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Abstract
We call a decision maker risk averse for losses if that decision maker is risk averse

with respect to lotteries having alternatives below a given reference alternative in

their support. A two-person bargaining solution is called invariant under risk

aversion for losses if the assigned outcome does not change after correcting for risk

aversion for losses with this outcome as pair of reference levels, provided that the

disagreement point only changes proportionally. We present an axiomatic charac-

terization of the Nash bargaining solution based on this condition, and we also

provide a decision-theoretic characterization of the concept of risk aversion for

losses.

Keywords Risk aversion � Loss aversion � Risk aversion for losses � Nash
bargaining

1 Introduction

In this paper, we propose a variation on the concepts of loss aversion and of risk

aversion, called risk aversion for losses. A decision maker is risk averse for losses if

this decision maker downgrades payoffs below a given reference level by a

nondecreasing concave transformation.

We first formulate and apply this concept in the context of the two-person Nash

bargaining model (Nash, 1950), as follows. Given a bargaining solution, assume that

the bargainers regard the assigned payoffs as their reference levels. If they are risk

averse for losses, then the problem (feasible set) is corrected by applying the

associated concave transformations. We call a bargaining solution invariant under

risk aversion for losses if after this correction the assigned outcome does not
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change, provided that the disagreement point only changes proportionally, i.e., the

new, corrected, disagreement point is still on the straight line through the original

disagreement point and the bargaining solution outcome. This last restriction is

reasonable, and without it the axiom would be overly demanding. Invariance under

risk aversion for losses is satisfied by many well-known bargaining solutions,

including the Nash bargaining solution and the Kalai–Smorodinsky solution (Kalai

& Smorodinsky, 1975).

We next concentrate on the Nash bargaining solution and provide an axiomatic

characterization with invariance under risk aversion for losses as one of the axioms.

The other axioms are Pareto optimality, symmetry, covariance, and expansion

independence. This last condition requires the solution not to change if we add only

payoff pairs exceeding the utopia payoff (i.e., maximally possible payoff) of one of

the bargainers. We also show that the axioms are logically independent.

We finally present a decision-theoretic characterization of the new concept of

risk aversion for losses, closely related to Yaari’s (1969) characterization of

comparative risk aversion.

Our results are closely related to many other results in the literature, both on

bargaining and on risk and loss aversion, but we postpone discussion of this

literature until the relevant parts of the paper.

Section 2 introduces the Nash bargaining model, and Sect. 3 the concept of risk

aversion for losses within this model. Sect. 4 presents the characterization of the

Nash bargaining solution based on this concept. In Sect. 5, we provide the decision-

theoretic characterization of risk aversion for losses.

2 Bargaining

A (two-person bargaining) problem is a convex and compact set S � R2 such that

for the disagreement point dðSÞ ¼ ðminfx1 j x 2 Sg;minfx2 j x 2 SgÞ, we have (i)

x[ dðSÞ for some x 2 S, and (ii) y 2 S whenever y 2 R2 and dðSÞ� y� x for some

x 2 S.12 The set of all problems is denoted by B.
The point hðSÞ ¼ ðmaxfx1 2 R j x 2 Sg;maxfx2 2 R j x 2 SgÞ is the utopia

point of S 2 B. The set WðSÞ ¼ fx 2 S j y 6 [ x for all y 2 Sg is the weakly Pareto
optimal subset of S and PðSÞ ¼ fx 2 S j y� x implies y ¼ x for all y 2 Sg is the

Pareto optimal subset of S. Problem S is symmetric if

S ¼ fðx2; x1Þ 2 R2 j ðx1; x2Þ 2 Sg. Note that this implies that d1ðSÞ ¼ d2ðSÞ and

h1ðSÞ ¼ h2ðSÞ.
A (bargaining) solution is a map u : B ! R2 such that uðSÞ 2 S for all S 2 B.

The following possible properties of u are standard.

Weak pareto optimality uðSÞ 2 WðSÞ for all S 2 B.
Pareto optimality uðSÞ 2 PðSÞ for all S 2 B.
Symmetry u1ðSÞ ¼ u2ðSÞ for all symmetric S 2 B.

