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Abstract
It is well known that decision methods based on pairwise rankings can suffer from a

wide range of difficulties. These problems are addressed here by treating the

methods as systems, where each pair is looked upon as a subsystem with an assigned

task. In this manner, the source of several difficulties (including Arrow’s Theorem)

is equated with the standard concern that the ‘‘whole need not be the sum of its

parts.’’ These problems arise because the objectives assigned to subsystems need not

be compatible with that of the system. Knowing what causes the difficulties leads to

resolutions.

Keywords Borda � Pugh’s methods � Arrow’s Theorem � Analytic Hierarchy

Process � Geometric mean procedure

1 Difficulties with paired comparisons

For reasons that include cost and convenience, paired comparisons are widely used

to make decisions even though examples exist that cast doubt on the trustworthiness

of certain approaches. As these techniques continue to be used, a useful goal

(developed here) is to determine how they can be modified to yield more reliable

outcomes.

The basic idea mimics the least-squares methodology by projecting information

(e.g., data, results about pairs, etc.) into a space where consistent outcomes are

assured. Unfortunately, an appropriate ‘‘consistency space’’ is not known even for
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the widely required condition of transitivity. This motivates finding a natural

‘‘transitivity consistency’’ space.

Even after identifying a desired space of outcomes, the appropriate projection

need not be obvious. This tends to be true with nonlinear structures. The expectation

is that

Computed outcome ¼ desired outcome þ error, ð1Þ

where, if the summation is an orthogonal vector addition, standard projections

apply. But if Eq. 1 fails (which, as shown below, is true with AHP, the Analytic

Hierarchy Process), rather than helping, projections can aggravate the analysis by

introducing new types of mistakes. To avoid these problems, the structure of the

error term must be found.

Some techniques use modified forms of paired comparisons. An example is the

Pugh matrix method (Pugh, 1991) where a particular alternative (often the status

quo) serves as the base from which other alternatives are compared over several

criteria. A standard approach is, for each criterion, to assign a ‘‘�; 0;þ} score to an

alternative where

‘‘� } means it is poorer, ‘‘0} if it is about the same, ‘‘þ } if it is better.

The final score is the number of þ’s minus the number of -’s. Refined options

include ‘‘double -’s and double þ’s,’’ or perhaps 1, 2, 3, 4, 5, where 3 is equivalent

to the base comparison. It is shown how to identify and overcome weaknesses of

these approaches. .

A search to improve decision outcomes is desirable, but is it futile? The

pessimism derives from Arrow’s Theorem (Arrow, 1963), which often is described

as asserting that no decision approach is fair with three or more alternatives.

Fortunately for this project, it is shown that this negative commentary is overstated.

Addressing these difficulties is part of a general project to understand systems

whether from the social sciences, engineering, or biology. Toward this end, paired

comparisons are treated as ‘‘subsystems;’’ i.e., the decision methods combine

information from the subsystems to create an answer for the whole system. An

advantage of first studying decision methods for this project is that their structures

are specified, so they form a more tractable test bed to discover why system

problems arise and how to correct them. Taking this point of view, Arrow’s

Theorem’s negative conclusion becomes the standard ‘‘the whole can differ from

the sum of its parts’’ concern (Sect. 2). The goal is to understand what causes

conflicts between a system and its subsystems and how to avoid them.

A first step (Sect. 3) is to analyze the structure of the subsystems, which here is

the space of paired comparisons. Guided by Eq. 1 and emphasizing summation

methods, this space is orthogonally divided into two components—informally, call

them the ‘‘desired’’ and ‘‘error’’ subspaces. Nothing goes wrong when any standard

decision method uses information from the desired component. Consequently, all

difficulties are caused by decision methods using information about pairs, or portion

of pairs, from the error space. Accompanying the discussion are easily used

computational tools.
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An obvious message is to avoid subsystem outcomes (i.e., collections of paired

outcomes) that rely upon the error space: this is how (in Sect. 4) the approaches

described above are modified. A second class of decision methods (such as AHP)

uses multiplicative procedures. In Sect. 5, results about these systems are derived by

transferring material from Sect. 3. Most proofs are in Sect. 7.

2 Arrow’s Theorem from a systems approach

A system starts with a stated objective. Arrow’s modest goal was to rank n� 3

specified alternatives. The content of the alternatives is immaterial; they could be

design plans for a project, ways to invest money, or even names for a new puppy.

For notation, with alternatives Ai and Aj, the symbol ‘‘Ai�Aj’’ denotes ‘‘Ai is

ranked above Aj,’’ while ‘‘Ai �Aj’’ has ‘‘Ai and Aj are ranked the same.’’ Arrow’s

goal follows:

1. Objective: The ranking outcome for the n� 3 alternatives is complete1 and

transitive.2

The inputs can be essentially anything. For finance, they might be how various

experts rank the alternatives, or how the alternatives fare on different markets. For

an engineering or management plan, the alternatives could be ranked over different

criteria such as, perhaps, taxes or availability of resources. For voting, they are the

voters’ preference rankings. Namely, conditions are imposed on the structure, not

the content, of the inputs.

2. Inputs: The outcome is determined by a� 2 complete, transitive rankings

of the n alternatives. There are no restrictions on the rankings. A listing of the

rankings from the a sources, called a profile, is denoted by p.

A standard way to compute a system’s outcome is to use information coming from

the separate subsystems (here, pairs).

3. Analysis. For each pair of alternatives, fAi;Ajg, a method is designed to

determine the pair’s outcome ranking of Ai�Aj, Ai �Aj, or Aj�Ai. The method

developed for a specified pair uses only input information from a profile about

how each of the a sources ranks that particular pair.

No restrictions are imposed on the design of these methods. As an extreme example,

when locating a plant in Atlanta, Boston, or Chicago, should there be an innate

preference for Chicago, then, when compared with either other city, the method

would select Chicago if the rankings from the criteria of taxes and the availability of
land are not both unfavorable for Chicago. A different method could rank Atlanta

and Boston.

While these three conditions are all that are needed, they admit useless rules. One

is where the methods assign fixed outcomes for the pairs; e.g., suppose for three

1 Each pair of alternatives is ranked.
2 This borrows from comparing points on a line where ‘‘�’’ is associated with ‘‘[.’’. That is, if A1�A2

and A2�A3, then A1�A3. Expressions involving ‘‘� ’’ follow by using what happens with ‘‘¼’’.
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alternatives that the fA1;A2g outcome always is A1 �A2, and the fA2;A3g and

fA1;A3g outcomes always are A2�A3 and A1�A3. These constant methods satisfy

the three conditions with a fixed A1 �A2�A3 transitive ranking, but they are not of

any real interest.

Another trivial choice is where each pair’s outcome always depends on a single

source’s ranking, perhaps the foreman on a project, which may provide efficiency,

or only tax information when selecting a city for a new plant, which could be

disastrous. To understand systems, methods that rely upon inputs from more than

one source must be explored.

The sole purpose of the following is to acknowledge that these uninteresting

methods satisfy the first three conditions and then to exclude them.

4. Eliminating undesired rules:

a. For each pair of alternatives, the method that is designed to rank the pair

does not have a fixed outcome. That is, for at least two of the three

possible rankings of the pair, each is the outcome for some profile.

b. All outcomes for all of the pairs cannot always be determined by the

ranking of the same single source.

As the role of #4 is to identify and dismiss methods that are of no interest, only

condition #3 of the methodology applies. That is, the system’s outcome is

determined by results coming from the individual subsystems. As asserted next, no

such methodology exists.

Theorem 1 (Saari, 2018) For n� 3 alternatives and a� 2 sources of inputs, there
do not exist ways to rank the individual pairs so that the above four conditions
always hold.

The objective is modest. Yet this theorem asserts that no way can be found to

always assemble information from the subsystems to achieve the objective of the

full system. Thus, Theorem 1 manifests the system conundrum where ‘‘the whole

can differ from its parts.’’ [A slightly stronger version of Theorem 1 is proved in

Chap. 6 of (Saari, 2018).]

To establish that Arrow’s theorem is a special case of Theorem 1, note that

conditions 1 and 2 are the same for both results. Arrow imposes a Pareto condition

whereby if all sources rank a pair in the same strict (i.e., no ties) manner, then that

unanimous choice is the pair’s ranking. The Pareto condition, then, is a very special

case of 4a; it specifies a particular way to ensure that each pair has non-constant

outcomes. There are, of course, many alternative choices. Arrow’s ‘‘no dictator’’

condition is a special case of 4b.

