Skip to main content
Log in

Feddersen and Pesendorfer meet Ellsberg

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

The Condorcet Jury Theorem formalises the “wisdom of crowds”: binary decisions made by majority vote are asymptotically correct as the number of voters tends to infinity. This classical result assumes like-minded, expected utility maximising voters who all share a common prior belief about the right decision. Ellis (Theor Econo 11(3): 865–895, 2016) shows that when voters have ambiguous prior beliefs—a (closed, convex) set of priors—and follow maxmin expected utility (MEU), such wisdom requires that voters’ beliefs satisfy a “disjoint posteriors” condition: different private signals lead to posterior sets with disjoint interiors. Both the original theorem and Ellis’s generalisation assume symmetric penalties for wrong decisions. If, as in the jury context, errors attract asymmetric penalties then it is natural to consider voting rules that raise the hurdle for the decision carrying the heavier penalty for error (such as conviction in jury trials). In a classical model, Feddersen and Pesendorfer (Am Politi Sci Rev 92(1):23–35, 1998) have shown that, paradoxically, raising this hurdle may actually increase the likelihood of the more serious error. In particular, crowds are not wise under the unanimity rule: the probability of the more serious error does not vanish as the crowd size tends to infinity. We show that this “Jury Paradox” persists in the presence of ambiguity, whether or not juror beliefs satisfy Ellis’s “disjoint posteriors” condition. We also characterise the strictly mixed equilibria of this model and study their properties. Such equilibria cannot exist in the absence of ambiguity but may exist for arbitrarily large jury size when ambiguity is present. In addition to uninformative strictly mixed equilibria, analogous to those exhibited by Ellis (Theor Econo 11(3): 865–895, 2016), there may also exist strictly mixed equilibria which are informative about voter signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. McLennan (1998) shows that ex ante optimal equilibria may be asymmetric, but most of the subsequent literature focusses on the symmetric case.

  2. For this reason, the jury analogy is somewhat misleading. It does, however, have the advantage of being memorable; it also nicely motivates the asymmetric loss functions that underpin the “Jury Paradox” to be discussed shortly. In the concluding section (Sect. 6), we briefly discuss the literature on models that incorporate juror deliberation.

  3. Provided, that is, one excludes the trivial equilibrium in which all jurors vote for acquittal irrespective of their private information.

  4. In Ellis (2016), the voters are selecting a candidate so he uses the notation \(c\in C\) rather than \(d\in D\).

  5. Ellis denotes the cardinality of I by \(2n+1\), for some positive integer n . We use N rather than 2n since we allow an even number of jurors.

  6. Proposition 2 in Ellis (2016) concerns this special case.

  7. Decision-theoretic foundations for FBU are provided by Pires (2002), Eichberger et al. (2007) and Eichberger et al. (2010). With regard to the latter, note that uncertainty is one-dimensional in our model so maxmin expected utility maximisation is a special case of Choquet expected utility maximisation.

  8. Feddersen and Pesendorfer also allow \(c\in \left( -1,0\right) \) (i.e., \(q\in \left( 0,\frac{1}{2}\right) \)) but this case is symmetric to ours—it effectively reverses the roles of the states—so nothing is lost by omitting it.

  9. See also Pan (2019).

  10. What we call an “equilibrium” Ellis refers to as a “symmetric equilibrium” . We drop the qualifier as we do not consider asymmetric equilibria in the present paper.

  11. See Sect. 3.1 of Ellis (2016) for a discussion of this distinction and justification for choosing the interim option.

  12. Let \({\mathcal {P}}_{i}\) denote the event in which i is pivotal, so that \( \rho _{a}=\Pr \left[ {\mathcal {P}}_{i}|a\right] \). It is easy to check that

    $$\begin{aligned} \Pr \left[ a\ |\ {\mathcal {P}}_{i}\text { and }t_{i}=t\right] \ =\ \frac{\rho _{a}\Pr \left[ a|t_{i}=t\right] }{\rho _{a}\Pr \left[ a|t_{i}=t\right] +\rho _{b}\left( 1-\Pr \left[ a|t_{i}=t\right] \right) }. \end{aligned}$$

    Since \(\rho _{a}>0\) and \(\rho _{b}>0\), the right-hand side of this expression is strictly increasing in \(\Pr \left[ a|t_{i}=t\right] \). Therefore, using (1) and (7) we have:

    $$\begin{aligned} \Pr \left[ a|t_{i}=t\right] \le \pi ^{*}\left( \sigma \right)\Leftrightarrow & {} \ \ \Pr \left[ a|t_{i}=t\right] \ \le \ \frac{\rho _{b}}{\rho _{b}+\left( 1+c\right) \rho _{a}} \\\Leftrightarrow & {} \ \ \Pr \left[ a\ |\ {\mathcal {P}}_{i}\text { and }t_{i}=t \right] \ \le \ \frac{1}{2+c} \\\Leftrightarrow & {} \ \ \Pr \left[ b\ |\ {\mathcal {P}}_{i}\text { and }t_{i}=t \right] \ge q. \end{aligned}$$

    The latter is the form in which the condition appears in Feddersen and Pesendorfer (1998).

  13. Proposition 4.1 shows that (i) does not hold; Proposition 4.2 proves that (ii) does not hold; Figure 3 illustrates the possibility of multiple responsive equilibria (though Lemma 4.3 establishes that there is at most one responsive equilibrium with \(\sigma _{2}=1\), as in Feddersen and Pesendorfer’s model).

  14. Proposition 4.1 (for \(c=0\)) is somewhat stronger than Ellis’ result (albeit for a restricted information structure), in that Proposition 4.1 provides necessary and sufficient conditions for existence of equilibria with \(\sigma _{1}=\sigma _{2}\in \left( 0,1\right) \), and also establishes the uniqueness of such equilibria when they exist.

  15. Where B is taken to include the red vertical boundary (excluding its end points) but none of its other boundaries.

  16. Where C is taken to include the green boundary (excluding its end points) but none of its other boundaries.

  17. And summarised in Fig. 7(II).

  18. As described by the locus \(\Omega \left( {\underline{\pi }}_{1}\right) \) in Fig. 8 of Appendix B.

  19. As N increases, the line \(\Omega \left( {\underline{\pi }}_{1}\right) \) in Fig. 8 gets flatter.

  20. Consider equation (CI) in Appendix B. If we fix \(\sigma _{2}\) and increase N, then \(\sigma _{1}\) must increase to maintain the equality. Hence, the curve of solutions to (C1) in Fig. 8 must move rightwards. Since the curve \(\Omega \left( {\underline{\pi }}_{1}\right) \) is getting flatter, the value of \(\sigma _{1}\) must increase at the intersection.

  21. Feddersen and Pesendorfer (1998) actually bound this probability for any Bayesian Nash equilibrium—symmetric or otherwise—in which there is a positive probability of conviction (ibid., Proposition 1).

  22. Recall that \(\ell \left( x\right) \) is defined in (13).

  23. I thank the Associate Editor for suggesting this discussion.

  24. Of course, as Jürgen and his collaborators have pointed out (Eichberger et al. 2011), the axiomatic foundations of the \(\alpha \)-MEU model are somewhat problematic for finite state spaces. Nevertheless, it is an important model for applied work.

  25. Convexity of preferences means quasi-concavity of \(V^{*}_{t} \left( x,\sigma \right) \) in x.

  26. This conjecture is discussed in more detail in Fabrizi et al. (2019b).

  27. The line has equation \({\overline{\pi }}_{t}\ =\ \rho _{b}+\left[ 1-\left( 1+c\right) \rho _{a}-\rho _{b}\right] {\underline{\pi }}_{t}\).

