities plays an important role. In particular, special

interest lies in preordered spaces with countable multi-utilities. In practice,

countable multi-utilities are often used to define preordered spaces. For example, the

uncertainty preorder �U is defined in (1) by a countable (finite) multi-utility. Also,

many applications in multicriteria optimization (Bevilacqua et al., 2018b; Ehrgott

2005) rely on preordered spaces defined by countable multi-utilities. It turns out that

for the existence of strict monotones, such as entropy for �U , it is sufficient to have

a countable multi-utility (Alcantud et al., 2016, Section 4). Here, we show that

countable multi-utilities actually imply the existence of injective monotones, which,

due to Proposition 1, improves upon (Alcantud et al., 2016).

Proposition 5 If, for a given preordered space ðX;�Þ, there exists a count-
able multi-utility, then there exists an injective monotone.

This means that the class of preordered spaces where countable multi-utilities

exist is contained in the class of preordered spaces where an injective monotone

exists (cf. Fig. 1). However, there exist preordered spaces with injective monotones,

i.e., by Proposition 4, with injective monotone multi-utilities of cardinality c, but

without countable multi-utilities (see Proposition 8).

For the uncertainty preorder �U , which is defined in (1) through a finite multi-

utility, Proposition 5, therefore, guarantees the existence of injective monotones.

Moreover, we can see a possible construction in (3) below.

By a slight adaptation of the proof of Proposition 5, we obtain the stronger.

Proposition 6 For a given preordered space ðX;�Þ, there exists a countable multi-
utility if and only if there exists a countable multi-utility only consisting of injective
monotones.

This improves upon (Alcantud et al., 2016, Proposition 4.1), where it is shown

that a countable multi-utility exists if and only if a countable strict monotone multi-

utility exists. Notice, however, while for the proof in Alcantud et al. (2016), one can

simply modify each member of a given multi-utility separately—similarly as we did

for the construction in Proposition 4—our proof of Proposition 6 relies on a more

indirect technique, where each member of the resulting injective monotone multi-

utility does not have a direct relationship to a non-injective member of the given

multi-utility.

For the proofs of Propositions 5 and 6, we rely on the following basic facts, the

proofs of which can be found in the appendix.
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Lemma 1 Let X be a set. Given r 2 ð0; 1
2
Þ and a countable family ðAnÞn
 0 of subsets

An � X, define the function c : X ! R by

cðxÞ :¼
X

n
 0

rnvAn
ðxÞ : ð3Þ

Then, cðxÞ\cðyÞ if and only if, for the first m 2 N with vAm
ðxÞ 6¼ vAm

ðyÞ, we have

vAm
ðxÞ\vAm

ðyÞ.

The following characterizations of injective monotones and countable multi-

utilities follow by straightforward manipulations of their definitions.

Lemma 2 Let ðX;�Þ be a preordered space. A monotone u is an injective
monotone if and only if

x � y ) uðxÞ\uðyÞ and x ffl y ) uðxÞ 6¼ uðyÞ : ð4Þ

A collection U of monotones is a multi-utility if and only if

:ðy � xÞ ) 9u 2 U s.t. uðxÞ\uðyÞ : ð5Þ

A subset A � X of a preordered space ðX;�Þ is called decreasing if for all x 2 A,
y � x implies y 2 A. Analogously, a subset A � X is called increasing, if for all
x 2 A, x � y implies that y 2 A (Mehta, 1986a). We say a family ðAnÞn2N of subsets

An � X separates x from y, if there exists n 2 N with x 62 An and y 2 An.

Lemma 3 Let ðAnÞn
 0 be a family of increasing sets.

(i) If, for all x; y 2 X with x � y, ðAnÞn
 0 separates x from y, then the function

c : X ! R defined in (3) is a strict monotone for all r 2 ð0; 1Þ.
(ii) If in addition, for all x; y 2 X with x ffl y, ðAnÞn
 0 separates x from y, or y

from x, then c is an injective monotone for all r 2 ð0; 1
2
Þ.

Notice, the construction of strict and injective monotones in Lemma 3 is based

on Lemma 1 and is analogous to constructions that appear in the literature, where

one typically uses a value of r ¼ 1
2
(e.g., Alcantud et al., 2016; Mehta, 1977; Ok,

2002). The requirement of r\ 1
2
in Lemmas 1 and 3 ensures that the resulting

monotone is injective. In fact, as can be seen from the proof of Lemma 1 in the

appendix, for r 2 ð0; 1Þ we have rm ¼ r
1�r

P
n[m rn. A value of r 2 ð0; 1

2
Þ thus

enables the strict estimate rm [
P

n[m rn, which is exactly where the injectivity up

to equivalence of c in Lemma 3 rests.