1 Some notations: for all x; y 2 R2, x[ y means that x1 [ y1 and x2 [ y2; x� y means that x1 � y1 and

x2 � y2; and xy ¼ ðx1y1; x2y2Þ.
2 Condition (ii) implies that d(S) is a point of S.
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Covariance uðaSþ bÞ ¼ auðSÞ þ b for all S 2 B, a 2 R2 with a[ 0, and

b 2 R2, where aSþ b ¼ faxþ b j x 2 Sg.
The Nash solution N assigns to each problem S the point where the product

ðx1 � d1ðSÞÞðx2 � d2ðSÞÞ is maximized over S. Nash (1950) showed that N is the

unique solution satisfying, besides Weak Pareto Optimality, Symmetry, and

Covariance, the following property.3

Independence of irrelevant alternatives uðTÞ ¼ uðSÞ for all S; T 2 B such that

dðSÞ ¼ dðTÞ, S � T , and uðTÞ 2 S.
Independence of irrelevant alternatives can be interpreted as follows. The

solution uðTÞ of the bargaining problem T can be seen as the best compromise

available in T: in this respect, it beats all other alternatives in T. But if this is the
case, then it certainly beats all alternatives in a smaller set S, given that the

disagreement point is still the same.4 On a similar ground, however, the condition

can also be criticized: uðTÞ may be a good compromise in T but that does not

necessarily imply that it is a good compromise in S, for instance, because the utopia
point h(T), the pair of highest available payoffs in T, may be different from h(S), the
utopia point of S. This led Kalai & Smorodinsky (1975) to propose the following

alternative solution. The Kalai–Smorodinsky solution K assigns to each problem

S the unique point of P(S) on the line segment connecting d(S) and h(S). This
solution had been studied earlier in Raiffa (1953).

Kalai & Smorodinsky (1975) showed that K is the unique solution satisfying,

besides Weak Pareto Optimality, Symmetry, and Covariance, the following

property.5

Individual monotonicity uiðTÞ�uiðSÞ for all i 2 f1; 2g and S; T 2 B such that

dðSÞ ¼ dðTÞ, S � T , and hjðSÞ ¼ hjðTÞ for j 6¼ i.

3 Loss aversion in bargaining

Loss aversion (Kahneman & Tversky, 1979) is the often observed phenomenon

(e.g., Kahneman et al., 1990; Tversky & Kahneman, 1992) that people tend to

downgrade utilities or payoffs that are below some reference level. If one expects to

receive one Euro, then 99 cents is perceived as worse than the same 99 cents if one

expects to receive less than 99 cents. This ‘expectation’ is usually called the

‘reference level’. In the context of game theory, including bargaining, loss aversion

was first introduced by Shalev (2000, 2002), who assumed ‘linear loss aversion’: see

below for a detailed discussion.

As usual, a decision maker with utility function v (say, on R) is called more risk

averse than a decision maker with utility function u if there is a nondecreasing

concave function k such that v ¼ k � u (Arrow, 1971; Pratt, 1964; Yaari, 1969). The

effect of increased risk aversion in bargaining has been studied extensively: the

literature includes Kannai (1977), Kihlstrom et al. (1981), Peters & Tijs (1981),

3 In Nash (1950), this property occurs as condition No. 7.
4 Thus, it can be seen as a revealed preference condition: see Peters & Wakker (1991).
5 We include this definition for completeness.
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Roth & Rothblum (1982), de Koster et al. (1983), van Damme (1986), Safra et al.

(1990), and more.

Here, we consider a property which is closely related to the concept of increased

risk aversion, adapted to the bargaining context. Formally, let S be a bargaining

problem. Bargainer i is risk averse for losses if for each ri 2 ½diðSÞ; hiðSÞ� there is a
nondecreasing concave function ki½ri� : ½diðSÞ; hiðSÞ� ! R such that ki½ri�ðxiÞ ¼ xi
for all xi 2 ½ri; hiðSÞ�. Here, ri is the reference level. Note that, if ri\hiðSÞ, this
definition implies that ki½ri�ðxiÞ� xi for all xi 2 ½diðSÞ; ri�. Thus, if bargainer i is risk
averse for losses, then i’s payoffs below a reference level ri are downgraded in a

way consistent with increased risk aversion. We call ki½ri� bargainer i’s loss function
at ri.

