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Abstract
We consider random choice rules that, by satisfying a weak form of Luce’s choice

axiom, embody a form probabilistic rationality. We show that for this important

class of stochastic choices, the law of demand for normal goods—arguably the main

result of traditional consumer theory—continues to hold on average when strictly

dominated alternatives are dismissed.

Keywords Law of demand � Luce choice axiom

1 Introduction

Choices are often stochastic. The strands of literature that in different disciplines—

such as economics, neuroscience and psychology—have dealt with stochasticity in

choices have mostly focused on pure choice behavior. Here we study how stochastic

choice may affect consumer behavior, the most basic economic choice problem.

We consider random choice rules that, by satisfying the assumption of

consistency (a form of Luce’s choice axiom), embody a form probabilistic

rationality.1 We show that for this important class of stochastic choices, the law of

demand for normal goods—arguably the main result of traditional consumer
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theory—continues to hold on average when strictly dominated alternatives are

dismissed. A ‘‘certainty equivalence’’ principle for stochastic consumer theory thus

emerges from our analysis. It ensures that choice stochasticity a la Luce does not

alter qualitatively the findings of traditional deterministic consumer theory—which

is, indeed, a special case of our analysis. All foundations of Luce’s rule proposed in

the literature, be they behavioral or neural, thus share this significant economic

consequence.

2 Preliminaries: random choice rules and optimality

Let A be the collection of all non-empty finite choice sets A of a universal set of

alternatives X. Each choice set A represents a decision problem in which an agent

has to choose an alternative in A.

Throughout the paper, for each set Y � X, finite or not, we denote by D Yð Þ the set

of all finitely supported probabilities on Y. So, p �; Yð Þ 2 D Yð Þ when p y; Yð Þ[ 0 for

finitely many y in Y and
P

y2Y p y; Yð Þ ¼ p Y ;Yð Þ ¼ 1. With a slight abuse of

notation, we regard D Yð Þ as included in D Xð Þ since the former is naturally

embedded in the latter.

Definition 1 A random choice rule is a function p : A ! D Xð Þ such that p �;Að Þ 2
D Að Þ for all A 2 A.

We interpret p a;Að Þ as the probability that an agent chooses alternative a 2 A
within the choice set A. In a (ergodic) long run setup, this probability can be viewed

as the long run frequency with which a is chosen across repetitions of the decision

problem represented by A. We regard p as a purely behavioral notion that accounts

for the agent’s choices, a way to organize choice data without any mental

interpretation per se. Our analysis is thus in the spirit of Pareto (1900) and

Samuelson (1938).

Definition 2 A random choice rule p is consistent if, for all a 2 A � B ,2

p a;Bð Þ ¼ p a;Að Þp A;Bð Þ ð1Þ
This condition is a form of the classic Luce’s choice axiom (see Luce, 1959)

which ensures that p �;Að Þ and p �;Bð Þ are linked via conditioning a la (Renyi, 1955).

We denote by Cp : A�X the support correspondence defined by

Cp Að Þ ¼ a 2 A : p a;Að Þ[ 0f g.

Example 1 (Luce) Given a function u : X ! 0;1ð Þ , define p : A ! D Xð Þ by

p a;Að Þ ¼ u að Þ
P

b2A u bð Þ 8a 2 A ð2Þ

for each A 2 A. This function p is a consistent random choice rule with full support,

i.e., Cp Að Þ ¼ A for all A 2 A. Luce (1959) proved that this is the general form of

2 Given A � B, we denote by p A;Bð Þ the quantity
P

a2A p a;Bð Þ with the convention that p ;;Bð Þ ¼ 0.
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consistent random choice rules that have full support. In particular, the uniform rule

p a;Að Þ ¼ 1= Aj j is the special case with u ¼ 1 . h

Example 2 (Optimization) A correspondence C : A�X is a choice correspondence

if ; 6¼ C Að Þ � A for all A 2 A. By a classic result of Arrow (1959), C is rational–

i.e., it represents alternatives that are optimal according to some weak order—if and

only if it satisfies the following version of WARP:

A � B and C Bð Þ \ A 6¼ ; ¼) C Bð Þ \ A ¼ C Að Þ ðCÞ

Given a rational choice correspondence C : A�X, the function p : A ! D Xð Þ
defined by

p a;Að Þ ¼
1

C Að Þj j if a 2 C Að Þ
0 else

8
<

:
ð3Þ

is a consistent random choice rule—without full support and not in the Luce-Renyi

form unless C Að Þ ¼ A for all A 2 A.3 When C is a rational choice function,4

so C Að Þ is a singleton for all A 2 A , this rule takes the deterministic form:5

p a;Að Þ ¼ dC Að Þ að Þ 8a 2 A

Rational choice functions can thus be viewed as special, deterministic, rules of the
form (3). h

In view of the previous example, we say that a choice correspondence C is

rational if it satisfies (C). This example seems to provide a very specific rule, (3),

where the rationality of C implies consistency. The next result, proved in Cerreia-

Vioglio et al. (2021), makes this observation formal and much more general.

Indeed, it characterizes consistent random choice rules in terms of the rationality of

their support correspondence.

Theorem 1 A function p : A ! D Xð Þ is a consistent random choice rule if and only
if it has the form

p a;Að Þ ¼
u að Þ

P
b2C Að Þ u bð Þ if a 2 C Að Þ

0 else

8
<

:
ð4Þ

where u : X ! 0;1ð Þ and C : A�X is a rational choice correspondence. More-

over, C is unique and coincides with Cp.