  28. But see Mathis (2011) for results that point in the same direction as Coughlan (2000).

  29. Think of the horizontal axes in Figs. 4 and 5 as the ground, with a see-saw above. The fulcrum of the see–saw is at \(\sigma ^{*}\left( \sigma \right) \) and the set \(\Pi _{t}\) determines its range of motion, with \(\pi ^{*}\left( \sigma \right) \) corresponding to the see-saw in a horizontal position, and values of \(\pi _{t}\) above (respectively, below) \(\pi ^{*}\left( \sigma \right) \) corresponding to a downward (respectively, upward) slope from left to right. The function \( V^{*}_{t} \left( \sigma _{t}^{i},\sigma \right) \) describes the lower envelope of the see–saw’s trajectory over the range \(\sigma _{t}^{i}\in \left[ 0,1\right] \).

  30. In particular, there is a one-to-one relationship between \(\pi ^{*}\left( \sigma \right) \) and the likelihood ratio \(\rho _{a}/\rho _{b}\). If \( \sigma \in \Omega \left( x\right) \) then this ratio is given by \(\ell \left( x\right) \).

  31. That is, the locus of solutions to (CI) may hit the left-hand edge of the triangle rather than the top edge.

  32. Since \(\lambda \left( {\overline{\pi }}_{2}\right) >0\) (see Lemma 6.1) we know that both have the same sign. Since \({\overline{\pi }}_{2}>\left( 2+c\right) ^{-1}\) from (21), we see that

    $$\begin{aligned} \ell \left( {\overline{\pi }}_{2}\right) \ =\ \frac{1-\overline{\pi }_{2}}{ {\overline{\pi }}_{2}\left( 1+c\right) }\ <\ 1 \end{aligned}$$

    (where we have used the definition of \(\ell \) from Lemma 6.1) and therefore

    $$\begin{aligned} \ell \left( {\overline{\pi }}_{2}\right) ^{1/N}<1<\frac{r}{1-r}\ \ \ \Rightarrow \ \ \ r-\left( 1-r\right) \ell \left( \overline{\pi }_{2}\right) ^{1/N}>0. \end{aligned}$$
  33. There exists such an \(\varepsilon \) since setting \(\varepsilon =0\) in (25) gives

    $$\begin{aligned} \left( 2r-1\right) \ln \left( \frac{1}{2+c}\right) <0 \end{aligned}$$

    which is obviously true.

  34. Using (1) we see that

    $$\begin{aligned} \frac{1}{c+1}\ =\ \frac{1-q}{q} \end{aligned}$$

    so

    $$\begin{aligned} \left[ \frac{\left( 2r-1\right) \ell \left( \overline{\pi }_{1}\right) ^{ \frac{1}{N}}}{r-\left( 1-r\right) \ell \left( {\overline{\pi }}_{1}\right) ^{ \frac{1}{N}}}\right] ^{N+1}\ =\ \left[ \frac{\left( 2r-1\right) \left( \frac{ \left( 1-q\right) \left( 1-{\overline{\pi }}_{1}\right) }{q{\overline{\pi }}_{1}} \right) ^{\frac{1}{N}}}{r-\left( 1-r\right) \left( \frac{\left( 1-q\right) \left( 1-{\overline{\pi }}_{1}\right) }{q{\overline{\pi }}_{1}}\right) ^{\frac{1 }{N}}}\right] ^{N+1}. \end{aligned}$$

    If \({\overline{\pi }}_{1}=r\) this is identical to the expression for \( l_{I}\left( r,g,N+1\right) \) on p.26 of Feddersen and Pesendorfer (1998). Moreover, if \({\overline{\pi }}_{1}=r\) then condition (31) is equivalent to \(q>1-r\), which is necessary in Feddersen and Pesendorfer’s model to ensure the existence of a responsive equilibrium; otherwise, if \(q\le 1-r\), then \(\sigma =\left( 1,1\right) \) is an equilibrium of the Feddersen and Pesendorfer model. Likewise, when (31) is violated in our model, \( \sigma =\left( 1,1\right) \) is an equilibrium but no responsive equilibrium exists.

  35. In fact, (Fabrizi et al. 2019b) show that this is necessary for any N.

References

  • Austen-Smith, D., & Banks, J. S. (1996). Information aggregation, rationality, and the Condorcet jury theorem. American Political Science Review, 90(1), 34–45.

    Article  Google Scholar 

  • Austen-Smith, D., & Feddersen, T. J. (2006). Deliberation, preference uncertainty, and voting rules. American Political Science Review, 100(2), 209–217.

    Article  Google Scholar 

  • Azrieli, Y., & Teper, R. (2011). Uncertainty aversion and equilibrium existence in games with incomplete information. Games and Economic Behavior, 73(2), 310–317.

    Article  Google Scholar 

  • Coughlan, P. J. (2000). In defense of unanimous jury verdicts: Mistrials, communication, and strategic voting. American Political Science Review, 94(2), 375–393.

    Article  Google Scholar 

  • Eichberger, J., Grant, S., & Kelsey, D. (2007). Updating Choquet beliefs. Journal of Mathematical Economics, 43(7–8), 888–899.

    Article  Google Scholar 

  • Eichberger, J., Grant, S., & Kelsey, D. (2010). Comparing three ways to update Choquet beliefs. Economics Letters, 107(2), 91–94.

    Article  Google Scholar 

  • Eichberger, J., Grant, S., Kelsey, D., & Koshevoy, G. A. (2011). The \(\alpha \)-MEU model: A comment. Journal of Economic Theory, 146(4), 1684–1698.

    Article  Google Scholar 

  • Eichberger, J., & Kelsey, D. (2014). Optimism and pessimism in games. International Economic Review, 55(2), 483–505.

    Article  Google Scholar 

  • Ellis, A. (2016). Condorcet meets Ellsberg. Theoretical Economics, 11(3), 865–895.

    Article  Google Scholar 

  • Fabrizi, S., Lippert, S., Pan, A. & Ryan, M.J. (2019a). Unanimous jury voting with an ambiguous likelihood. Unpublished working paper, University of Auckland.

  • Fabrizi, S., Lippert, S., Pan, A. & Ryan, M.J. (2019b). Unanimity under ambiguity. Unpublished working paper, Auckland University of Technology.

  • Fagin, R. & Halpern, J. (1990). A new approach to updating beliefs. Proceedings of the 6th Conference on Uncertainty in AI (pp.317-325). Elsevier, New York.

  • Feddersen, T., & Pesendorfer, W. (1998). Convicting the innocent: The inferiority of unanimous jury verdicts under strategic voting. American Political Science Review, 92(1), 23–35.

    Article  Google Scholar 

  • Gerardi, D., & Yariv, L. (2007). Deliberative voting. Journal of Economic Theory, 134(1), 317–338.

    Article  Google Scholar 

  • Ghirardato, P., Maccheroni, F., & Marinacci, M. (2004). Differentiating ambiguity and ambiguity attitude. Journal of Economic Theory, 118(2), 133–173.

    Article  Google Scholar 

  • Gilboa, I., & Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. Journal Mathematical Economics, 18, 141–153.

    Article  Google Scholar 

  • Jaffray, J. Y. (1991). Linear utility theory and belief functions: a discussion. In Progress in Decision, Utility and Risk Theory (pp. 221-229). Springer, Dordrecht.

