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Abstract
In this paper, we consider choice functions that are unanimous, anonymous, sym-

metric, and group strategy-proof and consider domains that are single-peaked on

some tree. We prove the following three results in this setting. First, there exists a

unanimous, anonymous, symmetric, and group strategy-proof choice function on a

path-connected domain if and only if the domain is single-peaked on a tree and the

number of agents is odd. Second, a choice function is unanimous, anonymous,

symmetric, and group strategy-proof on a single-peaked domain on a tree if and

only if it is the pairwise majority rule (also known as the tree-median rule) and the

number of agents is odd. Third, there exists a unanimous, anonymous, symmetric,

and strategy-proof choice function on a strongly path-connected domain if and only

if the domain is single-peaked on a tree and the number of agents is odd. As a

corollary of these results, we obtain that there exists no unanimous, anonymous,

symmetric, and group strategy-proof choice function on a path-connected domain if

the number of agents is even.

Keywords Pairwise majority rule � Single-peaked domains on trees � Unanimity �
Anonymity � Group strategy-proofness � Strategy-proofness

& Madhuparna Karmokar

madhuparnakarmokar@yahoo.in

Souvik Roy

souvik.2004@gmail.com

Ton Storcken

t.storcken@maastrichtuniversity.nl

1 Economic Research Unit, Indian Statistical Institute, Kolkata, India

2 Department of Quantitative Economics, University of Maastricht, Maastricht, The Netherlands

123

Theory and Decision (2021) 91:313–336
https://doi.org/10.1007/s11238-021-09804-5(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11238-021-09804-5&amp;domain=pdf
https://doi.org/10.1007/s11238-021-09804-5


1 Introduction

We consider standard social choice problems where a group of agents have to

collectively decide an alternative from a set of feasible alternatives. A choice

function selects an alternative for every collection of individual preferences.

We impose desirable conditions on choice functions such as unanimity,

anonymity, symmetry, and group strategy-proofness. A choice function is unani-

mous if, whenever all the individuals have the same preference, their common top-

ranked alternative is chosen. It is called anonymous if it treats all the individuals

equally. Symmetry ensures that if the role of two alternatives (at the top of

preferences) is interchanged at certain type of profiles, the outcome is also

interchanged accordingly. A choice function is called group strategy-proof if no

group of agents can be strictly better off by misrepresenting their preferences and is

called strategy-proof if no individual can be better off by misrepresenting his/her

preference.

A preference is called single-peaked on a tree if the alternatives can be arranged

on a tree1 so that preference declines as one moves away from the top-ranked

alternative. Such preferences are well known in the literature for their usefulness in

modelling public good location problems.

We assume a mild structure called path-connectedness (see, Aswal et al. (2003))

on the domains we consider in this paper. Theorem 4.1 shows that a path-connected

domain admits unanimous, anonymous, symmetric, and group strategy-proof choice

functions if and only if it is single-peaked on a tree and the number of agents is odd.

It follows as a corollary of this result that there exists no unanimous, anonymous,

symmetric, and group strategy-proof choice function on a path-connected domain if

the number of agents is even. When the number of agents is odd, Theorem 4.2

characterizes all unanimous, anonymous, symmetric, and group strategy-proof

choice functions on single-peaked domains on trees as the tree-median rule. Finally,

we investigate what happens if we replace group strategy-proofness by strategy-

proofness. Theorem 5.1 says that if we strengthen the notion of path-connectedness

in a suitable manner, then the conclusion of Theorem 4.1 can be achieved with

strategy-proofness, that is, a strongly path-connected domain admits unanimous,

anonymous, symmetric, and strategy-proof choice functions if and only if it is a

single-peaked domain on a tree.

An alternative is called the pairwise majority winner at a profile if it beats every

other alternative according to pairwise majority comparison and a choice function is

called the pairwise majority rule if it selects the pairwise majority winner at every

preference profile. Condorcet (1785) argued that if such a majority winner exists at a

profile, we should choose it on the basis of ‘‘straightforward reasoning.’’ The

analysis of the pairwise majority rule dates back to Borda (1784), Condorcet (1785),

and Laplace (1820). Black (1948) shows that the pairwise majority rule exists on

domains that are single-peaked on a line. Later, Demange (1982) generalizes this

result by showing that the pairwise majority rule exists on a domain even if the

domain is single-peaked on a tree. Hansen and Thisse (1981) consider the problem

1 A connected graph is called a tree if it has no cycle.
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of locating a public facility and show that the outcome of the pairwise majority rule

on a single-peaked domain on a tree minimizes the total distance traversed by the

users to go to the facility. They further prove that this property holds for a single-

peaked domain only when the underlying graph is a tree. Moulin (1980)

characterizes the pairwise majority rule on domains that are single-peaked on a

line. Danilov (1994) shows that strategy-proof and tops-only SCFs on a single-

peaked domain on a tree can be recursively decomposed into medians of constant

and dictatorial rules.

Schummer and Vohra (2002) consider single-peaked domains on tree when

preferences are Euclidean with respect to the graph distance and show that an SCF

on such a domain is strategy-proof and unanimous if and only if it is an extended

generalized median voter scheme. Nehring and Puppe (2007) introduce a class of

generalized single-peaked domains based on an abstract betweenness property and

show that an SCF is strategy-proof on a sufficiently rich domain of generalized

single-peaked preferences if and only if it takes the form of voting by issues. They

also provide a characterization of such domains that admit SCFs satisfying strategy-

proofness, unanimity, neutrality, and non-dictatorship/anonymity. We provide a

detailed discussion on the connection of our paper with these papers in Sect. 6.

May (1952) considers the problem of preference aggregation with exactly two

alternatives and characterizes the pairwise majority aggregation rule in this setting

by means of always decisiveness, equality, symmetry, and positive responsiveness.

Later, Inada (1969) and Sen and Pattanaik (1969) provide necessary and sufficient

conditions on a domain so that the pairwise majority aggregation rule is transitive.

It is worth mentioning that the tree-median rule coincides with the pairwise

majority rule on domains that are single-peaked on a tree.2 Thus, the main

contributions of our paper can be considered as (i) a characterization of domains

that are single-peaked on trees by means of choice functions satisfying natural

conditions such as unanimity, anonymity, symmetry, and group strategy-proofness/

strategy-proofness and (ii) a characterization of the pairwise majority rule on these

domains as the only choice function satisfying the above-mentioned properties.

Thus, in addition to the existing results where single-peakedness on trees is proved

to be sufficient for the existence of the pairwise majority rule, we show that under

some natural conditions, it is also necessary for the same.

Characterizing domains by means of the choice functions that they admit is

considered as an important problem in the literature. Chatterji et al. (2016)

characterize single-peaked domains on arbitrary trees by means of strategy-proof,

unanimous, tops-only random social choice functions satisfying a compromise

property, and Puppe (2018) shows that every minimally rich and connected

Condorcet domain which contains at least one pair of completely reversed orders

must be single-peaked.

The rest of the paper is organized as follows. Section 2 presents the notion of

single-peaked domains on trees, and Sect. 3 introduces the notion of the tree-median

rule. Main results of the paper are presented in Sect. 4. Section 5 shows how group

2 Despite the fact that the tree-median rule is nothing but the pairwise majority rule, we use the former

term as for the special case when the tree is a line, this rule is called the median rule in the literature.
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strategy-proofness can be replaced with strategy-proofness in our main result. All

the proofs, as well as the independence of the axioms used in our main result, are

collected in Appendix.

2 Domains and their properties

Let A denote the set of alternatives, and let N ¼ f1; . . .; ng denote the set of n
agents, where n is at least 2. We denote by LðAÞ the set of all linear orders

(reflexive, transitive, antisymmetric, and complete binary relations) on A. An

element of LðAÞ is called a preference. Note that preferences are strict by definition.

An admissible set of agents’ preferences (or a domain) D is a subset of LðAÞ. A
profile is a collection of preferences, one for each agent. More formally, a profile p
is an element of Dn.