What remains is Arrow’s IIA (Independence of Irrelevant Alternatives); it asserts

that if all sources rank a particular pair in the same way for any two profiles, the

pair’s outcome remains unchanged. As shown below (Theorem 2), if a decision rule

satisfies IIA, it can be expressed as a collection of independent paired comparisons;

thus IIA satisfies #3.
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To illustrate with the pair fA1;A2g (underlined to assist comparisons), each

source has the same fA1;A2g ranking in the following two profiles

p1 =

⎪ source ranking
1 A1 A3 A4 A5 A2
2 A3 A4 A5 A2 A1
3 A1 A5 A4 A3 A2

⎪⎪⎬
, p2 =

⎪⎪⎨ source ranking
1 A3 A4 A5 A1 A2
2 A2 A3 A4 A5 A1
3 A5 A4 A3 A1 A2

⎪⎪⎬

ð2Þ

If the decision function F satisfies IIA for the fA1;A2g pair, then both profiles must

have the same fA1;A2g ranking, perhaps

Fðp1Þ ¼ A1�A4�A3�A5�A2; Fðp2Þ ¼ A5�A4�A3�A1�A2: ð3Þ

With this agreement, F defines a paired comparison rule for fA1;A2g denoted by

gfA1;A2g. Namely, let gfA1;A2gðpÞ be FðpÞ’s ranking of the pair fA1;A2g. Thus, with
Eq. 3,

gfA1;A2gðp1Þ ¼ gfA1:A2gðp2Þ ¼ A1�A2: ð4Þ

Only profile information concerning fA1;A2g rankings is used to define gfA1;A2gðpÞ,
so it follows from Eq. 4 that this mapping can be re-expressed as

gfA1;A2g A1�A2;A2�A1;A1�A2ð Þ ¼ A1�A2; ð5Þ

where whenever the first and third sources prefer A1�A2 and the second has A2�A1,

the outcome must be A1�A2: A general assertion follows.

Theorem 2 If a mapping F satisfies conditions 2, IIA, and ranks each pair, then, for
each pair of alternatives, F defines a pairwise comparison rule where the outcome
strictly depends on how each source ranks that pair. That is, IIA and #3 are
equivalent.

The proof (Sect. 7) mimics the above discussion. Because Theorem 2 equates

IIA and condition 3, Arrow’s theorem becomes a special case of Theorem 1.

An interesting consequence of Theorem 2 is how it identifies IIA’s main role to

be a filter; it eliminates certain decision methods from consideration. (From a

system perspective, it limits which systems are admissible.) In particular, if a

decision rule fails to satisfy IIA, such as the plurality vote, this failure merely means

that the rule cannot be described as a collection of independent paired comparison

rules. By itself, this is not a negative feature. Instead, based on the following

comments, it could be a positive one.

Because the IIA filter allows only paired comparison rules to be subject to the

negative consequence of Arrow’s Theorem, rather than the traditional ‘‘with three or

more alternatives, no rule is fair,’’ a more accurate representation of Arrow’s

Theorem is that

‘‘With three or more alternatives, no decision method based on a collection of

independent paired comparison rules is fair.’’
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From a system’s perspective, Arrow’s theorem is a warning that there need not exist

ways to determine the outcomes of independent subsystems (here, the pairs) that

always are consistent with the objective of the whole. Beyond decision rules, expect

similar negative assertions to arise should a system have a rich source of inputs

along with a consistency condition on the ‘‘whole’’ that mandates how independent

outcomes of the parts are related.

3 Connecting information

The source of ‘‘the parts do not agree with the whole’’ conclusion can be illustrated

with Eq. 2 where the A1�A2 outcome is reasonable for p1, but questionable for p2:
Doubt about the p2 outcome has nothing to do with how each source ranks fA1;A2g
(it is the same in each profile), but how this pair is situated with respect to the other

alternatives. Stated differently, the negative conclusion of Arrow’s result and

Theorem 1 reflect the fact that each pair’s ranking is determined solely by the
properties of the rule designed for that particular pair. As such, information coming

from these subsystems need not adhere to the system’s requirements. In fact,

condition 3 (or IIA) prohibits checking whether the subsystems’ (pairs’) outcomes

agree with the system’s requirement (transitivity).

For an example, return to the above discussion of where to locate a plant. It could

be that the status of taxes and the availability of land lead to the rankings Boston �
Chicago and Chicago � Atlanta. The ranking of {Atlanta, Boston} is based on the

ease of parking, where Atlanta � Boston creates a cycle. The source of the problem

is clear; each pairwise rule carefully makes a choice based on its specified
responsibility. But there is nothing in these assignments to assure a transitive

outcome.

The above holds even should the pairwise methods be designed to achieve

excellence. Thus, a corollary of the above observation is the counterintuitive

statement that

even imposing a high level of excellence in determining the outcome for each

independent subsystem need not lead to an acceptable outcome for the full

system.

Clearly, something other than achieving excellence in each subsystem’s outcome is

involved. This underscores the need to discover whether the subsystems’ outcomes

(here, pairs) can interact with one another in a manner that supports the system’s

objective. The approach developed next assigns only those tasks to the subsystems

where the outcomes will be consistent with the system’s objectives. (In general, this

is difficult to do.)

3.1 The structure of pairs

Fundamentals that are known about the structure of the space of pairwise
summation techniques (Saari, 2014) are expanded here. This structure holds

independent of whether the ranking of pairs is determined by voting, decision rules,
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cost, size, or any other factor. After defining the space, a convenient way of

computing is introduced.

Equation 1 objective is to describe the data (or preliminary paired comparison

results) d as an orthogonal sum

d ¼ ddesired þ dnoise: ð6Þ

To achieve Eq. 6, the space of paired comparisons is orthogonally divided into a

subspace where the pairs satisfy a strong form of transitivity (this assures satisfying

the system’s objective of having transitive outcomes) and a subspace of cyclic

behavior. It turns out that items from this second subspace create all of the ranking

difficulties that can arise with paired comparison methods; they constitute the

system’s error terms that force outcomes from the parts (the subsystems) to deviate

from the full system’s transitivity requirement.

With n� 3 alternatives fA1;A2; . . .;Ang, let di;j be a numerical difference

comparison between Ai and Aj where

di;j ¼ �dj;i for all i; j ¼ 1; . . .; n; so di;i ¼ 0 for all i: ð7Þ

The comparisons can be almost anything such as differences in costs of internet

plans where di;j is the monthly cost of plan Ai minus that of plan Aj. Or, di;j could the

difference between the weights, or maybe the lengths, of objects Ai and Aj; it could

even be the clockwise angle between two vectors. In an election, a natural choice for

di;j is the difference between Ai’s and Aj’s tallies. Perhaps di;j comes from a physics

or chemistry experiment where it is the difference in temperatures of objects Ai and

Aj. Although the origin of the di;j terms is immaterial as long as Eq. 7 is satisfied, it

plays a role when evaluating conclusions; e.g., comparing costs of internet plans

need not identify the optimal choice.

Thanks to Eq. 7, it suffices to know the n
2

� �
¼ nðn�1Þ

2
independent di;j; i\j, values

rather than all n2 of them. Thus, the space of di;j paired comparisons is identified

with the n
2

� �
-dimensional Euclidean space R

n
2ð Þ. The di;j values define the vector

d ¼ ðd1;2; d1;3; . . .d1;n; d2;3; . . .; d2;n; d3;4; . . .; dn�1;nÞ 2 R
n
2ð Þ; ð8Þ

where semicolons signal a change in the first listed alternative.

To motivate the next definition, recall how transitivity borrows the ordering

properties of points on the line. For instance, should points satisfy p1 [ p2 and

p2 [ p3, then p1 [ p3. Mimicking this relationship, transitivity requires that if

A1�A2 and A2�A3, then A1�A3. In terms of di;j, if d1;2 [ 0 and d2;3 [ 0, then

transitivity requires d1;3 [ 0. A stronger concept of transitivity adopts the algebraic

relationship of points on a line

ðp1 � p2Þ þ ðp2 � p3Þ ¼ ðp1 � p3Þ: ð9Þ

Definition 1 (Saari 2014) A vector d 2 R
n
2ð Þ is strongly transitive if each triplet of

indices fi; j; kg leads to the equality
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di;j þ dj;k ¼ di;k: ð10Þ

.

The set of all strongly transitive vectors, denoted by ST n; is the space of strongly
transitive rankings.

The choices of comparing internet costs or weights of objects always are strongly

transitive. But due to interaction effects, temperatures of pairs of objects in a

chemistry experiment, or the angles between vectors in R3, need not satisfy this

condition. For a voting example that fails the condition, suppose of 33 sources

6 prefer A1�A2�A3; 9 prefer A1�A3�A2; 1 prefers A3�A1�A2;
5 prefer A3�A2�A1; 2 prefer A2�A3�A1; 10 prefer A2�A1�A3:

ð11Þ

The fA1;A2g pairwise vote is A2�A1 with a 17:16 tally, the fA2;A3g outcome of

A2�A3 has tally 18:15, and the fA1;A3g outcome of A1�A3 has tally 25:8. Trivially,

the values

d1;2 ¼ 16� 17 ¼ �1; d2;3 ¼ 18� 15 ¼ 3; d1;3 ¼ 25� 8 ¼ 17 ð12Þ

cannot satisfy the strong transitivity of Eq. 10 even though the outcome is transitive.