This characterization shows that consistency of random choice rules is the

stochastic counterpart of rationality of choice correspondences, as characterized by

WARP. Moreover, Luce’s rule (2) corresponds to the special case C Að Þ ¼ A for all

3 This can be directly checked, but also follows from Theorem 1 below by taking a constant u.
4 See Peters and Wakker (1991) for an in-depth study of choice functions.
5 Here dx denotes the (Dirac) probability at x 2 X, that is, dx að Þ ¼ 1 if x ¼ a and 0 otherwise.
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A 2 A (which is trivially rational), while the optimization rule (3) is the special case

in which either u ¼ 1 or C is single-valued. So, the two previous examples are both

special cases of the random choice rule (4).

In keeping with our behavioral approach, we do not give any mental

interpretation of Theorem 1. For us, it is a characterization of consistent random

choice rules that, in particular, shows that rational choice functions are a special,

deterministic, class of such rules. Because of this property, our study of stochastic

choice in a consumer theory framework—our main object of interest—will be able

to generalize the standard ‘‘textbook’’ deterministic theory.

A final remark. A random choice rule p is uniform if, given any A 2 A, all

alternatives in A that have a chance to be chosen are equally likely. Formally, for

each a 2 A, we have

p a;Að Þ ¼
1

Cp Að Þ
�
�

�
� if a 2 Cp Að Þ

0 else

8
<

:

This uniform rule is what Becker (1962) has called ‘‘ impulsive’’ behavior. By

Theorem 1, a uniform random choice rule p is consistent if and only if its support

correspondence Cp is rational. This equivalence completes the analysis of Example

2, in which the ‘‘if’’ was considered.

3 Random consumption

Our aim here is to develop a behavioral (so ‘‘ non-mental’’) consumer theory in a

random choice setting that, inter alia, encompasses as a special case the traditional

deterministic behavioral consumer theory presented, for example, in chapter 2 of

Mas-Colell et al. (1995). A relevant related work is Mossin (1968), which outlined a

stochastic theory of consumption (with a different framework and motivation).

3.1 Individual stochastic demand

Let X ¼ Rn
þ be the space of all bundles of goods and B : Rn

þþ � Rþþ�X the budget

correspondence defined by B q;wð Þ ¼ x 2 X : q � x�wf g for each price and wealth

pair q;wð Þ. Now A is replaced with a larger class B that contains A and all budget

sets B q;wð Þ. So, in this section B is the domain of our analysis.6

Definition 3 A function d : Rn
þþ � Rþþ ! D Xð Þ is an (individual) stochastic

demand induced by a consistent random choice rule p : B ! D Xð Þ if

d q;wð Þ xð Þ ¼ p x;B q;wð Þð Þ.

We interpret d q;wð Þ xð Þ as the probability that bundle x 2 B q;wð Þ is chosen at

price q with wealth w. In particular, the average cost function c : Rn
þþ � Rþþ !

Rþ of the bundle demanded is c q;wð Þ ¼
P

x2B q;wð Þ q � xð Þd q;wð Þ xð Þ, while the

6 See Appendix A for more details on this richer domain. Theorem 1 can be easily extended to this

domain, as we show in Theorem 11 of Appendix B.
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(individual) average demand function �d : Rn
þþ � Rþþ ! Rn

þ is
�d q;wð Þ ¼

P
x2B q;wð Þ xd q;wð Þ xð Þ.7 Clearly, c q;wð Þ ¼ q � �d q;wð Þ. In what follows,

we will consider only stochastic demands d induced by consistent random choice

rules p. For such a reason, we omit to mention p.

The stochastic demand d q;wð Þ has finite support, i.e., only finitely many bundles

of the budget set B q;wð Þ can be selected with strictly positive probability. This

assumption eases our analysis, yet still substantially broadens the scope of the

traditional deterministic analysis that, typically, assumes unique optimal bundles to

best carry out comparative statistics exercises. In this regard, note that if p is the

random choice rule in (4), then

d q;wð Þ xð Þ ¼
u xð Þ

P
y2C B q;wð Þð Þ u yð Þ if x 2 C B q;wð Þð Þ

0 else

8
<

:
ð5Þ

provided C is an rational choice correspondence that is finitely valued, i.e., C Bð Þ 2
A for all B 2 B. This example is important for our analysis because it shows that

standard demand functions are included in our setup: when C is a choice function,

the stochastic demand (5) becomes

d q;wð Þ xð Þ ¼ dC B q;wð Þð Þ xð Þ 8x 2 B q;wð Þ

and so it is a classic Walrasian demand function. That said, if u ¼ 1 the stochastic

demand (5) takes a uniform form close in spirit to the analysis of Becker (1962), as

already remarked. Besides standard demand functions, also uniform demand

functions a la (Becker, 1962) are thus included in our setup.

3.2 Walras’ law

Given a stochastic demand, by construction we have only c q;wð Þ�w. So, in general

only the following weak form of Walras’ law holds.

Proposition 2 Let d be a stochastic demand. If w\w0 , then c q;wð Þ� c q;w0ð Þ.

Equality, and more, holds under the following monotonicity condition.

Definition 4 A random choice rule p : B ! D Xð Þ is stochastically monotone if

p x; x; yf gð Þ ¼ 0 whenever x � y.8

Comparisons between two bundles of goods x and y are much easier to make

when one of them is strictly dominant, say x � y. Stochastic monotonicity captures

this comparative easiness.

Under stochastic monotonicity, only alternatives that are not strictly dominated

may have a chance to be selected. Specifically, for any choice set B 2 B let

7 Observe that x is a vector while d q;wð Þ xð Þ is a scalar. Thus, we slightly abuse notation by denoting the

scalar product of these two objects by inverting the role of scalars and vectors.
8 As usual, x � y means that xi\yi for all i ¼ 1; :::; n.
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oþB ¼ x 2 B : 6 9x0 2 B; x0 � xf g

be the collection of all elements of B that are not strictly dominated.