  • Jaffray, J.-Y. (1992). Bayesian updating and belief functions. IEEE Transactions on Systems, Man and Cybernetics, 22, 1144–1152.

    Article  Google Scholar 

  • Kajii, A., & Ui, T. (2005). Incomplete information games with multiple priors. The Japanese Economic Review, 56(3), 332–351.

    Article  Google Scholar 

  • Lo, K. C. (1996). Equilibrium in beliefs under uncertainty. Journal of Economic Theory, 71, 443–484.

    Article  Google Scholar 

  • Mathis, J. (2011). Deliberation with evidence. American Political Science Review, 105(3), 516–529.

    Article  Google Scholar 

  • McLennan, A. (1998). Consequences of the Condorcet jury theorem for beneficial information aggregation by rational agents. American Political Science Review, 92(2), 413–418.

    Article  Google Scholar 

  • Pan, A. (2019). A note on pivotality. Games, 10(2), 24.

    Article  Google Scholar 

  • Pires, C. P. (2002). A rule for updating ambiguous beliefs. Theory and Decision, 53(2), 137–152.

    Article  Google Scholar 

  • Rogers, A. J., & Ryan, M. J. (2012). Additivity and uncertainty. Economics Bulletin, 32(3), 1858–1864.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Ryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

My thanks to Andrew Ellis, Simona Fabrizi, Steffen Lippert, Aniol Llorente-Saguer and Addison Pan for helpful comments on previous drafts. I also thank the referees for their careful reading and constructive comments which have materially improved the paper. Financial support from the Royal Society of New Zealand through Marsden Fund Grant UOA1617 is gratefully acknowledged. Finally, let me say what a very great pleasure it is to contribute to this issue in honour of Jürgen Eichberger. My original PhD research was inspired by Jürgen’s pioneering work with David Kelsey on signalling games with ambiguity. It is wonderful to see a volume of Theory and Decision paying tribute to his scholarship, and a privilege to be part of it.

Appendices

Appendix A

In this Appendix, we describe the derivation of Fig. 1.

Let us start by observing that (5) may be written as follows:

$$\begin{aligned} V\left( \sigma _{t}^{i},\sigma ;\pi _{t}\right) \ =\ \pi _{t}+\sigma _{t}^{i}\left( \left( 1-\pi _{t}\right) \rho _{b}-\left( 1+c\right) \pi _{t}\rho _{a}\right) . \end{aligned}$$

Recalling (7), it follows that \(V\left( \sigma _{t}^{i},\sigma ;\pi _{t}\right) \) is strictly decreasing in \(\sigma _{t}^{i}\) iff \( \pi _{t}>\pi ^{*}\left( \sigma \right) \); strictly increasing in \( \sigma _{t}^{i}\) iff \(\pi _{t}<\pi ^{*}\left( \sigma \right) \); and constant in \(\sigma _{t}^{i}\) iff \(\pi _{t}=\pi ^{*}\left( \sigma \right) \). Thus, if all the posteriors in \(\Pi _{t}\) are (strictly) on the same side of \(\pi ^{*}\left( \sigma \right) \), then voter i’s response follows the same logic as in Feddersen and Pesendorfer (1998): recall footnote 12. In particular, if \(\pi ^{*}\left( \sigma \right) <{\underline{\pi }}_{t}\) then the function

$$\begin{aligned} V^{*}_{t} \left( \sigma _{t}^{i},\sigma \right) \ \equiv \ \min _{\pi _{t}\in \Pi _{t}}\ V\left( \sigma _{t}^{i},\sigma ;\pi _{t}\right) \end{aligned}$$
(15)

is the lower envelope of functions that are strictly decreasing in \(\sigma _{t}^{i}\) so \(V^{*}_{t}\) itself is strictly decreasing in \(\sigma _{t}^{i}\). It follows that \(\sigma _{t}^{i}=0\) is the unique best response to \(\sigma \) (conditional on \(t_{i}=t\)) when \(\pi ^{*}\left( \sigma \right) < {\underline{\pi }}_{t}\). Conversely, if \(\pi ^{*}\left( \sigma \right) > {\overline{\pi }}_{t}\) then (15) is strictly increasing in \(\sigma _{t}^{i}\) so \(\sigma _{t}^{i}=1\) is the unique best response to \(\sigma \) (again, conditional on \(t_{i}=t\)). This gives the green and blue regions (respectively) in Fig. 1.

It remains to consider the case in which \({\underline{\pi }}_{t}\le \pi ^{*}\left( \sigma \right) \le {\overline{\pi }}_{t}\): the case described by the pink rectangle in Fig. 1 and its (brown and purple) boundaries. To analyse this case, it is convenient to re-write (5) as follows:

$$\begin{aligned} V\left( \sigma _{t}^{i},\sigma ;\pi _{t}\right) \ =\ \sigma _{t}^{i}\rho _{b}+\pi _{t}\left( 1-\left( 1+c\right) \rho _{a}\sigma _{t}^{i}-\rho _{b}\sigma _{t}^{i}\right) . \end{aligned}$$

Recalling (8), we observe that

$$\begin{aligned} 1-\left( 1+c\right) \rho _{a}\sigma ^{*}\left( \sigma \right) -\rho _{b}\sigma ^{*}\left( \sigma \right) \ =\ 0 \end{aligned}$$

and hence

$$\begin{aligned} V^{*}_{t} \left( \sigma _{t}^{i},\sigma \right) \ =\ \left\{ \begin{array}{cc} V\left( \sigma _{t}^{i},\sigma ;{\underline{\pi }}_{t}\right) &{} \text {if } \sigma _{t}^{i}\le \sigma ^{*}\left( \sigma \right) \\ &{} \\ V\left( \sigma _{t}^{i},\sigma ;{\overline{\pi }}_{t}\right) &{} \text {if } \sigma _{t}^{i}\ge \sigma ^{*}\left( \sigma \right) \end{array} \right. \end{aligned}$$

In other words, \({\underline{\pi }}_{t}\) is the uniquely most “pessimistic” posterior in \(\Pi _{t}\) when \(\sigma _{t}^{i}<\sigma ^{*}\left( \sigma \right) \) and \({\overline{\pi }}_{t}\) is the uniquely most “pessimistic” posterior when \(\sigma _{t}^{i}>\sigma ^{*}\left( \sigma \right) \). Moreover, by choosing \(\sigma _{t}^{i}=\sigma ^{*}\left( \sigma \right) \) voter i can perfectly hedge against uncertainty since \(V\left( \sigma ^{*}\left( \sigma \right) ,\sigma ;\pi _{t}\right) \) is independent of \(\pi _{t}\). The latter hedging possibility may provide strict incentives to randomise, as noted by Ellis (2016). The t-conditional best response(s) to any \(\sigma \) satisfying \( {\underline{\pi }}_{t}\le \pi ^{*}\left( \sigma \right) \le {\overline{\pi }}_{t}\) may now be characterised as follows:

Fig. 4
figure 4

Best responses when \(\underline{\pi }_{t}\le \pi ^{*}\left( \sigma \right) \le \overline{\pi }_{t}\) and \(\sigma ^{*}\left( \sigma \right) \ge 1\). In case (a), \(\underline{\pi }_{t}<\pi ^{*}\left( \sigma \right) \) so \(\sigma _{t}^{i}=1\) is optimal. In case (b), \(\underline{\pi }_{t}=\pi ^{*}\left( \sigma \right) \) so any \(\sigma _{t}^{i}\in \left[ 0,1\right] \) is optimal