Any paired comparison decision tool that allows non-transitive outcomes has

examples that violate strong transitivity. A simple illustration with eight sources has

4 preferring A1�A2�A3; 1 preferring A2�A3�A1; 2 preferring A3�A2�A1, and 1

preferring A3�A1�A2. The A1�A2 and A2�A3 outcomes both have a 5:3 tally. But

the tied A1 �A3 vote with tally 4:4 violates transitivity. Here d1;2 ¼ 5� 3 ¼
2; d2;3 ¼ 2; but d1;3 ¼ 0; which, because 2þ 2 6¼ 0, fails the strong transitivity

condition.

The structure of this space ST n is captured by the following definition:

Definition 2 For each i ¼ 1; . . .; n, let vector Bi 2 R
n
2ð Þ be where di;j ¼ 1 (so

dj;i ¼ �1) for j 6¼ i, j ¼ 1; . . .; n, and dk;j ¼ 0 if k; j 6¼ i:

Thus, for alternative Aj, the Bj nonzero components occur only when Aj is

compared with any other alternative, and the dj;i ¼ 1 value favors Aj. For n ¼ 4,

B1 ¼ ð1; 1; 1; 0; 0; 0Þ;B2 ¼ ð�1; 0; 0; 1; 1; 0Þ; B3 ¼ ð0;�1; 0;�1; 0; 1Þ;B4 ¼ ð0; 0;
�1; 0;�1;�1Þ: Notice that

P4
j¼1 Bj ¼ 0 ¼ ð0; 0; 0; 0; 0; 0Þ 2 R

4
2ð Þ: Each Bj is

strongly transitive because dj;k ¼ dj;s ¼ 1; and dk;s ¼ 0, so dj;k þ dk;s ¼ dj;s is

satisfied.

Theorem 3 For n� 3, ST n is a ðn� 1Þ-dimensional linear subspace of R
n
2ð Þ that is

spanned by any ðn� 1Þ of the fBigni¼1 vectors.

According to Theorem 3, algebraic combinations of strongly transitive terms are

strongly transitive. As properties of summing terms in ST n resemble Eq. 9 addition,

nothing goes wrong with ST n terms. So, for decision methods based on algebraic

combinations of di;j values, nothing goes wrong with data d 2 ST n. Thus, ST n is
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the sought after consistency space for transitivity. In turn, all terms causing system

difficulties are orthogonal to this subspace.

3.2 Cyclic effects

Clearly, cycles of paired outcomes violate the system’s objective of transitivity. A

longstanding mystery has been whether other effects exist. The answer, as

developed next by determining the subspace orthogonal to ST n, is that cyclic terms
are the sole cause of all pairwise ranking difficulties.

A typical example of a cycle is

A1�A4; A4�A3; A3�A5; A5�A2; A2�A1; ð13Þ

Using fixed di;j differences, this cycle defines

d1;4 ¼ d4;3 ¼ d3;5 ¼ d5;2 ¼ d2;1 ¼ 1: ð14Þ

The Eq. 13 cycle subscripts can be identified with the list

k� ¼ ð1; 4; 3; 5; 2Þ; ð15Þ

as specified on a loop or circle (Fig. 1a). Here, 1 is followed by 4, but, because of

the loop structure, 1 follows 2 to reflect the concluding A2�A1 that completes the

cycle. All cycles can be described with such lists.

Definition 3 Let k ¼ ði; j; k; . . .; sÞ be a list of at least three indices specified in a

circular manner (so i is followed by j, and i follows s); each index appears only

once. Define the cyclic vector Ck 2 R
n
2ð Þ as follows: If i and j are adjacent in the

listing, where j immediately follows i, then di;j ¼ 1. If i and j are not adjacent, then

di;j ¼ 0: Vector Ck is the ‘‘cyclic direction defined by k’’.

With Eq. 15 and using di;j ¼ �dj;i (so Eq. 14 becomes

d1;4 ¼ 1; d3;4 ¼ �d4;3 ¼ �1; d3;5 ¼ 1; d2;5 ¼ �d5;2 ¼ �1; d1;2 ¼ �d2;1 ¼ �1), we

have that

1 4

3

5

2

1 4

3

5

2

1 4

3

5

2

Original cycle First triplet Three tripletsb ca

Fig. 1 Division of a cycle
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Ck� ¼ðd1;2; d1;3; d1;4; d1;5; d2;3; d2;4; d2;5; d3;4; d3;5; d4;5Þ
¼ð�1; 0; 1; 0; 0; 0;�1;�1; 1; 0Þ:

The analysis is significantly simplified by describing cycles in terms of triplets.

Proposition 1 Any Ck can be expressed as a sum of cyclic vectors defined by
triplets.

To illustrate Prop. 1 with Fig. 1 and Eq. 15, first decompose the original k� ¼
ð1; 4; 3; 5; 2Þ (Fig. 1a) as a four cycle and a triplet by inserting an arrow (Fig. 1b)

from node 3 to node 1; doing so defines the triplet (1, 4, 3). Next, an arrow from

node 1 to node 3 defines the four-cycle (1, 3, 5, 2). This defines

C1;4;3 þ C1;3;5;2 ¼ ð0;�1; 1; 0; 0; 0; 0;�1; 0; 0Þ þ ð�1; 1; 0; 0; 0; 0;�1; 0; 1; 0Þ ¼ Ck� ;

where the arrows connecting 1 and 3 in opposite directions (the bold d1;3 variable)
cancel in the sum. Next (Fig. 1c), divide (1, 3, 5, 2) into the triplets (1, 3, 5) and

(1, 5, 2) to have

Ck� ¼ C1;4;3 þ C1;3;5 þ C1;5;2:

Of importance, this decomposition is not unique. While the above choice is centered

about node 1, a decomposition centered about, say, node 4 would be

Ck� ¼ C4;3;5 þ C4;5;2 þ C4;2;1:

Theorem 4 For n� 3, let CT n be the space of cyclic terms spanned by all cyclic

vectors fCkg; CT n is a linear subspace with dimension n
2

� �
� ðn� 1Þ ¼ n�1

2

� �
that is

orthogonal to ST n. Thus, any d 2 R
n
2ð Þ can be uniquely expressed as an orthogonal

sum

d ¼ dST þ dCT ð16Þ

where dST 2 ST n and dCT 2 CT n.

The next assertion provides a convenient choice of bases for ST n and CT n.

Corollary 1 For a vector dST 2 ST n, there are unique scalars bj so that dST can be

uniquely expressed as

dST ¼
Xn�1

j¼1

bjBj ð17Þ

Each cyclic component of dCT 2 CT n that includes alternative Ai can be uniquely
represented, with scalars cj;k, by cyclic vectors with three indices as

dCT ¼
X

j;k 6¼i;j\k

cj;kCi;j;k: ð18Þ
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There is no mystery about Eq. 18, it is just an analytic representation of Fig. 1c

division of a cycle about node i. Comparing the ðn� 1Þ-dimension of ST n with the
n�1
2

� �
dimension of CT n makes it clear that the space of problem-causing terms,

CT n, quickly overwhelms ST n. As the CT n dimension is n�2
2

times that of ST n, we

must definitely anticipate cyclic error terms.

3.3 Computing

According to Theorem 4, paired comparison outcomes have an Eq. 1 orthogonal

structure given by Eq. 16. This means that to eliminate system problems and the

limitations of the decision methods discussed above, it suffices to project the paired

conclusions defined by d into ST n. Doing so eliminates the troubling cyclic dCT
component, where it is arguable that the outcome should be a complete tie. A simple

way to achieve this objective is, for each j, to compute the average fdj;ig value

(where dj;j ¼ 0).

Definition 4 For n� 3 and d 2 R
n
2ð Þ, a Borda Rule assigns the number

bj ¼
1

n

Xn

i¼1

dj;i; j ¼ 1; . . .; n: ð19Þ

to each alternative. The BR ranking is determined by the bj values where larger is

better.

To illustrate with Eq. 12 and its d ¼ ðd1;2; d1;3; d2;3Þ ¼ ð�1; 17; 3Þ; we have that

3b1 ¼ d1;2 þ d1;3 ¼ �1þ 17 ¼ 16; 3b2 ¼ d2;1 þ d2;3 ¼ 1þ 3 ¼ 4; and 3b3 ¼
d3;1 þ d3;2 ¼ �17� 3 ¼ �20 leading to the BR ranking of A1�A2�A3:

A way to interpret BR is that it does not treat the di;j paired comparison outcomes

as the final results of a decision analysis. Instead, BR treats them as the penultimate

step. As the BR ranking is defined by scalar values (which are always transitive),

BR avoids cycles. So the effect of the final BR step is to remove error-cyclic terms

that violate the system’s objective of transitivity. Other BR properties are described

next.