For ease of presentation, we do not use braces for singleton sets and use the

following notations throughout the paper. Let R be a preference, and let a and b be

two alternatives (not necessarily distinct) in A. To save parentheses, we write ab 2
R instead of ða; bÞ 2 R; which has the usual interpretation that a is (weakly)

preferred to b at R. When a and b are distinct, we write R � � � � ab � � � to mean that a
is ranked just above b at R. In line with this, we write R � ab � � � to mean that a is

the top-ranked and b is the second-ranked alternative at R. Notations like

R � � � � a � � � b � � �, R � a � � �, and R � � � � a have self-explanatory interpretations.

The top-ranked alternative at a preference R is denoted by sðRÞ: The set of the

top-ranked alternatives of the preferences in a domain D is denoted by sðDÞ, that is,
sðDÞ ¼ fa 2 A : sðRÞ ¼ a for some R 2 Dg. We assume that sðDÞ is a finite set of
m alternatives.

Next, we introduce the notion of graphs. An (undirected) graph G ¼
ðVðGÞ;EðGÞÞ is a tuple where V(G) is the set of vertices and EðGÞ � ffa; bg :

a; b 2 VðGÞg is the set of edges. A sequence of vertices x1; . . .; xk is called a path in

G if fxl; xlþ1g 2 E for all 1� l\k. A path x0; x1; . . .; xk in G is called a cycle if

k� 3; x0 ¼ xk, and xs 6¼ xt for all 0� s\t� k. A graph is called a tree if it has no

cycles. For a tree and two vertices a and b, we denote by pða; bÞ (whenever the tree
is clear from the context) the unique path between a and b.

Two alternatives a and b in A are called top-connected (in D) if there are

R;R0 2 D such that R � ab � � � and R0 � ba � � �. We use the notation a!b to mean

that a and b are top-connected. The induced graph of a domain D is defined as the

undirected graph GðDÞ ¼ ðsðDÞ;EÞ; where E is the set of edges consisting of all

pairs of top-connected alternatives, that is, E ¼ ffa; bg � sðDÞ : a!bg: Two

alternatives a and b are called path-connected if there is a path from a to b in GðDÞ.
A domain D is called path-connected if every two alternatives in sðDÞ are path-

connected (see Aswal et al. (2003)).

A subset S of N is called a coalition. The restriction of a profile p to a coalition S
is denoted by pjS. For a coalition S and preferences R and R0 in D, the N-tuple

ððRÞS; ðR0ÞNnSÞ denotes the profile p where pðiÞ ¼ R for all agents i in S and pðiÞ ¼
R0 for all agents i in NnS.
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We introduce the notion of single-peaked domains on trees. A preference is

single-peaked on a tree if it has the property that as one goes far away along any

path from its top-ranked alternative, preference decreases.

Definition 2.1 Let T be a tree with VðTÞ � A. A domain D is called single-peaked
on T if sðDÞ ¼ VðTÞ and for all R 2 D and all a; b 2 sðDÞ, a 2 pðsðpðiÞÞ; bÞ implies

ab 2 R.

Note that for a domain D that is single-peaked on a tree, there is no restriction on

the ordering of the alternatives outside sðDÞ. We present an example of a single-

peaked domain on a tree.

Example 2.1 Let the set of alternatives be A ¼ fa1; a2; a3; a4; a5; a6; a7g. Consider
the tree T in Fig. 1 with VðTÞ ¼ fa1; a2; a3; a4; a5g. In Table 1, we present a single-

peaked domain on this tree.

3 Choice functions and their properties

A choice function u is a mapping from Dn to A. A choice function u is unanimous
if, whenever all the agents agree on their preferences, the top-ranked alternative of

that common preference is chosen. More formally, u : Dn ! A is unanimous if for

all profiles p 2 Dn such that pðiÞ ¼ R for all agents i 2 N and some R 2 D, we have

uðpÞ ¼ sðRÞ. A choice function u is called anonymous if it is symmetric in its

arguments. In other words, anonymous choice functions disregard the identities of

the agents. A choice function u is strategy-proof if no agent can change its outcome

in his/her favor by misreporting his/her sincere preference. More formally, u :
Dn ! A is strategy-proof if for all agents i 2 N and all profiles p; q 2 Dn with

pjNni ¼ qjNni, we have uðpÞuðqÞ 2 pðiÞ. A choice function u is group strategy-proof

if for all non-empty coalitions S of N and all profiles p; q 2 Dn with pjNnS ¼ qjNnS,
we have either uðpÞ ¼ uðqÞ or uðpÞuðqÞ 2 pðiÞ for some i 2 S.

Next, we introduce the notion of symmetry. Symmetry has some resemblance

with neutrality; however, they are not the same.3 Suppose that the agents are divided

into two groups such that all agents in each group have the same preference.

Suppose further that two alternatives a and b appear at the top two positions in each

preference. Symmetry says that if the outcome of such a profile is a and the two

groups interchange their preferences, then the outcome of the new profile will be

b. In other words, symmetry ensures that if the roles of two alternatives are

interchanged at certain type of profiles, the outcome is also interchanged

accordingly. Note that symmetry is different from neutrality as it applies to a

very specific class of profiles and only to the top-two ranked alternatives.

Definition 3.1 We say that a choice function u satisfies symmetry if for all R �
ab � � � and R0 � ba � � �, and all subsets S of N, we have

3 Nehring and Puppe (2007) define a notion that is very similar to symmetry and call it neutrality. We use

a different term to avoid confusion.
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uððRÞS; ðR0ÞNnSÞ ¼ a if and only if uððR0ÞS; ðRÞNnSÞ ¼ b:

3.1 Tree-median rule

The tree-median rule is an appropriate extension of the median rule defined in the

context of single-peaked domains on lines. We first provide an verbal description of

these rules. Suppose that the alternatives are named as a1; . . .; am and that they are

arranged on a line in the following order: a1 � � � � � am. Note that the median of a

subset of alternatives B can be defined as the (unique) alternative a such that

jfb 2 B : b � agj\ jBj
2

and jfb 2 B : b�agj\ jBj
2
. For instance, if

B ¼ fa1; a3; a4; a9; a11g, then a4 is the unique alternative that satisfies the condition
that jfb 2 B : b � a4gj ¼ jfa1; a3gj\2:5 and jfb 2 B : b�a4gj ¼ jfa9; a11gj\2:5.
In other words, the number of alternatives which lie in any particular ‘‘direction’’ of

the median must be less than the half of the cardinality of the set. Here, two

alternatives are said to be in the same direction with respect to an alternative a if

they lie in the same component of the (possibly disconnected) graph that is obtained

by deleting the alternative a from the line. We implement this idea on a tree.

Consider a tree T ¼ ðV ;EÞ. For a vertex a of T, we denote by T	a the graph that

is obtained by deleting the alternative a (and all the edges involving a) from T, that

is, T	a ¼ fV̂ ; Êg, where V̂ ¼ Vna and fx; yg 2 Ê if and only if fx; yg 2 E and

a 62 fx; yg. Note that T	a is a disconnected graph unless a is a terminal node in T.4 A
component C of T	a is defined as a maximal set of vertices of T	a that are

connected via some path in T	a. Below, we provide an example of a tree T and

show the components of T	a for some vertex a.

Example 3.1 Consider the tree T as given in Fig. 2. Consider the vertex a6. The
components of T	a6 are shown in Fig. 3.

Now, we are ready to define the notion of the median with respect to a tree. Let

T ¼ ðV;EÞ be a tree. For a subset bV of V, define the median of bV (with respect to T)
as the unique vertex a 2 V such that for each component C of T	a, we have

j bV \ Cj\ j bV j
2

:

Whenever the tree T is clear from the context, we denote the median of a set bV � V

a2

a1

a3

a4 a5

Fig. 1 Tree for Example 2.1

4 A node is called terminal if it has degree 1.
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with respect to T by median ð bV Þ. The following example explains the idea of the

median of a set. It should be clear from this example that the median of a set may

not lie within the set.

Example 3.2 Consider the tree T with VðTÞ ¼ fa1; . . .; a10g as given in Fig. 2.