Fig. 5
figure 5

Best responses when \(\underline{\pi }_{t}\le \pi ^{*}\left( \sigma \right) \le \overline{\pi }_{t}\) and \(\sigma ^{*}\left( \sigma \right) <1\). In case (i), \(\underline{\pi }_{t}<\pi ^{*}\left( \sigma \right) \) so \(\sigma _{t}^{i}=\sigma ^{*}\left( \sigma \right) \) is optimal. In case (ii), \(\underline{\pi }_{t}=\pi ^{*}\left( \sigma \right) \) so any \(\sigma _{t}^{i}\in \left[ 0,\sigma ^{*}\left( \sigma \right) \right] \) is optimal

  • If \(\sigma ^{*}\left( \sigma \right) \ge 1\) then \(V^{*}_{t} \left( \sigma _{t}^{i},\sigma \right) =V\left( \sigma _{t}^{i},\sigma ;{\underline{\pi }}_{t}\right) \) for any \(\sigma _{t}^{i}\in \left[ 0,1\right] \), so \( \sigma _{t}^{i}=1\) is uniquely optimal if \({\underline{\pi }}_{t}<\pi ^{*}\left( \sigma \right) \), and any \(\sigma _{t}^{i}\in \left[ 0,1\right] \) is optimal if \({\underline{\pi }}_{t}=\pi ^{*}\left( \sigma \right) \), see Fig. 4.

  • If \(\sigma ^{*}\left( \sigma \right) <1\) then \(V^{*}_{t} \left( \sigma _{t}^{i},\sigma \right) \) is non-decreasing in \(\sigma _{t}^{i} \) when \(\sigma _{t}^{i}<\sigma ^{*}\left( \sigma \right) \), since \({\underline{\pi }}_{t}\le \pi ^{*}\left( \sigma \right) \), and non-increasing in \(\sigma _{t}^{i}\) when \(\sigma _{t}^{i}>\sigma ^{*}\left( \sigma \right) \), since \({\overline{\pi }}_{t}\ge \pi ^{*}\left( \sigma \right) \). Hence: (i) \(\sigma _{t}^{i}=\sigma ^{*}\left( \sigma \right) \) is uniquely optimal if \({\underline{\pi }}_{t}<\pi ^{*}\left( \sigma \right) <{\overline{\pi }}_{t}\); (ii) any \(\sigma _{t}^{i}\in \left[ 0,\sigma ^{*}\left( \sigma \right) \right] \) is optimal if \( {\underline{\pi }}_{t}=\pi ^{*}\left( \sigma \right) \); and (iii) any \( \sigma _{t}^{i}\in \left[ \sigma ^{*}\left( \sigma \right) ,1\right] \) is optimal if \({\overline{\pi }}_{t}=\pi ^{*}\left( \sigma \right) \). Fig. 5 illustrates cases (i) and (ii).Footnote 29 Case (iii) is symmetric to (ii).

Appendix B

In this Appendix, we prove Proposition 4.2.

We start with an important preliminary result. To facilitate its statement, let us define

$$\begin{aligned} \Gamma =\left\{ \left( \sigma _{1},\sigma _{2}\right) \in \left[ 0,1\right] ^{2}\ |\ \sigma _{1}\le \sigma _{2}\ \ \text {and}\ \ \sigma _{2}>0\right\} \end{aligned}$$

Set \(\Gamma \) contains all the strategies with \(\sigma _{1}\le \sigma _{2}\) excluding \(\sigma =\left( 0,0\right) \).

Lemma 6.1

Let \(\Omega \left( x\right) =\left\{ \sigma \in \Gamma \ |\ \pi ^{*}\left( \sigma \right) =x\right\} \). Then: (i) \(\Omega \left( x\right) =\emptyset \) iff

$$\begin{aligned} x\notin \left[ \frac{1}{2+c},\ \frac{r^{N}}{r^{N}+\left( 1-r\right) ^{N}\left( 1+c\right) }\right] \text {;} \end{aligned}$$

(ii) \(\Omega \left( x\right) =\left\{ \sigma \in \Gamma \ |\ \sigma _{1}=0\right\} \) if

$$\begin{aligned} x=\frac{r^{N}}{r^{N}+\left( 1-r\right) ^{N}\left( 1+c\right) }\text {;} \end{aligned}$$

and (iii) \(\Omega \left( x\right) =\left\{ \sigma \in \Gamma \ |\ \sigma _{2}=\lambda \left( x\right) \sigma _{1}\right\} \) otherwise, where

$$\begin{aligned} \lambda \left( x\right) =\frac{r-\left( 1-r\right) \ell \left( x\right) ^{ \frac{1}{N}}}{r\ell \left( x\right) ^{\frac{1}{N}}-\left( 1-r\right) }\in \left[ 1,\infty \right) \ \ \ \text {and}\ \ \ \ell \left( x\right) =\frac{1-x }{x\left( 1+c\right) }. \end{aligned}$$

Proof

Since \(\sigma \in \Gamma \), we have

$$\begin{aligned} \pi ^{*}\left( \sigma \right) =x\ \ \ \Leftrightarrow \ \ \ \frac{\rho _{a}}{\rho _{b}}\ =\ \ell \left( x\right) \end{aligned}$$
(16)

from (7).Footnote 30 The likelihood ratio \(\rho _{a}/\rho _{b}\) is equal to

$$\begin{aligned} \left[ \frac{ry+\left( 1-r\right) \left( 1-y\right) }{\left( 1-r\right) y+r\left( 1-y\right) }\right] ^{N}, \end{aligned}$$

where \(y=\sigma _{1}/\left( \sigma _{1}+\sigma _{2}\right) \in \left[ 0, \frac{1}{2}\right] \). It follows that

$$\begin{aligned} \left( \frac{1-r}{r}\right) ^{N}\le \frac{\rho _{a}}{\rho _{b}}\le 1. \end{aligned}$$

Using these inequalities and (16), we deduce that \(\Omega \left( x\right) \ne \emptyset \) iff

$$\begin{aligned} \frac{1}{2+c}\le x\le \frac{r^{N}}{r^{N}+\left( 1-r\right) ^{N}\left( 1+c\right) }. \end{aligned}$$

This proves (i). When

$$\begin{aligned} x=\frac{r^{N}}{r^{N}+\left( 1-r\right) ^{N}\left( 1+c\right) } \end{aligned}$$

we have

$$\begin{aligned} \ell \left( x\right) =\left( \frac{1-r}{r}\right) ^{N}. \end{aligned}$$

Using (3)–(4), it is clear that \(\sigma \in \Gamma \) satisfies

$$\begin{aligned} \frac{\rho _{a}}{\rho _{b}}=\left( \frac{1-r}{r}\right) ^{N} \end{aligned}$$

iff \(\sigma _{1}=0\). This proves (ii). Finally, if

$$\begin{aligned} \frac{1}{2+c}\le x<\frac{r^{N}}{r^{N}+\left( 1-r\right) ^{N}\left( 1+c\right) }, \end{aligned}$$

then (3)–(4) and (16) imply

$$\begin{aligned} \pi ^{*}\left( \sigma \right) =x\ \ \ \Leftrightarrow \ \ \ \sigma _{2}=\lambda \left( x\right) \sigma _{1} \end{aligned}$$

with \(\lambda \left( x\right) \in \left[ 1,\infty \right) \). This establishes (iii) and completes the proof of Lemma 6.1. \(\square \)

Fig. 6
figure 6

Note that the points in \(\Omega \left( x\right) \) form a line, and this line gets steeper as x increases

Figure 6 illustrates \(\Omega \left( x\right) \).