Theorem 5 If d 2 CT n, then all of its bj values equal zero. If d 2 ST n, then for

each (i, j) pair,

di;j ¼ ðbi � bjÞ: ð20Þ

As d 2 R
n
2ð Þ is uniquely expressed as d ¼ dST þ dCT , where dST 2 ST n; dCT 2

CT n; the BR values and BR ranking of d are completely determined by the dST
component. That is, the cyclic dCT component does not influence, in any manner, the
BR outcome.

According to Theorem 5, the projection of d to the transitive consistency space

ST n can be quickly determined from Eq. 20 and the Borda Rule (BR) outcome.

This is because the linearity of addition requires
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BRðdÞ ¼ BRðdST þ dCTÞ ¼ BRðdSTÞ þ BRðdCTÞ ¼ BRðdSTÞ

and the BRðdSTÞ ¼ BRðdÞ values can be converted (by Eq. 20) to the dST values.

To illustrate with Eq. 12, rather than using linear algebra to project d ¼
ð�1; 17; 3Þ to ST 3, with the above b1 ¼ 16

3
; b2 ¼ 4

3
; b3 ¼ �20

3
values, it is simpler to

use Eq. 20 to obtain dST ¼ ðb1 � b2; b1 � b3; b2 � b3Þ ¼ ð4; 12; 8Þ: Indeed,

d1;2 þ d2;3 ¼ 4þ 8 ¼ d1;3 ¼ 12, which verifies that dST is strongly transitive.

Because d ¼ dST þ dCT and two of the vectors are known, it follows that

dCT ¼ d� dST ; ð21Þ

which here is dCT ¼ ð�1; 17; 3Þ � ð4; 12; 8Þ ¼ ð�5; 5;�5Þ ¼ �5ð1;�1; 1Þ ¼
�5C1;2;3: Again, it is arguable that the outcome for this cyclic C1;2;3 should be a

complete tie.

It is interesting that, although d ¼ ð�1; 17; 3Þ is not strongly transitive (it

includes cyclic terms), it defines the transitive rankings A2�A1;A2�A3;A1�A3 or

A2�A1�A3: By beating all other alternatives, A2 is called a Condorcet winner. The
reason the Condorcet (A2) and Borda (A1) winners differ is strictly because the

Condorcet winner is influenced by information that includes the cyclic error term
dCT . Indeed, dCT ¼ 5ð�1; 1;�1Þ is created by the profile pCT where 5 sources have

A2�A1�A3; five have A1�A3�A2, and five have A3�A2�A1, which creates the

cycle A2�A1;A1�A3;A3�A1 (each with a 10:5 tally) where there is no optimal

alternative.

In contrast, pST has the strongly transitive

6 prefer A1�A2�A3; 4 prefer A1�A3�A2;
1 prefer A3�A1�A2; 0 prefer A3�A2�A1;
2 prefer A2�A3�A1; 5 prefer A2�A1�A3

with the A1�A2�A3 conclusion. Thus (as always true), the cyclic noise component,

where no alternative is favored, is what causes the Condorcet and Borda winners to

differ.

A way to think about this is that there are two sources of information; pST and

pCT . The first group has a well defined ranking outcome. Because it is arguable that

the second group does not favor any alternative, combining the two sources pST þ
pCT may seem to be innocuous. It is not; doing so changes the outcome.

A common difficulty in experiments is if some di;j data values for certain pairs

are close to each other. Such settings can raise doubt about the selection of an

optimal choice. Suppose differences between temperatures in a chemistry exper-

iment have d1;2 ¼ �1; d2;3 ¼ 3; d1;3 ¼ 9; although A2 is warmer than A1 or A3, the

small d1;2 ¼ �1 value can raise doubts about A2. The Borda scores are 3b1 ¼
�1þ 9 ¼ 8; 3b2 ¼ 1þ 3 ¼ 4; 3b3 ¼ �3� 9 ¼ �12; where A1, not A2, is the Borda

winner. This difference arises because values supporting A2, which are not as

decisive as those supporting A1, reflect cyclic noise in the data generated by a

component in which ‘‘no alternative is better.’’ As shown next, this is a general

phenomenon. (Equation 22 can be extended to all n� 3, but the expression is

messy.)
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Theorem 6 For n ¼ 3, if the Borda winner A1 and the Condorcet winner A2

disagree, then d is not strongly transitive (it includes cyclic components). The Borda
ranking for d is A1�A2�A3 (so the Condorcet winner is not bottom ranked), the
Borda difference b1 � b2 [ 0 is smaller than b2 � b3 [ 0, and the cyclic term, is
cð1;�1; 1Þ ¼ cC1;2;3 where

ðb1 � b2Þ\� c\ðb2 � b3Þ: ð22Þ

For n� 3; the Condorcet winner never is Borda bottom ranked; if there is a
Condorcet loser (an alternative that loses all paired comparisons), the Condorcet
winner is Borda ranked over the Condorcet loser.

The message: to have consistent, transitive outcomes, use the Borda Rule. But are

there other approaches? The next theorem asserts that any such choice is equivalent

to the Borda Rule. One possibility is the Borda Count, which is where a n-candidate

ballot is tallied by assigning n� j points to the jth positioned candidate. As another

example, the Kruskal–Wallis procedure from non-parametric statistics is equivalent

to the Borda Count (Haunsperger, 1989) and hence to the Borda Rule.3

Theorem 7 Any linear method of removing the error term of d to obtain dST is
equivalent to the Borda rule. If each di;j value is the difference of Ai’s and Aj’s

majority vote tallies coming from a� 2 strictly transitive rankings of the n� 3

alternatives fA1; . . .;Ang, then Aj’s Borda Count tally, denoted by sj, and Borda

Rule value bj satisfy

2sj ¼ ðn� 1Þaþ nbj; j ¼ 1; . . .; n: ð23Þ

To illustrate Eq. 23 with Eq. 11, it follows from the above computations that

n ¼ 3, a ¼ 33 (the number of sources), 3b1 ¼ 16; 3b2 ¼ 4; 3b3 ¼ �20, while s1 ¼
41; s2 ¼ 35; s3 ¼ 23: Elementary computations prove that these values satisfy

Eq. 23.

4 Modifying methods

Knowing what causes paired comparison problems identifies how to modify

decision approaches to yield more acceptable conclusions. As developed in the

previous section, the ‘‘transitive consistency space’’ is the strongly transitive ST n.

The projection of d to ST n is done as follows:

• Find each pair’s pairwise di;j value; e.g., for voting, compute each pair’s majority

vote difference.

• Compute each alternative’s Borda tally (Eq. 19).

3 Recall, the Kruskal–Wallis test uses rank information rather than the actual data. So if the data indicate

strength of a product from three firms are A:{ 10.2, 11, 9.9}, B: {12, 9.5, 9.4}, C: {12.1, 9.3, 9.2}, it

would be replaced with the ranking A: { 6, 7, 5}, B: {8, 4, 3}, C: {9, 2, 1}. To find the rank assigned to

each firm, sum the associated values; e.g., A is assigned 6þ 7þ 5 ¼ 19; B has 8þ 4þ 3 ¼ 15; and C has

9þ 2þ 1 ¼ 12:
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• Use these Borda tallies to compute the differences in tallies according to Eq. 20.

The success of this approach is captured by the following theorem, which asserts

that by treating paired comparison outcomes as the penultimate step in a decision

analysis, where the final ranking is determined by the above projection approach,

the negativity of Arrow’s Theorem is avoided. That is, from a system perspective,

the whole and the sum of parts agree. This holds for whatever methods are used to

compute the paired outcomes.

Theorem 8 For n� 3 alternatives and a� 2 sources of inputs, the above projection
approach defines pairwise rankings that always satisfies the four conditions of
Sect. 2. The ranking coming from these tallies agrees with the BR ranking.

Stated differently, Arrow’s result is totally caused by the subsystem information

where cyclic combinations compromise the system’s objective of transitivity. This

makes sense; data with cyclic components must be expected to compromise the goal

of transitivity. In contrast, the ST n terms ensure agreement between the system and

the subsystems.

4.1 Pugh matrix

According to the above, anticipate difficulties with any decision method based on

paired comparisons where the pairs are separately analyzed. (This separation causes

the system’s requirements to be ignored.) This message can be illustrated with the

Pugh matrix (Pugh, 1991) approach, where the paired comparisons are made with

respect to a base alternative. Even if the outcome for each pair is determined in a

sound and excellent manner, the final conclusion could violate excellence.

As a five alternative example, suppose this approach judges the status quo A2 as

being better than A3;A4;A5; only A1 is better than A2: Presumably, this means that

A1 is the superior choice. But applying the Pugh approach to the same data where

the supposedly superior A1 now is the base of comparison, while A1 remains better

than A2, the previously ‘‘inferior’’ A3;A4;A5 could be judged as being better than the

supposedly superior A1!