Consider the subset bV ¼ fa1; a4; a7; a8; a9g of V. We show that the median of bV is

a6. The components C1; C2; C3 of T	a6 are shown in Fig. 3. Note that in each of these

components, the number of elements from bV is less than the half of the cardinality

of bV . For instance, the elements of bV that are in Component C1 are a1 and a4. This

proves that the median of bV is a6. We proceed to show that a6 is the unique vertex
that satisfies this property. Note that since n

2
¼ 2:5, a vertex v cannot be the median

if a component in T	v has more than two vertices. Consider the vertex a4. Then,
there is a component C ¼ fa6; a7; a8; a9; a10g in T	a4 that contains three elements

a7; a8; a9 from bV . By using a similar logic, for any vertex v in fa1; a2; a3; a5g there

is a component in T	v containing the vertices a7; a8; a9, for any vertex v in

fa8; a9; a10g, there is a component in T	v containing the vertices a1; a4; a7, and for

a7, there is a component in T	a7 containing the vertices a1; a4; a8; a9 from bV . Since

for each of these vertices, there is a component having more than two elements from

bV , none of them satisfies the requirement for being the median. This shows that a6 is
the unique median.

Now, we are ready to define the notion of the tree-median rule. It selects the

median of the top-ranked alternatives at every profile.

a3

a1

a2

a4

a5

a6

a7

a8

a9

a10

Fig. 2 Tree for Example 3.1 and Example 3.2

a3

a1

a2

a4

a5

a7

a8

a9

a10

Fig. 3 Components of T	a6
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Definition 3.2 A choice function u : Dn ! A is called the tree-median rule with

respect to a tree T with VðTÞ ¼ sðDÞ if for all p 2 Dn,

uðpÞ ¼ median ðfsðpðiÞÞ : i 2 NgÞ.

Remark 3.1 An alternative a is called pairwise majority winner at a profile if for all
b 6¼ a, the number of agents who prefer a to b at that profile is more than n

2
. It is

worth noting that the outcome of a median rule at any profile is the pairwise

majority winner (Condorcet winner) at that profile. To see this, suppose that the

outcome of the tree-median rule is a at a profile p. Consider an alternative b other

than a. Suppose b belongs to a component C of T	a. By single-peakedness, every

agent, whose top-ranked alternative is not in C, will prefer a to b. By the definition

of the tree-median rule, the number of agents in component C is strictly less than n
2
.

Therefore, the number of agents who prefer a to b must be more than n
2
, implying

that a beats b by pairwise majority comparison.

4 Results

Our first theorem characterizes the single-peaked domains on trees by means of

choice functions that are unanimous, anonymous, symmetric, and group strategy-

proof. It says that these domains are the only path-connected domains that admit

such rules when the number of agents is odd.

Theorem 4.1 Let D be a path-connected domain. Then, there exists a unanimous,
anonymous, symmetric, and group strategy-proof choice function u : Dn ! A if and
only if D is single-peaked on a tree and n is odd.

The proof of this theorem is relegated to Appendix A. In Sect. 4.1, we provide an

idea of the proof of the only-if part of the theorem by considering the case of three

alternatives.

Our next corollary says that if the number of agents is even, then there is no path-

connected domain that admits a unanimous, anonymous, symmetric, and group

strategy-proof rule. The intuition of this result is as follows. Since the number of

agents is even, we can divide the agents into two groups N1 and N2 having equal

size. Consider the profile where agents in N1 have the same preference ab � � � and
agents in N2 have the same preference ba � � �, for some a; b 2 A. By unanimity and

group strategy-proofness, the outcome at such a profile must be either a or b.
Suppose that the outcome is a. Now, consider the profile where agents in N1 have

the same preference ba � � � and agents in N2 have the same preference ab � � �. By
symmetry, the outcome at this profile must be b. However, this violates anonymity.

Corollary 4.1 Let D be a path-connected domain, and let n be even. Then, there is
no unanimous, anonymous, symmetric, and group strategy-proof choice function
u : Dn ! A.

Our next theorem characterizes the unanimous, anonymous, symmetric, and

group strategy-proof rules on a single-peaked domain on a tree as the tree-median

rules.
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Theorem 4.2 Let D be path-connected and single-peaked on a tree T and let n be
odd. Then, a choice function u : Dn ! A is unanimous, anonymous, symmetric, and
group strategy-proof if and only if it is the tree-median rule with respect to T.

The proof of this theorem is relegated to Appendix B. In Sect. 4.1, we provide an

idea of the proof of the only-if part by considering the case of three alternatives.

4.1 An illustration of the proofs of Theorems 4.1 and 4.2

We illustrate the idea of the proof of the only-if parts of Theorem 4.1 and

Theorem 4.2 by considering the case of three alternatives. Let A ¼ fa; b; cg be the

set of three alternatives, and let N ¼ f1; . . .; ng be the set of agents. Suppose D is a

path-connected domain and let u be a unanimous, anonymous, symmetric, and

group strategy-proof choice function from Dn to A. We show that

1. n is odd,

2. D is a set of single-peaked preferences on a tree, and

3. u chooses the median of the top-ranked alternatives at any profile in Dn:

Because D is path-connected, we have, after a possible renaming of the alternatives,

one of the following four cases

(i) D ¼ LðAÞ
(ii) D ¼ LðAÞnfacbg
(iii) D � fabc; bac; bca; cbag implying that D is single-peaked on a (sub)tree

T1 of the following tree

a!b!c:

(iv) D � fabc; acb; cab; cbag implying that D is single-peaked on a (sub)tree

T2 of the following tree5

a!c:

Consider a profile p and a coalition S such that pðiÞ ¼ xyz for all i 2 S and pðiÞ ¼
yxz for all i 2 NnS. By unanimity and group strategy-proofness, uðpÞ 6¼ z, as

otherwise the agents in S will manipulate by reporting their preferences as yxz. By
anonymity and group strategy-proofness, the outcome of any profile p̂ such that

p̂ðiÞ 2 fxyz; yxzg for all i 2 N and jfi : p̂ðiÞ ¼ xyzgj� jSj is x. By symmetry, this

means uð ^̂pÞ ¼ y for any profile ^̂p such that ^̂pðiÞ 2 fxyz; yxzg for all i 2 N and

jfi : p̂ðiÞ ¼ yxzgj� jSj. Therefore, it must be that jSj[ n
2
, as otherwise we can have

a profile q such that both jfi : qðiÞ ¼ xyzgj and jfi : qðiÞ ¼ yxzgj are greater than or

equal to |S| and in view of the earlier observations, nothing can be defined as an

outcome at q. Using similar logic, no outcome can be defined at a profile q such that

5 Such a set of preferences is known as a single-dipped domain in the literature.
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jfi : qðiÞ ¼ xyzgj ¼ jfi : qðiÞ ¼ yxzgj. This proves (1), that is, n is odd. This is

formally proved in Lemma A.2 (see Appendix A).

Now, we proceed to prove (2). Consider a coalition S with jSj[ n
2
. We show that

for any profile q such that qðiÞ ¼ qðjÞ for all i; j 2 S and qðiÞ ¼ qðjÞ for all

i; j 2 NnS, the outcome is the top-ranked alternative of the agents in S. In Table 2,

we present such profiles where agents’ preferences lie in the set fzxy; xzy; xyz; yxzg.
We also present the outcomes of u at the profiles where it can be obtained by

unanimity and Lemma A.2.

We proceed to show that the outcome at any profile in the table will be the top-

ranked alternative of the agents in S. Since the outcome at the profile (xzy, zxy) is x,
by group strategy-proofness, it must be x at (xyz, zxy).6 In Table 3, we present the

outcomes that can be obtained using similar logic.

Consider the profile (yxz, xzy). Since the outcome at (xyz, xzy) is x, by group

strategy-proofness, the outcome at (yxz, xzy) must be x or y. Similarly, since the

outcome at (yxz, xyz) is y, by group strategy-proofness, the outcome at (yxz, xzy)
must be y. Moreover, since the outcome at (yxz, xzy) is y and y is the bottom-ranked

alternative for the agents in NnS, by group strategy-proofness, the outcome at

(yxz, zxy) must be y. In Table 4, we present the outcomes that can be obtained using

similar logic. Since S is arbitrary, Table 4 implies that the outcome of u will be

determined by the majority at any profile where the agents are partitioned into two

groups such that agents in any group have the same preference.