Proof of Proposition 5 For a countable multi-utility ðumÞm2M and q 2 Q, consider

the increasing sets Am;q:¼u�1
m ð½q;1ÞÞ. It suffices to show that ðAnÞn
 0, where

An:¼Amn;qn
for some enumeration n 7!ðmn; qnÞ of M Q, satisfies (i) and (ii) in

Lemma 3. If x � y or x ffl y, then, by (5), in both cases there exists m 2 M with
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umðxÞ\umðyÞ. Hence, we can choose q 2 Q with umðxÞ\q\umðyÞ, in particular,

x 62 Am;q and y 2 Am;q. h

Proof of Proposition 6 Let ðumÞm2M be a countable multi-utility and let c be an

injective monotone of the form (3) constructed from the increasing sets An in the

proof of Proposition 5. We define, for any pair ðm; pÞ 2 N such that m\p, um;p :

N ! N which permutes m and p without changing any other natural number. For

each um;p, we define an injective monotone cm;p of the form (3) constructed from

ðAum;pðnÞÞn
 0, the increasing sets used to define c reordered by um;p. Since fcg [
fcm;pgðm;pÞ2N2;m\p is composed of injective monotones, it suffices to show (5) holds

to conclude there exists a countable multi-utility composed of injective monotones.

Consider, thus, x; y 2 X such that :ðy � xÞ. If x � y, then cðxÞ\cðyÞ by definition.

Assume now x ffl y. If cðxÞ\cðyÞ, then we have finished. Otherwise, we have

x 2 Am and y 62 Am for the first m 2 N such that vAm
ðxÞ 6¼ vAm

ðyÞ by Lemma 1.

Since there exists some p 2 N p[m such that y 2 Ap and x 62 Ap, the first n 2 N

such that vAum;p ðnÞðxÞ 6¼ vAum;pðnÞ
ðyÞ is n ¼ m. We conclude cm;pðxÞ\cm;pðyÞ by

Lemma 1, since we have vAum;p ðmÞðxÞ ¼ vAp
ðxÞ\vAp

ðyÞ ¼ vAum;pðmÞ
ðyÞ. h

Countable separating families such as the ones in Lemma 3 have been used to

characterize preordered spaces with continuous utility functions (Herden, 1989),

generalizing theorems of Peleg and Mehta (1981). In a similar spirit, Alcantud et al.

(2013) extend a result by Bosi and Zuanon (2013) about upper semicontinuous

multi-utilities based on separating families, showing that there exists a count-
able multi-utility if and only if there exists a countable family of decreasing subsets
that 8x; y 2 X with :ðy � xÞ separates x from y (Alcantud et al., 2013, Proposition

2.13). Using Lemma 3 and the characterizations in Lemma 2, we immediately get

the following analogous characterizations for preorders with strict and injective

monotones, the proofs of which can be found in Appendix A.2.4.

Proposition 7 Let ðX;�Þ be a preordered space.

(i) There exists a strict monotone if and only if there exists a countable family

of increasing subsets that 8x; y 2 X with x � y separates x from y.
(ii) There exists an injective monotone if and only if there exists a

countable family of increasing subsets that satisfies (i) and (ii) in Lemma 3.

Countable separating families are a useful tool to improve the classification of

preordered spaces by monotones. In particular, we use them in Proposition 8 to

show the converse of Proposition 5 is false, that is, there are preordered spaces

where injective monotones exist and countable multi-utilities do not.

Proposition 8 There are preordered spaces with injective monotones and without
countable multi-utilities.

Proof Consider X:¼½0; 1� [ ½2; 3� equipped with � where
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x � y ()
x ¼ y

x 2 ½0; 1�; y 2 ½2; 3� and y 6¼ x þ 2

�

ð6Þ

8x; y 2 X (see Fig. 3 for a representation of �). Notice ðX;�Þ is a preordered space

and the identity map id : X ! R is an injective monotone. We will show any family

ðAiÞi2I , where Ai � X is increasing 8i 2 I and 8x; y 2 X such that :ðy � xÞ there

exists some i 2 I such that x 62 Ai and y 2 Ai, is uncountable. Since the existence of

some ðAiÞi2I with those properties and countable I is equivalent to the existence of a

countable multi-utility (Alcantud et al., 2013, Proposition 2.13), we will get there is

no countable multi-utility for X. Consider a family ðAiÞi2I with the properties above

and, for each x 2 ½0; 1�, yx:¼x þ 2. Since x ffl yx by definition, there exists some

Ax 2 ðAiÞi2I such that x 2 Ax and yx 62 Ax. We fix such an Ax for each x 2 ½0; 1� and
consider the map f : ½0; 1� ! ðAiÞi2I , x 7!Ax. Given x; z 2 ½0; 1� x 6¼ z, if we assume

z 2 Ax, then, since Ax is increasing and z � yx as yx 6¼ z þ 2, we would have yx 2 Ax,

a contradiction. Notice, analogously, we get a contradiction if we assume x 2 Az

and, therefore, Ax 6¼ Az. Thus, Ax ¼ Az implies x ¼ z and we have, by injectivity of

f, j½0; 1�j � jðAiÞi2I j. As a consequence, X has no countable multi-utility. h

As we have seen in this section, the concept of separating families is closely

related to the existence of monotones. In particular, this link is apparent when

considering sets of the form u�1ð½q;1ÞÞ for some monotone u and q 2 Q, allowing

to translate the two concepts into each other (see the proofs of Propositions 5 and 6).