Lemma 3 If a consistent random choice rule p : B ! D Xð Þ is stochastically

monotone, then p oþB;B
� �

¼ 1 for all B 2 B.

A stochastic demand d is stochastically monotone if it is induced by a

stochastically monotone consistent random choice rule p. Since

oþB q;wð Þ ¼ x 2 B q;wð Þ : q � x ¼ wf g, by the last lemma we have d q;wð Þ xð Þ[ 0

only if x 2 oþB q;wð Þ. In turn, this implies the following sharp Walras’ law for

stochastic choice: under stochastic monotonicity, consumers always exhaust their

budgets.9

Proposition 4 If the stochastic demand d is stochastically monotone, then c q;wð Þ ¼
w (so, w\w0 implies c q;wð Þ\c q;w0ð Þ).

By construction, both the stochastic and the average demands are homogeneous

of degree zero, so there is no nominal illusion. In our analysis the consumer is

always able to assess correctly whether a bundle of goods is affordable.

3.3 Law of demand

We can now study wealth and price effects. As to wealth effects, say that a good k is

normal if its average demand increases as wealth increases:

w0 [w ¼) �dk q;w0ð Þ � �dk q;wð Þ 8q 2 Rn
þþ

By Proposition 4, under stochastic monotonicity, we have q � �d q;w0ð Þ[ q � �d q;wð Þ
if w0 [w. So, intuitively, some of the goods have to be normal, at least locally. As

to price effects, we have the following preliminary result.

Lemma 5 Let d be a stochastic demand. If q\q0, then �d q0;wð Þ 6[ �d q;wð Þ.

Next we show that a classic compensated law of demand continues to hold ‘‘on

average’’.

Lemma 6 Let q0;w0ð Þ and q;wð Þ be in Rn
þþ � Rþþ and let d be a stochastic

demand. If q0 � �d q;wð Þ ¼ c q0;w0ð Þ and d is stochastically monotone, then

q0 	 qð Þ � �d q0;w0ð Þ 	 �d q;wð Þð Þ� 0 ð6Þ
When a sharp Walras’ law holds, condition q0 � �d q;wð Þ ¼ c q0;w0ð Þ ¼ w0 becomes

a standard Slutsky wealth compensation.10 In this case the (individual) law of

demand for normal goods—arguably the most important result of consumer

theory—continues to hold on average.

9 These are what Becker (1962) would call efficient ‘‘ impulsive’’ consumers and to whom he devotes

most of his analysis. Similarly, Gabaix (2014) assumes that the consumer he studies ‘‘is boundedly

rational, but smart enough to exhaust his budget.’’
10 See, e.g., p. 72 of Mas-Colell et al. (1995).
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Theorem 7 (Law of Average Demand) Let the stochastic demand d be stochas-
tically monotone. If wealth and other prices do not change, an increase (decrease)

in the price of a normal good k decreases (increases) its average demand �dk.

Under consistency, on average the behavior of consumers continues to satisfy the

law of demand for normal goods provided they are able to select strictly dominant

alternatives. The standard consumer theory result for Walrasian demand functions,

first stated on p. 14 of Slutsky (2012), is the special case that corresponds to the

deterministic demand function d q;wð Þ ¼ dC B q;wð Þð Þ. Indeed, as previously remarked,

in this case its average demand is the Walrasian demand function, i.e.,
�d q;wð Þ ¼ C q;wð Þ. Our result thus generalizes the most important finding of

classical behavioral consumer theory. At the same time, it goes well beyond that.

For instance, it includes the purely random choice of Becker (1962) (viewed as the

uniform case).

To sum up, choice stochasticity a la Luce, along with a monotonicity property,

leads to an individual demand that on average has the same qualitative properties of

the special, yet standard, deterministic case. A ‘‘certainty equivalence’’ principle for

stochastic consumer theory results.

4 Concluding remarks

Summing up, this paper suggests that traditional consumer theory continues to hold,

on average, when rational deterministic choice is generalized to stochastic choice

that satisfies Luce’s axiom. We close with couple of remarks.

(i) As we emphasized throughout the paper, our purely behavioral analysis has

abstracted from any preferential, so mental, notion. It is then natural to close

with a few words on a possible, complementary, preferential approach to

stochastic consumer theory that, instead, may generalize the classical

preferential consumer theory presented, for example, in chapter 3 of Mas-

Colell et al. (1995). To this end, a random utility interpretation of random

choice rules can be adopted, in which there exists a probability measure p, a

stochastic preference, defined on a class P of preference relations on X such

that p a;Bð Þ ¼ p P 2 P : 8b 2 A; aPbð Þ. Via this representation, some results

of classical preferential consumer theory that hold for elements of P may

have stochastic counterparts. An analysis along these lines is, however,

beyond the scope of the present paper.11

(ii) Our results may suggest a stochastic version of the analysis of bargaining

games and their solutions carried out by Peters and Wakker (1991) using the

powerful implications of WARP and related deterministic assumptions.