Table 1 The single-peaked domain with respect to the tree in Fig. 1

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

a1 a1 a2 a2 a2 a2 a2 a3 a3 a4 a4 a4 a4 a4 a5 a5

a2 a2 a1 a6 a3 a4 a4 a7 a2 a2 a2 a6 a5 a5 a4 a6

a6 a4 a4 a1 a7 a5 a7 a2 a6 a7 a5 a2 a6 a2 a6 a4

a3 a7 a7 a4 a1 a6 a5 a6 a4 a6 a3 a3 a2 a6 a2 a2

a4 a3 a6 a3 a4 a3 a1 a4 a1 a1 a6 a7 a7 a1 a3 a1

a5 a6 a5 a5 a5 a7 a3 a5 a5 a3 a1 a5 a1 a3 a7 a7

a7 a5 a3 a7 a6 a1 a6 a1 a7 a5 a7 a1 a3 a7 a1 a3

Table 2 Primary structure of a

unanimous, anonymous,

symmetric, and group strategy-

proof choice function

S NnS

zxy xzy xyz yxz

zxy z z

xzy x x

xyz x x

yxz y y

6 For ease of presentation, by (xzy, zxy) we denote the profile where the agents in S have the preference

xzy and the agents in NnS have the preference zxy. We continue to use similar notations.
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Since n is odd, there must be at least 3 agents. Therefore, the set of agents can be

partitioned into non-empty sets S1; S2; S3 such that jSi [ Sjj[ n
2
for all i 6¼ j.

Consider the profile v such that vðiÞ ¼ xyz for all i 2 S1, vðiÞ ¼ yzx for all i 2 S2,
and vðiÞ ¼ zxy for all i 2 S3.

7 As jS1 [ S2j[ n
2
, the outcome at the profile where

agents in S1 [ S2 have the preference yzx and the agents in S3 have the preference

zxy is y. Hence, by group strategy-proofness uðvÞ 6¼ z. Using a similar logic, jS2 [
S3j[ n

2
implies uðvÞ 6¼ x, and jS1 [ S3j[ n

2
implies uðvÞ 6¼ y. So, no outcome can

be defined at the profile v, and hence, a profile like v cannot lie in Dn. Therefore, out

of the four cases for D mentioned at the beginning, only Case (iii) and Case (iv) are

possible. This proves that the domain D is a set of single-peaked preferences with

respect to either the tree T1 or the tree T2. This completes the proof of (2).

We complete the sketch of the proof by showing (3). We deal with Case (iii) and

Case (iv) separately.

Case (iii): Here, D is a subset of single-peaked preferences fabc; bac; bca; cbag
with respect to the alphabetical order a � b � c and GðDÞ is a (sub)graph of

a!b!c:

Let p be a profile in Dn: We prove that uðpÞ is the median of the top-ranked

alternatives at p. We distinguish three cases.

Suppose uðpÞ ¼ b: Consider the profile q such that qðiÞ ¼ bca if pðiÞ ¼ abc, and
qðiÞ ¼ pðiÞ otherwise. By group strategy-proofness, uðqÞ ¼ b, as otherwise the

agents i having preference bca at q will (group) manipulate at q by misreporting

their preferences as p(i). Next, consider the profile r such that rðiÞ ¼ bca if qðiÞ ¼
pðiÞ ¼ bac, and rðiÞ ¼ qðiÞ ¼ cba otherwise. By group strategy-proofness,

uðrÞ ¼ b. Since agents have one of the two preferences bca and cba at the profile

Table 3 Additional structure of

a unanimous, anonymous,

symmetric, and group strategy-

proof choice function

S NnS

zxy xzy xyz yxz

zxy z z

xzy x x x x

xyz x x x x

yxz y y

Table 4 Final structure of a

unanimous, anonymous,

symmetric, and group strategy-

proof choice function

S NnS

zxy xzy xyz yxz

zxy z z z z

xzy x x x x

xyz x x x x

yxz y y y y

7 Such a profile is called a Condorcet profile.
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r, the outcome of u at r will be the majority vote (winner) between b and c. As this
outcome is b, it must be that majority of voters have the top-ranked alternative as

b at the profile r. This implies that a majority of voters have top-ranked alternatives

at p in the set fa; bg. Similarly, we can deduce that a majority of voters have top-

ranked alternatives at p in the set fb; cg: Thus, it follows that at the profile p, there is
a majority of voters having the top-ranked alternative in the set fa; bg and a

(possibly different) majority of voters having top-ranked alternatives in the set

fb; cg, and hence, b is the median of the top-ranked alternatives at p.
Suppose uðpÞ ¼ a: Consider the profile v such that vðiÞ ¼ bac if pðiÞ 6¼ abc, and

vðiÞ ¼ pðiÞ ¼ abc otherwise. Since agents have one of the two preferences abc and
bac at the profile v, the outcome of u at v will be the majority vote between a and b.
In particular, uðvÞ 2 fa; bg: Note that except for the preference abc, alternative b is

strictly preferred to a at all other preferences in D. So, group strategy-proofness

implies that uðvÞ 6¼ b, as otherwise the agents i having preference bac at v will

manipulate at p via v(i). So, uðvÞ ¼ a. Since the outcome of u at v will be the

majority vote between a and b, this means that there is a majority of voters having

top-ranked alternative as a at p. So, a is the median of the top-ranked alternatives at

p.
Suppose uðpÞ ¼ c: This case is similar to the latter case where uðpÞ ¼ a.
Case (iv): Here, we have sðDÞ ¼ fa; cg: We have already argued that the

outcome will be determined by the majority at profiles where agents are partitioned

into two groups with each group having the same preference. Since sðDÞ ¼ fa; cg,
by group strategy-proofness, this implies that the outcome of u will be the majority

vote between a and c at any profile. This in particular means that u chooses the

median of the top-ranked alternatives at any profile.

So, u is the median rule and the only-if parts of Theorem 4.1 and Theorem 4.2

are proved for the case of three alternatives.

5 Weakening group strategy-proofness to strategy-proofness

In this section, we show that group strategy-proofness cannot be replaced by

strategy-proofness in Theorem 4.1 and, consequently, provide a version of

Theorem 4.1 with strategy-proofness. The following example shows that Theo-

rem 4.1 does not hold under strategy-proofness.

Example 5.1 Suppose that the set of alternatives is two-dimensional where each

dimension or component has two elements: 0 and 1. More formally, the alternatives

are A ¼ f0; 1g2 ¼ fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg. Agents’ preferences are such that if

a is the top-ranked alternative in a preference and b differs from a in both

components, then b will be the bottom-ranked alternative in that preference.8 For

instance, if (0, 1) is the top-ranked alternative in a preference, then (1, 0) will be the

bottom-ranked alternative in that preference. Therefore, there will be two

preferences with (0, 1) at the top for the two possible relative ordering of the

remaining alternatives (0, 0) and (1, 1). The preferences are as follows:

8 This is a special case of a more general condition known as separability in the literature.
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(0, 1)(0, 0)(1, 1)(1, 0) and (0, 1)(1, 1)(0, 0)(1, 0). In Table 5, we present all (eight)

preferences satisfying this property. Consider the domain with these preferences.

Suppose that there are three agents. We define an SCF called component-wise

majority rule. For each component, it selects the element in that component that

appears as the top-ranked element in that component for at least two agents. Note

that the SCF depends only on the top-ranked alternatives in a profile. For an

illustration of the rule, consider a profile with top-ranked alternatives as

(1, 0), (0, 1), (1, 0). In the first component, element 1 appears at least two times

as the top-ranked alternative, and hence, it is the outcome in that component.

Similarly, 0 is the outcome in the second component. The final outcome of the rule

is (1, 0) , which is obtained by combining the outcomes in each component.

It is shown in Barberà et al. (1991) (see Theorem 1) that the component-wise

majority rule is strategy-proof. Unanimity and anonymity of the rule follow from

the definition. For symmetry, consider a profile p where the agents in a group S,
; 6¼ S 6¼ N, have the preference R � xy � � � and others have the preferences R0 �
yx � � � for some x and y in A. By the definition of the domain, x and y can differ only

over one component. So, assume without loss of generality, x ¼ ð0; 0Þ and

y ¼ ð0; 1Þ, and suppose that the outcome of the component-wise majority rule at this

profile is (0, 0). Since the outcome in the second component is 0, by the definition of

the component-wise majority rule, it must be that S contains at least 2 agents. Now,

suppose that the agents in S interchange their preference with those in NnS. The
outcome in the first component will still be 0 as it is the top-ranked element of each

agent in that component. Moreover, since S contains at least 2 agents, the outcome

in the second component will now become 1, and hence, the final outcome will be

(0, 1). This shows that the component-wise majority rule satisfies symmetry.