A supporting example is

Criterion Ranking
1 A1 A2 A3 A4 A5
2 A2 A3 A4 A5 A1
3 A3 A4 A5 A1 A2

ð24Þ

The paired outcomes involving the status quo A2 are

A1�A2;A2�A3;A2�A4;A2�A5; so A2 is beaten only by A1. That A1 is not the

superior choice follows from the paired outcomes involving A1, which are

A1�A2;A3�A1;A4�A1;A5�A1: So, A1 is not the superior choice as it beats only A2:
Finally A3�A4;A3�A5;A4�A5:This difficulty arises because valued information is ignored; e.g., when A2 is the

basis of comparison, A1 is not compared with any other alternative. Consequently,

any assertion that A1 is superior is dubious; it is based on a tacit, unsupported
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assumption that the system has transitive outcomes. This leads to a second problem;

cyclic error terms introduce difficulties and the cycle here is

A1�A2;A2�A3;A3�A4;A4�A5;A5�A1: Which alternative should be chosen?

A resolution follows from Sect. 3 and Theorem 7: eliminate the problem-causing

system error terms. For each criterion, rank all n alternatives where the base choice

(e.g., the status quo) does not have a special status. According to Theorem 7, the

Borda Count ranking of the alternatives captures what would happen should the

paired comparisons be projected to ST n to eliminate the system’s cyclic error terms.

So, for each criterion’s ranking of the n choices, assign the scores of ðn� jÞ to the jth
ranked alternative. Sum each alternative’s assigned values, and use them to rank the

alternatives. Doing so for Eq. 24, where A2 is the status quo, leads to the following:

Criterion A1 A2 A3 A4 A5
1 4 3 2 1 0
2 0 4 3 2 1
3 1 0 4 3 2

Total 5 7 9 6 3

ð25Þ

The A3�A2�A4�A1�A5 outcome indicates that only A3 is better than the status quo

A2. This approach eliminates the above concern about missing information and the

worry about how hidden cyclic components can distort answers.
As an answer is given, there is no reason to find dST . But if there is a need, use

Sect. 3 machinery to compute the bj values, which from Eq. 23 are 5bj ¼ 2sj � 12,

or 5b1 ¼ 2; 5b2 ¼ 2; 5b3 ¼ 6; 5b4 ¼ 0; 5b5 ¼ �6: Indeed, if Aj�Ak in this Eq. 25

outcome, we know (e.g., Theorem 5) that the outcome for that part of dST has

dj;k [ 0. And so, finally, the whole and parts agree.

4.2 Rank reversal

A stronger comment about agreement between the pairs and whole comes by

explaining how dropping alternatives can cause a method to change, even reverse
the ranking of the remaining alternatives. As shown next, again, this problem is

caused by the cyclic terms.

Theorem 9 If d 2 ST n, and if Pk is a projection mapping that drops alternative Ak,

then the PkðdÞ is strongly transitive and the ranking of the ðn� 1Þ alternatives in
PkðdÞ agrees with the ranking of the same alternatives in d: But if d 2 CT n and Ak

is in a cycle of d, then PkðdÞ is the sum of nonzero terms in ST n�1 and CT n�1.

To illustrate Theorem 9 with n ¼ 4, dropping A4 corresponds to ignoring all dj;4

terms in d. If d 2 ST 4, then d ¼
P3

j¼1 bjBj (from Eq. 17). Dropping the dj;4

components from Bj 2 ST 4 defines Bj 2 ST 3: Consequently, the P4ðdÞ outcome

remains the same
P3

j¼1 bjBj but now in ST 3.

To illustrate the last sentence of Theorem 9, consider Cf1;2;3g 2 CT 4. All dj;4

terms in Cf1;2;3g are zero, so P4ðCf1;2;3gÞ ¼ Cf1;2;3g 2 CT 3; there is no change. But

Cf1;2;3;4g ¼ ð1; 0;�1; 1; 0; 1Þ involves A4 and defines the cycle

123

Seeking consistency with paired comparisons: a systems approach 391



A1�A2;A2�A3;A3�A4;A4�A1: Dropping dj;4 values from Cf1;2;3;4g defines

ð1; 0; 1Þ ¼ ½2
3
B1 þ 1

3
B2� þ ½2

3
Cf1:2;3g�, where the first bracketed component is a

new ST 3 term defining A1�A2�A3, and the second Cf1:2;3g 2 CT 3 defines the

A1�A2;A2�A3;A3�A1 cycle. This outcome is consistent with what happens by

dropping A4 from the Cf1;2;3;4g rankings to define A1�A2;A2�A3.

To see how this behavior can cause changes in outcomes, the BR ranking of

Cf1;2;3;4g is a complete tie, while the BR ranking of P4ðCf1;2;3;4gÞ is A1�A2�A3,

which manifests the strongly transitive term created from the cycle by dropping A4.

So, the BR ranking of d ¼ 3B3 þ 2B2 þ B1 þ 12Cf1;2;3;4g is A3�A2�A1�A4, but

because of the strong cyclic component, the BR ranking of P4ðdÞ is A1�A2�A3:
It follows from Theorem 9 that the only way to create a reversal example with a

given method is to create a profile with appropriate cyclic terms. By dropping an

alternative, the cyclic terms alter the strongly transitive portion of a profile, which,

with a careful construction, allows almost any ranking to emerge. This means, for

instance, that the Kruskal–Wallis approach from nonparametric statistics can suffer

these problems.

The construction of examples follows the lead of the above example. To suggest

what can be done, suppose the Kruskal–Wallis ranking for d is A3�A2�A1�A4 and

we want to have an example where, by dropping A4, the new ranking is A1�A2�A3:
As above, just add to d a sufficiently large multiple of Cf1;2;3;4g. [To see how to

design raw data values from d, see (Bargagliotti and Saari 2010).]

A way to underscore the importance of Theorem 9 is to recognize that IIA in

Arrow’s Theorem, or assumption 3 in Theorem 1, are projections of data to pairs.

Slight extensions of Theorem 9 (e.g., consider all Pk projections, k ¼ 1; . . .; n) lead
to Arrow-type conclusions based not on pairs, but on triplets, or on quadruples, or

.... This means that subsystem-system difficulties are far more pervasive than

suggested by Theorem 1 and Arrow’s result.

The continuing message is that the myriad of difficulties experienced in this wide

general area, whether it be Arrow’s Theorem, problems in decision or statistical

methods, are strictly caused by cyclic terms. To avoid problems, all analysis should

strictly depend upon a profile’s strongly transitive portion; that is, remove this cyclic

virus, retain only portions of the profile that are compatible with the objective of the

system. From a systems perspective, expect independent subsystems to admit

features that counter the systems’ objective,. They must be identified and removed.

5 Ratio scale methods

The ratio scaled comparison techniques constitute another important class of paired

decision methods. Here, a comparison of Ai and Aj is represented by a value ai;j [ 0,

which is intended to be the multiple of how much Ai is better than Aj. The defining

comparisons for the n alternatives fA1;A2; . . .;Ang are the positive values
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ai;j [ 0 where aj;i ¼
1

ai;j
for each i; j; so ai;i ¼ 1 for each i: ð26Þ

According to Eq. 26 (and similar to Eq. 8), all information about the n2 paired

comparisons is contained in the n
2

� �
-dimensional vector of positive entries

a ¼ ða1;2; a1;3; . . .; a1;n; a2;3; . . .a2;n; a3;4; . . .; an�1;nÞ 2 R
n
2ð Þ

þ : ð27Þ

The system goal is to rank the n alternatives by using information from the sub-

systems—the ai;j paired comparisons. Because ai;j is a multiple of how much better

Ai is over Aj, this suggests there are scalar weights wj for Aj, j ¼ 1; . . .; n, that define
the ai;j values. These desired wj weights exist if and only if they satisfy the con-

sistency condition

ai;j ¼
wi

wj
for all pairs ði; jÞ: ð28Þ

Of importance is the following known result (which is proved for completeness).

Theorem 10 Equation 28 is true for all pairs if and only if

ai;jaj;k ¼ ai;j for all triplets ði; j; kÞ: ð29Þ

Proof To prove the statement in one direction, if weights can be found where

Eq. 28 always holds, then

ai;jaj;k ¼
wi

wj

� �
wj

wk

� �
¼ wi

wk
¼ ai;k;

which is the desired Eq. 29.

To prove the converse, because only ai;j values are known, candidate choices for
the wj weights must be found. Choose an alternative as the basis of comparison, say

An, and select a positive value for wn. Define wj, the candidate weight for Aj, to be

wj ¼ aj;nwn or aj;n ¼
wj

wn
; j ¼ 1; . . .; n: ð30Þ

If Eq. 29 always holds, then ai;j ¼ ai;nan;j ¼ ai;n
1
aj;n

¼ ðwi

wn
Þðwn

wj
Þ ¼ wi

wj
, which is Eq. 28.