There is another rich class of separability properties of preordered spaces providing

Fig. 3 Representation of a preordered space, defined in Proposition 8, where injective monotones exist
and countable multi-utilities do not. In particular, we show A:¼½0; 1�, B:¼½2; 3� and how x; y; z 2 A,
x\y\z, are related to x þ 2; y þ 2; z þ 2 2 B. Notice an arrow from an element w to an element t
represents w � t
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necessary conditions for the existence of monotones, which could collectively be

described by the term order separability. Many important results from mathematical

economics fall into this category, such as the Debreu Open Gap Lemma (Debreu,

1964), the Nachbin Separation Theorem (Nachbin, 1965), Szpilrajn’s theorem

(Szpilrajn, 1930), and Fishburn’s theorem (Fishburn, 1970, Theorem 3.1). We

discuss the role of injective monotones relative to order separability in the following

section.

6 Relating monotones to order separability

A subset Z � X, such that x � y implies that there exists z 2 Z with x � z � y is

called order dense (Bridges & Mehta, 2013; Ok, 2002), and Z is called order dense
in the sense of Debreu (or Debreu dense for short) if x � z � y. Accordingly, we say
that ðX;�Þ is order separable if there exists a countable order dense set (Mehta,

1986a), and Debreu separable if there exists a countable Debreu dense set in ðX;�Þ.
Notice, our definition of order separability is also known as weak separability (Ok,

2002).

It is well known that a total preorder � has a utility function if and only if it is

Debreu separable (e.g., Bridges & Mehta, 2013, Theorem 1.4.8). Moreover, if � is

non-total, then Debreu separability still implies the existence of strict monotones

(Bridges & Mehta, 2013; Debreu, 1954; Herden & Levin, 2012). The converse,

however, is not true, i.e., there are preordered spaces with strict monotones that are

not Debreu separable. For example, any Debreu dense subset of ðPX;�UÞ is

uncountable (if jXj[ 2)—see Appendix A.1 for a proof. While Debreu separability

is concerned with elements satisfying x � y, an analogous condition that is sufficient
for the existence of injective monotones must also consider incomparable elements.

We call a subset Z � X upper dense if x ffl y implies that there exists a z 2 Z
such that x ffl z � y, and it is called upper dense in the sense of Debreu (or Debreu
upper dense for short) if x ffl z � y.4 Accordingly, ðX;�Þ is called upper separable
if there exists a countable subset of X which is both order dense and upper dense

(Ok, 2002), and ðX;�Þ is called Debreu upper separable if there exists a

countable subset which is both Debreu dense and Debreu upper dense. We list all

mentioned order denseness and separability properties in Table 1.

Proposition 9 If ðX;�Þ is a Debreu upper separable preordered space, then there
exists a countable multi-utility; in particular, there exists an injective monotone.

Proof Consider a countable set D given by Debreu upper separability. We will

show

4 Notice that, for a fixed pair x; y 2 X where x ffl y holds, if Z � X is upper dense, there exist z1; z2 2 Z
such that x ffl z1 � y and y ffl z2 � x. The same applies to upper density in the sense of Debreu,

substituting � by �.
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x � y ()
viðdÞðxÞ� viðdÞðyÞ
vrðdÞðxÞ� vrðdÞðyÞ

(

8d 2 D ;

where iðdÞ:¼fy 2 Xjd � yg and rðdÞ:¼fy 2 Xjd � yg. By transitivity x � y implies

viðdÞðxÞ� viðdÞðyÞ and vrðdÞðxÞ� vrðdÞðyÞ 8d 2 D. If :ðx � yÞ then either y � x or

y ffl x. If y � x, then there exists some d 2 D such that either viðdÞðxÞ[ viðdÞðyÞ or
vrðdÞðxÞ[ vrðdÞðyÞ. If y ffl x then there exists some d 2 D such that y ffl d � x which

means viðdÞðxÞ[ viðdÞðyÞ. Since there exists a countable multi-utility, as we just

showed, there is an injective monotone by Proposition 5. h

Since Debreu upper separability still requires a countable Debreu dense set, the

converse of Proposition 9 is again false due to the uncertainty preorder not being

Debreu separable (Appendix A.1). However, as can be seen from the proof, if we

remove Debreu denseness as a requirement, i.e., if we only require D to be Debreu

upper dense, then the only part of the proof that does not work is to follow from

y � x that there exists an element v of the multi-utility with vðxÞ[ vðyÞ. Since a

strict monotone has exactly this property, we obtain the following proposition.

Proposition 10 Consider ðX;�Þ a preordered space. If there exists a count-
able Debreu upper dense set, then the following are equivalent:

(i) There exists a strict monotone.

(ii) There exists an injective monotone.

(iii) There exists a countable multi-utility.

Proof Assume there exists a countable Debreu upper dense set D � X. It is enough
to show that (i) implies (iii), which follows along the same lines as the proof of

Proposition 9, but with the multi-utility consisting of fug [ fviðdÞgd2D, where u is a

strict monotone. h

Table 1 Separability properties of preordered spaces ðX;�Þ

Name Object Definition

Order dense Z � X 8x; y 2 X x � y ) 9z 2 Z: x � z � y

Debreu dense Z � X 8x; y 2 X x � y ) 9z 2 Z: x � z � y

Upper dense Z � X 8x; y 2 X x ffl y ) 9z 2 Z: x ffl z � y

Debreu upper dense Z � X 8x; y 2 X x ffl y ) 9z 2 Z: x ffl z � y

Order separable X 9Z � X countable: Z is order dense

Debreu separable X 9Z � X countable: Z is Debreu dense

Upper separable X 9Z � X countable: Z is order dense and upper dense

Debreu upper separable X 9Z � X countable: Z is Debreu dense and Debreu upper dense
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The situation in Proposition 10 corresponds exactly to the situation of the

uncertainty preorder, which has a countable Debreu upper dense set (Appendix A.1)

and, e.g., Shannon entropy as a strict monotone.