Now, we argue that it is not group strategy-proof. Consider the profile of top-

ranked alternatives (0, 0), (1, 1), (1, 0). Suppose that both agents 1 and 2 prefer

(0, 1) to (1, 0). Note that this assumption is compatible with our domain restriction.

The outcome of the component-wise majority rule at this profile is (1, 0). However,

if agents 1 and 2 together misreport their preferences as one having the top-ranked

alternative as (0, 1) , then the outcome of the component-wise majority rule will

become (0, 1) , which is preferred to (1, 0) for both agents 1 and 2. Therefore, the

component-wise majority rule is not group strategy-proof.

In what follows, we show that if we strengthen the notion of path-connectedness,

then we can replace group strategy-proofness by strategy-proofness in Theorem 4.1.

Let a and b be two alternatives in sðDÞ: We say that a is strongly top-connected

to b if there are Ra and Rb in D such that (i) Ra � ab � � � and Rb � ba � � �, and (ii) for

Table 5 Domain for Example

5.1
R1 R2 R3 R4 R5 R6 R7 R8

(0, 0) (0, 1) (0, 1) (1, 1) (1, 1) (1, 0) (1, 0) (0, 0)

(0, 1) (0, 0) (1, 1) (0, 1) (1, 0) (1, 1) (0, 0) (1, 0)

(1, 0) (1, 1) (0, 0) (1, 0) (0, 1) (0, 0) (1, 1) (0, 1)

(1, 1) (1, 0) (1, 0) (0, 0) (0, 0) (0, 1) (0, 1) (1, 1)
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all x; y 62 fa; bg, xRay if and only if xRby. The notion of a strongly path-connected

domain is defined in an obvious manner.

Our next theorem says that group strategy-proofness can be replaced by strategy-

proofness if we strengthen path-connectedness by strongly path-connectedness.

Theorem 5.1 Let D be a strongly path-connected domain. Then, there exists a
unanimous, anonymous, symmetric, and strategy-proof choice function u : Dn ! A
if and only if D is single-peaked on a tree and n is odd.

The proof of this theorem is relegated to Appendix C.

6 Relation to the literature

In this section, we discuss the connection of our results with some of the closely

related papers.

6.1 Schummer and Vohra (2002)

Schummer and Vohra (2002) consider single-peaked domains on graphs (trees as a

special case). Preferences are Euclidean with respect to the graph distance. They

show that an SCF is strategy-proof and unanimous if and only if it is an extended

generalized median voter scheme. Although tree-median rules are special cases of

extended generalized median voter scheme, our result does not follow from their

result because of the following reasons.

(i) In their model, for each alternative there is exactly one preference with it as

the top-ranked alternative. Thus, SCFs on such a domain become tops-only

vacuously. However, in our case, there can be more than one preference with

the same top-ranked alternative, and hence, tops-onlyness is required to be

proved additionally. Weymark (2011) shows that the maximal single-peaked

domain on a line is tops-only, and recently, Achuthankutty and Roy (2018)

generalize this result for arbitrary (that is, not necessary maximal) single-

peaked domains on a line.9 Chatterji and Sen (2011) provide a sufficient

condition on a domain for it to be tops-only. None of these results applies to

a path-connected single-peaked domain on a tree.

(ii) Schummer and Vohra (2002) use strategy-proofness, whereas we use group

strategy-proofness. To the best of our knowledge, it is not known in the

literature whether extended generalized median voter schemes are group

strategy-proof or not on domains that are single-peaked on a tree. Barberà

et al. (2010) provide a sufficient condition on a domain for the equivalence

of group strategy-proofness and strategy-proofness; however, their result

also does not apply to such domains.

9 A domain is tops-only if every unanimous and strategy-proof SCF on it is tops-only.
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6.2 Nehring and Puppe (2007)

Nehring and Puppe (2007) consider a class of single-peaked domains based on an

abstract betweenness property. They have analyzed the structure of strategy-proof

and unanimous SCFs on such domains. Furthermore, they provide a characterization

of such domains that admit SCFs satisfying strategy-proof, unanimous, neutral, and

non-dictatorial/anonymity. Two particular results of Nehring and Puppe (2007) are

closely related to our work, which we explain below.

(i) Corollary 5 in Nehring and Puppe (2007) says that a strategy-proof,

unanimous, neutral, and anonymous SCF exists on a ‘‘rich’’ single-peaked

domain if and only if n is odd and the domains is a ‘‘median space.’’ On the

other hand, Theorem 4.1 of our paper says that a group strategy-proof,

unanimous, anonymous, and symmetric SCF exists on a path-connected

single-peaked domain if and only if n is odd and the domain is single-peaked

on a tree. While neutrality and symmetry are similar in nature, the

assumption of richness and the inclusion of median space make a significant

difference between the two results as we explain below.

Richness: They assume the domains to be rich. In the context of domains

that are single-peaked on a tree, this means the relative ordering of two

alternatives that do not lie on the same path from the peak must be

unrestricted. To see how strong this condition is, consider a single-peaked

domain on a line. One implication of richness is that there must be

preferences where the extreme left (or right) alternative is preferred to the

’’right-neighbor’’ (or the ‘‘left-neighbor’’) of the peak. For instance, if there

are 100 alternatives a1; . . .; a100 with the prior ordering a1 � � � � � a100, then
there must be a preference with a2 at the top position where the ‘‘far away’’

alternative a100 is preferred to the neighboring one a1. This is clearly a

strong assumption for practical applications. Our notion of path-connected-

ness requires that for every two adjacent alternatives, say a2 and a3, there are
two preferences where they swap their positions at the top two ranks; that is,

preferences of the form a2a3 � � � and a3a2 � � � must be present. Thus, we do

not require anything about the relative ordering of other alternatives.

Median space: A domain is a median space if the notion of median can be

defined for any three alternatives in it; that is, for any three alternatives

a, b, c, there is an alternative m called the ‘‘median’’ of a, b, c such that

m lies between every pair of alternatives from a, b, c. Apart from domains

that are single-peaked on a tree, there are several other domains that are

median space (see Example 4 in Nehring and Puppe (2007)). Thus, domains

that are single-peaked on a tree cannot be characterized by the properties

used in Nehring and Puppe (2007)) and the use of group strategy-proofness

does the job in our paper. As we have mentioned earlier, it is not yet known

if group strategy-proofness and strategy-proofness are equivalent on

domains that are single-peaked on a tree. Thus, (even the ‘‘if part’’ of)

Theorem 4.1 of our paper does not follow from Corollary 5 of Nehring and

Puppe (2007).
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(ii) Theorem 4 of Nehring and Puppe (2007) says that an SCF on a rich median

space is strategy-proof, unanimous, and neutral if and only if it is a particular

type of voting by issues rules. Furthermore, if anonymity is imposed

additionally, then these rules become tree median. Since the single-peaked

domains on trees we consider do not satisfy richness, this result does not

apply to these domains. Moreover, even if we additionally impose richness

on such domains, since we work with group strategy-proofness, Theorem 4.1

of our paper does not follow from this result. The contribution of our result

on these special class of rich domains is that it implies that strategy-

proofness and group strategy-proofness are equivalent on those under

unanimity, anonymity, and symmetry/neutrality. Such a result is not known

in the literature, and we feel it is not straightforward either.
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to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://
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Appendix

Proof of Theorem 4.1

We introduce the following terminologies to facilitate the presentation of our

proofs. For a coalition S, a preference R, and a profile q, we denote by ððRÞS; qjNnSÞ
the profile p where pðiÞ ¼ R for all i 2 S and pðiÞ ¼ qðiÞ for all i 2 NnS. We call

such a profile S-unanimous. In a similar fashion, a profile of the form ððRÞS; ðR0ÞNnSÞ
is said to be ðS;NnSÞ-unanimous. Additionally, if sðRÞ ¼ a and sðR0Þ ¼ b, then such
a profile is said to be (a, b)-ðS;NnSÞ-unanimous. Let V be a set of S-unanimous

profiles in Dn for some coalition S. Given a choice function u, we say that the

coalition S is decisive on V (for u), if uðRS; pjNnSÞ ¼ sðRÞ for all ðRS; pjNnSÞ 2 V:

The coalition S is said to be decisive if it is decisive on the set of all S -unanimous

profiles in Dn: For instance, N is decisive for a unanimous choice function u.
We are now ready to present the proof of Theorem 4.1.