The concept of linear loss aversion (Shalev, 2000, 2002; Köszegi & Rabin,

2006, 2007; see Peters (2012), for a preference foundation) is a special case of risk

aversion for losses, obtained by taking ki½ri�ðxiÞ ¼ xi � kiðri � xiÞ for every xi 2
½diðSÞ; hiðSÞ� with xi � ri, where ki 2 R with ki � 0 is the ‘loss aversion coefficient’.

Thus, linear loss aversion is stronger than risk aversion for losses. In turn, risk

aversion for losses is a special case of (thus, stronger than) some of the loss aversion

formulations in the literature: see Sect. 5, where we provide a preference foundation

of risk aversion for losses in the spirit of Yaari (1969).

Shalev (2002) considered the following property based on the concept of linear

loss aversion in the Nash bargaining model. Suppose a bargaining solution u is

used, and consider a problem S. Suppose that the players are linearly loss averse

with pair of loss aversion coefficients k ¼ ðk1; k2Þ. If they regard the payoffs

ri ¼ uiðSÞ, i ¼ 1; 2, as their reference levels, then after correction for linear loss

aversion the problem becomes Sðk; rÞ ¼ fðx1ðk1; r1Þ; x2ðk2; r2ÞÞ j ðx1; x2Þ 2 Sg, with

xiðki; riÞ ¼
xi if xi � ri

xi � kiðri � xiÞ if xi\ri

�

for i ¼ 1; 2. Shalev (2002) showed that the Nash bargaining solution is invariant

under such a linear loss aversion correction, i.e., we have NðSðk;NðSÞÞ ¼ NðSÞ.
In the present paper, we consider risk aversion for losses instead of linear loss

aversion. For a bargaining problem S, a pair of reference levels

r ¼ ðr1; r2Þ 2 ½d1ðSÞ; h1ðSÞ� 	 ½d2ðSÞ; h2ðSÞ�, and a pair of loss functions

k½r� ¼ ðk1½r1�; k2½r2�Þ, we denote by Sðk½r�Þ ¼ fðk1½r1�ðx1Þ; k2½r2�ðx2ÞÞ j ðx1; x2Þ 2
Sg the problem corrected for risk aversion for losses. Now the condition

uðSðk½uðSÞ�ÞÞ ¼ uðSÞ for a bargaining solution u is much more demanding than

for linear loss aversion, and indeed the Nash bargaining solution does not satisfy it,

as the following example shows.

Example 3.1 (See Fig. 1 for an illustration.) Let S 2 B be the convex hull of the

points (0, 0), (1, 0), (0, 1). Then NðSÞ ¼ ð1
2
; 1
2
Þ. Let k2½12�ðx2Þ ¼ x2 for all 0� x2 � 1,

and let k1½12�ðx1Þ ¼ x1 for all 1
4
� x1 � 1, and k1½12�ðx1Þ ¼ 5x1 � 1 for all 0� x1\ 1

4
.

Then, S(k[N(S)]) is the convex hull of the points ð�1; 0Þ, (1, 0), ð1
4
; 3
4
Þ, and ð�1; 1Þ.

Writing T ¼ Sðk½NðSÞ�Þ, we have NðTÞ ¼ ð1
4
; 3
4
Þ 6¼ ð1

2
; 1
2
Þ ¼ NðSÞ. Note that there is
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no k1 such that k1½12�ðx1Þ ¼ x1 � k1ð12 � x1Þ for for all 0� x1\ 1
2
, hence bargainer 1 is

not linearly loss averse. /

We will weaken the condition that the solution u does not change after correcting

for risk aversion for losses, by imposing it only when the disagreement point

changes proportionally, as follows. For a; b 2 R2, let [a, b] denote the convex hull

of a and b, i.e., the line segment with endpoints a and b.
Invariance under risk aversion for losses uðSðk½uðSÞ�ÞÞ ¼ uðSÞ for all S 2 B

such that uðSÞ\hðSÞ, and loss function pairs k½uðSÞ� such that dðSÞ 2
½dðSðk½uðSÞ�ÞÞ; uðSÞ�.

It is not difficult to see that the Nash bargaining solution is invariant under risk

aversion for losses. Geometrically, the Nash bargaining solution picks the point on

the Pareto boundary of a bargaining problem S at which there is a supporting line

with slope equal to minus the slope of the line through this point and the

disagreement point d(S) (e.g., Lemma 2.2 in Peters, 1992). Clearly, if we correct

S for risk aversion for losses, then the original supporting line of S at N(S) is still a
supporting line at N(S) for the corrected problem, and if the disagreement point of

the corrected problem is on the straight line through d(S) and N(S), then N(S) is still
the Nash bargaining solution outcome of the corrected problem. For ease of

reference, we formulate this observation as a lemma.