Fig. 7
figure 7

Strictly mixed responsive equilibria when \(\overline{\pi }_{2}>\underline{\pi }_{1}\)

Now consider Proposition 4.2. It is obvious from Fig. 1 that \({\overline{\pi }}_{2}\ge {\underline{\pi }}_{1}\) is necessary for the existence of a responsive, strictly mixed equilibrium; otherwise, it would not be possible for both \(\left( {\underline{\pi }}_{1}, \overline{\pi }_{1}\right) \) and \(\left( {\underline{\pi }}_{2},{\overline{\pi }} _{2}\right) \) to both lie in the rectangular region between the green and blue triangles in Fig. 1. We assume \({\overline{\pi }}_{2}\ge {\underline{\pi }}_{1}\) henceforth.

Suppose \({\hat{\sigma }}\in \) \(\Gamma ^{\prime }=\left\{ \sigma \in \Gamma \ \left| \ 0<\sigma _{1}<\sigma _{2}<1\right. \right\} \) (i.e., \({\hat{\sigma }}\) is strictly mixed and responsive). By inspection of Fig. 1 it is evident that for \({\hat{\sigma }}\) to be an equilibrium, we must have \(\overline{\pi }_{2}=\pi ^{*}\left( {\hat{\sigma }}\right) \) or \(\underline{\pi }_{1}=\pi ^{*}\left( {\hat{\sigma }}\right) \) or both. If both conditions hold, then \({\overline{\pi }}_{2}={\underline{\pi }}_{1}\). Let us temporarily assume that \({\overline{\pi }}_{2}>\underline{\pi }_{1}\). The case \({\overline{\pi }}_{2}={\underline{\pi }}_{1}\) will be considered later.

Fig. 8
figure 8

Strategy \(\sigma \) satisfies (I\(^{\prime }\)) iff it lies in the interior of the red triangle at the intersection of the green and blue curves

If \(\pi ^{*}\left( {\hat{\sigma }}\right) =\underline{\pi }_{1}<{\overline{\pi }}_{2}\), then \({\hat{\sigma }}\) will be an equilibrium iff \({\hat{\sigma }} _{2}=\sigma ^{*}\left( {\hat{\sigma }}\right) \). See Fig. 7(I). Similarly, if \(\pi ^{*}\left( {\hat{\sigma }}\right) ={\overline{\pi }}_{2}> {\underline{\pi }}_{1}\), then \({\hat{\sigma }}\) will be an equilibrium iff \({\hat{\sigma }}_{1}={\hat{\sigma }}^{*}\left( \sigma \right) \). See Fig. 7(II). If \(\pi ^{*}\left( {\hat{\sigma }}\right) =x\), then the condition \({\hat{\sigma }}_{t}=\sigma ^{*}\left( {\hat{\sigma }}\right) \) may be expressed, using (8), as follows:

$$\begin{aligned} \left[ \left( 1-r\right) {\hat{\sigma }}_{1}+r{\hat{\sigma }}_{2}\right] ^{N}{\hat{\sigma }}_{t}=x. \end{aligned}$$

Thus, when \({\overline{\pi }}_{2}>{\underline{\pi }}_{1}\), there exists a strictly mixed responsive equilibrium iff at least one of the following two conditions is met:

(I\(^{\prime }\)):

There exists \(\sigma \in \Omega \left( \underline{\pi }_{1}\right) \cap \Gamma ^{\prime }\) satisfying

$$\begin{aligned} \left[ \left( 1-r\right) \sigma _{1}+r\sigma _{2}\right] ^{N}\sigma _{2}= {\underline{\pi }}_{1}. \end{aligned}$$
(CI)
(II\(^{\prime }\)):

There exists \(\sigma \in \Omega \left( \overline{\pi }_{2}\right) \cap \Gamma ^{\prime }\) satisfying

$$\begin{aligned} \left[ \left( 1-r\right) \sigma _{1}+r\sigma _{2}\right] ^{N}\sigma _{1}= {\overline{\pi }}_{2}. \end{aligned}$$
(CII)

Consider condition (I\(^{\prime }\)). Note first, using Fig. 6, that \(\Omega \left( {\underline{\pi }}_{1}\right) \cap \Gamma ^{\prime }\ne \emptyset \) iff

$$\begin{aligned} \frac{1}{2+c}<{\underline{\pi }}_{1}<\frac{r^{N}}{r^{N}+\left( 1-r\right) ^{N}\left( 1+c\right) }. \end{aligned}$$
(17)

Now consider Fig. 8. The set \(\Gamma ^{\prime }\) is the interior of the red triangle. The line corresponding to \(\Omega \left( {\underline{\pi }}_{1}\right) \) is indicated, under the assumption that \( {\underline{\pi }}_{1}\) satisfies (17). The other locus in Fig. 8 describes the set of solutions to (CI); it is easily verified that the implicit function defined by (CI) is convex with a strictly negative slope, and that

$$\begin{aligned} \sigma _{1}=\sigma _{2}={\underline{\pi }}_{1}^{\frac{1}{N+1}} \end{aligned}$$

lies on the graph of this function. Condition (I\(^{\prime }\)) requires that these two loci intersect in \(\Gamma ^{\prime }\). Such an intersection will obviously be unique if it exists. An intersection in \(\Gamma ^{\prime }\) will obtain iff the \(\Omega \left( {\underline{\pi }}_{1}\right) \) locus hits the top of the red triangle strictly to the right of the locus of solutions to (CI), as illustrated in Fig. 8.

Recall from Fig. 6 that the locus \(\Omega \left( {\underline{\pi }} _{1}\right) \) hits the top of the red triangle at \(\lambda \left( {\underline{\pi }}_{1}\right) ^{-1}\). Given \(x\in \left( 0,1\right) \), let \(h_{I}\left( x\right) \) denote the value of \(\sigma _{1}\) that solves

$$\begin{aligned} \left[ \left( 1-r\right) \sigma _{1}+r\right] ^{N}=x \end{aligned}$$
(18)

(noting that this solution might be negative).Footnote 31 Hence, condition (I\( ^{\prime }\)) is satisfied iff (17) and

$$\begin{aligned} h_{I}\left( {\underline{\pi }}_{1}\right) <\frac{1}{\lambda \left( {\underline{\pi }}_{1}\right) }. \end{aligned}$$
(19)

Using the fact that \(h_{I}\left( x\right) \) is strictly increasing, we may re-write condition (19) as

$$\begin{aligned}&{\underline{\pi }}_{1}<h_{I}^{-1}\left( \lambda \left( \underline{\pi } _{1}\right) ^{-1}\right) =\left[ \left( 1-r\right) \lambda \left( {\underline{\pi }}_{1}\right) ^{-1}+r\right] ^{N} \\&\quad \Leftrightarrow \ \ \ {\underline{\pi }}_{1}^{1/N}<\left( 1-r\right) \lambda \left( {\underline{\pi }}_{1}\right) ^{-1}+r. \end{aligned}$$

Using the definition of \(\lambda \) from Lemma 6.1, this may be expressed:

$$\begin{aligned} {\underline{\pi }}_{1}^{1/N}<\frac{2r-1}{r-\left( 1-r\right) \ell \left( {\underline{\pi }}_{1}\right) ^{1/N}} \end{aligned}$$
$$\begin{aligned} \Leftrightarrow \ \ \ r{\underline{\pi }}_{1}^{1/N}-\left( 1-r\right) \left( \frac{1-{\underline{\pi }}_{1}}{1+c}\right) ^{1/N}<2r-1, \end{aligned}$$
(20)

where the final equivalence uses the definition of \(\ell \) from Lemma 6.1. It is obvious that the left-hand side of (20) is strictly increasing in \({\underline{\pi }}_{1}\) so there is some \(\beta _{1}\left( N\right) \) such that (20) is equivalent to \( {\underline{\pi }}_{1}<\beta _{1}\left( N\right) \), where the notation emphasises the dependence of this upper bound on N. Letting

$$\begin{aligned} \alpha _{1}\left( N\right) =\min \left\{ \beta _{1}\left( N\right) ,\ \frac{ r^{N}}{r^{N}+\left( 1-r\right) ^{N}\left( 1+c\right) }\right\} , \end{aligned}$$

we have therefore shown that (I\(^{\prime }\)) holds iff (I). (We will verify the stated properties of \(\alpha _{1}\) shortly.)