7 Discussion

In this paper, we are mainly concerned with the introduction of injective monotones,

their relation to other monotones, optimization, multi-utilities and order separabil-

ity, and the application to the uncertainty preorder. The key contributions of our

work are the following. First, we refine the classification of preordered spaces based

on the existence of monotones. In particular, by extending known results for strict

monotones to injective monotones, we find conditions for their existence from

different perspectives: other classes of monotones, optimization principles, sepa-

rating families of increasing sets, and (in particular, countable) multi-utilities. An

overview of our conditions in relation to previous work can be found in Fig. 4.

Second, we introduce the notion of upper Debreu separability, an order separability

Fig. 4 Classification of preordered spaces ðX;�Þ in terms of representations by real-valued functions
(boxes) and order properties (ellipses). We include known relations in black and our contributions in red.
Notice, by Proposition 10, the blue area is empty whenever there exists a countable Debreu upper dense
set in X
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property that allows to extend well-known results about the existence of monotones

on Debreu separable spaces to countable multi-utilities and injective monotones.

Finally, we apply our general results to the uncertainty preorder, defined on the

space of probability distributions over finite sets, in particular, by establishing order

separability properties.

Hierarchy of preordered spaces. A number of scientific disciplines rely on

preordered spaces and their representation by monotones, as was already pointed out

in Campión et al. (2018), Candeal et al. (2001) and Minguzzi (2010). In Fig. 1, we

classify the space of preorders in terms of the existence of certain monotones

relevant in various disciplines, which leads to a hierarchy of classes of preordered

spaces. The conception of injective monotones then allows for a refinement of this

hierarchy of preorders.

Historically, much of the early development of real-valued representations has

focused on total preordered spaces that allow for the existence of utility functions.

In particular, in the field of mathematical economics, utility theory has pioneered the
axiomatic study of conditions that ensure the existence of utility functions for a

preordered set ðX;�Þ, where X is a set of commodities and � is some total

preference relation, a total preorder (Debreu, 1954; Rébillé, 2019). Similarly, we

can consider statistical estimation, where the aim is to infer the distribution of a

random variable X from some of its realizations. Assuming the distribution belongs

to a family fphgh2RN for some N [ 0, a loss function ‘ : RN ! R allows rating

distributions according to how well they fit with the observed data: ph �‘ ph0 if and

only if �‘ðhÞ� � ‘ðh0Þ where h; h0 2 RN (Hennig & Kutlukaya, 2007). Choosing a

loss function ‘ corresponds, thus, to defining a total preorder with a utility

representation �‘ on fphgh2RN .

Another example of a preorder with a utility function is equilibrium thermody-
namics. Given a thermodynamic system, we consider ðX;�AÞ where X is the set of

all equilibrium states for the system and x �A y if and only if y is adiabatically
accessible from x 8x; y 2 X (Lieb & Yngvason, 1999), that is, one can turn x into y
using a device and a weight, with the device returning to its initial configuration at

the end and the weight being allowed to change position in some gravitational field.

The main concern in the area is the so-called entropy representation problem
(Candeal et al., 2001), that is, the existence of a utility function, called entropy

function, for ðX;�AÞ (Lieb & Yngvason, 1999).

Assuming a total preorder as in the previous examples is necessary for the

existence of a utility function, but renders injective monotones uninteresting, as they

become equivalent to strict monotones. When the totality assumption is dropped, the

classes of preorders with these monotones can be distinguished. A well-known

instance of non-total preorders with injective monotones is our running example, the

uncertainty preorder. One of its relevant applications lies in the study of quantum

entanglement, as it characterizes the possible transformations using local operations

and classical communications (Nielsen, 1999, Theorem 1). In physics, the

uncertainty preorder given by majorization has recently also been extended. Given

‘11ðRþÞ :¼ fðpiÞi2Nj0� pi � 1;
P1

i¼1 pi ¼ 1g, we define infinite majorization �IM

(Li & Busch, 2013) for any p; q 2 ‘11ðRþÞ like
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p �IM q :,
Xk

i¼1

p#
i �

Xk

i¼1

q#
i 8k 2 N;

where p# represents p ordered in a decreasing way. Since �IM is defined through a

countable multi-utility, there exist injective monotones by Proposition 5. Finally,

the uncertainty preorder is also an instance of multicriteria optimization (Ehrgott,

2005), also known as vector optimization (Jahn, 2009), since it is concerned with

the simultaneous optimization of a finite number of objective functions (1). Notice

strict and injective monotones belong to the scalarization techniques (Bevilacqua

et al., 2018b; Ehrgott, 2005; Jahn, 2009) in vector optimization and always exist,

again by Proposition 5.