Lemma 3.2 The Nash bargaining solution is invariant under risk aversion for
losses.

The above geometrical argument might suggest that invariance under risk

aversion for losses is tailor-made for the Nash bargaining solution, but the following

lemma shows that this is not quite true.

Lemma 3.3 The Kalai-Smorodinsky bargaining solution is invariant under risk
aversion for losses.

Proof Let S 2 B and consider a pair of loss functions k[K(S)]. WriteeS ¼ Sðk½KðSÞ�Þ. It is easy to see that hðeSÞ ¼ hðSÞ. If dðSÞ 2 ½dðeSÞ;KðSÞ�, then

K(S) is still on the line segment connecting dðeSÞ and hðeSÞ. Hence, KðeSÞ ¼ KðSÞ. h

Thus, the Nash and Kalai–Smorodinsky bargaining solutions share the properties

of Pareto optimality, symmetry, covariance, and invariance under risk aversion for

Fig. 1 Example 3.1. Problem
S is the triangle with vertices
(0, 0), (1, 0), and (0, 1). The
problem corrected for risk
aversion for losses, T, is the
shaded area
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losses. In the next section, we will add another property to single out the Nash

bargaining solution.

4 A characterization of the Nash bargaining solution

We consider the following possible property of a solution u.
Expansion independence uðTÞ ¼ uðSÞ for all S; T 2 B such that dðSÞ ¼ dðTÞ,

S � T , and there is i 2 f1; 2g for which uiðSÞ\hiðSÞ\xi for all x 2 T n S.
This property says the following (cf. Fig. 2). Suppose the solution of a problem S

is a ‘true compromise’ on the part of bargainer i in the sense that i receives less than
the maximally achievable payoff, i.e., the utopia payoff hiðSÞ. If we now extend S to
a problem T by adding only points that are better for bargainer i than this utopia

payoff, then the solution should not change. Another way of stating this is that, if we

cut off, from a problem T, payoffs exceeding a certain level for bargainer i, and the

solution of the resulting problem S is below this level for bargainer i, then the

solution of the original problem T should be equal to the solution of S. This property
is a kind of dual of independence of irrelevant alternatives. It is a very weak version

of the condition of ‘independence of irrelevant expansions’ used by Thomson

(1981) in a characterization of the Nash bargaining solution. It also resembles the

condition of ‘independence of irrelevant claims’ in Albizuri et al. (2020). Of course,

it can be criticized on similar grounds as the independence of irrelevant alternatives

condition.

Observe that, for the situation in the definition of expansion independence, any

supporting line of S at uðSÞ is still a supporting line of T at uðSÞ. Therefore, by the

same geometric characterization of the Nash bargaining solution as used to prove

Lemma 3.2, we obtain:

ϕ(S)

S

h1(S)

T \ S

Fig. 2 Expansion independence:
i ¼ 1, and T is the union of S and
T n S

123

708 H. Peters



Lemma 4.1 The Nash bargaining solution is expansion independent.

The announced characterization of the Nash bargaining solution is as follows.

Theorem 4.2 The Nash bargaining solution is the unique solution satisfying Pareto
optimality, symmetry, covariance, invariance under risk aversion for losses, and
expansion independence.

Proof The results of Nash (1950) and Lemmas 3.2 and 4.1 imply that N has the five

properties stated in the theorem.6 Now, let u be a solution with these properties, and

let S 2 B. We prove that uðSÞ ¼ NðSÞ.
By covariance, we may assume without loss of generality that dðSÞ ¼ ð0; 0Þ and

NðSÞ ¼ ð1; 1Þ. This also implies that the straight line through the points (2, 0) and

(0, 2) is a supporting line of S at (1, 1).

Without loss of generality, let h2ðSÞ� h1ðSÞ (the other case is similar).

First suppose that h2ðSÞ[ 1. Let T 2 B be the convex hull of the points

ð2� h2ðSÞ; h2ðSÞÞ, ðh2ðSÞ; 2� h2ðSÞÞ, and ð2� h2ðSÞ; 2� h2ðSÞÞ. (See Fig. 3).