11 In this vein, Bandyopadhyay et al. (1999) study a stochastic demand which is generated by a random

utility model. This alternative approach might also have an intersection (mainly technical) with the

literature that studies average demand in a large economy (see, for a review, Jerison & Quah,, 2006).
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A Appendix: mathematical toolsThe class B denotes a collection of non-

empty subsets of X that includes all finite sets, that is, A � B. For example, B is in

Sect. 3 the collection of all non-empty finite sets as well as all the budget sets and

X ¼ Rn
þ. We denote by A and B generic elements of B. Let p : B ! D Xð Þ be a

consistent random choice rule, that is, p �;Að Þ 2 D Að Þ for all A 2 B and

p a;Bð Þ ¼ p a;Að Þp A;Bð Þ 8a 2 A � B ð7Þ

By Cp : B�X, we denote the support correspondence. Note that Cp Bð Þ 2 A for all

B 2 B. Given B 2 B, for ease of notation, we might alternatively denote by ~B the

support of p �;Bð Þ. By (7), p a;Bð Þ ¼ pða; ~BÞ for all a 2 ~B. In particular, given C 2 B
such that C � B,

p C;Bð Þ ¼ pðC \ ~B; ~BÞ ð8Þ

Lemma 8 Let A � B with A;B 2 B. The following statements are true:

1. A \ ~B ¼ ~A \ ~B and p A;Bð Þ ¼ pð ~A \ ~B; ~BÞ;
2. p A;Bð Þ[ 0 if and only if A \ ~B ¼ ~A.

Proof

1. By definition of ~A, ~A \ ~B � A \ ~B. Vice versa, consider a 2 A \ ~B. By

contradiction, assume that a 62 ~A \ ~B . This implies that a 62 ~A, that is,

p a;Að Þ ¼ 0. By (7), we can conclude that p a;Bð Þ ¼ 0, that is, a 62 ~B a

contradiction with a 2 A \ ~B. We conclude that A \ ~B � ~A \ ~B, proving the

equality between the two sets. Moreover, by definition and since p a;Bð Þ ¼
pða; ~BÞ for all a 2 ~B, we have that

p A;Bð Þ ¼
X

a2A\ ~B

p a;Bð Þ ¼
X

a2A\ ~B

pða; ~BÞ ¼
X

a2 ~A\ ~B

pða; ~BÞ ¼ pð ~A \ ~B; ~BÞ

2. By (7), p a;Bð Þ ¼ p a;Að Þp A;Bð Þ for all a 2 A � B. This implies that if

p A;Bð Þ[ 0 and a 2 A, then p a;Bð Þ[ 0 if and only if p a;Að Þ[ 0. It follows

that A \ ~B ¼ ~A. As to the converse, assume that A \ ~B ¼ ~A. Since A; ~A 6¼ ;, if

A \ ~B ¼ ~A, then there exists a 2 A which belongs to ~B. We can conclude that

p a;Bð Þ[ 0 and, in particular, p A;Bð Þ[ 0. h

Let f : X ! V be a function that takes values on a vector space V. It can be

extended to B by defining / : B ! V as the average / Bð Þ ¼
P

a2 ~B f að Þp a;Bð Þ of f

with respect to p. Since p a;Bð Þ ¼ pða; ~BÞ for all a 2 ~B and Cp Bð Þ ¼ Cpð ~BÞ, we have

that / Bð Þ ¼ /ð ~BÞ.
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Proposition 9 If the sets Bif gni¼1� B are pairwise disjoint and B ¼
Sn

i¼1 Bi 2 B,

then

/ Bð Þ ¼
Xn

i¼1

p Bi;Bð Þ/ Bið Þ

Proof By Lemma 8 and since Bi � B, it follows that Bi \ ~B ¼ ~Bi \ ~B 2 A for all

i 2 1; :::; nf g. This implies that:12 (a) ~Bi \ ~B are pairwise disjoint and (b)

[n

i¼1

~Bi

 !

\ ~B ¼
[n

i¼1

ð ~Bi \ ~BÞ ¼
[n

i¼1

ðBi \ ~BÞ ¼
[n

i¼1

Bi

 !

\ ~B ¼ B \ ~B ¼ ~B

Let I ¼ i : Bi \ ~B 6¼ ;
� �

. By the previous equality, I is non-empty. On the one hand,

by Lemma 8 and since p Bi;Bð Þ[ 0 for all i 2 I, we have that Bi \ ~B ¼ ~Bi for all

i 2 I. On the other hand, if i 62 I then Bi \ ~B ¼ ;, yielding that p Bi;Bð Þ ¼ 0 for all

i 62 I. Thus, if i 62 I there is no a 2 Bi such that p a;Bð Þ[ 0. Moreover, by (8) we can

conclude that for each i 2 I

0\p Bi;Bð Þ ¼ pðBi \ ~B; ~BÞ ¼ pð ~Bi \ ~B; ~BÞ

and by consistency and since ~B 
 ~Bi \ ~B ¼ ~Bi ¼ Bi \ ~B 6¼ ; and ~Bi \ ~B 2 A for all

i 2 I, we have that

pða; ~BÞ ¼ pða; ~Bi \ ~BÞpð ~Bi \ ~B; ~BÞ ¼ pða; ~BiÞpð ~Bi \ ~B; ~BÞ

for all a 2 ~Bi \ ~B ¼ ~Bi and for all i 2 I . By Lemma 8 and since the elements of
~Bi \ ~B
� �

i2I are non-empty, pairwise disjoint, and finite, we have

/ Bð Þ ¼/ð ~BÞ ¼
X

a2 ~B

f að Þpða; ~BÞ ¼
X

a2
Sn

i¼1

~Bi\ ~Bð Þ
f að Þpða; ~BÞ

¼
X

a2
S

i2I

~Bi\ ~Bð Þ
f að Þpða; ~BÞ ¼

X

i2I

X

a2 ~Bi\ ~B

f að Þpða; ~BÞ

¼
X

i2I

X

a2 ~Bi

f að Þpða; ~BÞ ¼
X

i2I

X

a2 ~Bi

f að Þpða; ~BiÞpð ~Bi \ ~B; ~BÞ

¼
X

i2I
pð ~Bi \ ~B; ~BÞ

X

a2 ~Bi

f að Þpða; ~BiÞ ¼
X

i2I
pð ~Bi \ ~B; ~BÞ

X

a2 ~Bi

f að Þp a;Bið Þ

¼
X

i2I
pðBi \ ~B; ~BÞ/ Bið Þ ¼

X

i2I
p Bi \ ~B;B
� �

/ Bið Þ

¼
Xn

i¼1

pðBi \ ~B;BÞ/ Bið Þ ¼
Xn

i¼1

p Bi;Bð Þ/ Bið Þ

proving the statement. h

12 To ease notation, we write ~Bi in place of eBi .
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B Appendix: proofs and related analysis