Preordered spaces from the next general class, the ones with strict monotones,

include general relativity. Spacetime can be studied as a pair ðM;�CÞ where M is a

set of events and �C is a causal relation, a partial order specifying which events can

influence others, which lie to the future of others (Bombelli et al., 1987). A usual

question is to establish sufficient conditions on ðM;�CÞ for the existence of strict

monotones, which are referred to as time functions (Minguzzi, 2010) and are usually

required to be continuous according to some topology. The study of physically

plausible conditions from which countable multi-utilities or injective monotones can

be constructed has, to our knowledge, not been addressed yet in the field. Notice,

spacetime was originally approached through a differentiable structure (M, g),
where M is a manifold and g a metric, and was only later studied as a partial order

(Bombelli et al., 1987).

Another case of preorders with strict monotones is trumping. Consider ðPX;�TÞ
the space of probability distributions over some finite set X, PX, with the trumping

preorder

p �T q () 9r 2 PX0 jX0j\1 s.t. p � r �M q � r;

where p � r :¼ ðp1r1; ::; p1rX0 ; ::; pXr1; ::; pXrX0 Þ 8p 2 PX, r 2 PX0 and jX0j\1
(Müller & Pastena, 2016). Trumping extends majorization taking into account

transformations using a third state, a catalyst. As an example, consider

p :¼ ð0:4; 0:4; 0:1; 0:1Þ, q :¼ ð0:5; 0:25; 0:25; 0Þ and r :¼ ð0:6; 0:4Þ. Notice :ðp �M

qÞ but p � r �M q � r, implying p �T q. Questions regarding physically meaningful

strict monotones and multi-utilities for trumping are relevant (Turgut, 2007). As no

countable multi-utility has been found, it remains a question whether injective

monotones do exist.

A final example from the most general class of preorders, the one where only

monotones exist, are social welfare relations (SWR) in economics. A SWR is a

partial order �S defined on the countably infinite product of the unit interval

X :¼
Q

n2N
�
0; 1

�
. A SWR is said to be ethical if (1) given x; y 2 X with some

i; j 2 N such that xi ¼ yj, yi ¼ xj and xk ¼ yk 8k 62 fi; jg we have x� Sy and (2)

given x; y 2 X where xi � yi 8i 2 N and xj\yj for some j 2 N then x �S y. Any
ethical SWR is an example of a preordered space without strict monotones

(Banerjee & Dubey, 2010, Proposition 1) and, thus, without both injective

monotones and countable multi-utilities.
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Monotones and topology. While we have focused on preordered spaces and left

some brief comments regarding topology for Appendix A.3, in the past they have

been often studied together. The original interest in functions representing order

structures was concerned with (continuous) utility representations of total topolog-

ical preordered spaces (Debreu, 1954, 1964; Eilenberg, 1941). Of particular

importance were results concerning the existence of a continuous utility function for

both connected and separable total topological preordered spaces (Eilenberg, 1941)

and for second countable total topological preordered spaces (Debreu, 1954).

Among the classical results we also find the existence of an order isomorphism

between a subset of the real numbers and any total order with countably many jumps

whose order topology is second countable (Fleischer, 1961). Based on the work of

Nachbin (1965) relating topology and order theory, in particular a generalization of

Urysohn’s separation theorem, the classical results where reproved and sometimes

generalized for example in Bosi et al. (2020b), Herden (1989) and Mehta

(1977, 1986a, b, 1988).

Multi-utility representations. The study of non-total order structures was

introduced in Aumann (1962). Representation of non-total preorders by multi-

utilities came later and was remarkably developed in Evren and Ok (2011).

Although strict monotones can be traced back to Peleg (1970) and Richter (1966),

there continue to be advances in the field (Bosi et al., 2020a; Herden & Levin, 2012;

Rébillé 2019). In fact, it was only recently in Minguzzi (2013) where strict

monotone multi-utilities were introduced and later in Alcantud et al. (2013, 2016)

where they were further studied. The relation of these ideas with optimization and

the existence of maximal elements is also present in the literature (Bevilacqua et al.,

2018a, b; Bosi & Zuanon, 2017; Bosi et al., 2018; White, 1980). Countable multi-

utilities where studied particularly in Alcantud et al. (2016), Bevilacqua et al.

(2018c), while finite multi-utility representations were notably advanced in

Kaminski (2007) and Ok (2002) and, in vector optimization, in Jahn (2009).

Open questions. While we have shown the existence of injective monotones for

the widely studied class of preorders with countable multi-utilities, our construction

is impractical since it relies on an infinite sum. For specific applications, injective

monotones with a simpler representation are of interest. In general, any of the

disciplines where these ideas are applied would benefit from a better understanding

of the classification of preordered spaces in terms of real-valued monotones. For

example, regarding the maximum entropy principle, the classification could be

useful to reconsider the reasoning behind the choice of Shannon entropy. Even

though there have been many principled approaches to ‘‘derive’’ Shannon entropy as

a measure of uncertainty in the past, such as Aczél et al. (1974) and Shore and

Johnson (1980), and for many practical purposes its appealing properties overweigh

the bias in choosing this particular strict monotone, the question remains whether

one should maximize entropy or maximize uncertainty. Quantum physics could also

benefit as, for instance, the preorder underlying entanglement catalysis, trumping, is

not well understood (Müller & Pastena, 2016). Many relevant open questions

related to our work can also be found in Bosi et al. (2020a), for example, while we

have focused mostly on preordered spaces and made some remarks on semicon-

tinuity, it would be important to study continuous injective monotones in terms of
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topological properties of the underlying spaces, as in the classical works on utility

functions.