Next, consider condition (II\(^{\prime }\)). We have \(\Omega \left( {\overline{\pi }}_{2}\right) \cap \Gamma ^{\prime }\ne \emptyset \) iff

$$\begin{aligned} \frac{1}{2+c}<{\overline{\pi }}_{2}<\frac{r^{N}}{r^{N}+\left( 1-r\right) ^{N}\left( 1+c\right) }. \end{aligned}$$
(21)

This time \(\sigma \in \Omega \left( {\overline{\pi }}_{2}\right) \cap \Gamma ^{\prime }\) is an equilibrium if it sits at the intersection of \(\Omega \left( {\overline{\pi }}_{2}\right) \) and the locus defined by (CII). Given \(x\in \left( 0,1\right) \), let \(h_{II}\left( x\right) \) denote the value of \(\sigma _{1}\) that solves

$$\begin{aligned} \left[ \left( 1-r\right) \sigma _{1}+r\right] ^{N}\sigma _{1}=x. \end{aligned}$$
(22)

It is obvious that this solution exists and is unique. Moreover, \( h_{II}\left( x\right) \in \left( 0,1\right) \) for any \(x\in \left( 0,1\right) \). Reasoning as for condition (I\(^{\prime }\)), mutatis mutandis, we deduce that: condition (II\(^{\prime }\)) is satisfied iff (21) and

$$\begin{aligned} h_{II}\left( {\overline{\pi }}_{2}\right) <\frac{1}{\lambda \left( {\overline{\pi }}_{2}\right) }. \end{aligned}$$
(23)

Using the definition of \(\lambda \) from Lemma 6.1, this may be expressed:

$$\begin{aligned} h_{II}\left( {\overline{\pi }}_{2}\right) <\frac{r\ell \left( {\overline{\pi }} _{2}\right) ^{\frac{1}{N}}-\left( 1-r\right) }{r-\left( 1-r\right) \ell \left( {\overline{\pi }}_{2}\right) ^{\frac{1}{N}}}. \end{aligned}$$

It is easy to show that the denominator and numerator on the right-hand side of this expression are both positive.Footnote 32 Straightforward algebra, therefore, gives

$$\begin{aligned} \left[ \frac{rh_{II}\left( {\overline{\pi }}_{2}\right) +\left( 1-r\right) }{ \left( 1-r\right) h_{II}\left( \overline{\pi }_{2}\right) +r}\right] ^{N}<\ell \left( {\overline{\pi }}_{2}\right) . \end{aligned}$$

Using the definitions of \(h_{II}\left( {\overline{\pi }}_{2}\right) \) and \( \ell \left( {\overline{\pi }}_{2}\right) \), respectively, this is equivalent to

$$\begin{aligned} \frac{\left[ rh_{II}\left( {\overline{\pi }}_{2}\right) +\left( 1-r\right) \right] ^{N}}{{\overline{\pi }}_{2}/h_{II}\left( {\overline{\pi }}_{2}\right) } <\ell \left( {\overline{\pi }}_{2}\right) \end{aligned}$$
$$\begin{aligned} \Leftrightarrow \ \ \ \left[ rh_{II}\left( \overline{\pi }_{2}\right) +\left( 1-r\right) \right] ^{N}h_{II}\left( {\overline{\pi }}_{2}\right) < \frac{1-{\overline{\pi }}_{2}}{1+c}. \end{aligned}$$
(24)

We have, therefore, shown that (23) is equivalent to (24). Since \(h_{II}\left( x\right) \) is strictly increasing, it is easy to see that there is some \(\beta _{2}\left( N\right) \) such that (24) is equivalent to \(\overline{\pi }_{2}<\beta _{2}\left( N\right) \). Letting

$$\begin{aligned} \alpha _{2}\left( N\right) =\min \left\{ \beta _{2}\left( N\right) ,\ \frac{ r^{N}}{r^{N}+\left( 1-r\right) ^{N}\left( 1+c\right) }\right\} , \end{aligned}$$

we deduce that (II\(^{\prime }\)) holds iff (II).

Let us now verify the stated properties of the functions \(\alpha _{1}\) and \( \alpha _{2}\). Comparing (22) and (18), it is obvious that \( h_{I}\left( x\right) <h_{II}\left( x\right) \) for all \(x\in \left( 0,1\right) \). Thus, if \({\overline{\pi }}_{2}=z\) satisfies (23) then \({\underline{\pi }}_{1}=z\) satisfies (19). It follows that \(\beta _{1}\left( N\right) \ge \beta _{2}\left( N\right) \). To see why \(\beta _{2}\left( N\right) >\left( 2+c\right) ^{-1}\), set \({\overline{\pi }} _{2}=\left( 2+c\right) ^{-1}\) in (24) to obtain:

$$\begin{aligned} \left[ rh_{II}\left( \frac{1}{2+c}\right) +\left( 1-r\right) \right] ^{N}h_{II}\left( \frac{1}{2+c}\right) <\frac{1}{2+c}. \end{aligned}$$

This inequality must hold since, by the definition of \(h_{II}\), we have

$$\begin{aligned}&\left[ \left( 1-r\right) h_{II}\left( \frac{1}{2+c}\right) +r\right] ^{N}h_{II}\left( \frac{1}{2+c}\right) =\frac{1}{2+c} \\&\quad \Rightarrow \ \ \ \left[ rh_{II}\left( \frac{1}{2+c}\right) +\left( 1-r\right) \right] ^{N}h_{II}\left( \frac{1}{2+c}\right) <\frac{1}{2+c}, \end{aligned}$$

where we have used \(r>\frac{1}{2}\) and \(h_{II}\left( \left( 2+c\right) ^{-1}\right) \in \left( 0,1\right) \). Hence, \(\beta _{2}\left( N\right) >\left( 2+c\right) ^{-1}\) and we have therefore established that \(\alpha _{1}\left( N\right) \ge \alpha _{2}\left( N\right) >\left( 2+c\right) ^{-1}\) for all N.