Before starting the proofs, recall that X ¼ Rn
þþ and that B is the collection of all

non-empty finite sets and all the possible budget sets. To be consistent with the

standard microeconomic literature, in this section we often denote alternatives in

X—that is, bundles of goods—by x and y instead of a and b. We start by providing

an ancillary fact.

Proposition 10 Let p : B ! D Xð Þ be a consistent random choice rule. If % is the

weak order that rationalizes Cp restricted to A,13 then

Cp Bð Þ ¼ x 2 B : 8y 2 B; x% yf g 8B 2 B ð9Þ

Proof Consider the random choice rule p restricted to A. By Theorem 1 and since p
is consistent on A, we have that Cp restricted to A is rational and is rationalized by

the weak order % . Let B 2 B. By Theorem 1, if B 2 A then (9) holds. If B 62 A,

then B ¼ B q;wð Þ for some q;wð Þ 2 Rn
þþ � Rþþ. As before, define ~B ¼ Cp Bð Þ. We

next prove (9) by proving both inclusions. By contradiction, assume that

Cp Bð Þ 6� x 2 B : 8y 2 B; x% yf g. Since Cp Bð Þ � B, it follows that there exists x 2
B such that x�y for some y 2 Cp Bð Þ. Since ~B ¼ Cp Bð Þ 2 A and pðy; ~BÞÞ ¼ p y;Bð Þ
for all y 2 ~B, we have ~B ¼ Cp Bð Þ ¼ Cpð ~BÞ. By Theorem 1, we can conclude that all

the elements in Cpð ~BÞ are indifferent according to the weak order % , thus, x�y for

all y 2 ~B, as well as x 62 ~B. By Theorem 1 and its proof, if we define

A ¼ ~B [ xf g � B, then A 2 A, p x;Að Þ ¼ 1, and p A;Bð Þ ¼ 1. By consistency, this

implies that p x;Bð Þ ¼ p x;Að Þp A;Bð Þ ¼ 1, a contradiction with x 62 ~B, proving the

‘‘�’’ inclusion and that x 2 B : 8y 2 B; x% yf g is non-empty. Vice versa, assume

that �x 2 B is such that �x% y for all y 2 B. Define A ¼ ~B [ �xf g 2 A. By the previous

part of the proof, we have that all the elements of A are indifferent according to % .

By Theorem 1 and consistency and since 1� pð ~B;BÞ� p A;Bð Þ� 1, we have that

p �x;Bð Þ ¼ p �x;Að Þp A;Bð Þ ¼ p �x;Að Þ[ 0

proving that �x 2 Cp Bð Þ and the opposite inclusion. h

Theorem 11 Theorem 1 holds true whenever we replace A with B and C is further

assumed to be such that C Bð Þ 2 A for all B 2 B.

Proof ‘‘Only if’’ . Since p is consistent, p is consistent when restricted to A. By

Theorem 1, it follows that there exist u : X ! 0;1ð Þ and a rational choice

correspondence C : A�X such that for each A 2 A

p a;Að Þ ¼
u að Þ

P
b2C Að Þ u bð Þ if a 2 C Að Þ

0 else

8
<

:
8a 2 A ð10Þ

13 That is, x% y if and only if x 2 Cp x; yf gð Þ.
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Clearly, C Að Þ ¼ Cp Að Þ for all A 2 A. Since p is consistent, we also have that

p a;Að Þ ¼ pða; ~AÞ for all a 2 ~A and for all A 2 B. Since ~A 2 A and Cpð ~AÞ ¼ ~A ¼
Cp Að Þ for all A 2 B, we can conclude that for each A 2 B if

a 2 Cp Að Þ ¼ Cpð ~AÞ ¼ ~A, then

p a;Að Þ ¼ pða; ~AÞ ¼ u að Þ
P

b2Cp
~Að Þ u bð Þ ¼

u að Þ
P

b2Cp Að Þ u bð Þ

while if a 2 AnCp Að Þ, then p a;Að Þ ¼ 0. This proves that (10) holds with C replaced

by Cp and for all A 2 B. By Lemma 10, we have that Cp is a rational choice

correspondence such that Cp Bð Þ 2 A for all B 2 B, proving the implication. ‘‘If’’.