Appendix

Entropy and the uncertainty preorder

In the following, we provide proofs for statements regarding the uncertainty

preorder �U and entropy H that appear throughout the main part of this article, in

particular, all results are stated with respect to the preordered space ðPX;�UÞ, for a
finite set X.

Lemma 4 (Basic facts)

(i) Shannon entropy is a strict monotone. If jXj 
 3 then it is not an injective

monotone.

(ii) If jXj 
 3 then for all c 2 ð0; log jXjÞ, there is an uncountable set Sc such that

HðsÞ ¼ c 8s 2 Sc. In particular, there are p; q 2 PX with c ¼ HðpÞ ¼ HðqÞ
but p ffl q for all c 2 ð0; log jXjÞ.

Proof

(i) Strict monotonicity of H comes from the fact HðpÞ ¼
PjX

i¼1 f ðpiÞ where

f ðxÞ ¼ �x logðxÞ is a strictly convex function. Given any other strictly con-

vex f, strict monotonicity will still hold. One can find the details in (Marshall

et al., 1979, C.1.a). H is not an injective monotone for jXj 
 3 by (ii).
(ii) Given p; q 2 PX, we denote by pq the segment with endpoints p, q. Consider

u 2 PX the uniform distribution, ei; ej 2 PX Dirac distributions for two dif-

ferent elements i; j 2 X and some c 2
�
0; log jXj

�
. Consider some c0 s.t.

0\c0\minfc;HðmÞg where m is the middle point of eiej. By the interme-

diate value theorem, there exists some r 2 eim such that HðrÞ ¼ c0. Consider
now a parametrization of eir: frtgt2½0;1� and define ‘t:¼rtu for each t 2 ½0; 1�.
Again by the intermediate value theorem, since HðrtÞ\c 8t 2 ½0; 1�, there
exists some pt 2 ‘t such that HðptÞ ¼ c 8t 2 ½0; 1�. By construction, given

t; t0 2 ½0; 1� t 6¼ t0 we have pt 6¼ pt0 since ‘t \ ‘t0 ¼ fug whenever t 6¼ t0 which
means fptgt2½0;1� is uncountable. In particular, there are tc; t0c 2 ½0; 1� tc 6¼ t0c
such that ptc ffl pt0c and HðptcÞ ¼ Hðpt0cÞ ¼ c for for every c 2 ð0; log jXjÞ. h
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Lemma 5 (Debreu separability)

(i) If jXj ¼ 2 then ðPX;�UÞ is order separable. In particular, ðPX;�UÞ is

Debreu separable for jXj ¼ 2.

(ii) If jXj 
 3 then any subset Z � PX which is Debreu dense in ðPX;�UÞ has
the cardinality of the continuum jZj ¼ c.

(iii) For any jXj\1, there exists a countable upper dense set Z � PX.

Proof For simplicity of notation, in the following, we omit the subscript U and thus

write � for �U (analogously for ffl and �).

(i) Consider p; q 2 P such that p � q. By definition, we have q#
1\p#

1. Consider

some s 2 Q such that q#
1\s\p#

1. Notice by normalization 1
2
� q#

1\s and by

normalization again 1� s\s. Thus, p � r � q where r# :¼ ðs; 1� sÞ and

Q2 \ PX is countable and order dense in ðPX;�UÞ for jXj ¼ 2. In particular,

ðPX;�Þ is Debreu separable for jXj ¼ 2 which we could have known

applying Theorem 1.4.8 in Bridges and Mehta (2013) since for jXj ¼ 2 there

is a utility function, u1.

(ii) Fix jXj ¼ 3. Consider for some x 2
�
1
2
; 1
�
some p 2 PX such that p#

1 ¼ x.

Notice p#
2 þ p#

3\x by normalization. Take some �[ 0 such that p#
2 þ �\x

and �� p#
3 to define q 2 PX where q# :¼ ðx; p#

2 þ �; p#
3 � �Þ. Notice q � p.

Notice for any x 2
�
1
2
; 1
�
we can define a pair qx; px 2 PX such that qx � px

as we did before where for any t 2 PX such that qx � t � px we have t#1 ¼ x.
Given Z � PX a subset which is Debreu dense in ðPX;�Þ there exists for any
x 2

�
1
2
; 1
�
some zx 2 Z such that qx � zx � px. Fix for every x 2

�
1
2
; 1
�
some

zx. Notice, given x; y 2
�
1
2
; 1Þ, then zx ¼ zy implies x ¼ ðzxÞ#1 ¼ ðzyÞ#1 ¼ y

which means that u : ð1
2
; 1Þ ! Z; x 7!zx is injective, implying c� jZj. Since

Z � PX and jPXj ¼ c we have jZj ¼ c. In case jXj[ 3, any Debreu dense

subset would also be Debreu dense in the subset with jXj ¼ 3. We can thus

follow the above lines and get the same conclusion for any jXj 
 3.