Fig. 9
figure 9

The case \(\overline{\pi }_{2}=\underline{\pi }_{1}\)

Finally, let us return to the scenario in which \(\overline{\pi }_{2}= {\underline{\pi }}_{1}\). Then \(\sigma \) is a strictly mixed responsive equilibrium iff

$$\begin{aligned} \sigma \in \Omega \left( {\underline{\pi }}_{1}\right) \cap \Gamma ^{\prime } \end{aligned}$$

and \(\sigma _{1}\le \sigma ^{*}\left( \sigma \right) \le \sigma _{2}\). See Fig. 9a. Note that

$$\begin{aligned} \sigma _{1}\le \sigma ^{*}\left( \sigma \right) \le \sigma _{2}\ \ \ \Leftrightarrow \ \ \ \left[ \left( 1-r\right) \sigma _{1}+r\sigma _{2} \right] ^{N}\sigma _{1}\le \underline{\pi }_{1}\le \left[ \left( 1-r\right) \sigma _{1}+r\sigma _{2}\right] ^{N}\sigma _{2}. \end{aligned}$$

In other words, \(\sigma \) must lie in the region whose western boundary is the locus determined by (CI) and whose eastern boundary is the locus described by the equation

$$\begin{aligned} \left[ \left( 1-r\right) \sigma _{1}+r\sigma _{2}\right] ^{N}\sigma _{1}= {\underline{\pi }}_{1}. \qquad \qquad \qquad \qquad (*)\end{aligned}$$

See Fig. 9b. This region has a non-empty intersection with \( \Omega \left( {\underline{\pi }}_{1}\right) \cap \Gamma ^{\prime }\) iff (19) holds, which is equivalent to (I).

Appendix C

In this Appendix, we prove Lemma 4.5.

First, let \(\varepsilon >0\) be small enough to satisfyFootnote 33

$$\begin{aligned} r\ln \left( \frac{1}{2+c}+\varepsilon \right) <\left( 1-r\right) \ln \left( \frac{1}{2+c}-\frac{\varepsilon }{1+c}\right) . \end{aligned}$$
(25)

We claim that

$$\begin{aligned} {\underline{\pi }}_{1}=\frac{1}{2+c}+\varepsilon \end{aligned}$$
(26)

(and therefore any smaller value of \({\underline{\pi }}_{1}\)) satisfies (20) when N is sufficiently large, and hence that

$$\begin{aligned} \beta _{1}\left( N\right) \ge \frac{1}{2+c}+\varepsilon \end{aligned}$$

for sufficiently large N. To verify this claim, substitute (26) into (20) to get

$$\begin{aligned} r\left( \frac{1}{2+c}+\varepsilon \right) ^{1/N}-\left( 1-r\right) \left( \frac{1}{2+c}-\frac{\varepsilon }{1+c}\right) ^{1/N}\ <\ 2r-1. \end{aligned}$$
(27)

Let \(g\left( N\right) \) denote the left-hand side of (27). It is obvious that

$$\begin{aligned} \lim _{N\rightarrow \infty }\ g\left( N\right) \ =\ 2r-1. \end{aligned}$$
(28)

To prove our claim, it suffices to show that g is strictly increasing when N is sufficiently large, since g then approaches this limit from below and it follows that (27) must hold for large N.

To see that g is strictly increasing for large N, let

$$\begin{aligned} {\overline{g}}\left( x\right) =r\left( \frac{1}{2+c}+\varepsilon \right) ^{x}-\left( 1-r\right) \left( \frac{1}{2+c}-\frac{\varepsilon }{1+c}\right) ^{x}. \end{aligned}$$

Then

$$\begin{aligned} {\overline{g}}^{\prime }\left( x\right) =r\left( \frac{1}{2+c}+\varepsilon \right) ^{x}\ln \left( \frac{1}{2+c}+\varepsilon \right) -\left( 1-r\right) \left( \frac{1}{2+c}-\frac{\varepsilon }{1+c}\right) ^{x}\ln \left( \frac{1}{ 2+c}-\frac{\varepsilon }{1+c}\right) . \end{aligned}$$

Hence,

$$\begin{aligned} \lim _{x\rightarrow 0}{\overline{g}}^{\prime }\left( x\right) \ =\ r\ln \left( \frac{1}{2+c}+\varepsilon \right) -\left( 1-r\right) \ln \left( \frac{1}{2+c} -\frac{\varepsilon }{1+c}\right) \end{aligned}$$

which is strictly less than zero by (25). It follows that \( g\left( N\right) \) is strictly increasing for large N.

Using the fact that \(r\in \left( \frac{1}{2},1\right) \), we have

$$\begin{aligned} \lim _{N\rightarrow \infty }\frac{r^{N}}{r^{N}+\left( 1-r\right) ^{N}\left( 1+c\right) }\ =\ \lim _{N\rightarrow \infty }\frac{1}{1+\left( \frac{1-r}{r} \right) ^{N}\left( 1+c\right) }=1 \end{aligned}$$
(29)

and hence

$$\begin{aligned} \alpha _{1}\left( N\right) \ge \frac{1}{2+c}+\varepsilon \end{aligned}$$

for all sufficiently large N. Since \(\alpha _{1}\left( N\right) >\left( 2+c\right) ^{-1}\) for all N, there must exist some \(\eta >0\) such that

$$\begin{aligned} \alpha _{1}\left( N\right) \ge \frac{1}{2+c}+\eta \end{aligned}$$

for all N.

Appendix D

In this Appendix, we prove Proposition 5.2.

By Lemmas 4.1 and 4.4, if N is sufficiently large, any responsive equilibrium with \(\sigma _{2}=1\) must have \(\sigma _{1}\in \left( 0,1\right) \). Hence, if \(\left( \sigma _{1},1\right) \) is a responsive equilibrium and N is sufficiently large, then

$$\begin{aligned} {\underline{\pi }}_{1}\le \pi ^{*}\left( \left( \sigma _{1},1\right) \right) \le {\overline{\pi }}_{1} \end{aligned}$$
(30)

(see Fig. 1). Recalling (29), we have

$$\begin{aligned} {\overline{\pi }}_{1}<\frac{r^{N}}{r^{N}+\left( 1-r\right) ^{N}\left( 1+c\right) } \end{aligned}$$

for sufficiently large N. Combining this fact with (30) and Fig. 6 we see that

$$\begin{aligned} 0<\lambda ^{-1}\left( {\overline{\pi }}_{1}\right) \le \sigma _{1} \end{aligned}$$

in any responsive equilibrium with \(\sigma _{2}=1\), provided N is sufficiently large. In such an equilibrium:Footnote 34

$$\begin{aligned} \Pr \left( {\mathcal {C}}|a\right) \ \ge \ \left[ r\lambda \left( {\overline{\pi }}_{1}\right) ^{-1}+\left( 1-r\right) \right] ^{N+1}\ =\ \left[ \frac{ \left( 2r-1\right) \ell \left( \overline{\pi }_{1}\right) ^{\frac{1}{N}}}{ r-\left( 1-r\right) \ell \left( {\overline{\pi }}_{1}\right) ^{\frac{1}{N}}} \right] ^{N+1}>0, \end{aligned}$$

where the final inequality uses \(\lambda ^{-1}\left( {\overline{\pi }} _{1}\right) >0\). It follows that

$$\begin{aligned} \ell \left( {\overline{\pi }}_{1}\right) <1\ \ \ \Leftrightarrow \ \ \ {\overline{\pi }}_{1}>\frac{1}{2+c} \end{aligned}$$
(31)

in any responsive equilibrium with \(\sigma _{2}=1\) and large N:Footnote 35 if \(\ell \left( \overline{\pi }_{1}\right) \ge 1\), then \(2r-1>0\) and