Assume that p can be represented as in (10) with u : X ! 0;1ð Þ and C : B�X a

rational choice correspondence such that C Bð Þ 2 A for all B 2 B . It is immediate to

check that C Bð Þ ¼ Cp Bð Þ for all B 2 B. By Theorem 1 and since C is a rational

choice correspondence, p satisfies consistency on A. Since C ¼ Cp is rational and

Cp Að Þ � A as well as Cp Að Þ \ Cp Að Þ 6¼ ; for all A 2 B, this implies that

Cp Cp Að Þ
� �

¼ Cp Að Þ \ Cp Að Þ ¼ Cp Að Þ ¼ ~A and, in particular, this implies that

p a;Að Þ ¼ pða; ~AÞ for all a 2 ~A. Let now A;B 2 B be such that A � B. Let also

a 2 A. We have three cases:

1. p A;Bð Þ[ 0 and a 2 ~A. This implies that Cp Bð Þ \ A 6¼ ;. Since Cp is rational, it

follows that A \ ~B ¼ Cp Bð Þ \ A ¼ Cp Að Þ ¼ ~A. Since p is consistent on A, we

have that

p a;Að Þp A;Bð Þ ¼ pða; ~AÞpðA \ ~B; ~BÞ ¼ pða; ~AÞpð ~A; ~BÞ ¼ pða; ~BÞ ¼ p a;Bð Þ

2. p A;Bð Þ[ 0 and a 62 ~A. By contradiction, assume that a 2 Cp Bð Þ ¼ ~B. Since

a 2 A � B, we would have that A � B and Cp Bð Þ \ A 6¼ ;. Since Cp is rational,

it would follow that a 2 Cp Bð Þ \ A ¼ Cp Að Þ ¼ ~A, a contradiction. Thus, a 62 ~B
and

p a;Bð Þ ¼ 0 ¼ p a;Að Þp A;Bð Þ

3. p A;Bð Þ ¼ 0. It follows that a 62 ~B, yielding that

p a;Bð Þ ¼ 0 ¼ p a;Að Þp A;Bð Þ

Points 1, 2, and 3 prove the implication. h

Proof of Proposition 2 Proposition 9, define f : X ! R by f xð Þ ¼ q � x for all x 2 X.

Given a stochastic demand d , let p be such that d q;wð Þ �ð Þ ¼ p �;B q;wð Þð Þ. Set also

A ¼ B q;wð Þ and B ¼ B q;w0ð Þ. Clearly, we have that A � B and A;B 2 B. By

Lemma 8, it follows A \ ~B ¼ ~A \ ~B. Note that B1 ¼ ~A \ ~B and B2 ¼ ~Bn ~A belong to

A � B (provided they are non-empty), are pairwise disjoint, and ~B ¼ B1 [ B2 2 A.
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Moreover, B2 � Ac. Otherwise, there would exist x 2 B2 \ A. Thus, we would have

that x 2 B2 and x 2 A. By consistency, we could conclude that x 2 ~B, x 62 ~A, and

0\p x;Bð Þ ¼ p x;Að Þp A;Bð Þ ¼ 0

a contradiction. Observe also that

c q;w0ð Þ ¼
X

x2B q;w0ð Þ
q � xð Þd q;w0ð Þ xð Þ ¼

X

x2B q;w0ð Þ
q � xð Þp x;B q;w0ð Þð Þ

¼
X

x2 gB q;w0ð Þ

q � xð Þp x;B q;w0ð Þð Þ ¼ / B q;w0ð Þð Þ ¼ / Bð Þ ð11Þ

Similarly, we have that c q;wð Þ ¼ / Að Þ ¼ /ð ~AÞ. Finally, since B2 � Ac, if B2 6¼ ; ,

then we also have that ~B2 � B2 � Ac

/ B2ð Þ ¼
X

x2 ~B2

q � xð Þp x;B2ð Þ ¼
X

x2 ~B2\Ac

q � xð Þp x;B2ð Þ

[w
X

x2 ~B2\Ac

p x;B2ð Þ ¼ w
X

x2 ~B2

p x;B2ð Þ ¼ w

By Proposition 9 and since B1 and B2 are disjoint, if B1;B2 6¼ ; then we conclude

that

c q;w0ð Þ ¼ / Bð Þ ¼ /ð ~BÞ ¼ / B1 [ B2ð Þ ¼ pðB1; ~BÞ/ B1ð Þ þ pðB2; ~BÞ/ B2ð Þ ð12Þ

We have two cases:

1. p A;Bð Þ[ 0. By Lemma 8, it follows that B1 ¼ ~A \ ~B ¼ ~A 6¼ ;. On the one

hand, by (12), if B2 6¼ ;, then we have

c q;w0ð Þ ¼ / Bð Þ ¼ /ð ~BÞ ¼ / B1 [ B2ð Þ ¼ pðB1; ~BÞ/ B1ð Þ þ pðB2; ~BÞ/ B2ð Þ
¼ pðB1; ~BÞ/ð ~AÞ þ pðB2; ~BÞ/ B2ð Þ� pðB1; ~BÞc q;wð Þ þ pðB2; ~BÞw
� pðB1; ~BÞc q;wð Þ þ pðB2; ~BÞc q;wð Þ ¼ c q;wð Þ

On the other hand, if B2 ¼ ;, then ~A ¼ ~A \ ~B ¼ B1 ¼ B1 [ B2 ¼ ~B. This

implies that

c q;w0ð Þ ¼ / Bð Þ ¼ /ð ~BÞ ¼ /ð ~AÞ ¼ / Að Þ ¼ c q;wð Þ

2. p A;Bð Þ ¼ 0. By (8) and Lemma 8 , it follows that

pðB1; ~BÞ ¼ pð ~A \ ~B; ~BÞ ¼ pðA \ ~B; ~BÞ ¼ p A;Bð Þ ¼ 0

that is, B1 ¼ ; and ; 6¼ ~B ¼ B2 � Ac, which immediately yields that

c q;w0ð Þ ¼ / Bð Þ ¼ /ð ~BÞ ¼ / B2ð Þ[w� c q;wð Þ
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Points 1 and 2 prove the statement. h