123

Representing preorders with injective monotones 683



(iii) Consider x; y 2 PX such that x ffl y. Since x ffl y, there exist n;m� jXj � 1

such that
Pn

i¼1 x#i \
Pn

i¼1 y#i and
Pm

i¼1 x#i [
Pm

i¼1 y#i . Notice y#i \1 8i� jXj
since in the opposite case y � x 8x 2 PX. Consider 1\k� jXj the largest

integer such that y#k [ 0 and define f�igk�1
i¼1 where

0\�i\minfy#k ;
Pm

j¼1 x#j �
Pm

j¼1 y#j g if i ¼ 1;

0\�i\minfy#k �
Pi�1

j¼1 �j;
Pm

j¼1 x#j �
Pm

j¼1 y#j �
Pi�1

j¼1 �jg if 1\i�m;

0\�i\y#k �
Pi�1

j¼1 �j if m\i\k:

8
>><

>>:

Notice m\k since the opposite case leads to
Pm

i¼1 x#i [
Pm

i¼1 y#i ¼
Pk

i¼1 y#i ¼ 1 contradicting normalization. For all i\k choose qi 2
�
y#i ; y#i þ

�i

�
\Q such that qi 
 qiþ1 and qk ¼ 1�

Pk�1
i¼1 qi. Then z :¼

ðq1; q2; ::; qk; 0; ::; 0Þ has jXj � k zeros, the same number of zeros as y, and

z ¼ z#, since qk\1�
Pk�1

i¼1 y#i ¼ yk � yk�1\qk�1. By construction, we have
Pi

j¼1 z#j [
Pi

j¼1 y#j 8i\k implying
Pn

j¼1 x#j \
Pn

j¼1 z#j ,
PjXj

j¼1 z#j ¼
Pk

j¼1 z#j ¼
1 and

Pm
j¼1 z#j \

Pm
j¼1 x#j since

Xm

j¼1

z#j \
Xm

j¼1

y#j þ �j\
Xm

j¼1

y#j þ
Xm

j¼1

x#j �
Xm

j¼1

y#j ¼
Xm

j¼1

x#j

where in the first inequality, we applied z#j ¼ qj\y#j þ �j 8j�m and in the

second, we applied the definition of �m by which
Pm

j¼1 �j\
Pm

j¼1 x#j �
Pm

j¼1 y#j . Thus, x ffl z � y. We have shown QjXj \ PX is

a countable upper dense set in ðPX;�UÞ for any jXj\1. h

Proofs

Preorders without strict monotones (Alcantud et al., 2016, Corollary 2.2)

For example, consider the power set of the reals equipped with set inclusion,

ðPðRÞ;�Þ. Since � is reflexive, transitive, and antisymmetric (i.e., a partial order),

by Szpilrajn extension theorem, there exists a totally ordered space ðPðRÞ;�Þ
extending ðPðRÞ;�Þ, respecting the relations that already exist and relating the

incomparable elements (e.g., overlapping intervals). Hence, if there was a strict

monotone v : PðRÞ ! R, then vðUÞ ¼ vðVÞ for some U;V � R would imply that

U ¼ V , because w.l.o.g. U � V , and U � V cannot hold since v is a strict

monotone. This contradicts Cantor’s theorem by which the cardinality of the power

set PðRÞ is strictly greater than that of R.
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Proof of Lemma 1

First, note that for r 2 ð0; 1Þ, we have

r 2
�
0;

1

2

�
() rm [

X1

n¼mþ1

rn 8m
 0 : ð7Þ

This is a direct consequence of the closed-form formula of the geometric series and

its partial sums, by which we have for any r 2 ð0; 1Þ and m
 0,

X1

n¼mþ1

rn ¼ 1

1� r
�
Xm

n¼0

rn ¼ r

1� r
rm ;

so that rm [
P1

n¼mþ1 rn if and only if r\1� r, i.e., r 2 ð0; 1
2
Þ.

Consider x; y 2 X and m 2 N be the smallest index such that vAm
ðxÞ 6¼ vAm

ðyÞ.
Assume vAm

ðxÞ\vAm
ðyÞ, in particular vAm

ðxÞ ¼ 0 and vAm
ðyÞ ¼ 1. Then,

cðxÞ �
Xm

n¼0

rnvAn
ðxÞ þ

X1

n¼mþ1

rn

\
ðaÞ Xm

n¼0

rnvAn
ðxÞ þ rm ¼ðbÞ

Xm�1

n¼0

rnvAn
ðyÞ þ rmvAm

ðyÞ � cðyÞ

where (a) is due to (7) and (b) follows from the choice of m. Conversely, if

cðxÞ\cðyÞ, then let m be the first index where vAm
ðxÞ 6¼ vAm

ðyÞ. Clearly, if

vAm
ðyÞ\vAm

ðxÞ, then by the same argument as above, cðyÞ\cðxÞ, contradicting the

hypothesis. Hence, vAm
ðxÞ\vAm

ðyÞ.

Proof of Lemma 3

Given a family of increasing sets ðAnÞn2N, c in (3) is a monotone. If x � y, then by

assumption, there exists n 2 N such that x 62 An and y 2 An, i.e., vAn
ðxÞ\vAn

ðyÞ,
implying that c is a strict monotone by Lemma 1. Furthermore, if x ffl y, there exists
n 2 N such that x 62 An and y 2 An or y 62 An and x 2 An. There exists thus some

m 2 N such that vAm
ðxÞ 6¼ vAm

ðyÞ implying cðxÞ 6¼ cðyÞ by Lemma 1. By Lemma 2,

we have c is an injective monotone.