Then T is symmetric, with dðTÞ ¼ ð2� h2ðSÞ; 2� h2ðSÞÞ. By weak Pareto

optimality and symmetry, uðTÞ ¼ ð1; 1Þ. Define the function k1 ¼ k1½1� on

½d1ðTÞ; h1ðTÞ� ¼ ½d1ðTÞ; h2ðSÞ� by k1ðx1Þ ¼ x1 for all x1 2 ½1; h2ðSÞ�, and such that

fðk1ðx1Þ; 2� x1Þ j x1 2 ½d1ðTÞ; 1�g ¼ fx 2 WðSÞ j x1 � 1g. Similarly, define the

function k2 ¼ k2½1� on ½d2ðTÞ; h2ðTÞ� ¼ ½d2ðTÞ; h2ðSÞ� by k2ðx2Þ ¼ x2 for all

x2 2 ½1; h2ðSÞ�, k2ðd2ðTÞÞ ¼ 0, and such that

fð2� x2; k2ðx2ÞÞ j d2ðTÞ\x2 � 1g ¼ fx 2 WðSÞ j d2ðTÞ\x2 � 1g. Then, k1 and k2
are nondecreasing concave functions, and Tðk1; k2Þ ¼ fx 2 S j x1 � h2ðSÞg. In

particular, dðTðk1; k2ÞÞ ¼ ð0; 0Þ ¼ dðSÞ. By invariance under risk aversion for

losses of u, we have uðTðk1; k2ÞÞ ¼ uðTÞ ¼ ð1; 1Þ. Hence,

uðfx 2 S j x1 � h2ðSÞgÞ ¼ ð1; 1Þ. Since h1ðfx 2 S j x1 � h2ðSÞgÞ ¼ h2ðSÞ[ 1,

expansion independence now implies that uðSÞ ¼ ð1; 1Þ ¼ NðSÞ.

Second, consider the case where h2ðSÞ ¼ 1 and h1ðSÞ[ 1. (See Fig. 4.) Since

ð1; 1Þ ¼ NðSÞ, this implies that we can take some 1\g� h1ðSÞ such that the set eS,
obtained by taking the convex hull of S and fð0; gÞg, is in B. If u1ðSÞ[ 1, then by

expansion independence, uðeSÞ ¼ uðSÞ, but by the preceding part of the proof,

uðeSÞ ¼ NðeSÞ ¼ ð1; 1Þ, a contradiction. Hence, u1ðSÞ� 1, and therefore by Pareto

optimality uðSÞ ¼ ð1; 1Þ ¼ NðSÞ.
Finally, if hðSÞ ¼ ð1; 1Þ then S is convex hull of the points (0, 0), (1, 0), (0, 1),

and (1, 1), and uðSÞ ¼ ð1; 1Þ ¼ NðSÞ by Pareto optimality. h

In the following example, we show that the conditions in Theorem 4.2 are

logically independent. We also show that Pareto optimality cannot be replaced by

weak Pareto optimality. Finally, we demonstrate that the comprehensiveness

assumption on a bargaining problem, assumption (ii), cannot be relaxed without

consequences.

6 Nash (1950) in fact only requires weak Pareto optimality (his postulate 6), but the Nash bargaining

solution is of course Pareto optimal.
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Example 4.3 We show independence of five the conditions in Theorem 4.2 by

exhibiting five examples.

(i) The disagreement solution D, defined by DðSÞ ¼ dðSÞ, satisfies all

conditions except Pareto optimality.

(ii) The dictator-1 solution D1, which assigns to S 2 B the Pareto optimal point

of S with first coordinate h1ðSÞ, satisfies all conditions except symmetry.

(iii) The lexicographic egalitarian solution, which assigns to S 2 B the point of

P(S) closest to the line through d(S) with slope equal to 1, satisfies all

conditions except covariance.