Proof of Lemma 3 Assume that p is stochastically monotone. We want to show that

Cp Bð Þ � oþB. By contradiction, assume that there exists x 2 Cp Bð Þ that does not

belong to oþB. Then, there exists z 2 B such that x � z. By stochastic monotonicity,

we have that p x; x; zf gð Þ ¼ 0, and so

0\p x;Bð Þ ¼ p x; x; zf gð Þp x; zf g;Bð Þ ¼ 0

which is a contradiction. h

Proof of Proposition 4 Since d is stochastically monotone, p is stochastically

monotone. Consider oþB q;wð Þ. Note that it is equal to x 2 B q;wð Þ : q � x ¼ wf g. By

Lemma 3, p oþB q;wð Þ;B q;wð Þ
� �

¼ 1. So, the support of d q;wð Þ is contained in

oþB q;wð Þ. h

Proof of Lemma 5 Clearly, since q\q0, B q0;wð Þ � B q;wð Þ . Set A ¼ B q0;wð Þ and

B ¼ B q;wð Þ. In Proposition 9, let f xð Þ ¼ x. Given a stochastic demand d, let p be

the consistent random choice rule such that d q;wð Þ �ð Þ ¼ p �;B q;wð Þð Þ. Clearly, we

have that A � B and A;B 2 B. By Lemma 8, it follows A \ ~B ¼ ~A \ ~B. Note that

B1 ¼ ~A \ ~B and B2 ¼ ~Bn ~A belong to A � B (provided they are not empty), are

pairwise disjoint, and ~B ¼ B1 [ B2. Moreover, B2 � Ac. Otherwise, there would

exist x 2 B2 \ A. Thus, we would have that x 2 B2 and x 2 A. By consistency, we

could conclude that x 2 ~B, x 62 ~A , and x 2 A � B

0\p x;Bð Þ ¼ p x;Að Þp A;Bð Þ ¼ 0

a contradiction. Observe that

�d q;wð Þ ¼
X

x2B q;wð Þ
xd q;wð Þ xð Þ ¼

X

x2B q;wð Þ
xp x;B q;wð Þð Þ

¼
X

x2 gB q;wð Þ

xp x;B q;wð Þð Þ ¼ / B q;wð Þð Þ ¼ / Bð Þ

Similarly, we have that �d q0;wð Þ ¼ / Að Þ ¼ /ð ~AÞ. Finally, since B2 � Ac, if B2 6¼ ;,

then we also have that ~B2 � B2 � Ac

/ B2ð Þ ¼
X

x2 ~B2

xp x;B2ð Þ ¼
X

x2 ~B2\Ac

xp x;B2ð Þ and q0 � / B2ð Þ ¼
X

x2 ~B2\Ac

q0 � xð Þp x;B2ð Þ[w

By Proposition 9 and since B1 and B2 are disjoint, if B1;B2 6¼ ;, then we have that

�d q;wð Þ ¼ / Bð Þ ¼ /ð ~BÞ ¼ / B1 [ B2ð Þ ¼ pðB1; ~BÞ/ B1ð Þ þ pðB2; ~BÞ/ B2ð Þ ð13Þ

By (8) and Lemma 8 and since A � B, recall that

p A;Bð Þ ¼ p A \ ~B; ~B
� �

¼ p ~A \ ~B; ~B
� �

¼ pðB1; ~BÞ ð14Þ
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By contradiction, assume that �d q0;wð Þ[ �d q;wð Þ. We have three cases:

1. pðB2; ~BÞ ¼ 0. This implies that pðB1; ~BÞ ¼ 1. By Lemma 8 and (14), it follows

that B1 ¼ ~A \ ~B ¼ A \ ~B ¼ ~A as well as B2 ¼ ;, that is, ~B ¼ B1 ¼ ~A. We can

conclude that

�d q;wð Þ ¼ / Bð Þ ¼ /ð ~BÞ ¼ /ð ~AÞ ¼ �d q0;wð Þ

a contradiction.

2. 1[ pðB2; ~BÞ[ 0. This implies that 1[ pðB1; ~BÞ[ 0. In particular, we have

that B1;B2 6¼ ;. By Lemma 8 and (14), it follows that B1 ¼ ~A \ ~B ¼ ~A. By (13),

we have that

�d q;wð Þ ¼ pðB1; ~BÞ/ B1ð Þ þ pðB2; ~BÞ/ B2ð Þ
¼ pðB1; ~BÞ/ð ~AÞ þ pðB2; ~BÞ/ B2ð Þ
¼ pðB1; ~BÞ �d q0;wð Þ þ pðB2; ~BÞ/ B2ð Þ

This yields that

0[ �d q;wð Þ 	 �d q0;wð Þ ¼ pðB2; ~BÞ
X

x2 ~B2

xp x;B2ð Þ 	 �d q0;wð Þ

2

4

3

5

that is,

0[
X

x2 ~B2

xp x;B2ð Þ 	 �d q0;wð Þ) �d q0;wð Þ[
X

x2 ~B2

xp x;B2ð Þ

In turn, since ~B2 � B2 � Ac, this yields that

w� q0 � �d q0;wð Þ� q0 �
X

x2 ~B2

xp x;B2ð Þ

0

@

1

A ¼
X

x2 ~B2\Ac

q0 � xð Þp x;B2ð Þ[w

a contradiction.

3. pðB2; ~BÞ ¼ 1. This implies that pðB1; ~BÞ ¼ 0. In particular, we have that B1 ¼ ;
and ; 6¼ ~B ¼ B2. This implies that

�d q;wð Þ ¼ / Bð Þ ¼ /ð ~BÞ ¼ / B2ð Þ

yielding that

w� q0 � �d q0;wð Þ� q0 � �d q;wð Þ ¼ q0 � / B2ð Þ[w

a contradiction.