$$\begin{aligned} \left[ \frac{\left( 2r-1\right) \ell \left( \overline{\pi }_{1}\right) ^{ \frac{1}{N}}}{r-\left( 1-r\right) \ell \left( {\overline{\pi }}_{1}\right) ^{ \frac{1}{N}}}\right] ^{N+1}>0 \end{aligned}$$

would imply \(r-\left( 1-r\right) \ell \left( \overline{\pi }_{1}\right) ^{ \frac{1}{N}}\) and hence

$$\begin{aligned} \Pr \left( {\mathcal {C}}|a\right) \ \ge \ \left[ \frac{\left( 2r-1\right) \ell \left( {\overline{\pi }}_{1}\right) ^{\frac{1}{N}}}{r-\left( 1-r\right) \ell \left( \overline{\pi }_{1}\right) ^{\frac{1}{N}}}\right] ^{N+1}\ge \left[ \frac{\left( 2r-1\right) \ell \left( {\overline{\pi }}_{1}\right) ^{ \frac{1}{N}}}{r\ell \left( {\overline{\pi }}_{1}\right) ^{\frac{1}{N}}-\left( 1-r\right) \ell \left( \overline{\pi }_{1}\right) ^{\frac{1}{N}}}\right] ^{N+1}=1 \end{aligned}$$

which is impossible since conviction cannot be certain, conditional on \(s=a\), in an equilibrium with \(\sigma _{1}<1\).

To complete the proof we will show that

$$\begin{aligned} \left[ \frac{\left( 2r-1\right) \ell \left( \overline{\pi }_{1}\right) ^{ \frac{1}{N}}}{r-\left( 1-r\right) \ell \left( {\overline{\pi }}_{1}\right) ^{ \frac{1}{N}}}\right] ^{N+1}=\left[ \frac{\left( 2r-1\right) }{r-\left( 1-r\right) \ell \left( {\overline{\pi }}_{1}\right) ^{\frac{1}{N}}}\right] ^{N+1}\ell \left( {\overline{\pi }}_{1}\right) ^{\frac{N+1}{N}} \end{aligned}$$
(32)

has a strictly positive limit as \(N\rightarrow \infty \) when \(0<\ell \left( {\overline{\pi }}_{1}\right) <1\). Since

$$\begin{aligned} \lim _{N\rightarrow \infty }\ell \left( {\overline{\pi }}_{1}\right) ^{\frac{N+1 }{N}}\ =\ \ell \left( {\overline{\pi }}_{1}\right) >0, \end{aligned}$$

the limit of (32) is strictly positive iff

$$\begin{aligned} \lim _{N\rightarrow \infty }\left[ \frac{\left( 2r-1\right) }{r-\left( 1-r\right) \ell \left( {\overline{\pi }}_{1}\right) ^{\frac{1}{N}}}\right] ^{N+1}\ >\ 0. \end{aligned}$$
(33)

We follow the logic on p. 32 of Feddersen and Pesendorfer (1998) to establish (33) as follows:

$$\begin{aligned}&\quad \lim _{N\rightarrow \infty }\left[ \frac{\left( 2r-1\right) }{r-\left( 1-r\right) \ell \left( {\overline{\pi }}_{1}\right) ^{\frac{1}{N}}}\right] ^{N+1} \ge \lim _{N\rightarrow \infty }\left[ \frac{\left( 2r-1\right) }{r-\left( 1-r\right) \left[ 1-\left( N+1\right) ^{-1}\ln \ell \left( {\overline{\pi }}_{1}\right) \right] }\right] ^{N+1} \\&\quad =\ \lim _{N\rightarrow \infty }\left[ 1+\left( 1-r\right) \left( N+1\right) ^{-1}\right] ^{-\left( N+1\right) } \\&\quad =\ \exp \left[ -\left( \frac{1-r}{2r-1}\right) \ln \ell \left( \overline{ \pi }_{1}\right) \right] \\&\quad =\ \ell \left( {\overline{\pi }}_{1}\right) ^{-\left( 1-r\right) /\left( 2r-1\right) }, \end{aligned}$$

where the inequality and second equality use Feddersen and Pesendorfer’s (1998) expressions (6) and (5), respectively.

Appendix E

In this Appendix, we prove Proposition 5.3.

Suppose \(\sigma ^{\left( k\right) }\) is a strictly mixed responsive equilibrium for a jury of size \(N_{k}\in \left\{ 1,2,...\right\} \), with \( N_{k}\rightarrow \infty \) as \(k\rightarrow \infty \). It follows that \( {\underline{\pi }}_{1}\le {\overline{\pi }}_{2}\). From the proof of Proposition 4.2, each \(\sigma ^{\left( k\right) }\) satisfies

$$\begin{aligned} \left[ \left( 1-r\right) \sigma _{1}^{\left( k\right) }+r\sigma _{2}^{\left( k\right) }\right] ^{N_{k}}\sigma _{2}^{\left( k\right) }={\underline{\pi }}_{1} \end{aligned}$$

or

$$\begin{aligned} \left[ \left( 1-r\right) \sigma _{1}^{\left( k\right) }+r\sigma _{2}^{\left( k\right) }\right] ^{N_{k}}\sigma _{1}^{\left( k\right) }={\overline{\pi }}_{2} . \end{aligned}$$

Therefore, \(\sigma _{t}^{\left( k\right) }\rightarrow 1\) as \(k\rightarrow \infty \) for each \(t\in T\), and hence

$$\begin{aligned} \underset{k\rightarrow \infty }{\lim \inf \ }\left[ \left( 1-r\right) \sigma _{1}^{\left( k\right) }+r\sigma _{2}^{\left( k\right) }\right] ^{N_{k}}\ \ge \ {\underline{\pi }}_{1}. \end{aligned}$$

Since

$$\begin{aligned} \lim _{k\rightarrow \infty }\ \left[ \left( 1-r\right) \sigma _{1}^{\left( k\right) }+r\sigma _{2}^{\left( k\right) }\right] \ =\ 1, \end{aligned}$$

we have

$$\begin{aligned} \underset{k\rightarrow \infty }{\lim \inf \ }\left[ \left( 1-r\right) \sigma _{1}^{\left( k\right) }+r\sigma _{2}^{\left( k\right) }\right] ^{N_{k}+1}\ \ge \ {\underline{\pi }}_{1}. \end{aligned}$$

Note that, for equilibrium \(\sigma ^{\left( k\right) }\),

$$\begin{aligned} \Pr \left( {\mathcal {C}}|b\right) \ =\ \left[ \left( 1-r\right) \sigma _{1}^{\left( k\right) }+r\sigma _{2}^{\left( k\right) }\right] ^{N_{k}+1} \end{aligned}$$

so the probability of conviction in \(\sigma ^{\left( k\right) }\) is at least

$$\begin{aligned} \left( 1-{\overline{p}}\right) \left[ \left( 1-r\right) \sigma _{1}^{\left( k\right) }+r\sigma _{2}^{\left( k\right) }\right] ^{N_{k}+1} \end{aligned}$$

for any \(p\in \left[ {\underline{p}},{\overline{p}}\right] \). Thus,

$$\begin{aligned} \min _{p\in \left[ {\underline{p}},{\overline{p}}\right] }\left[ \underset{ k\rightarrow \infty }{\lim \inf \ }\gamma _{k}\left( p\right) \right] \ \ge \ \left( 1-{\overline{p}}\right) {\underline{\pi }}_{1}>0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, M. Feddersen and Pesendorfer meet Ellsberg. Theory Decis 90, 543–577 (2021). https://doi.org/10.1007/s11238-020-09797-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-020-09797-7

Navigation