The selected wn [ 0 value does not matter because for any scalar l[ 0, the ai;j
values defined by fw1;w2; . . .;wng are those given by flw1; lw2; . . .; lwng: h

With this Eq. 29 structure, the ideal situation is if a belongs to the consistency
space

CSn ¼ a 2 R
n
2ð Þ

þ j ai;jaj;k ¼ ai;k for all triplets ði; j; kÞ
� �

: ð31Þ

Properties of CSn follow from Eq. 29, which requires each aj;k ¼ aj;1a1;k. This

means that all aj;k values can be determined by Eq. 29 and the ðn� 1Þ values of a1;j
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j ¼ 2; . . .; n. Thus, CSn is a smooth ðn� 1Þ-dimensional manifold. If a 2 CSn, then

Eq. 30 can be used to assign a weight wj to alternative Aj; j ¼ 1; . . .; n. h

5.1 A difficulty

In general, a 62 CSn, which requires removing a’s error component. As this error

term had not been identified, methods were developed to adjust the wj and/or fai;jg
values. A natural choice is to project a to the space CSn; e.g., find the CSn point

closest to a. But this approach carries the tacit assumption that a has an Eq. 1 form.

Moreover, CSn is a nonlinear submanifold of R
n
2ð Þ. The nonlinearity follows

immediately by finding all a1;j and aj;2 values so that a1;jaj;2 ¼ a1;2 ¼ 1; which has

the hyperbolic equation xy ¼ 1 form; e.g., see Fig. 2.

The reality that projections can introduce new types of errors is illustrated in

Fig. 2 where the dark hyperbola represents the space CSn. The nonlinearity of CSn

makes it reasonable to expect that a decomposition of a is given by the light curve

passing through a and the CSn. That is, the curve constitutes error terms; where the

curve passes through CSn (point b in the figure) is the corrected form of a. The
dashed arrow, which represents a projection, defines c 2 CSn. If the above scenario

is correct (as shown in Theorem 13, it is), then standard projection approaches must
introduce new errors, which, in Fig. 2, is the c� b difference.

Certain methods harness the power of the Perron-Frobenius result (from linear

algebra) that a nonsingular n	 n matrix with positive entries has only one

eigenvector with positive entries. The AHP approach, promoted by Saaty (Saaty,

1977; Saaty & Alexander, 1989), uses the matrix ððai;jÞÞ and defines wj to be this

eigenvector’s jth component. A linear algebra exercise shows that these weights

satisfy Eq. 28 if and only if a 2 CSn: Otherwise, adjustments are needed.

The geometric mean technique developed by Crawford and Williams (Crawford

& Williams, 1985; Crawford, 1987), defines

wj ¼ ðaj;1aj;2. . .aj;nÞ
1
n; j ¼ 1; . . .; n; ð32Þ

so the wj weight assigned to Aj is the product of all aj;k multiples raised to the 1
n

power. While these weights do not satisfy Eq. 28 if a 62 CSn, by replacing each aj;k
with

wj

wk
, the Eq. 29 consistency equation holds. This means that this technique does

convert an a 62 CSn into a CSn point. But, is it the desired point? While numerical

experiments suggest this geometric mean approach is better than several others

CSn

•a

Projection•
b

Error curve

c

Fig. 2 The consistency space
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[e.g., (Colany & Kress, 1993)], to the best of my knowledge, there has not been a

theoretical justification. An argument is in Sect. 5.2.

5.2 A resolution

The error term of a 62 CSn is what causes the system’s ‘‘parts and whole’’ problem.

Resolving the difficulty is simple: transfer a to the space of paired comparisons that

use summations (Sect. 3) where answers are now known.

To do so, identify each a 2 R
n
2ð Þ

þ with a unique d 2 R
n
2ð Þ (Eq. 8) through the

mapping ln : R
n
2ð Þ

þ ! R
n
2ð Þ defined as

d ¼ lnðaÞ ¼ ðlnða1;2Þ; . . .; lnða1;nÞ; . . .; lnðan�1;nÞÞ; ð33Þ

The inverse of this diffeomorphism is the exponential mapping e : R
n
2ð Þ ! R

n
2ð Þ

þ
where

ed ¼ ðed1;2 ; ed1;3 ; . . .; ed1;n ; ed2;3 ; . . .; edn�1;nÞ: ð34Þ

Equation 26 defining condition of ai;j ¼ 1
aj;i

becomes, with the logarithm mapping,

lnðai;jÞ ¼ � lnðaj;iÞ; this is the required Eq. 7. Conversely, the di;j ¼ �dj;i expres-

sion becomes edi;j ¼ 1

edj;i
; this is the required Eq. 26 condition.

Thanks to these diffeomorphisms, finding a’s error component reduces to finding

the error component of lnðaÞ where Sect. 3 structure provides answers. The next

statement is central to this discussion.

Theorem 11 For n� 3, the subspaces ST n and CSn are diffeomorphic; the Borda
Rule (Eq. 19) and the geometric mean approach (Eq. 32) are equivalent.

The last sentence means that an error free approach to rank the alternatives in a

ratio scale space is the geometric mean approach. The theorem also means that all of

the above Sects. 3, 4 results have parallel conclusions for the multiplicative

approach.

Proof What mainly needs to be shown is that ST n and CSn are mapped onto each

other with the indicated mappings. The CSn space requires all triplets to satisfy

Eq. 31. With the logarithm mapping, the condition ai;jaj;k ¼ ai;k becomes

lnðai;jÞ þ lnðaj;kÞ ¼ lnðai;kÞ, which is the strongly transitive condition (Def. 1).

Thus, each a 2 CSn is mapped to a unique d 2 ST n. Conversely, if d 2 ST n; then
for all triplets di;j þ dj;k ¼ di;k, which under the exponential mapping becomes

edi;jþdj;k ¼ edi;k : Because edi;jþdj;k ¼ edi;j edj;k , every d 2 ST n is mapped to a unique

a 2 CSn.

As for the geometric mean technique, lnðaj;1aj;2. . .aj;nÞ
1
n ¼ 1

n

Pn
i¼1 lnðaj;iÞ; which

is the average flnðaj;kÞg value, or the Borda Rule value for alternative Aj.

Conversely, e
1
n

Pn

k¼1
dj;k ¼ edj;1edj;2 . . .edj;n

� 	1
n, so the BR is mapped to the geometric

mean rule. h
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The structures of CSn and error terms follow by using the exponential mapping to

transfer the Bj and Ci;j;k basis vectors of Corollary 1 to this ratio scale space. In

doing so, component wise addition in the pairwise summation space transfers to

coordinate wise multiplication in the ratio scale space; the vector 0 2 ST n is

mapped to the vector e ¼ ð1; . . .; 1; 1; 1. . .; 1Þ 2 CSn that has unity for each

component. For notation, let aST and aCT represent, respectively, the image of

strongly transitive and cyclic terms; the first provide a basis for CSn and the second

for error terms.

Definition 5 For a; b 2 R
n
2ð Þ

þ , define a 
 b to be

a 
 b ¼ ða1;2b1;2; a1;3b1;3; . . .; a1;nb1;n; . . .; an�1;nbn�1;nÞ: ð35Þ

Represent the product c1 
 c2 
 . . . 
 ck by Ok
j¼1cj

For each j ¼ 1; . . .; n� 1, let aSTðdjÞ be a vector such that each aj;k component

equals dj and all other components equal unity. Similarly, if the error component

involves Ai, let aCTðcj;kÞ be the vector where the ai;j and aj;k components equal cj;k,

and the ai;k component equals 1
cj;k
; all others equal unity.

To illustrate with n ¼ 4, vector 2B2 ¼ ð�2; 0; 0; 2; 2; 0Þ 2 ST 4 is transferred to

aSTðd2Þ ¼ ð 1d2 ; 1; 1; d2; d2; 1Þ 2 CS4 where d2 ¼ e2. The nonlinearity in the ranked

comparison space is captured by the form of aSTðd2Þ where a term (here, d2) is the
value of some component in the vector but the denominator in another component.

In a similar manner the 3C1;2;3 ¼ ð3;�3; 0; 3; 0; 0Þ cyclic term involves A1 so it is

mapped to the aCTðc2;3Þ ¼ ðc2;3; 1
c2;3

; 1; c2;3; 1; 1Þ error term where c2;3 ¼ e3: By

letting the value of c2;3 vary, it becomes clear that an error term has the nonlinear

form suggested by Fig. 2.