(iv) We construct a solution u satisfying all conditions except invariance under

risk aversion for losses. We define u for bargaining problems S with

Fig. 3 Proof of Theorem 4.2,
case 1\h2ðSÞ� h1ðSÞ. The
thick triangle is the boundary of
the set T, and the shaded set is
the set T corrected for risk
aversion for losses

Fig. 4 Proof of Theorem 4.2,
case 1 ¼ h2ðSÞ\h1ðSÞ. The seteS is the shaded set
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dðSÞ ¼ ð0; 0Þ and NðSÞ ¼ ð1; 1Þ—for arbitrary problems the solution is

then extended by appealing to covariance. We distinguish two cases. If

there are numbers 0� a\1 and 1\b� 3
2
such that

½ða; 2� aÞ; ð1; 1Þ� [ ½ð1; 1Þ; ðb; 3� 2bÞ� � PðSÞ;

then uðSÞ ¼ D1ðSÞ. See Fig. 5 for an example of such a problem. Hence,

in this case the solution assigns the best Pareto optimal point for bargainer

1. In all other cases, uðSÞ ¼ NðSÞ. This solution satisfies Pareto optimality,

symmetry, and covariance. It is not hard to check that it also satisfies

expansion independence. Hence, Theorem 4.2 implies that it is not

invariant under risk aversion for losses.

(v) The Kalai–Smorodinsky solution K satisfies all conditions except expan-

sion independence. In particular, K is invariant under risk aversion for

losses by Lemma 3.3.

(vi) We show that Pareto optimality cannot be replaced by weak Pareto

optimality in Theorem 4.2. Define the solution w as follows. If S 2 B such

that N2ðSÞ ¼ h2ðSÞ and N1ðSÞ\h1ðSÞ, then wðSÞ ¼ ðd1ðSÞ; h2ðSÞÞ. In all

other cases, wðSÞ ¼ NðSÞ. Then, w is weakly Pareto optimal but not Pareto

optimal, and it also satisfies the four other conditions in Theorem 4.2.

(vii) The comprehensiveness assumption (ii) on a bargaining problem is quite

natural. Nevertheless, it is interesting to consider what happens if it is

dropped.7 We show that in that case Theorem 4.2 no longer holds. Suppose

we replace (ii) by (ii0): dðSÞ 2 S. Let B0 denote the set of all problems

satisfying (i) and (ii0). Clearly, B(B0; in particular, for an S 2 B0, it is

possible that ðd1ðSÞ; h2ðSÞÞ 62 S or ðd2ðSÞ; h1ðSÞÞ 62 S. Let B0
0 be the subset

of those problems S for which jfx 2 S j d1ðSÞ\x1\h1ðSÞ; x2 ¼ h2ðSÞgj ¼
1 and jfx 2 S j d2ðSÞ\x2\h2ðSÞ; x1 ¼ h1ðSÞgj ¼ 1. An example of such a

problem is the convex hull, say S, of the points (0, 0), (1, 3), and (3, 2).

Then KðSÞ ¼ ð7
3
; 7
3
Þ 6¼ ð3; 2Þ ¼ NðSÞ. Observe that for this problem S, a

(0, 0)

(1, 1)

(α, 2 − α)

(β, 3− 2β)

D1(S)

Fig. 5 A problem S as in
Example 4.3 part (iv)

7 We thank the reviewer for asking this question.
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problem T 2 B0, T 6¼ S, as in the definition of expansion independence,

does not exist. This leads us to define the bargaining solution u : B0 ! R2

by uðSÞ ¼ KðSÞ for all S 2 B0
0 and uðSÞ ¼ NðSÞ for all S 2 B0 n B0

0. Then,

u satisfies all five conditions in Theorem 4.2 on B0, but it is not the Nash

bargaining solution. The characterization in the theorem can be restored to

hold for B0 if the expansion independence condition is strengthened by

replacing ‘for all x 2 T n S’ by ‘for all x 2 PðTÞ n S’ in its formulation. We

leave verification of these claims to the reader.

5 A preference foundation for risk aversion for losses

In the approach of Nash (1950), a bargaining problem arises as the set of expected

utility payoff pairs from an underlying set of alternatives and associated lotteries. In

this context, it is indeed meaningful to study the impact of risk aversion and loss

aversion, as we did in the preceding sections. In this section, we provide a

characterization of our concept of risk aversion for losses of a single decision

maker. More precisely, we define the concept of risk aversion for losses in terms of

preferences, and then show that this is equivalent to the same concept in terms of the

specific payoff transformation as introduced earlier in the bargaining context.