Proof of Proposition 7

(i) We only need to show given a strict monotone v there exists a countable set

ðAnÞn2N that separates any pair x; y 2 X such that x � y, the converse is true

by Lemma 3 Consider An:¼v�1ð½qn;1ÞÞ where ðqnÞn2N is a numeration of

the rational numbers. If x � y, there exists qn 2 Q such that vðxÞ\qn\vðyÞ
which means y 2 An and x 62 An.
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(ii) Relying on Lemma 3 and (i), we can take ðAnÞn2N defined as in (i) assuming

v is an injective monotone. Given x; y 2 X such that x ffl y, we have vðxÞ 6¼
vðyÞ which implies there exists some qn 2 Q between v(x) and v(y), i.e.,
either x 2 An and y 62 An or y 2 An and x 62 An.

Semicontinuity

Much of the economic literature on utility representations in preordered spaces is

concerned with topological questions, in particular, under which conditions on the

preordered space one can expect that monotones and utilities satisfy certain

continuity properties (e.g., Alcantud et al., 2016; Debreu, 1964; Mehta, 1986a).

This is particularly important for optimization, since continuous functions attain

their maximal elements on compact sets. Therefore, in this section, we collect the

continuity properties of the injective monotones that appear in the main part of this

article.

Given a topology s, a triple ðX;�; sÞ is called a preordered topological space. A
function f : ðX; sÞ ! ðR; snatÞ, where snat is the topology given by the Euclidean

metric, is said to be upper semicontinuous if f�1ðð�1; rÞÞ 2 s 8r 2 R.

Upper semicontinuous functions retain the property of continuous functions that

they assume their maxima on compact sets, that is, they are effective on any

compact set B � X.
Similarly, we say ðX;�; sÞ is upper semicontinuous if iðxÞ ¼ fz 2 Xjx � zg is

closed 8x 2 X. We may abuse notation and say that � is upper semicontinuous

whenever X and s are clear.

Proposition 11 Let ðX;�; sÞ be a preordered topological space.

(i) In Proposition 4, we can choose an upper semicontinuous multi-utility if

the monotone is upper semicontinuous.

(ii) In Proposition 5, we can add upper semicontinuous to both the hypothesis

and the thesis.

(iii) In Proposition 6, if the preorder is upper semicontinuous then the

equivalence remains true if upper semicontinuous is added to all clauses.

(iv) In Proposition 7, the monotones can be chosen to be upper semicontinuous

if and only if the separating families consist of closed increasing sets.

(v) In Proposition 10, if the preorder is upper semicontinuous then the

equivalence remains true if upper semicontinuous is added to all clauses.

Notice, the uncertainty preorder �U is upper semicontinuous with respect to the

Euclidean topology, since
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iðpÞ ¼ fq 2 PXjp �u qg ¼
\jXj�1

i¼1

fq 2 PXjuiðpÞ� uiðqÞg ¼
\jXj�1

i¼1

u�1
i ð½uiðpÞ;1ÞÞ

where u�1
i ð½uiðpÞ;1ÞÞ is closed, because all ui are upper semicontinuous.

Proof

(i) If there exists an upper semicontinuous injective monotone, then we can

construct w.l.o.g. an upper semicontinuous injective monotone

c : X ! ð0; 1Þ. Since � is upper semicontinuous, we know viðxÞ is upper

semicontinuous, and given the fact the class of upper semicontinuous func-

tions is closed under addition by Proposition 1.5.12 in Pedersen (2012), cx in

the proof of Proposition 4 is upper semicontinuous 8x 2 Ac. Thus, fcg [
fcxgx2Ac

is an upper semicontinuous injective monotone multi-utility of

ðX;�; sÞ.
(ii) Take ðumÞm2M , ðAnÞn2N and c defined as in the proof of Proposition 5. If

ðumÞm2M is upper semicontinuous then 8n 2 N An ¼ u�1
mn
ð½qn;1½Þ 2 sc and

vAn
ðxÞ is upper semicontinuous 8n 2 N. The class of upper semicontinuous

function is closed under addition, product by positive scalars and uniform

convergence by Proposition 1.5.12 in Pedersen (2012). By the first two

cN :¼
PN

n¼0 3
�nvAn

is upper semicontinuous 8N 2 N and by the third c ¼
limN!1 cN is upper semicontinuous.

(iii) Following (ii), we get fcg [ fcn1;n2gn1\n2
defined as in the proof of Propo-

sition 6 consists of upper semicontinuous injective monotones.

(iv) Notice whenever ðAnÞn2N in the proof of Proposition 7 is defined through an

upper semicontinuous function, either a strict monotone or an injective

monotone, then An is closed 8n 2 N. Conversely, we can follow the proof of

(ii) to get upper semicontinuity for both a strict monotone and an injective

monotone constructed as in Lemma 3.

(v) We again only show (i) implies (iii) in Proposition 10. If � is upper semi-

continuous then viðdÞ is upper semicontinuous 8d 2 D and since we can

choose u to be an upper semicontinuous strict monotone by hypothesis we get

fug
S
fviðdÞg is an upper semicontinuous countable multi-utility. h
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