If part: Let T be a tree, and let D be a single-peaked domain on T. Suppose n is

odd. Consider the median rule u : Dn ! A. By definition, u satisfies unanimity,

anonymity, and symmetry. In what follows, we show that it satisfies group strategy-

proofness.

Consider a profile p 2 Dn. Suppose uðpÞ ¼ a. Assume for contradiction that

some coalition S manipulates u at the profile p. First note that by the definition of

single-peaked domain on T, if the top-ranked alternatives of the agents in S at the
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profile p are in different components of T	a, then there is no alternative b that is

strictly preferred to a by each agent in S. So, since the agents in S manipulate, it

must be that their top-ranked alternatives in p are in some component C of T	a. By

the definition of the median rule, the number of agents who have top-ranked

alternatives in C is less than n
2
. Therefore, no matter how the agents in S misreport

their preferences, the outcome at the misreported profile cannot be an alternative of

C. This, in turn, means that the agents in S will not prefer the outcome at the

misreported profile, a contradiction. This completes the proof of the if part of

Theorem 4.1.

Only-if part: We prove the only-if part by means of the following lemmas. For

all these lemmas, assume that D is a path-connected domain.

Lemma A.1 Let u : Dn ! A be a unanimous and group strategy-proof choice function, and let a coalition

S be decisive on all ðS;NnSÞ-unanimous profiles. Then, S is decisive.

Proof In order to prove that S is decisive, let p 2 Dn be an S-unanimous profile such that pðiÞ ¼ R for all i

in S, where sðRÞ ¼ a: For an S-unanimous profile p, define kðpÞ ¼ jfpðjÞ : j 2 Ngj as the number of

different preferences in p. We prove the lemma by using induction on k. Note that k� 2 by definition.

Note that the base case where k ¼ 2 follows from the definition of ðS;NnSÞ-unanimous profiles. Suppose

S is decisive on all S-unanimous profiles p such that kðpÞ� �k, for some �k� 2. We show that S is decisive

on all S-unanimous profiles p such that kðpÞ� �k þ 1. Consider p 2 Dn such that kðpÞ ¼ �k þ 1. Since

kðpÞ ¼ �k þ 1, we can partition N as T1; . . .;Tkþ1 such that for all l 2 f1; . . .; k þ 1g, there exists Rl 2 D

such that pðiÞ ¼ Rl for all i 2 Tl. Since p is an S-unanimous profile, assume without loss of generality

S � T1. Assume for contradiction, uðpÞ 6¼ a. Suppose uðpÞ ¼ b for some b 2 Anfag. Consider q 2 Dn

such that qðiÞ ¼ Rl for all i 2 Tl and all l 2 f1; . . .; kg and qðiÞ ¼ Rk for all i 2 Tkþ1. Since kðqÞ ¼ �k by

construction, we have by our induction hypothesis that uðqÞ ¼ a. By means of group strategy-proofness

for the agents in Tkþ1 at p via qjTkþ1
, we have

ba 2 Rkþ1: ð1Þ

Now, consider the preference r 2 Dn such that rðiÞ ¼ Rl for all i 2 Tl and all

l 2 f1; . . .; k 	 2; kg and qðiÞ ¼ Rkþ1 for all i 2 Tk. Since kðrÞ ¼ �k by construction,

we have by our induction hypothesis that uðrÞ ¼ a. By means of group strategy-

proofness for the agents in Tk at r via pjTk , we have

ab 2 Rkþ1: ð2Þ

Combining (1) and (2), uðpÞ ¼ a. This completes the proof by induction. h

Lemma A.2 Let u : Dn ! A be a unanimous, anonymous, symmetric, and group strategy-proof choice

function, and let Ra � ab � � � and Rb � ba � � � be two preferences in D. Suppose a coalition S is such that

uððRaÞS; ðRbÞNnSÞ ¼ a. Then, |S| [ n
2
.
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Proof Assume for contradiction |S| � n
2
: By applying symmetry to uððRaÞS; ðRbÞNnSÞ ¼ a, we have

uððRbÞS; ðRaÞNnSÞ ¼ b: ð3Þ

Since jSj � n
2
, there exists T � NnS such that jSj ¼ jT j. We write

uððRaÞS; ðRbÞNnSÞ ¼ a as

uððRaÞS; ðRbÞT ; ðRbÞNnðS[TÞÞ ¼ a: ð4Þ

Now, applying anonymity to (4), since jSj ¼ jTj,

uððRbÞS; ðRaÞT ; ðRbÞNnðS[TÞÞ ¼ a: ð5Þ

This, together with (3), implies that agents in NnðS [ TÞ manipulate at

ððRbÞS; ðRaÞNnSÞ via ðRbÞNnðS[TÞ, a contradiction. h

Lemma A.3 Let u : Dn ! A be a unanimous and group strategy-proof choice function, and let Ra �
ab � � � and Rb � ba � � � be two preferences in D. Suppose a coalition S is such that uððRaÞS; ðRbÞNnSÞ ¼ a.

Then, S is decisive on all (a, b)-ðS;NnSÞ-unanimous profiles.

Proof Consider an (a, b) -ðS;NnSÞ-unanimous profile p 2 Dn. Assume for contradiction, uðpÞ 6¼ a.

Suppose uðpÞ ¼ x. Consider q 2 Dn such that qðiÞ ¼ Ra for all i 2 S and qjNnS ¼ pjNnS. We claim

uðqÞ ¼ b. If uðqÞ ¼ a, then by means of unanimity agents in S manipulate at p via qjS, a contradiction. If
uðqÞ 62 fa; bg, then agents in S manipulate at q via some preference where b is the top-ranked alternative

for all agents in S. So, uðqÞ ¼ b. However, since uððRaÞS; ðRbÞNnSÞ ¼ a, this means agents in NnS
manipulate at ððRaÞS; ðRbÞNnSÞ via qjNnS, a contradiction. h

Remark A.1 It follows from Lemma A.2 and Lemma A.3 that there is a unanimous, anonymous,

symmetric, and group strategy-proof choice function u : Dn ! A only if n is odd. This completes the

proof of Corollary 4.1.

Lemma A.4 Let u : Dn ! A be a unanimous, anonymous, symmetric, and group strategy-proof choice

function, and let a and b be top-connected alternatives. Then, the following two are equivalent.

(i) S is decisive on all (a, b)-ðS;NnSÞ-unanimous profiles.
(ii) |S| [ n

2
:

Proof Consider Ra � ab � � � and Rb � ba � � �. By group strategy-proofness and unanimity,

uððRaÞS; ðRbÞNnSÞ 2 fa; bg. If (i) holds, then uððRaÞS; ðRbÞNnSÞ ¼ a, and by Lemma A.2, jSj[ n
2
.
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Suppose (ii) holds. If uððRaÞS; ðRbÞNnSÞ ¼ b, then by Lemma A.2, we have jNnSj[ n
2
, a contradiction to

jSj[ n
2
. So, uððRaÞS; ðRbÞNnSÞ ¼ a. By Lemma A.2, this implies S is decisive on all (a, b) -ðS;NnSÞ-

unanimous profiles. h

Lemma A.5 Let u : Dn ! A be a unanimous and group strategy-proof choice function, and let x1; . . .; xk

be a path in GðDÞ such that every three consecutive alternatives in the path are distinct. Suppose a

coalition S is decisive on all ðx1; x2Þ-ðS;NnSÞ-unanimous profiles. Then, S is decisive on all ðxs; xtÞ-
ðS;NnSÞ-unanimous profiles for all 1� s\t� k.

Proof We prove this by using induction on the value of t 	 s for ðxs; xtÞ-ðS;NnSÞ-unanimous profiles.