Let A denote a nonempty set of alternatives, and let L denote the set of lotteries

on A, i.e., the set of probability distributions on A with finite support. A preference


 is a weak ordering (i.e., a complete, reflexive, and transitive binary relation) on L.
Instead of ð‘; ‘0Þ 2 
 we write ‘ 
 ‘0, for ‘; ‘0 2 L. By � and � we denote the strict

and indifference parts of 
: for ‘; ‘0 2 L, ‘�‘0 if ‘ 
 ‘0 but not ‘0 
 ‘, and ‘� ‘0 if
both ‘ 
 ‘0 and ‘0 
 ‘.

We assume that any preference 
 under consideration in this section can be

represented by a von Neumann–Morgenstern8 utility function u, i.e., ‘ 
 ‘0 ,
Euð‘Þ�Euð‘0Þ for all ‘; ‘0 2 L, where Euð�Þ denotes expected utility: if lottery ‘
results with probability pj in alternative aj for j ¼ 1; . . .; k for some k 2 N, then

Euð‘Þ ¼
Pk

j¼1 uðajÞ. Under this assumption, it is in particular sufficient to know the

representing function u on the set of (riskless) alternatives A, i.e., to know

u : A ! R. See Herstein and Milnor (1953) for an axiomatic foundation of this

assumption. Such a representation is unique up to positive linear transformations,

i.e., v also represents 
 if and only if there are a; b 2 R with a[ 0 such that

vðaÞ ¼ auðaÞ þ b for all a 2 A.
For a preference 
 and an alternative a 2 A, we denote by L�ðaÞ ¼ f‘ 2 L j

‘�ag the strict preference set of 
 with respect to a.9 For r 2 A, define the set L
;r

by L
;r ¼ f‘ 2 L j a 
 r for all a 2 A in the support of ‘}. We call a (decision

maker with) pair of preferences ð
;
rÞ risk averse for losses at r if L�r
ðaÞ � L�ðaÞ

and L�r
ðaÞ \ L
;r ¼ L�ðaÞ \ L
;r for all a 2 A. In words: first, if such a decision

maker strictly prefers a lottery ‘ over an alternative a at 
r, then the decision maker

8 Von Neumann and Morgenstern (1947).
9 If we replace � by 
 in this definition, then we obtain Yaari’s (1969) ‘acceptance set’.
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also strictly prefers ‘ over a at 
; and, second, for any lottery ‘ of which the

decision maker prefers every alternative in its support over r at 
r, for any

alternative a the decision maker strictly prefers ‘ over a at 
r if and only if the

decision maker strictly prefers ‘ over a at 
. The first part of this definition is (a

slight variation on) the usual definition of (a decision maker with preference) 
r

being more risk averse than (a decision maker with preference) 
. The second part

adds to this that lotteries involving no losses with respect to the reference alternative

r are treated equally under 
r and 
.

The following result is a variation on classical results of Arrow (1971), Pratt

(1964), and in particular (Yaari 1969)—see also Peters & Tijs (1981) and Wakker

et al. (1985).

Theorem 5.1 Let r 2 A, let ð
;
rÞ be a pair of preferences, and let u : A ! R

represent 
. Assume that there exist a; �a 2 A such that uðAÞ ¼ ½uðaÞ; uð�aÞ�. Then,
the following two assertions are equivalent:

(a) ð
;
rÞ is risk averse for losses at r.
(b) There is a nondecreasing concave function k : uðAÞ ! R with kðuðaÞÞ ¼ uðaÞ

for all a 2 A with a 
 r, such that v : A ! R, defined by vðaÞ ¼ kðuðaÞÞ for
all a 2 A, represents 
r.

Proof The proof of the implication [(b) ) (a)] is straightforward and, therefore,

omitted.

Now suppose (a) holds. Let v : A ! R represent 
r such that vðrÞ ¼ uðrÞ and

vð�aÞ ¼ uð�aÞ (this is possible since v is unique up to positive linear transformations).

Consider a; b 2 A. If uðaÞ ¼ uðbÞ, then b 
r a since otherwise a 2 L�r
ðbÞ � L�ðbÞ

and therefore a�b, so uðaÞ[ uðbÞ, a contradiction. Similarly, uðaÞ ¼ uðbÞ implies

b 
r a, and hence a� rb and vðaÞ ¼ vðbÞ. Hence the function k : uðAÞ ! R with

kðuðaÞÞ ¼ vðaÞ for all a 2 A is well-defined. Also, if uðaÞ[ uðbÞ, then vðaÞ� vðbÞ
since otherwise b 2 L�r

ðaÞ � L�ðaÞ, so that uðbÞ[ uðaÞ, a contradiction. This

implies that k is nondecreasing.