Points 1, 2, and 3 prove the statement. h
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Proof of Lemma 6 We first prove an ancillary claim:

Claim Let �B ¼ B �q; �wð Þ and B̂ ¼ B q̂; ŵð Þ. If pð �B \ B̂; B̂Þ ¼ 0, then

�q � �d q̂; ŵð Þ[ �w

Proof of the claim By assumption, the support of pð�; B̂Þ is contained in B̂ \ �Bc, in

particular,
êB � �Bc. It follows that

�q � �d q̂; ŵð Þ ¼
X

x2êB

�q � xð Þpðx; B̂Þ[
X

x2êB

�wpðx; B̂Þ ¼ �w

proving the claim. h

Consider q;wð Þ and q0;w0ð Þ in Rn
þþ � Rþþ. Define B ¼ B q;wð Þ and B0 ¼ B q0;w0ð Þ.

By the previous claim and setting �B ¼ B0 and B̂ ¼ B, it follows that

p B0 \ B;Bð Þ[ 0. Otherwise, we would have that w0\q0 � �d q;wð Þ ¼ c q0;w0ð Þ �w0, a

contradiction. Since p B0 \ B;Bð Þ[ 0, denote by �x 2 Cp Bð Þ \ B0. By Proposition 10

and since �x 2 Cp Bð Þ, we have that B 3 �x% y for all y 2 B. We have two cases:

1. p B0 \ B;B0ð Þ ¼ 0. By the previous claim and setting �B ¼ B and B̂ ¼ B0, it

follows that q � �d q0;w0ð Þ[w.

2. p B0 \ B;B0ð Þ[ 0. This implies that

q � �d q0;w0ð Þ ¼
X

x2eB0

q � xð Þp x;B0ð Þ ¼
X

x2eB0 \B

q � xð Þp x;B0ð Þ þ
X

x2eB0 \Bc

q � xð Þp x;B0ð Þ

ð15Þ

Given x 2 eB0 , we have two subcases:

(a) x 2 eB0 \ Bc. In this case, q � x[w.

(b) x 2 eB0 \ B ¼ Cp B0ð Þ \ B. By Proposition 10, it follows that x% y for all

y 2 B0. In particular, since �x 2 B0, this implies that x% �x. At the same

time, since �x 2 B is such that �x% y for all y 2 B, we have that x% y for all

y 2 B. By Proposition 10 and since x 2 B, this yields that x 2 Cp Bð Þ. By

stochastic monotonicity, we can conclude that q � x ¼ w.

To sum up, by (15) and points a and b, we can conclude that

q � �d q0;w0ð Þ �
X

x2eB0 \B

wp x;B0ð Þ þ
X

x2eB0 \Bc

wp x;B0ð Þ ¼ w ð16Þ

By (16) as well as points 1 and 2, we have that

q0 	 qð Þ � �d q0;w0ð Þ 	 �d q;wð Þð Þ ¼ q0 � �d q0;w0ð Þ 	 �d q;wð Þð Þ 	 q � �d q0;w0ð Þ 	 �d q;wð Þð Þ
¼ q0 � �d q0;w0ð Þ 	 q0 � �d q;wð Þ 	 q � �d q0;w0ð Þ 	 �d q;wð Þð Þ
¼w0 	 w0 þ w	 q � �d q0;w0ð Þ ¼ w	 q � �d q0;w0ð Þ
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proving the main statement. h

Proof of the law of demand Consider an initial price and wealth pair q;wð Þ. Let

q0 2 Rn
þþ be such that q0k [ qk and q0i ¼ qi for all i 6¼ k. Let w0 ¼ w0 q0ð Þ be such that

w0 ¼ q0 � �d q;wð Þ� q � �d q;wð Þ ¼ w, since p is stochastically monotone. By Lemma 4

and since p is stochastically monotone, it follows that q0 � �d q;wð Þ ¼ w0 ¼ c q0;w0ð Þ.
In view of Lemma 6, the difference �d q0;w0ð Þ 	 �d q;wð Þ quantifies a substitution

effect on the goods’ average demand due only to the price change q0 	 q. This

suggests the following decomposition:

�d q0;wð Þ 	 �d q;wð Þ ¼ �d q0;wð Þ 	 �d q0;w0ð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wealth effect

þ �d q0;w0ð Þ 	 �d q;wð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
substitution effect

ð17Þ

in which the r.h.s. accounts for, respectively, the wealth and substitution effects on

the goods’ demand. Note that the elements in (17) are vectors. Thus, the equality

holds componentwise. Since good k is normal and w�w0, we have

�dk q0;wð Þ� �dk q0;w0ð Þ ð18Þ

By Lemma 6 and the choice of q and q0 and since q0 � �d q;wð Þ ¼ w0 ¼ c q0;w0ð Þ, we

have that

q0k 	 qk
� �

�dk q0;w0ð Þ 	 �dk q;wð Þð Þ ¼ q0 	 qð Þ � �d q0;w0ð Þ 	 �d q;wð Þð Þ� 0

Since q0k 	 qk [ 0, it follows that �dk q0;w0ð Þ 	 �dk q;wð Þ� 0. By ( 17) and (18), this

implies that

�dk q0;wð Þ 	 �dk q;wð Þ ¼ �dk q0;wð Þ 	 �dk q0;w0ð Þ½ � þ �dk q0;w0ð Þ 	 �dk q;wð Þ½ � � 0

proving the statement. For, �dk q0;wð Þ� �dk q;wð Þ where in q0 only the price of k
increased, while the other prices did not change and wealth remained constant. A

similar argument holds if we consider a decrease in price, that is q0k\qk, rather than

an increase. In that case, we would have that �dk q0;wð Þ� �dk q;wð Þ. h
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