First, we prove that S is decisive on all ðxs; xsþ1Þ-ðS;NnSÞ-unanimous profiles for all 0� s\k. Consider

p 2 Dn such that pðiÞ � x2x3 � � � for all i 2 S and pðiÞ � x3x2 � � � for all i 2 NnS. We show that uðpÞ ¼ x2.

To ease the presentation of the proof, we use the notationRst to denote a preference of the form xsxt � � �.
By our assumption, uððR12ÞS; ðR23ÞNnSÞ ¼ x1. Consider a profile ððR12ÞSðR32ÞNnSÞ 2 Dn. By group

strategy-proofness, uððR12ÞS; ðR32ÞNnSÞ 2 fx1; x2; x3g. Since uððR12ÞS; ðR23ÞNnSÞ ¼ x1, by using group

strategy-proofness for the agents in NnS, uððR12ÞS; ðR32ÞNnSÞ ¼ x1. Consider a profile of the form

ððR21ÞS; ðR32ÞNnSÞ. Since uððR12ÞS; ðR32ÞNnSÞ ¼ x1, by using group strategy-proofness for agents in S,

uððR21ÞS; ðR32ÞNnSÞ 2 fx1; x2g. If uððR21ÞS; ðR32ÞNnSÞ ¼ x1, then agents in NnS manipulate at

ððR21ÞS; ðR32ÞNnSÞ via ðR21ÞNnS. So, uððR21ÞS; ðR32ÞNnSÞ ¼ x2. By group strategy-proofness,

uððR23ÞS; ðR32ÞNnSÞ ¼ x2 and by Lemma A.3, S is decisive on all ðx2; x3Þ-ðS;NnSÞ-unanimous profiles.

Continuing in this manner, it can be shown that S is decisive on all ðxs; xsþ1Þ-ðS;NnSÞ-unanimous profiles

for all 1� s\k. Suppose S is decisive on all ðxs; xtÞ-ðS;NnSÞ-unanimous profiles where t 	 s� l for some

l� k 	 1. We show that S is decisive on all ðxs; xtÞ-ðS;NnSÞ-unanimous profiles where t 	 s ¼ lþ 1.

By our induction hypothesis, uððRðsþ1ÞsÞS; ðRtþ1ÞNnSÞ ¼ xsþ1. By group strategy-proofness, this means

uððRsðsþ1ÞÞS; ðRtþ1ÞNnSÞ 2 fxs; xsþ1g. Suppose uððRsðsþ1ÞÞS; ðRtþ1ÞNnSÞ ¼ xsþ1. Then, by group strategy-

proofness uððRsðsþ1ÞÞS; ðRðsþ1ÞsÞNnSÞ ¼ xsþ1, which contradicts our earlier step where we have shown that

S is decisive on all ðxs; xsþ1Þ-ðS;NnSÞ-unanimous profiles for all 0� s\k. So,

uððRsðsþ1ÞÞS; ðRtþ1ÞNnSÞ ¼ xs. By group strategy-proofness, this means uððRsÞS; ðRtþ1ÞNnSÞ ¼ xs implying

that S is decisive on all ðxs; xtÞ-ðS;NnSÞ-unanimous profiles for all 0� s\t� k. This completes the proof

of the lemma. h

Lemma A.6 Let u : Dn ! A be a unanimous, anonymous, symmetric, and group strategy-proof choice

function, and let S be a coalition with |S| [ n
2
. Then, S is decisive.

Proof By Lemma A.4, S is decisive on all (a, b) -ðS;NnSÞ-unanimous profiles where a!b. By Lemma

A.5, S is decisive on all (x, y) -ðS;NnSÞ-unanimous profiles such that there exists a path in GðDÞ
connecting x and y. Since GðDÞ is connected, this means S is decisive on all (x, y) -ðS;NnSÞ-unanimous

profiles. Now, by Lemma A.1, we have that S is decisive on all profiles. h

The restriction of a preference R 2 LðAÞ to a set X � A is defined as

RjX :¼ fxy : xy 2 R and xy 2 X 
 Xg:
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Lemma A.7 Let u : Dn ! A be a unanimous, anonymous, symmetric, and group strategy-proof choice

function. Consider a path x1; . . .; xk in GðDÞ such that xi 6¼ xj for all i 6¼ j. Then, for all R 2 D, sðRjXÞ ¼
xk implies RjX � xkxk	1 � � � x1, where X ¼ fx1; . . .; xkg.

Proof Since n is odd, n� 3. Therefore, N can be partitioned into coalitions S, T and U such that jSj ¼ 1,

jS [ Uj[ n
2
, jT [ Uj[ n

2
and jS [ T j[ n

2
. Let a preference R1 2 D be such that sðR1Þ ¼ x1. Define the

choice function w : DS[T ! A such that for all p 2 DS[T , wðpÞ ¼ uð ~pÞ where ~pðiÞ ¼ R1 for all i 2 U and

~pðiÞ ¼ pðiÞ for all i 2 S [ T . Since u is group strategy-proof, w is group strategy-proof. Further, since

jS [ T j[ n
2
, by Lemma A.6, S [ T is decisive for u. This together with the fact that u is unanimous

implies w is unanimous. Since jS [ Uj[ n
2
, by Lemma A.6, uð ~pÞ ¼ x1 where ~pðiÞ ¼ R1 for all i 2 S [ U

and sð ~pðiÞÞ ¼ x2 for all i 2 T . This means wðpÞ ¼ x1, where p is a ðx1; x2Þ- (S, T) -unanimous profile.

Since w is unanimous and group strategy-proof, by Lemma A.5, we have for all 1� s\t� k and all

ðxs; xtÞ- (S, T)-unanimous profiles q, wðqÞ ¼ xs. Using a similar logic, it follows that T is decisive on all

ðxs; xtÞ- (T, S)-unanimous profiles for all 1� s\t� k. Combining all these observations, we have

uðqÞ ¼ xminfs;tg: ð6Þ

Now, we are ready to complete the proof of the lemma. Assume for contradiction

that there exists R 2 D such that sðRjXÞ ¼ xk and xrxs 2 R for some r\s. Then, by
(6), wðpÞ ¼ xs where pðiÞ ¼ R for all i 2 S and sðpðiÞÞ ¼ xs for all i 2 T . Consider
q 2 Dn such that sðqðiÞÞ ¼ xr for all i 2 S and qjT ¼ pjT . By (6), wðqÞ ¼ xr, which
means that the agents in S manipulate at p via qjS contradicting the group strategy-

proofness (also, strategy-proofness) of w. h

Lemma A.8 Let u : Dn ! A be a unanimous, anonymous, symmetric, and group strategy-proof choice

function. Then, GðDÞ must be a tree, D must be single-peaked on GðDÞ, and n must be odd.

Proof Assume for contradiction that there exists a cycle x1; . . .; xk; x1 in GðDÞ such that xi 6¼ xj for all

i 6¼ j. Consider R 2 D such that sðRÞ ¼ x1. Since x1; x2; . . .; xk is a path in GðDÞ such that xi 6¼ xj for all

i 6¼ j, by Lemma A.7, x2x3 2 R. Again, since x1; xk; xk	1; . . .; x2 is a path in GðDÞ such that xi 6¼ xj for all

i 6¼ j, by Lemma A.7, x3x2 2 R. However, this contradicts that R is a preference. So, GðDÞ is a tree. Now,
by means of Lemma A.7 it follows that D is single-peaked on GðDÞ.
Now, we show n is odd. Suppose not. Take jSj ¼ n

2
. Let Ra � ab � � � and Rb � ba � � �. By unanimity and

group strategy-proofness, uððRaÞS; ðRbÞNnSÞ 2 fa; bg. Assume without loss of generality,

uððRaÞS; ðRbÞNnSÞ ¼ a. Since jSj ¼ n
2
, by anonymity of u, this implies uððRbÞS; ðRaÞNnSÞ ¼ a. On the

other hand, since uððRaÞS; ðRbÞNnSÞ ¼ a, by symmetry uððRbÞS; ðRaÞNnSÞ ¼ b, which is a contradiction.h

Proof of Theorem 4.2
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Proof The proof of the if part of the theorem follows from the same of the if part of Theorem 4.1. We

proceed to prove the only-if part.