Let x; y 2 uðAÞ ¼ ½uðaÞ; uðaÞ�, say x ¼ uðcÞ and y ¼ uðdÞ for some c; d 2 A, and
let k 2 ½0; 1�. Consider the lottery ‘ resulting with probability k in c and with

probability 1� k in d. Let e 2 A such that uðeÞ ¼ kuðcÞ þ ð1� kÞuðdÞ ¼ Euð‘Þ.
Then, ‘ 62 L�ðeÞ, hence ‘ 62 L�r

ðeÞ, so that kkðxÞ þ ð1� kÞkðyÞ ¼ kkðuðcÞÞ þ ð1�
kÞkðuðdÞÞ ¼ Evð‘Þ� vðeÞ ¼ kðuðeÞÞ ¼ kðkuðcÞ þ ð1� kÞuðdÞÞ ¼ kðkxþ ð1� kÞyÞ,
proving concavity of k.

If uðrÞ ¼ uð�aÞ then the proof of (b) is complete. Now assume uðrÞ\uð�aÞ, and let

a 2 A such that uðrÞ\uðaÞ\uð�aÞ, hence uðaÞ ¼ kuðrÞ þ ð1� kÞuð�aÞ for some

0\k\1. Let ‘ 2 L
;r be the lottery resulting in r with probability k and in �a with

probability 1� k. Then, uðaÞ ¼ Euð‘Þ, and vðaÞ ¼ kðuðaÞÞ ¼ kðkuðrÞ þ ð1�
kÞuð�aÞÞ� kkðuðrÞÞ þ ð1� kÞkðuð�aÞÞ ¼ kvðrÞ þ ð1� kÞvð�aÞ, where the inequality

follows from concavity of k. Suppose that this inequality is strict. Then let k0\k
such that still vðaÞ� k0vðrÞ þ ð1� k0Þvð�aÞ, and let ‘0 denote the lottery resulting in r

with probability k0 and in �a with probability 1� k0. Then

uðaÞ\k0uðrÞ þ ð1� k0Þuð�aÞ ¼ Euð‘0Þ. Hence, ‘0 2 L�ðaÞ, ‘0 62 L�r
ðaÞ, and
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‘0 2 L
;r, in contradiction with L�r
ðaÞ \ L
;r ¼ L�ðaÞ \ L
;r. Therefore, k is

linear on ½uðrÞ; uð�aÞ�, and in particular kðuðaÞÞ ¼ uðaÞ for all a 2 A with a 
 r. This
completes the proof of the implication [(a) ) (b)]. h

A few further remarks on this result are in order. First, the theorem can be

extended to cases where u(A) is a general subset of the real numbers, that is, not

necessarily bounded, closed, or convex, by using, in particular, a result of Peters and

Wakker (1987). For the purpose of the present paper, however, we do not need this.

For a bargaining game S, we implicitly assume that the payoff pairs in S arise as

expected utilities of lotteries on an underlying set of alternatives A, such that for

each weakly Pareto optimal point of S there is an alternative in A resulting in that

point. Note that, in Theorem 5.1, if uðrÞ\uð�aÞ, then the function k satisfies,

additionally, that kðuðaÞÞ� uðaÞ whenever uðaÞ� uðrÞ—this follows since k is

identity on ½uðrÞ; uð�aÞ�, and k is concave. In our bargaining application, the

condition uðrÞ\uð�aÞ is satisfied since in the definition of invariance under risk

aversion for losses, it is required that the reference point is below the utopia point.

Also, similarly as in Peters (2012), Theorem 5.1 may be extended to characterize

objects of the form ð
;
rÞr2A, in particular, to establish existence of a function k[r]

for every r 2 A, possibly with relations between these functions depending on the

imposed axioms.

As mentioned earlier, linear loss aversion is a special case of our risk aversion for

losses concept. On the other hand, the latter is a special case of some of the loss

aversion concepts proposed in the literature. Bowman et al. (1999) and Blavatskyy

(2011) propose quite general definitions of loss aversion, of which ours is a special

case. Also, Köszegi & Rabin (2007) propose a rather general definition but focus on

linear loss aversion. For still other formulations of loss aversion, see Neilson (2002),

Köbberling & Wakker (2005), and Schmidt and Zank (2005).
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