Theorem 12 Vector a 2 R
n
2ð Þ

þ can be uniquely expressed as a ¼ aST 
 aCT where
aST 2 CSn and all n of the geometric means of aCT agree. If Ai is involved in the
error term, the vectors have the representation

aST ¼ On�1
j¼1 aSTðdjÞ; aCT ¼ Oj;k 6¼i;j\kaCTðcj;kÞ:

As an n ¼ 4 example, which demonstrates the quick and simple computations,

consider

a ¼ 5

3
;
15

2
;
5

3
;
3

2
; 3; 6

� �
: ð36Þ

The geometric mean yields the weights w1 ¼ ð5
3
	 15

2
	 5

3
Þ
1
4 ¼ ½125

6
�
1
4;

w2 ¼ ð3
5
	 3

2
	 3Þ

1
4 ¼ ½27

10
�
1
4;w3 ¼ ð 2

15
	 2

3
	 6Þ

1
4 ¼ ½24

45
�
1
4, and w4 ¼ ð3

5
	 1

3
	 1

6
Þ
1
4 ¼ ½ 1

30
�
1
4.

A check on BR computations is whether
P

bj ¼ 0: This computational check
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translates for the geometric mean to determine whether w1w2w3w4 ¼
½w1w2w3w4�4 ¼ 1: It does.

The BR weights define dST with di;j ¼ bi � bj (Eq. 20). As summations are

converted to multiplications, the corresponding rule is Eq. 28, or ai;j ¼ wi

wj
; e.g., in

this example, a1;2 ¼
125
6
27
10

h i1
4¼ 5

3
: A computation leads to aST ¼ ð5

3
; 5
2
; 5; 3

2
; 3; 2Þ 2 CS4;

and that aST ¼ aSTðd1Þ 
 aSTðd2Þ 
 aSTðd3Þ where d1 ¼ 5; d2 ¼ 3; d3 ¼ 2:
According to Eq. 21, d0s cyclic component is dCT ¼ d� dST . This becomes

aCT ¼ a 
 a�1
ST ; ð37Þ

for ranked comparisons where a�1
ST inverts each aST component. (For any

a 2 R
n
2ð Þ

þ ; a 
 a�1 ¼ e:) The error term for the example is

aCT ¼ ð5
3
; 15
2
; 5
3
; 3
2
; 3; 6Þ 
 ð3

5
; 2
5
; 1
5
; 2
3
; 1
3
; 1
2
Þ ¼ ð1; 3; 1

3
; 1; 1; 3Þ, or aCT ¼ aCTðc2;3Þ for

c2;3 ¼ 3:

The structures of CSn and the error terms follow from this mathematics.

Illustrating with n ¼ 3, a parametric representation of CS3 is ðst ; s; tÞ for 0\d1 ¼
s; d2 ¼ t\1: Similarly, weights w1;w2; and w3 ¼ 1 define the point

w� ¼ ðw1

w2
;w1;w2Þ 2 CS3. All possible terms with errors emanating from w� define

the nonlinear error curve

u ¼ w1u

w2

;
w1

u
;w2u

� �
; 0\u\1; u 6¼ 1: ð38Þ

It follows from these nonlinearities that only rarely will the projection of an a 62 CSn

to CSn to eliminate a’s error provide a correct answer.

Theorem 13 If a 62 CSn, the closest point in CSn to a does not, in general, eliminate

a’s error term. Indeed, for n ¼ 3 and u 6¼ 1, the nearest CS3 point to u (from
Eq. 38) is the accurate w� if and only if

w1 ¼ w2
2 � 1 and u ¼

ð1þ w1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ w1Þ2 � 4

q

2
:

ð39Þ

With w3 ¼ 1;w2 ¼ 2, the projection approach works only in the special case

where w1 ¼ 4, and even then only for the two points u ¼ 5�
ffiffiffiffi
21

p

2
on the error curve.

5.3 Eigenvalue approaches

It is well known that a 2 CSn if and only if the eigenvector with positive entries

from the matrix ððai;jÞÞ has an eigenvalue equal to n. Otherwise the eigenvalue is

larger. This larger value is a direct consequence of the aCT portion of a.
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This is easy to prove with n ¼ 3 by using u (Eq. 38), which is a general n ¼ 3

form of a ratio scaled term with the corrected value of w�. The eigenvalue and

eigenvector for the matrix defined by u are determined in Eq. 40.

ððai;jÞÞðw�Þ ¼

1
w1u

w2

w1

u
w2

w1u
1 w2u

u

w1

1

w2u
1

0

BBBBB@

1

CCCCCA

w1

w2

1

0

B@

1

CA ¼ 1þ uþ 1

u

� � w1

w2

1

0

B@

1

CA ð40Þ

with eigenvalue (Eq. 40) 1þ uþ 1
u � 3: equality arises if and only if u ¼ 1, which is

the error free term. The n ¼ 3 eigenvector does yield correct weights, but, in

general, this is not true for n� 4. This is easily verified by using the general form of

an a 62 CSn.

6 Concluding thoughts

Although decision methods based on paired comparisons constitute relatively

simple systems, they indicate which features of more general systems must be

examined. In all of the difficulties discussed here, the problems reflected a structural

incongruity between the system and the subsystems. This comment makes it clear

that, in general and in some manner, the information being used from each

subsystem must be made consistent with the system’s requirements. For methods

based on paired comparisons, this objective is achieved by identifying what causes

the parts to deviate from the system’s requirement of transitivity. This issue is being

explored.

7 Proofs

Theorem 2: For n� 3 alternatives, let F be a mapping as specified in Theorem 2.

For any pair fAi;Ajg, let gðAi;AjÞ be a mapping that ranks these two alternatives based

strictly on how the a� 2 sources rank that particular pair. Namely, if pi;j is a list of

how each source ranks the pair, let p be a profile over the n alternatives and a
sources where each source’s ranking of fAi;Ajg is as in pi;j. (As pi;j ranks only one

pair for each source, it is clear that these rankings can be embedded in a complete

transitive profile for the a sources.)

Let gðAi;AjÞðpi;jÞ be the fAi;Ajg ranking of FðpÞ: To establish that gðAi;AjÞ is well

defined, let p� be another profile where each source’s fAi;Ajg ranking is as in pi;j.

Because F satisfies IIA, the fAi;Ajg ranking in FðpÞ is the same as in Fðp�Þ: h
Theorem 3: To show that ST n is a linear ðn� 1Þ dimensional subspace, notice

from Eq. 10 that the component ds;k of a vector in ST n can be expressed as

ds;k ¼ �d1;s þ d1;k. Thus, ST n is uniquely and linearly determined by the ðn� 1Þ
values fd1;sgns¼2. To show for a given j that Bj is strongly transitive, note that each

dj;k ¼ 1, while dk;s ¼ 0 for s; k 6¼ j: Thus, trivially, dj;k þ dk;s ¼ dj;s. The reason
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Pn
j¼1 Bj ¼ 0 is that each di;j, i\j, component appears in only two Bs terms. In Bi it

has the value di;j ¼ 1; while in Bj it has dj;i ¼ �di;j ¼ 1; in the summation, the two

terms cancel. To show that any ðn� 1Þ of the terms are linearly independent,

remove Bk. For each j 6¼ k, Bj is the only vector with a nonzero dj;k component, so it

cannot be expressed as a linear sum of the remaining vectors. h

Proposition 1: Let Ck be defined by k ¼ ðj; k; l;m; . . .; y; zÞ that has four or more

entries. The first cycle defined by triplets is (j, k, l), where the remaining indices

define the cycle ðj; l;m; . . .; y; zÞ: In Cðj;k;lÞ, dj;l ¼ �1 while dj;l ¼ 1 in Cj;l:m;.... In the

sum Cðj;k;lÞ þ Cðj;l:m;...Þ, the dj;l terms cancel leaving Ck. The next triplet is from the

first three terms in ðj; l;m; . . .; y; zÞ; or (j, l, m) leaving ðj;m; . . .; y; zÞ. At each step,

one new index is involved, so the process continues creating the triplets

ðj; k; lÞ; ðj; l;mÞ; . . .; ðj; y; zÞ: h
Theorem 4: To prove that any cyclic vector is orthogonal to a d 2 ST n, consider

an arbitrary cyclic vector defined by the triplet (i, j, k). The only nonzero

components of Cfi;j;kg are d�i;j ¼ d�j;k ¼ 1; and d�i;k ¼ �1. Therefore, the dot product

with d equals di;j þ dj;k � di;k, which equals zero (Eq. 10). Thus, orthogonality is

proved.

The dimension statement follows by listing the triplets Cf1;j;kg in the

ð1; 2; 3Þ; ð1; 2; 4Þ; . . .; ð1; n� 1; nÞ manner. This is illustrated for n ¼ 5 with the

Eq. 41 array.