Assume for contradiction that uðpÞ ¼ x for some p 2 Dn where x is such that there exists a component C

in T	x with jfi 2 N : sðpðiÞÞ 2 Cgj� n
2
. Let S ¼ fi 2 N : sðpðiÞÞ 2 Cg. Since n is odd, this means

jSj[ n
2
. Consider q 2 Dn such that qðiÞ ¼ pðiÞ for all i 2 S and sðqðiÞÞ ¼ x for all i 2 NnS. By group

strategy-proofness, uðqÞ ¼ x. Let y 2 C be the (unique) vertex in C such that fx; yg is an edge in T.

Consider r 2 Dn such that rðiÞ � yx � � � for all i 2 S and rðiÞ ¼ qðiÞ for all i 2 NnS. By unanimity and

group strategy-proofness, uðrÞ 2 fx; yg. If uðrÞ ¼ y, then because preferences are single-peaked on T,

agents in S manipulate at r via qjS. So, uðrÞ ¼ x. However, since r is a (x, y) -ðS;NnSÞ-unanimous profile

with jSj[ n
2
, this contradicts Lemma A.2. h

Proof of Theorem 5.1

The proof of Theorem 5.1 follows from following the steps in the proof of

Theorem 4.1 with the following modifications.

Proof of Lemma A.5 Let R;R0 2 D be such that R � x1x2 � � � and R0 � x3x2 � � �. Let S be a coalition and

consider the profile p such that pðiÞ ¼ R for all i 2 S and pðiÞ ¼ R0 for all i 2 NnS. In the proof of Lemma

A.5, we use the fact that by unanimity and group strategy-proofness, uðpÞ 2 fx1; x2; x3g. Clearly, this
does not follow if we replace group strategy-proofness by strategy-proofness. However, since we

additionally have the fact that the domain is strongly path-connected, this assertion follows. To see this,

assume for contradiction that uðpÞ 62 fx1; x2; x3g. Consider the preference �R such that �R � x2x3 � � �, and
for all a; b 62 fx2; x3g, ab 2 �R if and only if ab 2 R. We can move the agents in NnS sequentially to �R, and

each time, by strategy-proofness we can claim that the outcome will remain the same as uðpÞ. Since
uðpÞ 62 fx1; x2; x3g, this contradicts the assumption of the lemma that S is decisive on all ðx1; x2Þ-
ðS;NnSÞ-unanimous profiles. This completes the proof of Lemma A.5 for this case.

In every other place where group strategy-proofness is used, we can change the preferences of the agents

in the corresponding group one by one (as discussed in the modified proof of Lemma A.5) and apply

strategy-proofness at each step to obtain the desired conclusion. h

Independence of axioms in Theorem 4.1

In this section, we establish the independence of the conditions that we have used in

Theorem 4.1 Furthermore, we show how to modify Theorem 4.1 if we replace group

strategy-proofness by strategy-proofness.

In what follows, we introduce some special type of choice functions and discuss

their properties. We will use these functions to establish the mentioned independence.

Let a 2 A be an alternative, and letD	a be a domain such that a 62 sðD	aÞ. A choice

function ua : ðD	aÞn ! A is called constant at a if uaðpÞ ¼ a for all profiles

p 2 ðD	aÞn. By definition, ua violates unanimity. Since the outcome of ua does not

depend on the profiles, it satisfies anonymity, strategy-proofness, and group strategy-

proofness. To apply symmetry, we need two preferences in the domain of the form

xy � � � and yx � � � for some x; y 2 A, and a profile where each agent has one of the two

preferences such that the outcome at that profile is either x or y. Because a never

appears at the top position in any preference in D	a, a cannot be one of x or y in the
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aforementioned preferences. Since both x and y are different from a, by definition the
outcome of ua cannot be x or y. Thus, symmetry is vacuously satisfied by ua.

A choice functionudict
j : LðAÞn ! A, where j 2 N, is called dictatorial ifudict

j ðpÞ ¼
sðpðjÞÞ for all p 2 LðAÞn. By definition, udict

j satisfies unanimity, strategy-proofness,

group strategy-proofness and violates anonymity. To see thatudict
j satisfies symmetry,

consider a profile where a group S, ; 6¼ S 6¼ N, of agents have a preference P � xy � � �
and other agents have the preference P0 � yx � � �. Suppose that outcome ofudict

j at this

profile is x. Thismeans some agent in S is the dictator. Therefore, if agents in S andNnS
interchange their preferences, then the top-ranked alternative of the dictator will be y,
and consequently, the outcome will be y, ensuring symmetry.

A choice function uuna
a : ðD	aÞn ! A, where a 2 A, is called unanimous with

disagreement a, if for all p 2 LðAÞn,

uuna
a ðpÞ ¼ b if sðpðiÞÞ ¼ b for all i 2 N

¼ a otherwise.

The rule uuna
a satisfies unanimity by definition. Anonymity of uuna

a follows from the

fact that if agents interchange their preferences, then a unanimous profile will

remain unanimous and a non-unanimous profile will remain non-unanimous, and

hence by definition, the outcome of uuna
a will not change. Since a does not appear at

the top position in any preference in D	a, as we have explained in the case of ua,

symmetry holds vacuously for uuna
a . To see that uuna

a is manipulable, consider a

profile where some alternative b is the top-ranked alternative of every agent except

agent 1 and b is preferred to a for agent 1. By definition, the outcome of uuna
a at this

profile is a. However, if agent 1 misreports her preference as one with b at the top

position, then the outcome will become b and agent 1 will be strictly better off. So,

uuna
a is not strategy-proof, and hence, it is not group strategy-proof either.

For the next choice function and its (restricted) domain, let the alternatives be

numbered as a1; . . .; am. To ease our presentation, whenever we use minimum or

maximum of a set of alternatives, we mean it with respect to the ordering

a1 � � � � � am. A domain S is said to be semi-single-peaked domain if for all R in

S, sðRÞ ¼ ak impliesR � ak � � � ak	1 � � � ak	2 � � � a2 � � � a1 � � �. Thus, each preference in
a semi-single-peaked domain maintains single-peakedness only on the left side of the
peak (that is, the top-ranked alternative); that is, as one moves away from the peak on

the left side, preference declines. Note that there is no restriction on the relative

ordering of two alternatives if at least one of them is on the right of the peak.

A choice function ulow : Sn ! A is called lowest peak if for all p 2 Sn,

ulowðpÞ ¼ minfsðpðiÞÞ : i 2 Ng:

As the name suggests, ulow selects the minimum peak (with respect to the ordering

�) at every profile. Unanimity and anonymity of ulow follow from the definition. In

what follows, we argue that ulow satisfies group strategy-proofness (and hence

strategy-proofness).
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Suppose a group of agents S manipulate ulow at a profile p. Let minðpÞ be the

minimum peak of p. Since uðpÞ ¼ minðpÞ, the (sincere) peak of each agent in Smust

be strictly on the right of minðpÞ. This in particular means that the peak of some agent

outside S is minðpÞ. Therefore, by the definition of u, the only way the agents in S can
change the outcome is to declare a peak which is on the (further) left of minðpÞ. This
will push the outcome to the left ofminðpÞ aswell. Since the sincere peaks of the agents
in S are on the right of minðpÞ and the changed outcome is on the left of minðpÞ, by the
definition of semi-single-peakedness, the changed outcome will become even worse

for them. So, no group of agents can manipulate ulow at any profile.

Finally, we explain that ulow does not satisfy symmetry. Consider two

preferences R � akakþ1 � � � and R0 � akþ1ak � � �, and consider a profile p where

each agent in a group S, ; 6¼ S 6¼ N, has the preference R and each remaining agent

has the preference R0. By the definition of ulow, ulowðpÞ ¼ ak. Now, consider the
profile p0 where each agent in S has the preference R0 and each remaining agent has

the preference R. In order to satisfy symmetry, the outcome at this profile must be

xkþ1, but by the definition of ulow, the outcome is xk.
In Table 6, we present the conditions that are satisfied by each of the above-

mentioned choice functions. Note that this table establishes the independence of the

conditions that are used in Theorem 4.1.
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