A ¼

C1;2;3

C1;2;4

C1;2;5

C1;3;4

C1;3;5

C1;4;5

0

BBBBBB@

1

CCCCCCA

¼

1 � 1 0 0; 1 0 0; 0 0; 0

1 0 � 1 0; 0 1 0; 0 0; 0

1 0 0 � 1; 0 0 1; 0 0; 0

0 1 � 1 0; 0 0 0; 1 0; 0

0 1 0 � 1; 0 0 0; 0 1; 0

0 0 1 � 1; 0 0 0; 0 0; 1

0

BBBBBB@

1

CCCCCCA

: ð41Þ

The last n�1
2

� �
	 n�1

2

� �
block always is an identity matrix. Thus, the matrix (A for

n ¼ 5) has maximal rank, which means that the dimension of CSn is at least n�1
2

� �
.

But vectors in CSn are orthogonal to the space ST n, so the dimension of CSn is no

more than n
2

� �
� ðn� 1Þ ¼ n�1

2

� �
, which completes the proof. h

This computation means that any cycle involving A1 can be uniquely expressed

in terms of C1;j;k vectors. But cycles not involving A1 cannot; this is a consequence

of Theorem 9.

Corollary 1: The corollary follows from the facts that fBjgn�1
j¼1 is a basis for ST n

(Theorem 3) and fC1;j;kg2� j\k is a basis for CT n (from the proof of Theorem 4 and

Eq. 41). h

Theorem 5: In a cyclic vector’s defining list, index j is adjacent to two other

indices, i that precedes j and k that follows j. The cyclic vector, then, has only two

nonzero dj;s values of dj;i ¼ �di;j ¼ �1 and dj;k ¼ 1: In the sum defining bj these
terms cancel, which proves the assertion.

To prove Eq. 20, let d 2 ST n and i 6¼ j. The Ai, Aj Borda values are
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bi ¼
1

n

X

k 6¼i

di;k; bj ¼
1

n

Xn

k 6¼j

dj;k:

After removing the di;j values from both sums the difference is

bi � bj ¼
1

n
di;j þ

X

k 6¼i;j

di;k � dj;i þ
X

k 6¼i;j

dj;k

" # !

¼ 1

n
2di;j þ

X

k 6¼i;j

½di;k � dj;k�
 !

:

Each ½di;k � dj;k� ¼ ½di;k þ dk;j� ¼ di;j, so the last sum equals ðn� 2Þdi;j, and Eq. 20

follows. The theorem’s last sentence follows from the orthogonal decomposition of

R
n
2ð Þ: h
Theorem 6: With the decomposition, d ¼ dST þ dSC, where dSC ¼ cð1;�1; 1Þ,

c 2 ð�1;1Þ: Using Eq. 20, the di;j components of dST equal ðbi � bjÞ, where
b1 [ b2 [ b3 has the A1�A2�A3 Borda ranking. (By construction

b1 þ b2 þ b3 ¼ 0.) Thus,

d ¼ ððb1 � b2Þ þ c; ðb1 � b3Þ � c; ðb2 � b3Þ þ cÞ: ð42Þ

If A3 could be the Condorcet winner, A3 beats A1 and A2, or d3;1 [ 0; d3;2 [ 0: Thus,
d’s d1;3; d2;3\0, which requires c[ 0 in d1;3 and c\0 for d2;3: As this is impos-

sible, the Condorcet winner cannot be Borda bottom ranked.

If A2 is the Condorcet winner, A2 beats A1, so d2;1 ¼ �d1;2 [ 0; or 0\ðb1 �
b2Þ\� c: For A2 to beat A3, d2;3 must be positive, or ðb2 � b3Þ[ � c: This proves
Eq. 22.

For n� 3, if A1 is the Condorcet winner, then A1 beats all other alternatives, so

d1;j [ 0 for j ¼ 2; . . .n: This means that b1 [ 0: Because
Pn

j¼1 bj ¼ 0; there must be

some j where bj\0, which proves that the BR ranking never has the Condorcet

winner bottom ranked. Similarly, if A2 is the Condorcet loser, then d2;j\0 for

j ¼ 1; 3; . . .; n: This forces b2\0, so the Condorcet loser A2 is BR ranked below

Condorcet winner A1. h

Theorem 7: The first sentence follows from the fact that the image of any d is

known, which means that, after expressing the linear process in matrix form, the

associated matrix is known; it is a projection mapping that is equivalent to the Borda

rule.

As known (e.g., (Saari 2018)), the Borda tally sj for Aj is the sum of the tally Aj

receives in each fAj;Akg paired comparison election. With a sources, a tied pairwise

outcome is a
2
: a
2
. As dj;k is the difference between the fAj;Akg tallies, Aj receives

aþdj;k
2

votes. Summing over all ðn� 1Þ pairs that include Aj leads to

sj ¼ 1
2
½aðn� 1Þ þ nbj�, or Eq. 23. h

Theorem 8: That the ranking outcome is complete and transitive follows from the

fact that it is determined by the bj, j ¼ 1; . . .; n, scalars. That IIA is satisfied follows

immediately from Eq. 20. h

Theorem 9: The first part of the theorem follows from the following computa-

tional result.
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Corollary 2 For n� 3, if d ¼
Pn

j¼1 bjB
n
j , then for each j, bj ¼ bj � 1

n b where

b ¼
Pn

j¼1 bj:

To prove the corollary, notice that d ¼
Pn

j¼1 bjB
n
j becomes

d ¼ ðb1 � b2; . . .; b1 � bn; b2 � b3; . . .; b2 � bn; . . .; bn�1 � bnÞ:

According to Eq. 19, for each j, nbj ¼
Pn

s¼1 dj;s ¼ ðn� 1Þbj �
P

s 6¼j bs. By adding

and subtracting bj to this expression, we have nbj ¼ nbj � b, which is as specified in
Corollary 2. Thus, the bj coefficients and BR values are closely related.

For the proof of the theorem, by dropping Ak all di;j terms with a subscript k are

dropped. If d 2 ST n, the only difference between d and PkðdÞ are the missing di;j
terms with a subscript k. Thus, any triplet (i, j, s) without a k satisfies di;j þ dj;s ¼
di;s for both d and PkðdÞ. As d is strongly transitive, so is PkðdÞ.

Let ~bj be the BR weight for PkðdÞ. Thus (Eq. 19) ðn� 1Þ ~bj ¼
P

s6¼k dj;s. By

adding and subtracting bj � bk and using Corollary 2, we have ðn� 1Þ ~bj ¼
nbj � ðbj � bkÞ ¼ nbj � ðbj þ 1

n b� bkÞ ¼ ðn� 1Þbj � ð1nb� bkÞ: That is, for each
j 6¼ k, ~bj is found by subtracting the same amount 1

n�1
ð1n b� bkÞ from bj. This

subtraction can force the ~bj and bj values to differ, but subtracting the same value

from each bj requires the ranking for each to remain the same.

The second part of Theorem 9 follows from the Bn
j basis vectors. A cyclic term

defined by k ¼ ð. . .; i; j; k; l; . . .Þ is orthogonal to Bn
j because it contains only two d

terms with subscript j; they are di;j ¼ �dj;k; where the difference in value ensures

orthogonality. Now, if Ak is dropped, then the dj;k term no longer exists, so the

vector has a component in the strongly transitive Bn
j direction. Using the same

argument shows the projection is not strongly transitive, so it also has a component

in the cyclic directions.

Theorem 12: This is a direct consequence of Theorem 10 and the image of the

basis vectors of Corollary 1.h

Theorem 13: For the projection to eliminate the error in a, a must be situated on a

straight line passing through the correct value a0 2 CSn and orthogonal to CSn (i.e., a

tangent space). The derivative of the error function proves it is not a straight line.

This can be illustrated with n ¼ 3 by using u (Eq. 38) where du
du ¼ ðw1

w2
;�u�2w1;w2Þ.

A parametric representation of CS3 is given by ðst ; s; tÞ where the general weight
for A1 is s[ 0, for A2 by t[ 0 and 1 for A3 for the scaling. Thus the closest point to

u on CS3, where u 6¼ 1, is given by the minimal value of

Gðs; tÞ ¼ ðst �
w1u
w2
Þ2 þ ðs� w1

u Þ
2 þ ðt � w2uÞ2. Setting the partials equal to zero

yields oG
os ¼ 1

t ðst �
w1u
w2
Þ þ ðs� w1

u Þ ¼ 0 and oG
ot ¼ � s

t2
ðst �

w1u
w2
Þ þ ðt � w2uÞ ¼ 0: The

closest point is the accurate w�, or s ¼ w1; t ¼ w2, iff
w1

w2
2

ð1� uÞ þ w1ð1� 1
uÞ ¼ 0

and ½� w2
1

w3
2

þ w2�ð1� uÞ ¼ 0: Because u 6¼ 1, the second equation is satisfied iff

w1 ¼ w2
2; which verifies part of Eq. 39. By multiplying by u and collecting terms,
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the remaining equation becomes u2 � ð1þ w1Þuþ 1 ¼ 0, with solution u ¼
ð1þw1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þw1Þ2�4

p
2

: A real solution exists iff w1 � 1, which completes Eq. 39.
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